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Abstract

Xilinx Versal ACAP is the newest acceleration platform, developed by
Xilinx, proposed to enhance the capabilities of the conventional FPGA
ones and meet the demands of modern applications. However, only few
studies concerning its benefits have been performed. To address this issue,
a comparison between this platform and the MPSoC FPGA is performed
by targeting Deep Learning applications. Using the Vitis AI inference
framework, a large number of convolution and fully-connected models
were implemented. This exploration lead to several conclusions regarding
the optimal platform selection depending on the AI model characteristics.
Also, to further evaluate the benefits and the programmability trade-offs
of the Versal ACAP, a custom architecture of an image super-resolution
model (ESPCN) was developed. Compared to the implementation derived
by the Vitis AI framework, the custom design improves latency by 4.5x.

Versal ACAP, Vitis AI, Deep Learning, ISR architecture, AI Inference

1 Introduction

Over the last few years, there has been a proliferation in the use of Deep Learn-
ing (DL) algorithms in almost every scientific domain. This is especially true
for Computer Vision, where in multiple tasks, like Image Classification[1], [2],
[3], Semantic Segmentation [4], Object Detection [5], [6], and Image Super-
Resolution (ISR) [7], DL models are considered the best approach. Thus, per-
formant implementations of such algorithms are of great importance.

Using CPU-only platforms can prove inefficient, given the many sources
of parallelism that are left unexploited and the lack of computation-specific
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hardware. Hence, it is common practice to use specialized hardware such as
FPGAs in an attempt to offload and accelerate critical parts of an algorithm [8]-
[11]. Their reconfigurable hardware allows the creation of application-specific
accelerators that utilize parallelism, streaming, pipelining, and arbitrary bit-
width of data.

However, FPGAs often exhibit some inherent weaknesses. First of all, FP-
GAs operate on far lower clock frequencies than CPUs thus need very high par-
allelization to compensate for the slow clock speed. Additionally, the modern
DL models contain so much parallelization potential that, while the resources
of FPGAs (LUTs, Flip-Flops, DSPs) are abundant, they cannot fully utilize the
available parallelism due to timing constraints, leading to missed acceleration
opportunities. On top of that, the on-chip memory of FPGAs is limited, which
hinders the exploitation of parallelism and data reuse. This increases the need
for off-chip memory accesses, which are costly in latency and power consump-
tion. In [12], it was concluded that limited memory bandwidth is the main
factor that obstructs FPGA implementations.

Xilinx Versal Adaptive Compute Acceleration Platform (ACAP) is a new
acceleration paradigm that aims to enhance the existing FPGA platforms[13].
Regarding conventional embedded platforms (eg. ZCU104 MPSoC), a Versal
ACAP contains similar components to a Zynq Ultrascale+ MPSoC, with the
addition of the Artificial Intelligence Engine (AIE) array and a programmable
NoC[14]. Introducing the AIE array seemingly alleviates the issue of underuti-
lized parallelism. Additionally, the AIEs are being clocked at a higher frequency.
The computation and resource offloading to the AIE array assists in creating
better designs. Lastly, the programmable NoC provides better off-chip memory
bandwidth compared to the one offered by MPSoCs.

These improvements are promising and could install the Versal ACAP as
the staple DL accelerator. However, to the best of our knowledge, other than
the Vitis AI Model Zoo [15], there has been no study that attempts to explore
and compare MPSoC and Versal ACAP implementations, quantifying how those
improvements translate to acceleration and which are the most influential, in
practice. Thus, the results and outcomes of this work can be exploited during the
exploration phase of selecting the proper platform to implement the application.

In this paper, we use the Vitis AI inference framework to compare the
ZCU104 and the VCK190 platforms by benchmarking multiple neural network
models that cover a vast design space, with a focus on convolutional and fully
connected networks. Implementing models with a wide variety of configura-
tions is a systematic approach since the results can be extrapolated to most
DL models and provide more insights into which parts of the platform are most
influential.

Furthermore, while there is a plethora of implementations of DL models on
MPSoCs [9]-[11], the implementations on Versal ACAPs are limited [16], [17].
We provide a custom implementation of an ISR model, improving latency by
4.5x than the respective Vitis AI framework implementation on the VCK190.
This acts as proof that Versal ACAP programming enables the creation of pow-
erful custom architectures.
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The main contributions of this paper are:

• Exploration and comparison of the ZCU104 Ultrascale+ MPSoC and the
VCK190 Versal ACAP platforms, using a large set of convolutional and
fully connected Vitis AI model implementations.

• Analysis of which Versal ACAP architectural advances are the most influ-
ential for accelerating ML applications.

• A custom implementation of an ISR model (ESPCN) on VCK190, to
explore the performance versus programming effort tradeoff on Versal
ACAPs. Performance comparison between the custom architecture on
VCK190 and the Vitis AI framework implementation.

The remainder of the paper is structured as follows. Section II provides a
brief introduction to the Versal ACAP and Vitis AI framework. We also present
our approach toward the custom implementation of the ISR model and discuss
the selection of the architectural parameters of the implemented NN models. In
Section III, we present and discuss the experimental results. Finally, in Section
IV, we draw conclusions based on our findings.

2 Background and Proposed Approach

2.1 Xilinx Versal ACAP and Vitis AI

Xilinx Versal ACAP [13] is a hybrid compute platform that combines four main
components: (a) the Processing System (PS), which includes the ARM proces-
sors, (b) the Programmable Logic (PL), which is the traditional FPGA recon-
figurable fabric, (c) the AIE array, which contains the software programmable
accelerator engines, and (d) the programmable NoC that connects all the com-
ponents.

The most important units included in an AIE are: (a) the VLIW proces-
sor with SIMD vector registers, which is the main source of acceleration, (b)
the scalar processor, which handles the scalar operations, and (c) the memory
module, that contains 8 one-port memory banks of 4KB each. Each AIE has
direct memory access at up to four memory modules (north, south, east, west).
Additionally, all AIEs are connected via the AXI4 Interconnect, allowing the
utilization of the AXI4-Stream protocol. Lastly, the cascade connections enable
horizontal interconnection between AIEs.

The AIE array provides three levels of parallelism: (a) coarse-grained, the
AIE array consists of up to 400 AIEs that can execute fully in parallel, (b)
SIMD, with vector computing enabling multiple elements to be computed in
parallel, and (c) instruction level, where the VLIW architecture allows up to
7 instructions to be executed in a clock cycle. The AIE kernels are programs
written in C/C++ and compiled using specialized intrinsic calls or AIE APIs,
targeting the VLIW processor.
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Xilinx Vitis AI is an AI inference framework, targeted towards Xilinx de-
vices, including Zynq Ultrascale+ MPSoCs and Versal ACAPs. The framework
implements the inference of a DL model to the Deep-learning Processing Unit
(DPU), which is a programmable engine optimized for deep neural networks.
The DPU differs from device to device, both in terms of operation support and
architecture. For MPSoCs, the DPU is implemented using solely PL resources,
whereas for Versal ACAPs, the DPU contains both PL resources and AIEs. In
this work, we aim to quantify how influential the addition of the AIEs is for the
performance of the DPU.

2.2 Study of Convolution Blocks

A specific combination of multiple different layers, is called a block in the ecosys-
tem of DL models. The vast majority of modern convolutional DL models con-
sist of multiple convolutional blocks that contain the same architectural pattern.
The architecture of the blocks, the number of blocks used, along with some fine-
grained parameters, vary from model to model. To get concise and accurate
results, we need some convolutional block architectures which contain key ele-
ments that appear among the most widely used convolutional DL models.

The ResNet Bottleneck block [1], the MobileNetV2 block [3], and the Con-
vNeXt block [2] are some representative convolutional blocks. Firstly, the Resnet
Bottleneck block covers the ResNet-like family of DL models that are used
widely and are considered a benchmark in the field of DL for Computer Vision.
Additionally, the MobileNetV2 block and some slight variations appear in most
edge devices, where the networks need to be concise to adhere to the hardware
restrictions presented. Finally, the ConvNeXt block is the one used in the family
of ConvNeXt models, which are considered State-of-the-art in Image Classifica-
tion and Feature Extraction. Figure 1 depicts the detailed architecture of each
block, in layer level. Each block contains three convolution-type layers which
are accompanied by some lightweight layers and a residual connection. Table
1 provides the distinct and noteworthy characteristics that define each of the
blocks.

Table 1: Characteristics of Convolutional Blocks

ResNet Bottleneck block MobileNetV2 block ConvNeXt block
Widespread use Edge Devices State-of-the-art

Residual Connection Depthwise Conv 7x7 Depthwise Conv
Bottleneck Inverted Bottleneck GeLU

Batch Normalization Linear Residuals Linear Normalization

In order to explore the capabilities of the MPSoC and the Versal ACAP, we
conducted experiments in an extended design space using the Vitis AI framework
on the VCK190 and ZCU104 platforms. We explore models that are composed
of various numbers of blocks. The considered convolution blocks are the ResNet
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Figure 1: Layer Architecture of Convolutional Blocks (bottleneck = 4)
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Bottleneck, the MobileNetV2, and the ConvNeXt blocks. Moreover, to expand
our study beyond convolutional DL models, we explore a fourth case, where the
block is comprised of a Fully Connected layer.

2.3 Custom Implementation of ISR model (ESPCN)

We propose a custom implementation of an ISR model on VKC190 platform.
The ESPCN model was chosen as the network to be implemented, due to its
efficiency and performance[7]. The network employs two classical and one Sub-
Pixel convolution layers. The proposed mapping of these layers and the system
design is illustrated in Figure 2.

Figure 2: Block Diagram of Custom Implementation

In order to leverage the powerful computing capabilities of the AIEs, we
implement the most computationally intensive convolution layers on the AIE
array. With appropriate data rearrangement, the convolution computation is
transformed to matrix multiplication and optimized to be implemented in the
AIE array. The remaining operations, which include but are not limited to the
Tanh activation function, the PixelShuffle function, and the data rearrangement,
involve scalar byte operations and interact with memories, therefore are suitable
for implementation in the PL. Finally, the design uses the PS as an external
controller to orchestrate the data movements between the AIE graph and PL
kernels. It should be highlighted that to avoid severe result degradation, which
is common when quantizing ISR models, the implementation uses FP32 data
types, while Vitis AI uses exclusively INT8.
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3 Experimental Results

3.1 Experimental Setup

Table 2 displays the parameters for each block type and platform. Their selec-
tion is based on attempting to replicate prevalent model configurations while
ensuring sufficient diversity to achieve generalizability on the pool of modern
DL models. In more detail:

• The feature map size and the number of channels refer to the input to the
convolutional blocks. By design, the input and the output of each block
have the same dimensions.

• Bottleneck refers to the bottleneck architecture that exists at the ResNet
Bottleneck block or the inverse bottleneck architecture that exists at Mo-
bileNetV2 and ConvNeXt blocks.

• The number of blocks indicates how many consecutive blocks a model is
comprised of.

• The input size and the number of neurons of each Fully Connected layer
is equal. This decision enables each block to have the same memory and
computation requirements by forcing the input and output of each block
to have the same dimensions.

• Finally, the VCK190 DPU enforces the batch size to be equal to 6, while
when it comes to ZCU104, two ZCU104 DPUs work in parallel to achieve
a batch size equal to two.

Table 2: Parameters for Vitis AI experiments

Block type Parameters VCK190 ZCU104

Convolutional blocks

feature map size 14x14, 28x28, 56x56
channels 32, 128, 512
bottleneck 2, 4, 8

number of blocks 1, 2, 4, 8, 16, 32
batch size 6 2

Fully Connected

input size and 10, 20, 40, 80, 160,
number of neurons 320, 640, 1280, 2560
number of blocks 1, 2, 4, 8, 16, 32

batch size 6 2

The various parameter combinations lead to 162 ResNet Bottleneck, 162 Mo-
bileNetV2, 162 ConvNeXt, and 54 FC experiments per platform, which account
for a total of 1080 experiments. Since our objective is to compare the MPSoC
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to the Versal ACAP, we get the VCK190 to ZCU104 ratio of each metric for
each experiment. We will present the results following three approaches.

Firstly, we categorize the convolutional block experiments into 10 distinct
categories, based on their Computation to Memory ratio (Comp/Mem). The
Comp/Mem metric indicates whether a layer is dominated by the data transfers
of the weights and feature maps or by the computation, information that is cru-
cial to identify performance patterns and bottlenecks. Using this categorization,
we can derive the Comp/Mem of any given convolution-based DL model and
get an estimation of its relative performance on ZCU104 and VCK190. We split
the experiments equally among the categories and average the ratios to achieve
conciseness and presentability.

In the second approach, we categorize all the experiments based on their
block type and their Comp/Mem ratio. Creating three categories based on
the Comp/Mem ratio (small, medium, large), leads to a total of 12 distinct
categories. This approach provides information about whether and how, the
block architectural differences affect performance metrics.

In the last approach, the goal is to explore the effects of model depth. We
categorized the experiments in the same way as in the second approach, but
only included experiments with a single block. We then mapped each experi-
ment with a certain configuration (e.g., feature map size, channels) and larger
number of blocks to the same category as the one-block experiment with the
same configuration. This allows us to study the performance trends of experi-
ments with larger depth but the same parameters in other aspects.

The resource usage of the VCK190 Vitis AI design is: 192 AIEs, 403866
LUTs, 507308 FFs, 809 DSPs, 678 BlockRAMs, and 343 UltraRAMs. The
resource usage of the ZCU104 Vitis AI design is: 102255 LUTs, 197691 FFs, 1420
DSPs, 255 BlockRAMs, and 64 UltraRAMs. Each BlockRAM and UltraRAM
contain 36kb and 288Kb respectively.

3.2 Quantitative Metrics

The results of the first approach are presented in Figure 3. Each point repre-
sents the average of the VCK190 to ZCU104 ratio of the respective metric for
each category, DPU throughput, DPU latency, and memory transfer bandwidth
(between the PS and the DPU). Table 3 depicts the average Comp/Mem ratio
of the experiments of each category.

Focusing on the DPU throughput, it is clear that the superior compute and
parallelization power of the AIE engines enable the VCK190 DPU to outper-
form the ZCU104 one in terms of throughput. The performance improvements
start from around 4x for the smaller category and rise as models get more com-
putationally intensive, getting to a plateau of around 10x for category 60 70
and larger. This increase indicates that the Versal ACAP architecture is even
more efficient when the implemented algorithms are computationally intensive
and can be mapped appropriately to the capable AIEs.

Regarding the DPU latency, we observe that it follows a similar trajectory
as the DPU throughput, starting at around 1x and falling almost to 0.3x. We
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observe that convolution-based models that belong to the category 0 10 (<0.2
GOP/MB) are more suitable for ZCU104. However implementations where
latency is a concern would be benefited by choosing the VCK190 platform if the
convolution-based model had a Comp/Mem ratio over 1 GOP/MB.

Lastly, the memory transfer bandwidth of the VCK190 is, on average, be-
tween 2x and 3x greater than that of the ZCU104. The addition of the NoC
that connects the PS of the VCK190 with the PL and the AIEs can be at-
tributed to this increase. However, in the context of DL, the impact of this
improvement is not significant since feature map transfers should only occur at
the start and end of inference, and weight transfers can be performed in parallel
to layer computation. Therefore, the addition of the AIEs has a greater effect
than the addition of the NoC in accelerating DL.

Figure 3: VKC190/ZCU104 Ratio for approach 1

The results of the second approach are presented in Figure 4. Table 4 depicts
the average Comp/Mem ratio of the experiments of each category.

Similarly to the first approach, the increase in Comp/Mem leads to an in-
crease in DPU throughput. However, there is a clear difference between models
of different block architectures. Among the convolutional blocks, ConvNeXt
is the most suitable for VCK190. Additionally, Fully Connected models can
benefit from Versal ACAP too, especially ones with larger Comp/Mem.
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Table 3: Average Comp/Mem ratio per Category on approach 1

Category 0 10 10 20 20 30 30 40 40 50
GOP/MB 0.112 0.372 0.699 1.137 1.647
Category 50 60 60 70 70 80 80 90 90 100
GOP/MB 2.026 2.595 4.471 7.111 17.137

The DPU latency graph demonstrates that ResNet-Like models, particu-
larly those in the small category, can be targeted towards the ZCU104 platform
with minimal loss compared to other block types. Conversely, ConvNeXt and
MobileNetV2 models exhibit DPU latency of less than 0.6x, even in the small
category. Finally, large Fully Connected models exhibit the most significant
difference, at 0.2x.

Consistent with the memory bandwidth results of the first approach, the
diagram suggests that the difference between the platforms is approximately
between 1.5x to 3x.

Table 4: Average Comp/Mem ratio per Category in approach 2 and 3

Category small medium large
Approach 2 3 2 3 2 3

ResNet Block 0.141 0.034 0.741 0.14 4.0134 0.739
MobileNetV2 Block 0.894 0.299 2.447 0.901 10.792 3.002
ConvNeXt Block 0.924 0.316 2.481 0.902 10.826 3.002
Fully Connected 0.010 0.007 0.012 0.011 0.012 0.012

Figure 5 presents the results of the third approach, while Table 4 shows the
average Comp/Mem ratio of the experiments of each category. The categoriza-
tion diagrams of all experiments (approach two) and those with only one block
are similar. However, the aim of the third approach is to emphasize the effects
of model depth on performance metrics. Therefore, Figure 6 displays the more
intriguing results.

DPU latency and DPU throughput depict similar behaviour. An increase in
block number leads to an increase in Comp/Mem ratio, and hence, increased
performance on VCK190, as the previous approaches indicated. However, this
increase becomes less significant as the depth increases, with most categories
reaching a plateau after depth 8 or 16. Additionally, blocks in categories with
higher Comp/Mem ratios (large) receive more benefit from the Versal ACAP
than their counterparts in categories with lower Comp/Mem ratios (small), a
trend also observed in approach two.

Summarizing, based on the results of the three approaches, we can con-
clude that both Comp/Mem ratio and block architecture (in terms of block
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Figure 4: VKC190/ZCU104 Ratio for approach 2
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parameters and model depth) significantly impact the performance difference
between ZCU104 and VCK190. The results indicate that shallow (<4 blocks)
convolutional-based models with smaller Comp/Mem ratio (<0.2 GOP/MB),
particularly ResNet-like models, can be deployed in ZCU104 with negligible
or no DPU latency loss and a 3x-4x DPU throughput loss Conversely, deeper
models with larger Comp/Mem ratio should be directed towards Versal ACAP
platforms, as they can utilize the AIEs better.

3.3 Qualitative Metrics

One significant qualitative metric is configurability, which specifies the extent
that the Versal ACAP architecture can be programmed efficiently and whether
the additional effort can lead to performance gains. To demonstrate that custom
implementations in Versal ACAP are both viable and valuable, we compare our
custom architecture on an ISR model on VCK190 and the Vitis AI framework
implementation. The resource usage of the implementation is: 160 AIEs, 92654
LUTs, 136430 FFs, 30 DSPs, 342 BlockRAMs, and 81 UltraRAMs.

The latency of the custom implementation is 3.7 ms, while that of the Vitis
AI implementation is 16.5 ms. This amounts to approximately a 4.5x latency
decrease, despite the difference in data type usage (FP32 vs INT8). The results
indicate that the massive parallelism capabilities of the AIEs can be exploited
further and yield great results, which is proof of the configurability of the Versal
ACAP.

An additional important qualitative metric is the scalability that the plat-
form provides. We can quantify the scalability achieved by the Versal ACAP
compared to the MPSoC by observing the availability of different layer types on
the Vitis AI framework. While both VCK190 and ZCU104 DPUs support 2D
layers, the VCK190 DPU is the only one supporting 3D layers and in particular:
a) the 3D convolution layer, b) the depthwise 3D convolution layer, c) the trans-
posed 3D convolution layer and d) the depthwise transposed 3D convolution
layer [15]. The characteristic of those layers is that the added dimension both
increases the memory requirements and complicates the computation, thus hin-
dering the data reuse patterns. As a result, more off-chip memory accesses are
required for the computation, requiring large memory bandwidth. The fact that
the VCK190 DPU supports those 3D layers indicates that the programmable
NoC, with the enhanced memory bandwidth, fulfills those requirements and it
is the main reason why the Versal ACAP is more scalable than the MPSoC.

4 Conclusion

We presented a study on a new family of devices, namely the Versal ACAP
and its potential in the software-hardware ecosystem for AI acceleration. We
conducted several benchmarks using Vitis AI, an AI inference framework, for a
variety of AI models and compared the results with a conventional FPGA board.
The exploration concluded that deeper networks with larger Comp/Mem ratio
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Figure 5: VKC190/ZCU104 Ratio for approach 3 (number of blocks = 1)
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Figure 6: VKC190/ZCU104 Ratio for approach 3 (all experiments)
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exhibit higher performance on Versal ACAP platforms. Also, we implemented
a custom architecture of an ISR model (ESPCN) and showed that the cus-
tom architecture achieves better performance than the Vitis AI implementation,
highlighting the performance versus programmability trade-off.
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