

PUSHING THROUGH THE SUB M/S RV REGIME USING TWEAKS(KIMA+SCALPELS)

ANCY ANNA JOHN

PROF. ANDREW COLLIER CAMERON

HARPS-N TEAM

STELLAR ACTIVITY LIMITED ERA

- RV precision of 0.1 m/s is required for the detection of Earth twins.
- Improvement (decline) in detection threshold is no more proportional to the instrumental precision.
- Stellar variability saturation limit at ~ 1m/s !
 - Granulation / Super granulation
 - Spots
 - Faculae / Plages
 - P-mode oscillations
 - Convective blue shift

MEASURING RV BY CROSS-CORRELATION

Digital line mask

then, fitting a gaussian to the CCF

UNDERSTANDING THE PROBLEM

Line <u>Shape</u> changes

Shift to the spectrum

Credits: Marylyn Rosenquist

Credits: ESO

MODELLING STELLAR ACTIVITY IN LITERATURE

- Photometry to predict stellar activity impact on RVs Aigrain et.al 2012
- GP to model correlated noise induced by stellar activity Haywood et.al 2014
- Modelling RV timeseries with a planet component and stellar activity component using kima Faria et.al 2018
- -• Multivariate GP modelling of RV and activity indicator time-series Rajpaul et.al 2015, Barragan et.al 2021
- Doppler imaging to model stellar activity & planet induced variation in spectral line profiles Klein et.al 2022
- Neural networks to separate activity signals from COM RV shifts de Beurs et.al 2021
- De-trending the RVs for line shape variations using the SCALPELS basis vectors Collier Cameron et.al 2021

Time domain

Wavelength

domain

MODELLING STELLAR ACTIVITY IN LITER

- Photometry to predict stellar activity impact on RVs Aigrain et.al 2012
- GP to model correlated noise induced by stellar activity Haywood et.al 2014
- Modelling RV timeseries with a planet component and stellar activity component using kima Faria et.al 2018
- -• Multivariate GP modelling of RV and activity indicator time-series Rajpaul et.al 2015, Barragan et.al 2021
- Doppler imaging to model stellar activity & planet induced variation in spectral line profiles Klein et.al 2022
- Neural networks to separate activity signals from COM RV shifts de Beurs et.al 2021
- De-trending the RVs for line shape variations using the SCALPELS basis vectors Collier Cameron et.al 2021

Time domain

Wavelength

domain

- Photometry to predict stellar activity impact on RVs Aigrain et.al 2012
- GP to model correlated noise induced by stellar activity Haywood et.al 2014
- Modelling RV timeseries with a planet component and stellar activity component using kima Faria et.al 2018
- -• Multivariate GP modelling of RV and activity indicator time-series Rajpaul et.al 2015, Barragan et.al 2021
- Doppler imaging to model stellar activity & planet induced variation in spectral line profiles Klein et.al 2022
- Neural networks to separate activity signals from COM RV shifts de Beurs et.al 2021
- De-trending the RVs for line shape variations using the SCALPELS basis vectors Collier Cameron et.al 2021

Time domain

Wavelength

domain

MODELLING STELLAR ACTIVITY IN L

- Photometry to predict stellar activity impact on RVs Aigrain et.al 2012
- GP to model correlated noise induced by stellar activity Haywood et.al 2014
- Modelling RV timeseries with a planet component and stellar activity component using kima Faria et.al 2018
- -• Multivariate GP modelling of RV and activity indicator time-series Rajpaul et.al 2015, Barragan et.al 2021
- Doppler imaging to model stellar activity & planet induced variation in spectral line profiles Klein et.al 2022
- Neural networks to separate activity signals from COM RV shifts de Beurs et.al 2021
- De-trending the RVs for line shape variations using the SCALPELS basis vectors Collier Cameron et.al 2021

Time domain

Wavelength

domain

WHAT DOES SCALPELS DO?

Residual CCF timeseries

 $CCF(v) - \langle CCF(v) \rangle$ - 0.0020 800 - 0.0015 · 700 - 0.0010 600 - 0.0005 8 500 -- 0.0000 400 --0.0005300 --0.0010≥ 200 · -0.0015 100 --0.0020-100 10 Heliocentric velocity in km s⁻¹

Autocorrelation Function is invariant to shifts

Residual ACF timeseries

Collier Cameron et al 2021

SIGNAL SEPARATION

Collier Cameron et al 2021

HARPS & HARPS-N TARGETS

(Rocky Planet Search targets)

TWEAKS Anna John et al 2022, 2023 (under review) (Time and Wavelength domain stEllar Activity mitigation using Kima and SCALPELS)

C O R O T - 7

• 2 known planets

- 0.85 d (transiting), 3.69 d (Queloz et al 2009)
- 3rd candidate signal at 8.98 d (Hatzes et al 2010)
 - later deemed as an activity signal (Haywood et al 2014, Faria et.al 2018)

Background

• Mass of transiting planet poorly constrained (2-8 M $_\oplus$).

Anna John et. al 2022

HARPS-N RPS TARGETS (2012-PRESENT)

False Inclusion Probabilities (FIP) (Hara et al 2021)

Sampling patterns can generate spurious signals in the posteriors, watch out!

INJECTION RECOVERY TESTS

DETECTION LIMITS

inspired from Standing et. al 2022

Anna John et. al 2023 (under review)

DETECTION LIMITS

Anna John et. al 2023 (under review)

TAKE HOME

- Stellar activity mitigation using TWEAKS (SCALPELS+kima) offers RV detections in sub-m/s regime in HARPS-N data
- SCALPELS makes a significant improvement if even a small amount of stellar activity is present.
- CoRoT-7 is better modelled as a 3-planet system
- We are able to detect RV signals down to 54 cm/s, (calibration precision of HARPS-N = 50 cm/s)

