
Eberhard Karls Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät

Wilhelm-Schickard-Institut für Informatik

Master’s Thesis Computer Science

Stochastic Optimization for Market-Integrated

Scheduling of Energy Storage Systems

Gereon Recht

20.05.2023

Reviewers

Dr. Nicole Ludwig

Prof. Dr. Volker Franz

Recht, Gereon:
Stochastic Optimization for Market-Integrated Scheduling of
Energy Storage Systems
Master’s Thesis Computer Science
Eberhard Karls Universität Tübingen
Thesis period: 21.11.2022 - 20.05.2023

i

Abstract

We take the role of an energy storage system operator bidding into a short-term
energy market. The goal is to obtain a decision rule which places bids such that
the expected revenue is maximized. We profit through arbitrage and thereby
stabilize the power grid as we take some of the excess supply when buying
low and some of the excess demand when selling high. Moreover, since excess
supply often occurs due to high renewable penetration, we shift renewable
energy sources in time. In order to characterize the optimal decision rule we
first describe the problem as a Markov decision process. The complexity of the
problem entails that it is infeasible to determine this optimal decision rule, so
we formulate a computationally efficient approximation method which leads to
a near-optimal decision rule. Our approximation method badp-lattice uses
backward approximate dynamic programming with a scenario lattice. The
approach is evaluated in a stylized setting where an optimal solution can be
computed. There, it achieves ∼92− 97% of the optimal revenue while leading
to a reduction of ∼91% in computation time. Furthermore, it is evaluated in a
realistic setting modelling the trading on the real-time market of the New York
Independent System Operator. The market prices are modelled using a Poisson
Spike Process which is calibrated on empirical data. As an optimal solution
cannot be computed in this setting, the approach is evaluated against a perfect
foresight solution, where all prices are known in advance. It achieves ∼82%
of the perfect foresight revenue. Furthermore, the optimized implementation
of badp-lattice leads to reduction in computation time of more than 99%
when compared to a benchmark method.

ii

Zusammenfassung

In dieser Arbeit nehmen wir die Rolle des Betreibers eines Energiespeichers
ein, der mit seiner Kapazität auf einem kurzfristigen Energiemarkt handelt.
Das Ziel ist die Bestimmung einer Entscheidungsregel, welche die Gebote so
setzt, dass der erwartete Ertrag maximiert wird. Wir machen Gewinn durch
Arbitrage und stabilisieren dadurch das Energienetz, denn wir konsumieren
einen Teil des Überangebots wenn wir billig kaufen und reduzieren die Knap-
pheit wenn wir teuer verkaufen. Weil ein Überangebot häufig durch eine hohe
Produktion von erneuerbaren Energieträgern ausgelöst wird, verschieben wir
damit auch erneuerbare Energieproduktion auf einen späteren Zeitpunkt. Um
eine optimale Entscheidungsregel zu beschreiben, formulieren wir das Problem
als Markow-Entscheidungsprozess. Die Komplexität des Problems erfordert
eine effiziente Approximationsmethode, welche statt der optimalen eine na-
hezu optimale Entscheidungsregel bestimmt. Unsere Approximationsmeth-
ode badp-lattice nutzt backward approximate dynamic programming mit
einem scenario lattice. Wir evaluieren den Ansatz in einem vereinfachten
Experiment, wo die optimale Entscheidungsregel berechenbar ist. Dort er-
reicht badp-lattice ∼92 − 97% des optimalen Ertrags. In einem weiteren
Experiment werten wir den Ansatz in einer realistischeren Umgebung aus,
welche den Handel auf dem Echtzeit-Markt des New York Independent Sys-
tem Operators simuliert. Dazu modellieren wir die Marktpreise mit einem
Poisson Spike Process, den wir auf empirischen Daten kalibrieren. Da die op-
timale Lösung in dieser Umgebung nicht berechnet werden kann, evaluieren
wir badp-lattice gegen die Lösung des deterministischen Problems, wo die
Preise im Voraus bekannt sind. Im Vergleich zur deterministischen Lösung
erreicht badp-lattice ∼82% des Ertrags. Des Weiteren führt die optimierte
Implementierung von badp-lattice zu einer Reduktion der Rechenzeit von
mehr als 99% im Vergleich zu einer Benchmark-Methode.

iii

Acknowledgements

Thanks to my advicor Dr. Nicole Ludwig for giving me the freedom and trust
to try out my ideas. Thanks to Prof. Dr. Volker Franz and his group for good
questions and remarks. Thanks to Prof. Dr. Bismark Singh for the advice
and sharing code from his PhD thesis [1], which served as a starting point for
my implementation. Thanks to my friends Robin Link and Frederik Unger
who proofread the thesis. Thanks to my family who supported me throughout
my studies. And finally, thanks to my girlfriend Helen for supporting me and
participating in long library sessions.

iv

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

2 Foundations 3

2.1 Markov Decision Processes . 3

2.1.1 Backward Dynamic Programming 5

2.1.2 Backward Approximate Dynamic Programming 5

2.1.3 Forward Approximate Dynamic Programming 6

2.2 Energy Markets . 6

2.3 Stochastic Simulation of Energy Prices 7

2.3.1 Characteristics of Electricity Prices 8

2.3.2 Variance-Stabilizing Transformations 8

2.3.3 Deterministic Part: Seasonality in Electricity Prices . . . 9

2.3.4 Stochastic Part: Modeling Jump Diffusions 10

3 The Bidding Problem 15

3.1 Markov Decision Process . 17

3.2 Approximation with BADP-lattice 19

3.3 Perfect Foresight Model . 19

4 Numerical Study 23

v

vi CONTENTS

4.1 Experiment 1: Approximation Quality 23

4.1.1 Discussion of Results . 25

4.2 Experiment 2: NYISO real-time market 26

4.2.1 Price Process . 26

4.2.2 Sampling State and Action Space 29

4.2.3 Discussion of Results . 30

4.3 Evaluation of Performance . 33

4.3.1 Discussion of Results . 33

4.3.2 Details on Implementation and Hardware 35

4.4 Summary of Results . 36

5 Conclusion 37

A Appendix 39

A.1 Normalized Variance-Stabilized Transformation 39

A.2 Calibration of the Poisson Jump Model (PJM) 40

Bibliography 43

List of Figures

2.1 Sample paths of (a) a Wiener process and (b) a Poisson process. 10

3.1 Visualization of the indexing notation. 16

3.2 A visualization of the Markov decision process. 17

4.1 Visualization of finite support price process with pseudonor-

mally distributed noise. 24

4.2 Experiment 1: Boxplot showing the revenue of badp-lattice

compared to bdp over 1000 price paths. 25

4.3 NYISO real-time dispatch prices in bidding zone “North” be-

tween 2019 and 2023. 27

4.4 Result of applying the fixed price thresholds despiking procedure

with lower and upper bounds −$13.98 and $84.46 on NYISO

real-time dispatch prices. 28

4.5 Despiked, variance-stabilized NYISO real-time dispatch prices

sinh−1(P̂ /30) and their seasonality St in the year of 2019. 28

4.6 Empirical NYISO real-time dispatch prices on February 1, 2022

in comparison to a sample path from the calibrated Poisson

spike model on the same day. 29

4.7 Effects of sampling B and P on policy value. 31

4.8 The effect of the price state on the value function in comparison

to that of the other state variables. 32

4.9 Experiment 2: Boxplot showing the revenue of badp-lattice

compared to perfect foresight over 1000 price paths. 33

vii

viii LIST OF FIGURES

4.10 Experiment 2: Simulation of badp-lattice and perfect fore-

sight policies for a single day. 34

4.11 Computation times of bdp and badp-lattice for variants of

the benchmark problem in Experiment 1 compared to those of

bdp and monotone-adp from [2]. 35

A.1 Empirical NYISO day-ahead prices in June 2022 compared to a

sample path from the calibrated Poisson Jump Model. 41

List of Tables

4.1 Comparison of badp-lattice to bdp regarding policy value

and time elapsed for the computation in Experiment 1. 25

4.2 Parameters estimated for Poisson spike model on NYISO real-

time dispatch prices between 2019 and 2023. 27

4.3 Statistical properties of NYISO real-time dispatch price simu-

lations in comparison to empirical data. 28

4.4 Step sizes resulting from equidistant sampling of B and P 30

A.1 Parameters estimated for Model 1 on NYISO day-ahead prices

in the years 2021 and 2022. 41

ix

x LIST OF TABLES

Chapter 1

Introduction

In this work we take the role of an energy storage operator who uses their
capacity to trade on a short-term energy market. We profit from arbitrage,
i.e. buying low and selling high, and want to maximize our expected revenue.
Each trading decision is made under uncertainty, as we must commit to buying
or selling energy ahead of the delivery period where the exchange takes place.
Our behavior happens to benefit the power grid: Prices reflect the balance of
supply and demand, which must match at all times within a tolerance such
that the grid remains stable [3]. Times of excess supply coincide with low or
even negative prices, while times of excess demand show high prices. Thus,
when we do arbitrage we take some of the excess supply and some of the
excess demand, and in turn help to stabilize the grid. Moreover, low prices
coincide with high renewable penetration, whereas high prices indicate high
conventional generation. This is due to the merit-order curve, which activates
generators in an order that increases in their marginal costs. Hence, we often
shift renewable energy generation in time, leading to reduced CO2 emissions.

The goal of this work is formulating an approximation method which de-
termines a decision rule for bidding into the real-time market of the New York
Independent System Operator (NYISO). We build on a publication which mod-
els the same problem [2]. Therein, the authors formulate the bidding problem
as a Markov decision process and use an approximate dynamic programming
(adp) approach called monotone-adp to obtain an approximate solution.
This is necessary due to the complexity of the problem, which does not allow
determining an optimal solution using backward dynamic programming (bdp),
the canonical algorithm for finite Markov decision processes. Following the
credo of “try the simplest model first”, we use a simpler approach called back-
ward approximate dynamic programming (badp) which is structurally very
similar to bdp. We aim to answer the question whether our badp approach
achieves a similar solution quality as monotone-adp.

We introduce the foundations of Markov decision processes, backward (ap-

1

2 CHAPTER 1. INTRODUCTION

proximate) dynamic programming, and stochastic price simulations in Chapter
2. Note that the methodological fundamentals of stochastic price simulations
are often neglected in the literature. Following this, we present the formulation
of the bidding problem as a Markov decision process and our approximation
method badp-lattice in Chapter 3. In Chapter 4, we evaluate the decision
rules determined by badp-lattice in two different experiments. The first
evaluates the approximation quality of our approach in a stylized setting and
allows a comparison to monotone-adp. The second uses a more realistic
setting, which simulates the NYISO real-time market. For this second exper-
iment we conduct a sub-experiment in order to determine the effect of some
hyper-parameters of badp-lattice on the solution quality, allowing us make
an informed choice.

Consider [4] for a thorough review of publications on modeling energy stor-
age problems. Recent publications successfully demonstrate the use of badp
on energy storage problems [3, 5–7]. In [3], the authors model the problem
of bidding into both the German day-ahead market and the opening auction
of the German intraday-market. They apply badp with a competitive price
forecast and evaluate their approach on out-of-sample empirical price data.
Their decision problem differs from ours as it only has two decision stages in
each day, while the short-term market we consider has 24. Moreover, we do
not use a price forecast but a stochastic price model, which is only intended
to reproduce the characteristics of energy prices. Hence we also evaluate our
approach on synthetic data from this price model, which is common practice.
Finally, they find that for their specific problem a badp-lattice approach
does not perform well and instead handle the uncertainty with an approach
that linearly combines sample paths. In [5], a hybrid setting for the bidding
problem is considered where there is not only an energy storage system, but
also a wind power plant. A decision rule is determined using badp. The
authors of [6] consider a similar hybrid setting and especially find that their
badp approach outperforms established adp approaches. Moreover, in [7]
the authors successfully obtain near-optimal solutions for an energy storage
problem using badp. They use low-rank approximations to extrapolate their
approximate decision rule. Other approaches use e.g. adp [2, 8], reinforce-
ment learning [9, 10], a multi-stage stochastic program [11], prediction bands
of a novel probabilistic forecast to determine trading recommendations [12], or
even an analytical approach to determine optimal bidding functions [13].

Chapter 2

Foundations

In this chapter, we introduce Markov decision processes as the framework we
use for the formulation of our bidding problem. After a brief description of
energy markets, we then introduce models and methods for the stochastic
simulation of energy prices.

2.1 Markov Decision Processes

Markov decision processes (MDPs) can be used to describe a setting where we
observe the state of some dynamic system at time t and must choose an action,
which we choose according to some decision rule called a policy. We receive
a contribution for this action and our system transitions to the subsequent
state at time t + 1, depending on our action and the arrival of new exogenous
information. We observe the subsequent state at t + 1 and choose our next
action. This procedure is repeated, either with a finite or an infinite optimiza-
tion horizon. In this work, we focus on a finite horizon problem. We aim to
determine an optimal policy such that our expected revenue is maximized [14].

Formally, we model an MDP following the general framework for sequential
decision problems presented in [15, 16]. We define the problem over the time
indices t ∈ T , where the subscript t on a variable indicates when it becomes
known1. We describe an MDP using the following objects:

• The state variable St ∈ S, where S denotes the space of possible system
states, which we assume to be finite.

• The action variable at ∈ A, where A denotes the space of possible ac-
tions, which we assume to be finite as well. The action at is chosen at

1This is an important distinction especially for the actions: We must often commit to an
action before the reward is known, i.e. before it changes the system state. Thus, it could be
tempting to set the index of the action variable to the time where it is applied, but this is
not the notational convention we use here.

3

4 CHAPTER 2. FOUNDATIONS

time t after state St becomes known.

• The exogenous information Wt+1 which we observe during t + 1 before
taking action at+1. It may be comprised of several variables which are
uncertain at time t. We write its possible outcomes as Ω = {ω1, ω2, . . . }.

• The contribution function Ct : S ×A×Ω → R. It represents the reward
we receive for an action given a certain state at time t. The contribu-
tion can be random if it depends on the realization of the exogenous
information.

• The transition function St+1 = SM(St, at,Wt+1). It determines the sub-
sequent state St+1 based on St, at, and the realization of the exogenous
information Wt+1.

• The policy (function) Aπ
t : T × S → A which maps each state to an

action. Any decision rule can form a policy, so the set of possible poli-
cies Π is used for notational purposes in the following, but we do not
explicitly define it. We aim to determine a policy such that our expected
cumulative reward is maximized.

• The objective function

max
π∈Π

E
[T−1∑

t=0

Ct(St, A
π
t (St),Wt+1) |S0

]
,

where St+1 = SM(St, A
π
t (St),Wt+1), i.e. the state transitions are given by

the transition function. It defines the optimal policy given some initial
state S0 ∈ S.

• The recursively defined value function

Vt(St) = max
at∈At

E
[
Ct(St, at,Wt+1) + Vt+1

(
SM(St, at,Wt+1)

)]
, (2.1)

with some terminal reward VT (often set to zero), which is also called
“Bellman’s equation” after its author [17]. It represents the value of be-
ing in a certain state at time t and, like the objective function, defines
the optimal policy, which is given by the actions that form the value
function. Intuitively, the value function interleaves the sequential de-
cisions over the individual stages: In each state, it considers both the
expected contribution of taking the action at and the expected value of
being in the subsequent state if we were to take action at. Note that the
expectation is formed over the exogenous information Wt+1.

2.1. MARKOV DECISION PROCESSES 5

It is called a Markov decision process because for a fixed policy, the sequence of
states forms a Markov chain. That is, given the current state St and action at,
the transition function is conditionally independent of prior states and actions
[14]. In principle, every dynamic system can be modeled to fulfill the Markov
property by including history-dependent information in the state variable [16].

2.1.1 Backward Dynamic Programming

For Markov decision processes with a finite horizon and finite state, action and
outcome spaces, the optimal policy can be computed using backward dynamic
programming2 (bdp). This algorithm steps backwards in time and uses Bell-
man’s equation (Eq. 2.1) as an update rule to determine the optimal action
at ∈ A for each t ∈ T [16]. A suitable terminal reward beyond the final stage
must be specified, which is often simply set to zero. The procedure is shown in
Algorithm 6. After obtaining the policy Aπ

t , it can be evaluated given an initial
state S0 ∈ S as follows: Starting at stage t = 0, for each stage t we take action
at = Aπ

t (St) and then transition to the following state St+1 = SM(St, at,Wt+1)
using our transition function. The revenue is given as the cumulative reward∑T

t=0Ct(St, at) over all stages.

The complexity of bdp is Θ(|T | · |S| · |A| · |Ω|)3, where Ω represents the
outcome space of the exogenous information. Thus, it suffers from three curses
of dimensionality caused by the state space, the action space, and the outcome
space [16].

Algorithm 1: bdp

1 VT (S) = 0 ∀S ∈ S // Terminal reward

2 for t = T - 1, . . . , 0 do
3 for St ∈ S do

4 Let f(at) = E
[
C(St, at,Wt+1) + Vt+1

(
SM(St, at,Wt+1)

)]
.

5 Vt(St) := maxat∈At f(at)
6 Aπ

t (St) := arg maxat∈At
f(at)

2.1.2 Backward Approximate Dynamic Programming

Due to the three curses of dimensionality or continuous state and action spaces
it is often not feasible to use bdp. Thus, several approximation techniques have

2It is also known as the method of successive approximations, backward induction, or
value iteration.

3Recall the definition of a tight asymptotic bound: Θ(g(n)) = {f(n) : ∃c1, c2, n0 ≥
0 such that 0 ≤ c1 · g(n) ≤ f(n) ≤ c2 · g(n)∀n ≥ n0} [18].

6 CHAPTER 2. FOUNDATIONS

emerged. Backward Approximate Dynamic Programming (badp) stays closest
to bdp by sampling4 the spaces involved, i.e. by using sampled state and ac-
tion spaces Ŝ ⊆ S, Â ⊆ A. Moreover, the exogenous information is described
by a finite set of scenarios Ω̂ = {ω1, . . . , ωN} ⊆ Ω. The expectations in the
MDP formulation can then be approximated for example using sample average
approximation over this large number of scenarios, or by reducing the number
of scenarios into a scenario lattice, where each scenario has an associated prob-
ability [3, 19]. These approximations allow determining a lookup table value
function approximation V̄ over the sampled spaces in the same manner as in
bdp. If an action or a realization of the exogenous information causes the
transition to a state which is not part of the sampled state space, it is common
practice to linearly interpolate the value function [3].

2.1.3 Forward Approximate Dynamic Programming

Another commonly used technique is called (forward) approximate dynamic
programming (adp), which uses Bellman’s equation but steps forward in time.
Like badp, it uses a finite set of scenarios Ω̂ ⊆ Ω, but it uses them sequentially:
In each forward pass over the optimization horizon, the problem is simulated
for a single scenario ω ∈ Ω̂. Along the way, the value function approximation
is updated, which can e.g. have the form of a lookup table. As adp only visits
states where the scenarios lead it to, it avoids the curse of the state space size.
However, it needs to iterate over a potentially very large number of scenarios in
order to converge to a near-optimal solution. For further information consider
[16]. The monotone-adp approach of the publication we build on uses this
technique, but speeds up convergence by exploiting the monotonicity of the
value function [2].

2.2 Energy Markets

For a thorough description of energy markets, see [20]. Electrical energy is
traded in the unit of megawatt-hours (MWh), where x MWh is equivalent to
the output of x MW of power over the duration of one hour. Bids to buy or
sell energy are submitted in the form of (p, x), where p denotes the price below
(above) which the market participant wants to buy (sell) the energy generated
by an output of x MW of power over the fixed duration of the delivery period.
The market operator determines a market clearing price by matching bids to
buy and sell, a process which is also called settling.

Trading takes place on sequential markets which serve different purposes as

4This is also called discretizing in the literature, although this technique is not limited
to the approximation of continuous problems.

2.3. STOCHASTIC SIMULATION OF ENERGY PRICES 7

they differ in the length of their trading periods and in the difference between
the closing time and the time of delivery. The largest amount of energy is
traded on forward markets which close many hours before the time of delivery.
Short-term imbalances between realized supply and demand are traded on the
spot market, which allows settlements much closer to the delivery period and
in shorter time intervals. In this work, we consider the real-time market of the
New York Independent System Operator (NYISO), which is actually comprised
of two markets: The NYISO real-time commitment market, where bids are
submitted ahead of the delivery period, and the NYISO real-time dispatch
market, where the bids submitted to the commitment market are settled [21].
Moreover, the dispatch market operates on smaller time increments than the
commitment market, which entails that a single bid is settled multiple times.

2.3 Stochastic Simulation of Energy Prices

Electricity price simulations are most notably used for pricing derivatives
[22, 23], but also in experimental setups by the operations research (OR)
community [5, 8, 11, 24–30]. In the context of sequential decision problems
involving energy prices, these simulations are used to create a number of price
paths for the numerical computation of the expected values contained in the
problem formulations. Moreover, they are used to evaluate the decision rules
determined by the models. Despite the ubiquity and non-triviality of these
simulation methods, the OR publications mostly do not give a detailed ac-
count of the theory or the practical usage. In particular, the steps involved
for the estimation and simulation of stochastic processes in discrete time are
often omitted. Hence, we give a brief introduction into stochastic processes
and present all the necessary steps for their simulation as well as the approxi-
mations involved.

In general, after stabilizing the variance with a suitable transformation
f , the energy price Pt is modeled as a sum of a stochastic part Xt and a
deterministic part St. Thus, the foundation of many price models is formed
by

f(Pt) = Xt + St.

The parameters of the components are estimated as follows: First, the de-
terministic part is estimated, which is usually given by seasonal patterns of
different lengths. Then, the parameters of the stochastic part Xt are estimated
on the difference f(Pt) − St. In the following, after briefly describing electric-
ity price characteristics, we introduce the variance-stabilizing transformation
f and our models for the deterministic and stochastic parts, respectively.

8 CHAPTER 2. FOUNDATIONS

2.3.1 Characteristics of Electricity Prices

Electricity prices have a tendency to revert to a mean which may be peri-
odic, i.e. undergoes seasonal variations. Smaller movement around this mean
exists due to imbalances in supply and demand. Furthermore, price or de-
mand shocks lead to spikes, that is steep jumps which quickly return to the
previous level. This happens due to several reasons that are unique to elec-
tricity markets: Supply and demand have to be matched at each point in time
within a tolerance to ensure grid stability. Demand in short-term markets is
price-inelastic, i.e. higher prices do not induce a lower demand. Furthermore,
electricity is not storable in economic terms [31]. In recent years with rising
renewable penetration, negative electricity prices can occur regularly: Sudden,
hard to predict output from wind or solar generators combined with the in-
flexibility of conventional generators which cannot reduce their output quickly
enough leads to an oversupply and thus negative prices [32]. We aim to capture
these characteristics in our price model.

2.3.2 Variance-Stabilizing Transformations

To improve the parameter estimation of stochastic price models, it is common
to apply an invertible function which reduces the volatility by stabilizing the
variance [33]. The estimation and simulation then occur in the transformed
space, after which the inverse transformation is applied to the simulation to
obtain values from the original space.

Historically, the logarithmic transformation was used. In fact, the stochas-
tic processes for electricity price simulations are often explicitly defined for
logarithmic prices [22, 31, 34]. This was a suitable transformation during the
time of release of these publications, which was justified by the fact that “neg-
ative electricity prices have rarely been observed” [31]. However, it cannot
be used for today’s frequently negative or near-zero electricity prices without
modifications as the logarithm quickly approaches negative infinity below one
and is undefined at zero and below. In [33], various alternative transforma-
tions are evaluated which are specifically designed for parameter estimation
in the presence of negative electricity prices. One such transformation is the
area hyperbolic sine transformation (called Asinh-transform in the following),
which was originally proposed in [35]. It is defined as

Yt = f(Pt) = sinh−1

(
Pt − ξ

λ

)
,

where ξ, λ are fixed offset and scale parameters and Yt denotes the transformed

2.3. STOCHASTIC SIMULATION OF ENERGY PRICES 9

price. Its inverse is given by

Pt = f−1(Yt) = λ · sinh(Yt) + ξ.

In [35], the author recommends to set the offset ξ such that the data is cen-
tered around zero, while the scale parameter λ is determined experimentally
by evaluating the visual appearance of the resulting transformed data. The
Asinh-transform behaves asymptotically logarithmic, as the positive and neg-
ative parts are approximately logarithmic with an approximately linear part
in between, close to zero. Moreover, the Asinh-transform shares a useful prop-
erty with the log-transform: The stochastic differential equation defining an
Ornstein-Uhlenbeck process (see Section 2.3.4) in the transformed space still
has an explicit solution. For the log-transform, this solution can be expressed
with the log-normal distribution. For the Asinh-transform, it is given by the
Johnson SU distribution.

2.3.3 Deterministic Part: Seasonality in Electricity
Prices

Electricity prices contain seasonality, i.e. repeating patterns of different
lengths. Such patterns most notably occur on a daily, a weekly, and annual
basis. A simple technique of modeling seasonality occurring within a length
T time interval consists of determining a representation of this interval in av-
erages, i.e. taking the mean or median values for each time step within this
interval. Formally, the median profile of a length L ∈ N+ seasonal pattern is
given by

SL
t = median

({
Pt′ : t′ ∈ T , (t′ mod L) = (t mod L)

})
. (2.2)

Given a time series with five minute increments, the daily seasonality can be
modeled using Eq. (2.2) with L = 288, the number of five minute increments
within a day. Similarly, the weekly seasonality is modeled with L = 2016.
Annual seasonality is often modeled with a sum of trigonometric functions
(motivated by the Fourier decomposition) [36]. This trigonometric function
technique is used for example in [31] where the annual seasonality is defined
as

Sa
t = α + βt + γ1 sin(2πt) + γ2 cos(2πt) + δ1 sin(4πt) + δ2 cos(4πt). (2.3)

Since this model is linear in the parameters {α, β, γ1, γ2, δ1, δ2}, they can be
obtained using the least-squares method.

10 CHAPTER 2. FOUNDATIONS

0 250 500 750 1000

t

0

25

(a) Sample path of a Wiener process

0 250 500 750 1000

t

0

10

(b) Sample path of a Poisson process
with rate λ = 22

Figure 2.1: Sample paths of (a) a Wiener process and (b) a Poisson process.

2.3.4 Stochastic Part: Modeling Jump Diffusions

A stochastic process is a collection of random variables {Xt}t∈T where the
index set T represents time. It can also be viewed as a random function
X(ω) : t → Xt(ω) or short Xω

t , which defines a function of time for each
realization ω of the uncertainty. We call ω a scenario and Xω

t a sample path.
For discrete-time processes T is finite or countably infinite, for continuous-time
processes it is uncountably infinite. Stochastic processes can be used to model
the evolution of some uncertain quantity over time [14, 37].

Two of the most important stochastic processes are the Wiener and the
Poisson process, which are both part of our price model. A Wiener process or
Brownian motion {Wt}t∈T has independent, normally distributed increments.
That is,

(i) for all t > 0 and u > 0 the increments Wt+u −Wt do not depend on past
increments and

(ii) Wt+u −Wt ∼ N (0, u).

We can use Wt to represent the smaller movement around the mean electricity
price. A Poisson process {Jt}t∈T is a counting process, i.e. Jt counts the num-
ber of some events which occur by time t. These events occur independently of
each other with a mean rate of λ > 0. It gets its name from the property that
for an interval of length t, the number of events Jt+u−Ju is Poisson distributed
with mean λt. We can use a Poisson process to model the occurrence of price
jumps. See Figure 2.1 for sample paths of a Wiener and a Poisson process.

Continuous-time stochastic processes are defined with stochastic differen-
tial equations (SDEs), which can be viewed as ordinary differential equations
whose forcing function is a stochastic process. The solution of an SDE is a
stochastic process [38]. We will now define the Ornstein-Uhlenbeck process,
which will be part of our price model, in the form of an SDE. The Ornstein-
Uhlenbeck process has the property that it evolves around a long-term mean
to which it returns at a certain rate of mean-reversion. The SDE defining the

2.3. STOCHASTIC SIMULATION OF ENERGY PRICES 11

Ornstein-Uhlenbeck process is given as

dXt = κ(µ−Xt)dt + σdWt, (2.4)

where κ > 0 represents the speed of mean reversion, µ is the long-term mean,
σ is the short-term volatility parameter, and Wt is a Wiener process [23].
Analytical solutions to SDEs can be obtained using stochastic calculus if they
exist. However, they can also be approximated in discrete time using the Euler-
Maruyama (EM) method [39], which e.g. allows writing the continuous-time
Ornstein-Uhlenbeck process (Eq. 2.4) as

Xt+1 = Xt + κ(µ−Xt)∆t + σ∆Wt,

where ∆t is the discrete time increment. The discrete increment of the Wiener
process ∆Wt can be represented as a random variable ξt ∼ N (0, 1) with a
multiplicative factor of

√
∆t to account for the standard deviation of ∆Wt.

Thus, we can write

Xt+1 = Xt + κ(µ−Xt)∆t + σ
√

∆tξt, (2.5)

which often forms the basis for parameter estimation and simulation of
continuous-time processes5 building on Eq. (2.4). The Ornstein-Uhlenbeck
process itself can be calibrated on historic data using the least-squares method:
By substituting κ = 1 − Φ and µ = α

1−Φ
we can write Eq. (2.5) as

Xt+1 = α + ΦXt∆t + σ
√

∆tξt

such that it attains the form of a linear regression model with intercept α,
slope Φ, and normally distributed error term ξt. The short-term volatility σ is
given by the standard deviation of the residuals.

The Ornstein-Uhlenbeck process sufficiently models how prices evolve
around a long term mean. However, we also want to model the occurrence
of price spikes, which we do in the following two sections.

Model 1: A Poisson Jump Model (PJM)

One possibility of including jumps is adding a Poisson process to the Ornstein-
Uhlenbeck process in order to model the jump occurrences [34]. We define such
a Poisson Jump Model (PJM) in continuous time as

f(Pt) = Xt + St,

dXt = κ(µ−Xt)dt + σdWt + χtJt,
(2.6)

5This is because, naturally, the empirical data used for the estimation is defined over
discrete time increments.

12 CHAPTER 2. FOUNDATIONS

where f is a variance-stabilizing transformation, Xt is the stochastic com-
ponent, and St is the seasonal component. In the stochastic component the
parameters κ, µ, σ,Wt are from the Ornstein-Uhlenbeck process as in Eq. (2.4).
Furthermore, the jumps are represented by the Poisson process Jt with con-
stant intensity λ and normally distributed jump sizes χt ∼ N (µJ , σJ). For
small time increments ∆t, the Poisson jump process can be approximated
with a Bernoulli process, i.e. a sequence of Bernoulli trials with a consistent
parameter p ∈ (0, 1) [40]. This allows expressing the likelihood function of
the PJM and thus its calibration using maximum likelihood estimation. For a
detailed derivation and estimation results see Section A.2.

The PJM is not well-suited to describe the highly volatile and spiky prices
of spot markets such as the NYISO real-time dispatch market: Since the jump
component is included in the mean-reverting process Xt, extreme price spikes
force the speed of mean-reversion κ to be very large such that prices can
quickly return to the pre-spike level [23]. Moreover, due to the normally-
distributed jump sizes it cannot model a difference in the probability of positive
and negative jumps. However, it seems to be a suitable model for the less spiky
prices of day-ahead markets, forward markets which often close the day prior
to the day of delivery and define hourly prices. Calibration results and an
exemplary sample path of the PJM given empirical NYISO day-ahead prices
are displayed in Table A.1 and Figure A.1.

Model 2: A Poisson Spike Model (PSM)

Poisson Spike Models (PSMs) are better suited for modeling real-time markets
as they separate the jump component from the mean-reverting component [23].
We adopt the model, but modify the calibration procedure from [29]. Formally,
the price is modeled as

Pt = P̂t + Zt,

sinh−1
(P̂t

λ

)
= Xt + St,

dXt = κ(µ−Xt)dt + σdWt,

dZt = χtJt,

(2.7)

where P̂t is the mean-reverting component and Zt is the jump component. The
mean-reverting component is decomposed into a seasonal component St and a
stochastic component Xt. Note that the stochastic component is modeled in
the variance-stabilized Asinh-space (Section 2.3.2) with an Ornstein-Uhlenbeck
process as defined in Section 2.3.4. The jump component Zt is governed by
a Poisson process Jt with jump sizes χt. Again, this Poisson process can be
approximated with a sequence of Bernoulli trials [40]. Moreover, the jump sizes

2.3. STOCHASTIC SIMULATION OF ENERGY PRICES 13

χt follow an empirical distribution based on historical data. Calibrating this
price model first requires detecting and removing spikes, which can be achieved
with a variety of methods [41]. This also gives us an empirical spike probability
p ∈ (0, 1) for the Bernoulli trials. After the spikes are removed, we apply the
Asinh-transform on the despiked prices P̂t and then determine the seasonality
St. Following this, we can estimate the parameters of the Ornstein-Uhlenbeck
process on the difference P̂t − St, i.e. the stochastic part Xt, as described in
Section 2.3.4.

Simulation of Model 2

Once the model parameters are estimated, its simulation is straightforward:
The mean-reverting component P̂t and the jump component Zt are simulated
separately. First, we simulate the Ornstein-Uhlenbeck process in Asinh-space
by (a) sampling from the normal distribution to represent the short-term
volatility and then (b) iteratively applying its discrete definition (Eq. 2.5).
Then, we transform the simulated prices back to the original space by adding
back the seasonality and applying the inverse Asinh-transform, thereby ob-
taining the mean-reverting component P̂t. Following this, we model the jump
component by (a) obtaining samples from the Bernoulli distribution to model
the occurrences and (b) obtaining samples from the empirical spike size distri-
bution. Finally, we sum the mean-reverting and the spike component to obtain
the simulated prices. See Algorithm 2 for the detailed procedure.

14 CHAPTER 2. FOUNDATIONS

Algorithm 2: Simulation of Poisson Spike Model

Data: Parameters θ = {κ, µ, σ, p}, collection of spike sizes Cspike, time
increment ∆t, initial value X0, length T , seasonality S.

Result: A length T price simulation.
1 X0 := sinh−1(P0/30) − S0

2 X :=
[
X0, 0, · · · 0

]
3 Obtain T samples ξ1, . . . , ξT ∼ N (0, 1) from standard normal

distribution.
// Simulate Ornstein-Uhlenbeck process with Euler-Maruyama

method.

4 for t = 0, . . . , T − 1 do

5 Xt+1 := Xt + κ(µ−Xt)∆t + σ
√

∆tξt+1

6 X :=
[
X1, · · · , XT

]
// Remove X0.

7 P̂ := 30 · sinh(X + S) // Add seasonality, invert

Asinh-transform.

8 Obtain T samples b1, . . . , bT ∼ Ber(p) from Bernoulli distribution with
parameter p.

9 Obtain T samples u1, . . . , uT ∼ U(1, |Cspike|) from uniform distribution.

10 Z :=
[
b1 · Cspike

u1
, · · · bT · Cspike

uT

]
// Define the spike component.

11 P := X + Z
12 return P

Chapter 3

The Bidding Problem

We model the problem of bidding into the NYISO real-time market as an
energy storage operator. As discussed in Section 2.2, bids and settlements
on this market happen on different time scales, i.e. a single bid is subject to
multiple settlements. We follow the simplifications detailed in [2], who model
the same problem: Bids are placed one hour ahead of the hour-long delivery
period. Within the delivery period, the bids for this period are settled in five
period increments, so M = 12 times. Instead of submitting multiple bids with
different price-volume combinations, we simplify the problem by choosing one
sell and one buy bid, both with a fixed volume or capacity of 1 MW. Fixing
either the price or the volume is common as it avoids non-linear and non-
concave decision problems [13]. Furthermore, we assume that we are a price
taker, i.e. that our actions do not have an effect on the market price. Note that
we ignore degradation of the storage unit, which can e.g. occur with battery
storage after many charge-discharge cycles [2]. Moreover, we do not include
ramping times, the time needed to change the charging or discharging level, a
constraint of pumped-hydroelectric storage systems [3].

We index the hourly periods with t ∈ T where T = {0, . . . , T + 1}. The
first of the T decision stages is t = 0, while the last bidding decision is made
at t = T − 1. Due to the bidding rules explained above, this last bid is applied
in period T + 1; hence the unusual index set. The intra-hour settlements
are indexed with m ∈ M where M = {1, . . . ,M}. We use this as follows
for indexing variables: We write xt,m to denote the value of some variable x
in stage t and after settlement m. Bids are placed after observing the last
settlement of the previous delivery period, so we allow the notational trick
that t + 1 equals (t,M). This is better expressed visually in Figure 3.1.

Before formulating the problem as an MDP, we first introduce some nota-
tion and auxiliary functions. We build on [2], but improve notation where we
deem it necessary: We describe the storage level of our energy storage system
as a resource state Rt,m ∈ R = [Rmin, Rmax], where Rmin and Rmax are lower

15

16 CHAPTER 3. THE BIDDING PROBLEM

Figure 3.1: Visualization of the indexing notation.

t

t, 1 t, 2 · · · · · · t, 11 t, 12

t+ 1

and upper limits. The system has constant charging and discharging efficien-
cies ηc, ηd ∈ (0, 1). This does not reflect reality, but is a common simplification
[4]. We adopt the notation

P(t,t+1] =
[
Pt,1, Pt,2, . . . Pt,M−1, Pt,M

]
∈ PM

of [2] for the delivery period prices, where P is the set of possible prices. The
possible prices at which we can bid lie in the interval B := [0, Bmax] where
Bmax ∈ R+. The lower limit is set to zero as it is always beneficial to buy at
non-positive prices. The possible bidding decisions are then

B = {(b−, b+) ∈ B2 : b− ≤ b+},

where b− denotes the price of the buy bid, b+ the price of the sell bid. Selling
and buying at the same time is avoided by requiring the buy bid to be smaller
than the sell bid. We use the notation b ∈ B to refer to both the buy and sell
bid decision in the following. Moreover, we always implicitly bid a capacity of
1 MW. Since energy is traded in the unit [$/MWh] but our bids are settled
in time increments smaller than an hour, we actually sell or buy 1

M
MWh of

energy in a single settlement. To describe the change in resource state in an
individual settlement m within a delivery period t, we define the function

g(Pt,m, b, Rt,m) =


− 1

M
, if Pt,m > b+ and Rt,m − 1/M ≥ Rmin,

1
M
, if Pt,m < b− and Rt,m + 1/M ≤ Rmax,

0, otherwise.

If we win a sell bid and our resource level is sufficient, we discharge. If we
win a buy bid and the resource is not full, we charge. Similarly, to define the
reward in an individual settlement m within a delivery period t we define the
function

h(Pt,m, b, Rt,m) =


Pt,m · 1

M
· ηd, if Pt,m > b+ and Rt,m − 1/M ≥ Rmin,

−Pt,m · 1
M
, if Pt,m > b+ and Rt,m − 1/M < Rmin,

−Pt,m · 1
M

· 1
ηc
, if Pt,m < b− and Rt,m + 1/M ≤ Rmax,

0, otherwise.

3.1. MARKOV DECISION PROCESS 17

Figure 3.2: A visualization of the Markov decision process.

t− 1 t t+ 1 t+ 2

bt−1 bt

St = (Rt, bt−1, PS
t) Vt+1(Rω

t+1, bt, P
ω
t+1)

P(t−1,t] P(t,t+1] P(t+1,t+2]

If we win a sell bid we get paid for ηd · 1
M

MWh of energy, which takes the
discharging efficiency of our storage unit into account. If we win a sell bid but
cannot discharge, we must pay a penalty equivalent to buying back the energy
from the market (following [2]). If we win a buy bid, we pay for 1

ηc
· 1
M

MWh
of energy, where we take the charging efficiency into account. In other words,
we trade the amount of energy that is or will be in our storage unit.

3.1 Markov Decision Process

Now we have all necessary tools to formulate our problem as an MDP. Again,
the formulation is based on [2] with notational changes. See Figure 3.2 for a
visualization of parts of this formulation.

• The state variable St = (Rt, bt−1, P
S
t) ∈ S, where Rt is the resource level

of the energy storage system, bt−1 ∈ B is the hour-ahead bid settled in the
current stage t, P S

t ∈ P is the price which we observe at the beginning
of the current stage.

• The decision bt ∈ B which is determined at time t but settled in the
interval (t + 1, t + 2].

• The exogenous information P ω
t given by some stochastic process model-

ing the energy prices where ω is a scenario of the outcome space Ω.

• The transition function

St+1 = SM(St, bt, P(t,t+1]) = (Rt+1, bt, P
S
t+1)

where the bid bt is determined in the decision process, P S
t+1 is simply

observed, and Rt+1 is defined as follows: The resource levels within the

18 CHAPTER 3. THE BIDDING PROBLEM

delivery period are given as

Rt,1 = Rt,

Rt,m+1 = Rt,m + g(Pt,m, bt−1, Rt,m) for m = 1, . . . ,M − 1,

where the resource level of the subsequent stage Rt+1 is equal to Rt,M as
per our notational convention. This recursive definition of the resource
level reflects the sequential settlements. Note that the bid bt−1, which is
settled in stage t, is contained in St.

• The contribution function

Ct,t+2(St, bt, P
ω
(t,t+2]) = E

[M∑
m=1

h(P ω
t+1,m, bt, R

ω
t+1,m)

]
where Rω

t+1 is determined over P ω
(t,t+1] as for the transition function; hence

the additional dependence on the interval (t, t+1]. The contribution func-
tion represents the expected reward for taking action bt in the subsequent
stage t + 1.

• The policy Bπ
t : S → B, which maps each state to a bidding decision.

• The objective function

max
π∈Π

E
[T−1∑

t=0

Ct,t+2(St, B
π
t (St), P

ω
(t,t+2]) |S0

]
,

which maximizes the expected cumulative reward. The optimal policy
can also be characterized with a value function using Bellman’s equation:

Vt(St) = max
bt∈B

{
E
[
Ct,t+2(St, bt, P

ω
(t,t+2]) + Vt+1

(
SM(St, bt, P

ω
(t,t+1])

)]}
∀t = 0, . . . , T − 1,

VT (S) = 0 ∀S ∈ S.

As the authors of [2] remark, the contribution and the value function in
stage t are both expected values defined over the uncertain prices in the
interval (t + 1, t + 2]. The uncertain prices in interval (t, t + 1] do not
directly affect the reward, but only the subsequent resource state Rt+1.

The price and bid spaces can be considered finite, but very high-dimensional
since market trading rules often dictate lower and upper price limits and a
fixed smallest increment for (bid) prices. Thus, we cannot apply bdp but
must formulate an approximate solution method.

3.2. APPROXIMATION WITH BADP-LATTICE 19

3.2 Approximation with BADP-lattice

We lift the three curses of dimensionality with badp-lattice, a badp ap-
proach which uses a scenario lattice to represent the uncertainty given by
the price process. We choose badp as multiple publications have successfully
applied it on energy storage problems [3, 5–7, 42]. This approach requires
choosing suitable state and action space samples Ŝ ⊆ S and B̂ ⊆ B, such
that the first two curses of dimensionality are lifted. Moreover, the exogenous
information in the form of a stochastic price process is approximated by first
obtaining a sample Ω̂ ⊆ Ω of the outcome space, which gives us a finite number
of sample paths P ω

t for ω ∈ Ω̂. Following [3, 43], we then create a scenario
lattice of 50 paths by clustering the sample paths using k-means with the
k-means++ initialization procedure [44] and determine their probability ac-
cording to the cluster sizes. These centroid paths are then used to approximate
the expectations contained in the MDP formulation, which is our approach of
lifting the curse of the outcome space dimensionality.

badp-lattice is given in Algorithm 3. We determine V̄ and Bπ by it-
erating backwards in time and iteratively determining the value function ap-
proximation and policy for each sampled state, considering only actions from
the sampled action space. As mentioned in Section 2.1.2, it is practice to lin-
early interpolate the value function if an action or realization of the exogenous
information leads to a state outside of the sampled state space. Due to the
fixed bid volume of 1 MW, our problem is set up to only result in consistent
resource states. Thus, only the realization of the sample price paths can result
in a state outside of Ŝ.

3.3 Perfect Foresight Model

A theoretical upper bound for the reward of the MDP formulation can be ob-
tained by removing the stochasticity and then determining the optimal policy.
This setting, where all prices are known in advance, is called the perfect fore-
sight setting. We define this model as a deterministic dynamic program using
the same framework as before:

• The state variable St = (Rt, P(t,t+1]) ∈ S.

• The decision bt ∈ Bt which is settled in the interval (t, t + 1].

• The transition function

SM(St, bt, P(t,t+1]) = (Rt+1, P(t+1,t+2]) = St+1

20 CHAPTER 3. THE BIDDING PROBLEM

where Rt+1 is defined as follows: The resource levels within the delivery
period are given as

Rt,1 = Rt,

Rt,m+1 = Rt,m + g(Pt,m, bt, Rt,m) for m = 1, . . . ,M − 1.

The resource level of the subsequent stage Rt+1 is equal to Rt,M .

• The contribution function

Ct(St, bt) =
M∑

m=1

h(Pt,m, bt, Rt,m).

• The objective function

max
π∈Π

T∑
t=1

Ct(St, B
π
t (St)),

given an initial state S0 ∈ S. The optimal policy can also be character-
ized with a value function using Bellman’s equation:

Vt(St) = max
bt∈B

Ct(St, bt) + Vt+1

(
SM(St, bt, P(t,t+1])

)
,

for t = 0, . . . , T − 1,

VT (ST) = 0.

3.3. PERFECT FORESIGHT MODEL 21

Algorithm 3: badp-lattice

1 Initialize the terminal reward of the value function with

V̄T (S) := 0 ∀S ∈ Ŝ.
2 for t = T − 1, . . . , 0 do

3 for St = (Rt, bt−1, P
S
t) ∈ Ŝ do

4 Obtain sample paths P ω1

(t,t+2], . . . , P
ω1000

(t,t+2] conditioned on P S
t .

5 Determine scenario lattice of centroid paths P
(1)
(t,t+2], . . . , P

(50)
(t,t+2]

with k-means and their probabilities Pr(k), which are defined
by the cluster sizes.

6 Obtain resource states R
(1)
t+1, . . . , R

(50)
t+1 by applying the

transition function (Eq. 3.1) for the interval (t, t + 1] with bt−1

and the respective centroid path out of P
(1)
(t,t+2], . . . , P

(50)
(t,t+2].

7 Let

f(bt) =
50∑
k=1

Pr(k) ·
[M∑
m=1

h(P
(k)
t+1,m, bt, R

(k)
t+1,m)

+ V̄t+1(R
(k)
t+1, bt, P

(k)
t+1)

]
The transition function can lead to a state outside of the
sampled state space only if P

(k)
t+1 /∈ P̂ , i.e. P̂(n) < P

(k)
t+1 < P̂(n+1)

for P̂(n), P̂(n+1) ∈ P̂ . In this case we linearly interpolate the
value function by solving

y − V̄t+1(R
(k)
t+1, bt, P̂(n))

P
(k)
t+1 − P̂(n)

=
V̄t+1(R

(k)
t+1, bt, P̂(n+1)) − V̄t+1(R

(k)
t+1, bt, P̂(n))

P̂(n+1) − P̂(n)

for y.
8 Approximate the expected value of being in state St with the

centroid paths and set the policy accordingly:

V̄t(St) = max
bt∈B̂

{f(bt)},

Bπ
t (St) = arg maxbt∈B̂{f(bt)}.

9 return V̄ , Bπ

22 CHAPTER 3. THE BIDDING PROBLEM

Chapter 4

Numerical Study

To evaluate badp-lattice, we conduct two experiments: The first experiment
sets up a price process with finite support such that the optimal policy can
be computed by bdp. Since we aim to approximate this solution, this allows
assessing the solution quality of badp-lattice. In the second experiment we
model the bidding into the NYISO real-time market by using our more realistic
Poisson Spike Process (Eq. 2.3.4). In this setting, the optimal solution cannot
be explicitly computed. Hence, we compare badp-lattice to the perfect
foresight solution, which is an unattainable maximum.

In both experiments we use T = 24 decision stages representing the hourly
decisions, i.e. our optimization horizon is a single day. Moreover, we start with
an empty storage level. Given a price process, we define the value of a policy
as the mean revenue over |Ω| = 1000 price paths. This setup allows for a direct
comparison with [2]. Note that this especially means that we do not evaluate
our model with empirical price data, which is common for publications with a
focus on modeling [5, 8, 11, 24–30]. Evaluation with out-of-sample empirical
data would require using a competitive price forecast, which is for example
done in a more recent publication [3]. Stochastic price models such as our
Poisson spike model are not suited for forecasting, as they only intend to
reproduce the characteristics of empirical prices [45].

4.1 Experiment 1: Approximation Quality

We reproduce the experiment of [2] with a finite support price process and
M = 1, i.e. with no intra-hour settlements. In this setting there exists a
closed-form expression for the value function as the expectations are defined
over discrete random variables. Thus, we can use bdp to determine the optimal
policy. We then use the optimal policy as a measure for the optimality of badp-
lattice, which can only sample from the price process. The price process with

23

24 CHAPTER 4. NUMERICAL STUDY

0 5 10 15 20

hour of day

40

60

p
ri

ce
[$

/M
W

h
]

St

−20 0 20

x ∈ X

0.000

0.025

0.050

P
r(
ε t

=
x

)

Figure 4.1: Visualization of finite support price process with pseudonormally
distributed noise (see Equation 4.1).

finite support is defined as

Pt = St + ϵt,

St = 15 sin(3πt/24) + 50,
(4.1)

with a sinusoidal deterministic component St and a sequence of i.i.d. random
variables ϵt from a discrete distribution representing the noise. The deter-
ministic component emulates the typical characteristics of electricity prices in
forward markets throughout a day, which often show higher prices in the morn-
ing and evening, while prices in the middle of the day are lower. Following [2],
we use two variants for representing the noise while fixing the realizations of
ϵt to X = {−20,−19, . . . , 19, 20}:

(a) The noise ϵt follows the discrete pseudonormal distribution with µ = 0
and σ2 = 49 whose probability mass function is defined as

Pr(x) = Pr(ϵt = x) =
f(x |µ = 0, σ2 = 49)∑

x′∈X f(x′ |µ = 0, σ2 = 49)
,

where f is the density function of the normal distribution.

(b) The noise ϵt follows the discrete uniform distribution where Pr(x) = 1
|X | .

See Figure 4.1 for a visualization of the price process in Experiment 1(a). A
state in this benchmark problem is given by St = (Rt, bt−1) since the price
process does not depend on its prior realizations but only on t ∈ T . Let P ϵ

t be
the random variable defining the price at time t which depends on the noise
ϵt. The closed-form expression for the value function is then given as

Vt(St) = max
bt∈B

{
E
[
Ct,t+2(St, bt,

[
P ϵ
t+1, P ϵ

t+2

]
) + Vt+1

(
SM(St, bt, P

ϵ
t+1)

)]}
= max

bt∈B

{ ∑
x1∈X

Pr(x1) ·
[∑
x2∈X

Pr(x2) · h(P x2
t+2, bt, R

x1
t+1) + Vt+1(R

x1
t+1, bt)

]}
where Rx1

t+1 = g(P x1
t+1, bt−1, Rt) and the terminal reward VT is set to zero. Recall

4.1. EXPERIMENT 1: APPROXIMATION QUALITY 25

Table 4.1: Experiment 1: Comparison of badp-lattice to bdp regarding
policy value and time elapsed for the computation. Percentage of optimality
and time elapsed shown for badp-lattice.

value of policy [$]
(ϵt pseudonormal)

value of policy [$]
(ϵt uniform)

elapsed time
[mm:ss]

bdp 86.46 137.95 06:55
badp-lattice 79.96 [∼92%] 133.73 [∼97%] 00:36 [∼9%]

BADP-lattice

BDP

(a) εt pseudonormal

−100 0 100 200 300

revenue [$]

BADP-lattice

BDP

(b) εt uniform

Figure 4.2: Experiment 1: Revenue of badp-lattice compared to bdp over
1000 price paths. The box spans from the first quartile to the third quartile and
shows the median in red. The whiskers indicate the minimum and maximum
revenue lying within 1.5 times the interquartile range from the respective box
boundary.

from Chapter 3 that the functions g and h represent the change in resource
state and the reward within a settlement, respectively.

We follow [2] in setting Bmin = 15, Bmax = 85 and |B̂| = 30 and moreover
in evaluating the problem over T = 24 decision stages, i.e. one day. We set the
resource space with Rmin = 0, Rmax = 18. Our state space thus has a cardi-
nality of |Ŝ| = 8854. Again following [2], we ignore charging and discharging
efficiency by setting ηc = ηd = 1.

4.1.1 Discussion of Results

The results of the experiment are shown in Table 4.1 and Figure 4.2. The table
shows that in the two variants with pseudonormal and uniform noise badp-
lattice achieves ∼92% and ∼97% of the optimal policy value respectively
while leading to a ∼91% reduction in time elapsed for the computation. This
is on par with the monotone-adp approach in [2] and indicates that badp-
lattice comes sufficiently close to the optimal policy value.

Figure 4.2 shows the revenues resulting from applying the policies of bdp

26 CHAPTER 4. NUMERICAL STUDY

and badp-lattice on 1000 price paths. The sub-figures (a) and (b) match
the two variants of the experiment. Note that the revenue spread in variant
(b) with uniform noise is larger due to the higher probability of extreme price
realizations compared to variant (a) with pseudonormal noise. In both (a) and
(b) it is visible that bdp performs better than badp-lattice, as it determines
the optimal policy. In sub-figure (a), the bdp policy leads to a higher median
revenue, and the first and third quartiles of revenues are higher as well. More-
over, while the lower whiskers of the bdp policy revenues are higher, the upper
whiskers are lower than those of the badp-lattice policy revenues. This is
because the bdp policy is only optimal in expectation. Hence, it can still occur
that the bdp policy is outperformed by the badp-lattice policy for a specific
price path or that it leads to a negative revenue. In sub-figure (b), the bdp
policy again leads to a higher median revenue. However, the badp-lattice
policy performs better in this variant, as it comes closer to the median revenue
as well as the first and third quartiles of revenues.

4.2 Experiment 2: NYISO real-time market

Now we evaluate badp-lattice in a more realistic experiment, which simu-
lates trading on the NYISO real-time market. First, we estimate the parame-
ters of the Poisson Spike Model on historical NYISO real-time market prices
in the bidding zone “North” over the years of 2019 to 2022, which are shown in
Figure 4.3. We test how well the sample paths of the price process reproduce
some statistical properties of the empirical data. In order to choose suitable
values for sampling the state space, we evaluate the effect of sampling on the
value of the policy in a separate experiment. Then, we can make an informed
decision about the sample sizes and finally compare the value of the policy
determined by badp-lattice to that of perfect foresight, where all prices are
known in advance.

We model a 5 MWh energy storage system with a capacity of 1 MW over
T = 24 decision stages. Following [42], the storage system has constant charg-
ing and discharging efficiencies of ηc = ηd = 0.9 leading to a round-trip effi-
ciency of 0.81. Due to the simplification that we always bid 1 MW for a five
minute settlement, the resource is fully described by |R| = 61 states, matching
60 increments of 1

12
MWh and an additional empty state.

4.2.1 Price Process

We model the NYISO real-time prices with the Poisson Spike Model (Eq. 2.7).
To do this, we estimate the parameters of the price model as follows: First, we
detect and remove spikes in order to obtain the empirical spike distribution and
probability as well as the despiked prices P̂t. We use the fixed price thresholds

4.2. EXPERIMENT 2: NYISO REAL-TIME MARKET 27

2019−07 2020−01 2020−07 2021−01 2021−07 2022−01 2022−07 2023−01

−5000

0

p
ri

ce
[$

/M
W

h
]

00:00
01-Feb

03:00 06:00 09:00 12:00 15:00 18:00 21:00

0

200

p
ri

ce
[$

/M
W

h
]

Figure 4.3: NYISO real-time dispatch prices in bidding zone “North” between
2019 and 2023 [46]. February 1, 2022 is shown as an exemplary day.

technique and classify the lower 1% and upper 4% of all prices as spikes, which
are all prices below −$13.98 and above $84.46 in the used data set [41]. These
bounds are chosen subjectively with the intention of defining a normal regime
where prices evolve stochastically without (significant) jumps. The spikes are
then removed by replacing them with annual seasonality Sa

t as defined in Eq.
(2.3), hence the size of a spike at time t is given by Pt − Sa

t . The detected
spikes form our empirical spike size distribution. Furthermore, the empirical
spike probability naturally is 5% due to the chosen threshold. The result is
shown in Figure 4.4. Then, we remove the seasonality of the despiked prices
sequentially on the daily, weekly and annual scale as described in Section
2.3.3: For the daily and weekly scale we use the median profile technique,
i.e. S288

t and S2016
t . The annual seasonality Sa

t is given by the trigonometric
function technique. After removing the seasonality from the despiked prices,
we can estimate the stochastic part Xt, which is modeled as an Ornstein-
Uhlenbeck process (see Section 2.3.4). The resulting estimates are shown in
Table 4.2. To evaluate our calibrated price model we compare statistical

Table 4.2: Parameters estimated for Poisson spike model on NYISO real-time
dispatch prices between 2019 and 2023. The empirical spike size distribution is
shown in Figure 4.4.

κ̂ µ̂ σ̂ p

0.1220 0.0242 0.1420 0.05

properties of its sample paths to those of the empirical data by evaluating the
first four moments and the minimum and maximum values. This is similar to
the approach in [23, 31], but instead of analyzing price returns1 we evaluate

1A price return is the change in price over a period of time.

28 CHAPTER 4. NUMERICAL STUDY

2019−01

2019−07

2020−01

2020−07

2021−01

2021−07

2022−01

2022−07

2023−01

−5000

0

p
ri

ce
[$

/M
W

h
]

(a) Effect of removing price spikes

empirical price

despiked price

−7500 −5000 −2500 0 2500

spike size [$]

101

103

fr
eq

u
en

cy

(b) Empirical spike size distribution

Figure 4.4: The result of applying the fixed price thresholds despiking pro-
cedure with lower and upper bounds −$13.98 and $84.46 on NYISO real-time
dispatch prices. The empirical spike probability is p ≈ 0.05.

2019−01

2019−03

2019−05

2019−07

2019−09

2019−11

2020−01

0

1

Figure 4.5: Despiked, variance-stabilized NYISO real-time dispatch prices
sinh−1(P̂ /30) and their seasonality St in the year of 2019.

the properties of the prices directly as we do not use our model for derivatives
pricing. To do this, we simulate |Ω| = 250 sample paths whose length matches
those of the empirical prices, i.e. four years in five minute increments. We
determine the first four moments and minimum, maximum values separately
for each path, then take the mean as an estimate. The results are shown in
Table 4.3. With the exception of the mean minimum value, the properties
of our synthetically generated sample paths almost perfectly match those of
the empirical data. The higher mean minimum can be explained by the low
empirical probability of this particular spike in the beginning of the year 2019.
In conjunction with the similar trajectorial properties shown in Figure 4.6 we
conclude that the calibrated price model suffices for our purposes.

Table 4.3: Statistical properties of NYISO real-time dispatch price simulations
in comparison to empirical data.

mean std skewness kurtosis max min

empirical 25.91 57.13 3.75 1575.37 4116.90 -7033.77
simulation 25.80 56.83 3.72 1585.70 4116.80 -6107.50

4.2. EXPERIMENT 2: NYISO REAL-TIME MARKET 29

00:00
01-Feb

03:0006:0009:0012:0015:0018:0021:00

0

200

400

p
ri

ce
[$

/M
W

h
]

(a) empirical prices

00:00
01-Feb

03:0006:0009:0012:0015:0018:0021:00

(b) simulated price path

Figure 4.6: Empirical NYISO real-time dispatch prices on February 1, 2022
in comparison to a sample path from the calibrated Poisson spike model on the
same day. The sample path covers the same time frame as the empirical path
and was conditioned on the first empirical price in 2019.

4.2.2 Sampling State and Action Space

In order to apply badp-lattice, we sample the price space P and the set
of possible bid prices B from which the bid space B is created. We do so
by first specifying lower and upper limits, then defining the sampled spaces
via equidistant steps between those limits. This requires making informed
decisions about (a) the lower and upper limits of the sampled space and (b)
the size of the sampled space.

For (a), we follow [2] by choosing the lower and upper limits depending on
empirical price data: 95% of prices lie within the interval [−$9.99, $103.44].
Thus, we set P̂min = −$9.99, P̂max = $103.44 and B̂min = $0, B̂max = $103.44.
Furthermore, B always contains the bid (0,∞), i.e. “buy below zero, but never
sell”.

For (b), we run a numerical experiment. Note that the size of B has a
particularly high impact on the computational complexity of badp-lattice:
The size of B is quadratic in the size of B. Furthermore, B forms both the
action space and a subspace of the state space and hence results in O(|B|2) =
O(|B|4) iterations in badp-lattice.

To the best of the author’s knowledge, it is practice in the literature to
choose some sampling rate for the state and action space which is computa-
tionally feasible without considering the potential optimality gap2. Of course,
the very reason why the state space is sampled makes such an experimental
analysis difficult: It would require obtaining solutions of finely sampled and
thus much larger problem instances. Hence, we choose to analyze the effects
of sampling B and P on the policy value separately as follows:

1) Evaluate the effect of sampling B on the value of the perfect foresight

2One publication however proposes the use of their analytical solution of a bidding prob-
lem to investigate the effect of sampling on this gap [13].

30 CHAPTER 4. NUMERICAL STUDY

Table 4.4: Step sizes resulting from equidistant sampling of B and P.

size of sample

5 10 15 20 30 45 60

B̂step [$] 25.86 11.49 7.39 5.44 3.57 2.35 1.75

P̂step [$] 28.36 12.60 8.10 5.97 3.91 2.58 1.92

policy. We do this to ease the computation, since the complexity of
badp-lattice grows asymptotically in the size of B̂ like a quartic poly-
nomial. As the perfect foresight policy best exploits the difference be-
tween low and high prices, the results represent the minimum loss of
arbitrage caused by sampling B. Nevertheless, it makes the choice of |B̂|
for the next step less arbitrary.

2) Now we can make an informed decision about |B̂| and evaluate the effect
of |P̂| on the value of the badp-lattice policy.

3) This, in turn, allows making a decision about |P̂| and evaluating the
effect of sampling B on the value of the badp-lattice policy.

The sampling of R is not considered as it fully describes all possible resource
states within our problem formulation. The results are shown in Figure 4.7,
while the step sizes corresponding to the equidistant sampling are shown in
Table 4.4. The figure displays the relation of the sample size to the percentage
of the largest policy value over Ω within the experiment.

4.2.3 Discussion of Results

First, we discuss the results of the sub-experiment concerning the effect of the
sampling from the previous subsection. Then, we make an informed choice
about the parameters of badp-lattice for the NYISO real-time market ex-
periment, run this experiment, and discuss its results.

The Effect of Sampling on the Policy Value

Consider sub-figure 1) of Figure 4.7 showing the effect of sampling B on the
policy value of perfect foresight. The value of the policy increases with the
size of |B̂|, converging quickly towards the maximum. The coarsest sample
with |B̂| = 2 already achieves ∼78% of the maximum policy value, the third
coarsest achieves ∼98% with |B̂| = 10. This is because most revenue is made
from exploiting the difference between negative prices and positive price spikes,
which is evident from the comparatively high revenue for |B̂| = 2: Recall that

4.2. EXPERIMENT 2: NYISO REAL-TIME MARKET 31

25 1015 30 45 60

|B̂|

0.6

0.8

1.0

%
of

la
rg

es
t

p
ol

ic
y

va
lu

e
1) Effect of sampling B
under perfect foresight

1∗5 1015 30 45 60

|P̂|

2) Effect of sampling P
with |B̂| = 10

25 1015 30 45 60

|B̂|

3) Effect of sampling B

with |P̂| = 1

Figure 4.7: Effects of sampling B and P on policy value.

for B̂ we set a lower limit of B̂min = $0 and an upper limit of B̂max = $103.44.
Then, we create B̂ by taking equidistant steps from B̂min to B̂max. From B̂, the
set of possible bids B̂ ⊂ B̂2 is created, which always contains the bid (0,∞).
Thus, the coarsest sampling size |B̂| = 2 only allows buying or selling below
or above the limits respectively, as well as buying below $0 and not selling.
It still achieves 78% of the maximum policy value, showing that there is less
value in doing arbitrage within the limits.

Now consider sub-figure 2) of Figure 4.7 showing the effect of sampling P
on the policy value of badp-lattice while fixing |B̂| = 10. The size of B̂ was
chosen as it allows for a good compromise between policy value and problem
size in sub-figure 1). The smallest run with |P̂| = 1 essentially removes the
price dimension from the problem, as it allows only one price state P S

t = $26,
which is equal to the mean of our empirical price data (see Table 4.3). The
other runs sample P with fixed bounds and equidistant steps as before. The
result might be surprising at first: There seems to be no connection between
|P̂| and the policy value, which is within more than 98% of the maximum for
every chosen sample size. The variation seems to purely stem from noise, i.e.
the price paths within badp-lattice describing the uncertainty. The reason
for this lies in both the structure of the bidding problem and the price process
we use: The settlement prices are not restricted to P̂ . When we choose a bid
bt at time t, we consider the uncertain prices of the interval (t, t + 2] with 2M
settlements. Within this interval, only the price P S

t+1 must be restricted to

P̂ in order to obtain the expected future reward from the value function at
t + 1. The uncertain resource state Rt+1 and the uncertain contribution of
our bid bt both depend on prices which are not restricted to P̂ . Recall from
Section 3.1 that the future reward also depends on the uncertain resource
state Rt+1 and the bidding decision bt. These two variables have a much more
significant effect on the future reward than the price P S

t+1: First, we already
established that we reach more than 98% of the maximum policy value with
|P̂| = 1, i.e. while ignoring the price space. Second, consider Figure 4.8, which
displays the value function at a fixed time in relation to other parameters of

32 CHAPTER 4. NUMERICAL STUDY

P S
t+1

0
25

50
75

100

R t
+
1

0

20

40

60

V
t+

1

100

120

140

160

180

b−t = $34.48, b+
t = $68.96

P S
t+1

0
25

50
75

100

b
−
t

0
20

40
60 80

100

V
t+

1

100

120

140

160

180

Rt+1 = 20, b+
t = $103.44

P S
t+1

0
25

50
75

100

b
+
t

0
20

40
60 80

100

V
t+

1

100

120

140

160

180

Rt+1 = 20, b−t = $0

Figure 4.8: The effect of PS
t on the value function at t + 1 = 12 in relation

to that of Rt, b
−
t−1 and b+t−1. Other parameters are fixed as indicated in the

sub-figure titles.

the state variable. Especially in the leftmost sub-figure, showing the effect of
P S
t+1 in relation to that of Rt+1, it is evident that the value of being in the

subsequent state depends much more strongly on the other parameters of the
state variable. The variation due to P S

t+1 again seems to purely stem from

noise. Third, we know from the effect of |B̂| that most revenue is made from
price spikes. Apparently, badp-lattice learns to exploit this regardless of
the price space size. Most likely, this is specific to short-term market prices or
rather the Poisson spike model we use, as it is defined to revert to a long-term
mean regardless of the initial value (which is restricted to the price space).

Finally, consider sub-figure 3) of Figure 4.7 showing the effect of sampling
B on the policy value of badp-lattice while fixing |P̂| = 1 (as we know
from sub-figure 2), the effect of |P̂| on the policy value is insignificant). As
expected, the effect of the size of B̂ is stronger than in the perfect-foresight
case of sub-figure 1): The lowest sampling size only achieves ∼45% of the
maximum policy value. However, it still converges quickly, reaching ∼91% at
|B̂| = 5 and ∼97% at |B̂| = 10.

Results of the NYISO Real-Time Market Experiment

Now, we can make an informed choice about the sampling parameters, which
we set to |P̂| = 1 and |B̂| = 30 in order to obtain a feasible problem size. We
conduct the experiment for the duration of a single day as in [2]. Following [3],
we compare the value of the badp-lattice policy to the value of the perfect
foresight policy, which serves as an unattainable upper bound. The results are
shown in Figure 4.9. A simulation of the policy determined by badp-lattice
for a single price path is shown in Figure 4.10. badp-lattice achieves ∼82%
of the perfect foresight policy value.

However, perfect foresight is an artificial benchmark since it naturally can-
not be used to solve the stochastic bidding problem. To make conclusions

4.3. EVALUATION OF PERFORMANCE 33

0 200 400 600 800 1000 1200

revenue [$]

BADP-lattice

perfect-foresight

Figure 4.9: Experiment 2: Revenue of badp-lattice compared to perfect
foresight over 1000 price paths. The box spans from the first quartile to the
third quartile and shows the median in red. The whiskers indicate the minimum
and maximum revenue lying within 1.5 times the interquartile range from the
respective box boundary.

about the performance of badp-lattice in this setting, a state of the art
approach should be used as a benchmark.

4.3 Evaluation of Performance

The main motivation for the monotone-adp approach in [2] is the compu-
tational difficulty of backward dynamic programming techniques such as our
badp-lattice. The authors justify this by comparing the CPU times3 of
their approach to those of a backward dynamic programming approach. How-
ever, they fail to provide details on the computer hardware and programming
language used and do not publish their implementation. This is reason for
concern, as running time can be drastically improved e.g. by using a com-
piled language, parallelizing code, and optimizing memory access, which could
make backward approximate dynamic programming approaches viable. More-
over, this nondisclosure of information makes a direct comparison of algorithm
performance impossible. Finally, their monotone-adp approach is computa-
tionally intensive as well, as it needs thousands of iterations to converge.

4.3.1 Discussion of Results

While we cannot say with absolute certainty that the elapsed times of badp-
lattice are comparable to those in the publication, we justify the comparison
as follows: First, we solve the same MDP with the same action space and
similarly-sized state spaces, which were reported in the publication. Secondly,
as it happens, the author’s rather outdated personal computer contains a CPU
released three years before the publication of [2], which can thus be considered
an “average” workstation CPU at that time. We report details on the computer
hardware and implementation in the following subsection.

3“CPU time” denotes the actual amount of time a CPU has spend on a task which e.g.
does not include time spent on other tasks due to context-switching.

34 CHAPTER 4. NUMERICAL STUDY

−200

−100

0

100

p
ri

ce
[$

/M
W

h
]

Pt

sell bid (BADP-lattice)

buy bid (BADP-lattice)

0.0

2.5

5.0

st
or

ag
e

le
ve

l
[M

W
h

]

BADP-lattice

perfect-foresight

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

stage

0

200

cu
m

u
la

ti
ve

re
w

ar
d

[$
]

BADP-lattice

perfect-foresight

Figure 4.10: Experiment 2: Simulation of badp-lattice and perfect foresight
policies for a single day.

The comparison is shown in Figure 4.11. The figure shows the computa-
tion time for Experiment 1 (Section 4.1) with different state space sizes: The
smallest run corresponds to the exact configuration of Experiment 1. A run
with similar state space size is not contained in [2] since they have an addi-
tional dimension in their state space to take battery degradation into account.
We thus enlarge the size of the resource space R to |R| = 47 and |R| = 140
in order to obtain similarly sized state spaces in the two larger runs. As the
action spaces are also equivalent, the resulting computation times are compa-
rable. Note that for our bdp and badp-lattice we measure the elapsed time
instead of the CPU time since parts of the implementation are parallelized.
Because of this, the measured CPU time would be larger than the elapsed
time as the workload is spread over the CPU cores, each of which would add
to the CPU time.

Our badp-lattice leads to a reduction of the computation time compared
to monotone-adp in the two larger experiments of more than 99%. In abso-
lute terms, this is an improvement from 16 hours and 42 minutes to 54 seconds
and from 21 hours and 4 minutes to 2 minutes and 33 seconds. Even our bdp
implementation is more performant than their approximation. However, we
obtain a similar proportional reduction in computation time between our bdp
implementation and badp-lattice of 91 − 95%.

4.3. EVALUATION OF PERFORMANCE 35

10000 20000 30000 40000 50000 60000

size of state space

100

101

102

103

104

co
m

p
u

ta
ti

o
n

ti
m

e
[m

in
u

te
s]

BDP (Jiang et al)

Monotone-ADP (Jiang et al)

BDP

BADP-lattice

Figure 4.11: Computation times of bdp and badp-lattice for variants of the
benchmark problem in Experiment 1 (Section 4.1) compared to those of bdp
and monotone-adp from [2].

4.3.2 Details on Implementation and Hardware

All experiments were run on a personal computer with a 3.3GHz Intel Xeon
1230v2 (released in 2012) and 16 GB of main memory. The implementation
is available on GitHub [47]. The NYISO market data could not be included
in the repository as its license does not permit redistribution, but it is openly
available [46]. We use the programming language Python, but compile critical
parts to performant machine code4 using the package “Numba” [49]. The
following modules were implemented:

• markov decision process.py: badp-lattice (Numba), perfect fore-
sight, procedures for simulating policies from both for sample paths.

• jump diffusion process.py: Estimation and simulation procedures for
Poisson Jump and Poisson Spike Model (Numba).

• kmeans.py: k-means (Numba), k-means++ intialization procedure
(Numba).

Parts of the implementation are parallelized, but badp-lattice is not, al-
though it would be possible to apply data parallelism by partitioning the state
space: For a fixed t ∈ T , the computation of the value function V̄t for each
individual state is independent from all other states. Executing the computa-
tion in parallel for the state space partitions would further decrease the CPU
time.

4Usually, scientific software written in Python makes heavy use of “Numpy” [48], which
also speeds up computation significantly. However, our specific problem was hard to formu-
late purely in Numpy’s syntax.

36 CHAPTER 4. NUMERICAL STUDY

4.4 Summary of Results

In this chapter we evaluate our approximation method badp-lattice. We
find that despite its relative simplicity compared to approaches like (forward)
approximate dynamic programming, it performs well: In an experiment where
the optimal solution is computable, it achieves ∼92 − 97% of the optimal
policy value while leading to a reduction of ∼91% in computation time, which
is comparable to [2]. In the subsequent experiment, which models bidding into
the NYISO real-time market by calibrating a Poisson spike model on empirical
prices, it achieves ∼82% of the perfect-foresight policy value. Moreover, we
evaluate the effect of parameter choices which are necessary to execute badp-
lattice on the policy value. The results show that the policy value quickly
converges with the size of the sampled bid space B̂, while the effect of the
price space size |Ŝ| can be neglected. The reason for the latter likely lies in the
structure of the problem and the price process which is used. Furthermore,
badp-lattice beats monotone-adp from [2] in terms of performance by a
large margin, as it requires less than 1% of the computation time.

Chapter 5

Conclusion

In this work we apply a backward approximate dynamic programming ap-
proach on the problem of an energy storage operator who bids into a real-time
market. We build on a publication which models the same problem, but uses
a more intricate (forward) approximate dynamic programming approach [2].
Despite the relative simplicity of our approach, we find that it performs just
as well in terms of approximation quality. Furthermore, it leads to a similar
reduction in computation time relative to the canonical backward dynamic pro-
gramming approach, which computes the optimal solution in a stylized setting.
Relative to the approach in [2], the optimized implementation of our approach
shows a reduction in computation time of more than 99%. This shows that if
computation time is a key motivator for developing an approximation method,
it is a worthwhile endeavor to carefully implement a simpler approach first.

We also evaluate our approach in a more realistic setting which models the
real-time market of the New York Independent System Operator. There, we
compare it with an idealistic perfect foresight solution, where the stochasticity
is removed. Our approach compares favorably, but it is difficult to draw con-
clusions from this experiment as the perfect foresight solution naturally is not
applicable to the stochastic problem. Moreover, we neglect further constraints
such as ramping times (pumped-hydro) or degradation of the storage unit
(battery) in our problem formulation. Thus, some schedules could possibly be
technically infeasible.

Future work should evaluate the approach against a state of the art ap-
proach for real-time bidding. Moreover, variants of the problem formulation
which include battery degradation or ramping times should be considered to
obtain more realistic decision rules. In the same spirit, one could also employ
a competitive price forecast to represent the uncertainty, which would allow
evaluating the approach using out-of-sample empirical data.

37

38 CHAPTER 5. CONCLUSION

Appendix A

Appendix

A.1 Normalized Variance-Stabilized Transfor-

mation

In [33], the Asinh-transform is evaluated next to other variance-stabilizing
transformations designed specifically for parameter estimation in the presence
of negative electricity prices. Before applying the Asinh-transform, the authors
of this publication normalize the prices using a robust normalization scheme
which centers the prices around the median and scales them with the median
absolute deviation. The median absolute deviation is adjusted by a factor of
1

z0.75
≈ 1.4826, where z0.75 is the 75% quantile of the standard normal distri-

bution. This normalization is more robust to outliers than the more common
normalization with the mean and standard deviation, and therefore is better
suited for spiky electricity price data. After the normalization, the authors
apply the Asinh-transform without offset or scale parameters.

Our experiments showed that the parameter estimation of our jump dif-
fusion model is very sensitive to changes in the scale parameter λ, even after
applying the robust normalization. However, the offset parameter was not
needed, as the data is already centered by the robust normalization. Hence,
our variance-stabilizing transformation is given by

P ′
t = f(Pt) = sinh−1[

1

λ
· z0.75

median(
∑T

t=1 |Pt − median(P)|)
· (Pt − median(P))],

(A.1)
where λ is the scale parameter which can be adjusted depending on the data.
The inverse transformation is given by

Pt = f−1(P ′
t) = λ · median(

∑T
t=1 |Pt − median(P)|)

z0.75
· sinh(P ′

t) + median(P).

(A.2)

39

40 APPENDIX A. APPENDIX

A.2 Calibration of the Poisson Jump Model

(PJM)

The PJM as defined in Eq. 2.6 can be calibrated as follows: Using the Ornstein-
Uhlenbeck process discretization (see Eq. 2.5), this allows us to write the
stochastic part in (2.6) as

Xt+1 =

{
Xt + κ(µ−Xt)∆t + σ

√
∆tξt, with probability (1 − p),

Xt + κ(µ−Xt)∆t + σ
√

∆tξt + χt, with probability p.

(A.3)
Furthermore, we can define the likelihood function as a Bernoulli mixture of
normal distributions:

f(Xt+1|Xt, θ)

= (1 − p)(2πσ2)−
1
2 exp(

−(Xt+1 − (Xt + κ(µ−Xt)∆t))2

2σ2
)

+ p (2π(σ2 + σ2
J))−

1
2 exp(

−(Xt+1 − (Xt + κ(µ−Xt)∆t + µJ))2

2(σ2 + σ2
J)

).

(A.4)

The likelihood can then be used to calibrate the PJM on historic data using
maximum likelihood estimation (MLE), i.e. by minimizing the negative log-
likelihood function

θ̂ = argminθ −
T−1∑
t=1

log f(Xt+1|Xt, θ) (A.5)

with the constraints κ > 0, σ > 0, σJ > 0, 0 ≤ p ≤ 1.

Simulating the process now simply involves iteratively applying its discrete
definition for T time steps with the estimated parameters θ, a certain starting
value and samples from the distributions of the random variables. As per
the definition of the PJM, we simulate in Asinh-space and use the inverse
transformation to obtain prices in the original space. This is described in
Algorithm 4.

A.2. CALIBRATION OF THE POISSON JUMP MODEL (PJM) 41

Algorithm 4: Simulation of Poisson Jump Model

1 P ′
0 := f(P0) − S0

2 P ′ := ⟨P ′
0,⊥, . . . ,⊥⟩

3 ξ1, . . . , ξT ∼ N (0, 1) // Obtain T samples from standard normal

distribution

4 ξJ1 , . . . , ξ
J
T ∼ N (0, 1) // Obtain T samples from standard normal

distribution

5 b1, . . . , bT ∼ B(p) // Obtain T samples from Bernoulli

distribution with parameter p
6 for t = 1, . . . , T − 1 do

7 P ′
t+1 := P ′

t + κ(µ− P ′
t)∆t + σ

√
∆tξt+1 + bt(µJ + σJξ

J
t+1)

8 P := f−1(P ′ + S)
9 return P

Jun
2022

06 13 20 27

0

50

100

(a) empirical prices

Jun
2022

06 13 20 27

(b) simulated prices

Figure A.1: Empirical NYISO day-ahead prices in June 2022 compared to a
sample path from the calibrated Poisson Jump Model.

Table A.1: Parameters estimated for Model 1 on NYISO day-ahead prices in
the years 2021 and 2022.

κ µ σ p µJ σJ

376.8586 -0.0687 0.0421 0.2044 0.0072 0.1713

42 APPENDIX A. APPENDIX

Bibliography

[1] Bismark Singh. Optimal spatiotemporal resource allocation in public health
and renewable energy. PhD thesis, The University of Texas at Austin,
2016.

[2] Daniel R. Jiang and Warren B. Powell. Optimal hour-ahead bidding in
the real-time electricity market with battery storage using approximate
dynamic programming. INFORMS Journal on Computing, 27(3):525–543,
2015. doi: 10.1287/ijoc.2015.0640. URL https://doi.org/10.1287/

ijoc.2015.0640.

[3] Benedikt Finnah, Jochen Gönsch, and Florian Ziel. Integrated day-
ahead and intraday self-schedule bidding for energy storage systems us-
ing approximate dynamic programming. European Journal of Opera-
tional Research, 301(2):726–746, 2022. ISSN 0377-2217. doi: https://
doi.org/10.1016/j.ejor.2021.11.010. URL https://www.sciencedirect.

com/science/article/pii/S0377221721009565.

[4] Timm Weitzel and Christoph H. Glock. Energy management for station-
ary electric energy storage systems: A systematic literature review. Euro-
pean Journal of Operational Research, 264(2):582–606, 2018. ISSN 0377-
2217. doi: https://doi.org/10.1016/j.ejor.2017.06.052. URL https://

www.sciencedirect.com/science/article/pii/S0377221717305933.

[5] Benedikt Finnah and Jochen Gönsch. Optimizing trading decisions of
wind power plants with hybrid energy storage systems using backwards
approximate dynamic programming. International Journal of Produc-
tion Economics, 238:108155, 2021. ISSN 0925-5273. doi: https://
doi.org/10.1016/j.ijpe.2021.108155. URL https://www.sciencedirect.

com/science/article/pii/S0925527321001316.

[6] Joseph L. Durante, Juliana Nascimento, and Warren B. Powell. Backward
approximate dynamic programming with hidden semi-markov stochastic
models in energy storage optimization, 2020. URL https://doi.org/

10.48550/arXiv.1710.03914.

43

https://doi.org/10.1287/ijoc.2015.0640
https://doi.org/10.1287/ijoc.2015.0640
https://www.sciencedirect.com/science/article/pii/S0377221721009565
https://www.sciencedirect.com/science/article/pii/S0377221721009565
https://www.sciencedirect.com/science/article/pii/S0377221717305933
https://www.sciencedirect.com/science/article/pii/S0377221717305933
https://www.sciencedirect.com/science/article/pii/S0925527321001316
https://www.sciencedirect.com/science/article/pii/S0925527321001316
https://doi.org/10.48550/arXiv.1710.03914
https://doi.org/10.48550/arXiv.1710.03914

44 BIBLIOGRAPHY

[7] Bolong Cheng, Tsvetan Asamov, and Warren B. Powell. Low-rank value
function approximation for co-optimization of battery storage. IEEE
Transactions on Smart Grid, 9(6):6590–6598, 2018. doi: 10.1109/TSG.
2017.2716382.

[8] Jochen Gönsch and Michael Hassler. Sell or store? an adp approach to
marketing renewable energy. OR Spectrum, 38:633–660, 07 2016. doi:
10.1007/s00291-016-0439-x.

[9] Gilles Bertrand and Anthony Papavasiliou. Adaptive trading in contin-
uous intraday electricity markets for a storage unit. IEEE Transactions
on Power Systems, 35(3):2339–2350, 2020. doi: 10.1109/TPWRS.2019.
2957246.

[10] Ioannis Boukas, Damien Ernst, Thibaut Théate, Adrien Bolland, Alexan-
dre Huynen, Martin Buchwald, Christelle Wynants, and Bertrand
Cornélusse. A deep reinforcement learning framework for continuous in-
traday market bidding. Machine Learning, 110, 09 2021. doi: 10.1007/
s10994-021-06020-8.

[11] Goran Vojvodic, Ahmad I. Jarrah, and David P. Morton. Forward thresh-
olds for operation of pumped-storage stations in the real-time energy mar-
ket. European Journal of Operational Research, 254(1):253–268, 2016.
ISSN 0377-2217. doi: 10.1016/j.ejor.2016.03.020. URL https://www.

sciencedirect.com/science/article/pii/S0377221716301485.

[12] Tomasz Serafin, Grzegorz Marcjasz, and Rafa l Weron. Trading on short-
term path forecasts of intraday electricity prices. Energy Economics,
112:106125, 2022. ISSN 0140-9883. doi: https://doi.org/10.1016/j.
eneco.2022.106125. URL https://www.sciencedirect.com/science/

article/pii/S014098832200281X.

[13] Benedikt Finnah. Optimal bidding functions for renewable energies in
sequential electricity markets. OR Spectrum, 44, 03 2022. doi: 10.1007/
s00291-021-00646-9.

[14] S.M. Ross. Applied Probability Models with Optimization Applica-
tions. Dover Books on Mathematics. Dover Publications, 2013. ISBN
9780486318646.

[15] Warren B. Powell. A unified framework for stochastic optimization. Euro-
pean Journal of Operational Research, 275(3):795–821, 2019. ISSN 0377-
2217. doi: https://doi.org/10.1016/j.ejor.2018.07.014. URL https://

www.sciencedirect.com/science/article/pii/S0377221718306192.

https://www.sciencedirect.com/science/article/pii/S0377221716301485
https://www.sciencedirect.com/science/article/pii/S0377221716301485
https://www.sciencedirect.com/science/article/pii/S014098832200281X
https://www.sciencedirect.com/science/article/pii/S014098832200281X
https://www.sciencedirect.com/science/article/pii/S0377221718306192
https://www.sciencedirect.com/science/article/pii/S0377221718306192

BIBLIOGRAPHY 45

[16] Warren B. Powell. Reinforcement Learning and Stochastic Optimization:
A Unified Framework for Sequential Decisions. John Wiley & Sons, Inc.,
2022.

[17] Richard Bellman. Dynamic Programming. Dover Publications, 1957.
ISBN 9780486428093.

[18] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, Third Edition. The MIT Press, 3rd
edition, 2009. ISBN 0262033844.

[19] Anton J. Kleywegt, Alexander Shapiro, and Tito Homem-de Mello.
The sample average approximation method for stochastic discrete op-
timization. SIAM Journal on Optimization, 12(2):479–502, 2002.
doi: 10.1137/S1052623499363220. URL https://doi.org/10.1137/

S1052623499363220.

[20] Daniel S. Kirschen and Goran Strbac. Markets for Electrical Energy,
chapter 3, pages 51–88. John Wiley & Sons, Ltd, 2 edition, 2019. ISBN
9781119213246.

[21] New York Independent System Operator. Transmission and dispatch oper-
ations manual, 2023. URL https://www.nyiso.com/documents/20142/

2923301/trans_disp.pdf.

[22] Alfred Müller, Markus Burger, Bernhard Klar, Alfred Muller, and Gero
Schindlmayr. A spot market model for pricing derivatives in electric-
ity markets. Quantitative Finance, 4:109–122, 02 2004. doi: 10.1088/
1469-7688/4/1/010.

[23] Jan Seifert and Marliese Uhrig-Homburg. Modelling jumps in electricity
prices: Theory and empirical evidence. Review of Derivatives Research,
10:59–85, 02 2007. doi: 10.2139/ssrn.903804.

[24] Jae Ho Kim and Warren B. Powell. Optimal energy commitments with
storage and intermittent supply. Operations Research, 59(6):1347–1360,
2011. doi: 10.1287/opre.1110.0971. URL https://doi.org/10.1287/

opre.1110.0971.

[25] Daniel F. Salas and Warren B. Powell. Benchmarking a scalable ap-
proximate dynamic programming algorithm for stochastic control of grid-
level energy storage. INFORMS Journal on Computing, 30(1):106–123,
2018. doi: 10.1287/ijoc.2017.0768. URL https://doi.org/10.1287/

ijoc.2017.0768.

https://doi.org/10.1137/S1052623499363220
https://doi.org/10.1137/S1052623499363220
https://www.nyiso.com/documents/20142/2923301/trans_disp.pdf
https://www.nyiso.com/documents/20142/2923301/trans_disp.pdf
https://doi.org/10.1287/opre.1110.0971
https://doi.org/10.1287/opre.1110.0971
https://doi.org/10.1287/ijoc.2017.0768
https://doi.org/10.1287/ijoc.2017.0768

46 BIBLIOGRAPHY

[26] Matt Thompson, Matt Davison, and Henning Rasmussen. Valuation and
optimal operation of electric power plants in competitive markets. Oper-
ations Research, 52:546–562, 08 2004. doi: 10.1287/opre.1040.0117.

[27] Warren R Scott, Warren B Powell, and Somayeh Moazehi. Least squares
policy iteration with instrumental variables vs. direct policy search: Com-
parison against optimal benchmarks using energy storage. arXiv preprint
arXiv:1401.0843, 2014.

[28] Yangfang (Helen) Zhou, Alan Scheller-Wolf, Nicola Secomandi, and
Stephen Smith. Electricity trading and negative prices: Storage vs. dis-
posal. Management Science, 62(3):880–898, 2016. doi: 10.1287/mnsc.
2015.2161. URL https://doi.org/10.1287/mnsc.2015.2161.

[29] Yangfang (Helen) Zhou, Alan Scheller-Wolf, Nicola Secomandi, and
Stephen Smith. Managing wind-based electricity generation in the pres-
ence of storage and transmission capacity. Production and Operations
Management, 28(4):970–989, 2019. doi: https://doi.org/10.1111/poms.
12946. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/

poms.12946.

[30] Somayeh Moazeni, Warren B. Powell, and Amir H. Hajimiragha. Mean-
conditional value-at-risk optimal energy storage operation in the presence
of transaction costs. IEEE Transactions on Power Systems, 30(3):1222–
1232, 2015. doi: 10.1109/TPWRS.2014.2341642.

[31] Hélyette Geman and Andrea Roncoroni. Understanding the fine structure
of electricity prices. The Journal of Business, 79, 05 2006. doi: 10.1086/
500675.

[32] Joachim Seel, Dev Millstein, Andrew Mills, Mark Bolinger, and Ryan
Wiser. Plentiful electricity turns wholesale prices negative. Advances in
Applied Energy, 4:100073, 2021. ISSN 2666-7924. doi: https://doi.org/
10.1016/j.adapen.2021.100073. URL https://www.sciencedirect.com/

science/article/pii/S2666792421000652.

[33] Bartosz Uniejewski, Rafa l Weron, and Florian Ziel. Variance stabilizing
transformations for electricity spot price forecasting. IEEE Transactions
on Power Systems, 33(2):2219–2229, 2018. doi: 10.1109/TPWRS.2017.
2734563.

[34] Alvaro Escribano, J. Ignacio Peña, and Pablo Villaplana. Modelling elec-
tricity prices: International evidence. Working Paper Economic Series 08,
Universidad Carlos III de Madrid, Departamento de Economia, 2002.

https://doi.org/10.1287/mnsc.2015.2161
https://onlinelibrary.wiley.com/doi/abs/10.1111/poms.12946
https://onlinelibrary.wiley.com/doi/abs/10.1111/poms.12946
https://www.sciencedirect.com/science/article/pii/S2666792421000652
https://www.sciencedirect.com/science/article/pii/S2666792421000652

BIBLIOGRAPHY 47

[35] Stefan Schneider. Power spot price models with negative prices. Journal
of Energy Markets, 4(4):77–102, 2011. doi: 10.21314/JEM.2011.079.

[36] Rafa l Weron. Stylized Facts of Electricity Loads and Prices, chapter 2,
pages 25–65. John Wiley & Sons, Ltd, 2006. ISBN 9781118673362.
doi: https://doi.org/10.1002/9781118673362.ch2. URL https://

onlinelibrary.wiley.com/doi/abs/10.1002/9781118673362.ch2.

[37] Peter Tankov. Financial Modelling with Jump Processes. Chapman and
Hall/CRC, 2004. doi: 10.1201/9780203485217.

[38] Simo Särkkä and Arno Solin. Applied Stochastic Differential Equations.
Institute of Mathematical Statistics Textbooks. Cambridge University
Press, 2019. doi: 10.1017/9781108186735.

[39] Mustafa Bayram, Tugcem Partal, and Gulsen Buyukoz. Numerical meth-
ods for simulation of stochastic differential equations. Advances in Dif-
ference Equations, 2018:17, 01 2018. doi: 10.1186/s13662-018-1466-5.

[40] Clifford A. Ball and Walter N. Torous. A simplified jump process for
common stock returns. Journal of Financial and Quantitative Analysis,
18(1):53–65, 1983. doi: 10.2307/2330804.

[41] Joanna Janczura, Stefan Trück, Rafa l Weron, and Rodney C. Wolff. Iden-
tifying spikes and seasonal components in electricity spot price data: A
guide to robust modeling. Energy Economics, 38:96–110, 2013. ISSN 0140-
9883. doi: https://doi.org/10.1016/j.eneco.2013.03.013. URL https://

www.sciencedirect.com/science/article/pii/S0140988313000625.

[42] Bolong Cheng and Warren B. Powell. Co-optimizing battery storage for
the frequency regulation and energy arbitrage using multi-scale dynamic
programming. IEEE Transactions on Smart Grid, 9(3):1997–2005, 2018.
doi: 10.1109/TSG.2016.2605141.

[43] Nils Löhndorf, David Wozabal, and Stefan Minner. Optimizing trading
decisions for hydro storage systems using approximate dual dynamic pro-
gramming. Operations Research, 61(4):810–823, 2013. doi: 10.1287/opre.
2013.1182. URL https://doi.org/10.1287/opre.2013.1182.

[44] David Arthur and Sergei Vassilvitskii. K-means++: The advantages of
careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA ’07, page 1027–1035, USA, 2007.
Society for Industrial and Applied Mathematics. ISBN 9780898716245.

[45] Rafa l Weron. Electricity price forecasting: A review of the state-of-
the-art with a look into the future. International Journal of Forecast-
ing, 30(4):1030–1081, 2014. ISSN 0169-2070. doi: https://doi.org/10.

https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118673362.ch2
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118673362.ch2
https://www.sciencedirect.com/science/article/pii/S0140988313000625
https://www.sciencedirect.com/science/article/pii/S0140988313000625
https://doi.org/10.1287/opre.2013.1182

48 BIBLIOGRAPHY

1016/j.ijforecast.2014.08.008. URL https://www.sciencedirect.com/

science/article/pii/S0169207014001083.

[46] New York Independent System Operator. Energy market
& operational data, 2023. URL https://www.nyiso.com/

energy-market-operational-data.

[47] Gereon Recht. Energy storage bidding, 2023. URL https://github.

com/grecht/energy-storage-bidding.

[48] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf
Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Tay-
lor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Hal-
dane, Jaime Fernández del Ŕıo, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array
programming with NumPy. Nature, 585(7825):357–362, September
2020. doi: 10.1038/s41586-020-2649-2. URL https://doi.org/10.1038/

s41586-020-2649-2.

[49] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A llvm-
based python jit compiler. In Proceedings of the Second Workshop on the
LLVM Compiler Infrastructure in HPC, LLVM ’15, New York, NY, USA,
2015. Association for Computing Machinery. ISBN 9781450340052. doi:
10.1145/2833157.2833162. URL https://doi.org/10.1145/2833157.

2833162.

https://www.sciencedirect.com/science/article/pii/S0169207014001083
https://www.sciencedirect.com/science/article/pii/S0169207014001083
https://www.nyiso.com/energy-market-operational-data
https://www.nyiso.com/energy-market-operational-data
https://github.com/grecht/energy-storage-bidding
https://github.com/grecht/energy-storage-bidding
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162

Selbständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Masterarbeit selbständig und
nur mit den angegebenen Hilfsmitteln angefertigt habe und dass alle Stellen,
die dem Wortlaut oder dem Sinne nach anderen Werken entnommen sind,
durch Angaben von Quellen als Entlehnung kenntlich gemacht worden sind.
Diese Masterarbeit wurde in gleicher oder ähnlicher Form in keinem anderen
Studiengang als Prüfungsleistung vorgelegt.

Ort, Datum Unterschrift

	List of Figures
	List of Tables
	Introduction
	Foundations
	Markov Decision Processes
	Backward Dynamic Programming
	Backward Approximate Dynamic Programming
	Forward Approximate Dynamic Programming

	Energy Markets
	Stochastic Simulation of Energy Prices
	Characteristics of Electricity Prices
	Variance-Stabilizing Transformations
	Deterministic Part: Seasonality in Electricity Prices
	Stochastic Part: Modeling Jump Diffusions

	The Bidding Problem
	Markov Decision Process
	Approximation with BADP-lattice
	Perfect Foresight Model

	Numerical Study
	Experiment 1: Approximation Quality
	Discussion of Results

	Experiment 2: NYISO real-time market
	Price Process
	Sampling State and Action Space
	Discussion of Results

	Evaluation of Performance
	Discussion of Results
	Details on Implementation and Hardware

	Summary of Results

	Conclusion
	Appendix
	Normalized Variance-Stabilized Transformation
	Calibration of the Poisson Jump Model (PJM)

	Bibliography

