
Arax: A Runtime Framework for Decoupling
Applications from Heterogeneous Accelerators

Manos Pavlidakis1,2, Stelios Mavridis1, Antony Chazapis1, Giorgos Vasiliadis1, and
Angelos Bilas1,2

1Institute of Computer Science (ICS), Foundation for Research and Technology - Hellas (FORTH), Greece
2Computer Science Department, University of Crete, Greece
{manospavl,mavridis,chazapis,gvasil,bilas}@ics.forth.gr

ABSTRACT
Today, using multiple heterogeneous accelerators efficiently
from applications and high-level frameworks, such as Tensor-
Flow and Caffe, poses significant challenges in three respects:
(a) sharing accelerators, (b) allocating available resources
elastically during application execution, and (c) reducing the
required programming effort.
In this paper, we present Arax, a runtime system that de-

couples applications from heterogeneous accelerators within
a server. First, Arax maps application tasks dynamically to
available resources, managing all required task state, mem-
ory allocations, and task dependencies. As a result, Arax can
share accelerators across applications in a server and adjust
the resources used by each application as load fluctuates over
time. Additionally, Arax offers a simple API and includes Au-
totalk, a stub generator that automatically generates stub
libraries for applications already written for specific accel-
erator types, such as NVIDIA GPUs. Consequently, Arax
applications are written once without considering physical
details, including the number and type of accelerators.
Our results show that applications, such as Caffe, Ten-

sorFlow, and Rodinia, can run using Arax with minimum
effort and low overhead compared to native execution, about
12% (geometric mean). Arax supports efficient accelerator
sharing, by offering up to 20% improved execution times
compared to NVIDIA MPS, which supports NVIDIA GPUs
only. Arax can transparently provide elasticity, decreasing
total application turn-around time by up to 2× compared to
native execution without elasticity support.

KEYWORDS
Heterogeneous accelerators, Spatial sharing, Dynamic re-
source assignment, Live-migration

1 INTRODUCTION
The increasing need for high performance at low energy
consumption has resulted in the proliferation of heteroge-
neous accelerators, such as GPUs, FPGAs, and TPUs [1, 8,
10, 27, 31, 32]. Recent estimates [1, 2, 27, 33, 36] indicate that
by 2030 servers will include a plethora of processing units

and specialized accelerators [3, 6, 18, 29]. This trend poses
significant challenges in how applications and higher-level
frameworks, such as TensorFlow [9] and Caffe [14], can fully
utilize the capacity of heterogeneous accelerators.
Today, a large percentage of applications or frameworks

is statically bound to specific accelerators throughout their ex-
ecution.Many applications are directly written for one accel-
erator type, e.g., NVIDIA GPUs, to allow for device-specific
optimizations. Over the last years, unified programmingmod-
els, e.g., SYCL [11] and oneAPI [13], aim to offer portability
to different accelerator types. However, applications are still
required to explicitly select the desired accelerators during
initialization and prior to starting their execution. As a result,
each application execution is still bound to a specific set of
accelerators or accelerator types that cannot change at run-
time. This results in poor resource and application efficiency
in two ways: (a) reduced sharing of resources and (b) lack of
adaptation over time.
First, existing resource assignment techniques fully allo-

cate accelerators to a single application. Although practical,
this exclusive assignment creates significant load imbalance
in heterogeneous setups with multiple accelerators and re-
sults in resource under-utilization. Existing time-sharing
approaches [12, 34–36] cannot address this issue effectively,
e.g., in cases where an application cannot fully utilize an
accelerator during its time slice. Spatial sharing, on the other
hand, has the potential to increase resource utilization. How-
ever, existing approaches, such as NVIDIA MPS [23], are
limited to specific accelerator types and require applications
to perform manual task assignment and data placement.
Second, resources assigned to each application remain

fixed throughout its execution. However, applications of-
ten exhibit dynamic behavior and fluctuating load require-
ments [12, 34]. Given that it is difficult to estimate the re-
source demands of applications accurately and statically as-
sign resources to each application, the lack of elasticity mech-
anisms results in application under- or over-provisioning
and eventually to poor resource utilization.
In this paper, we present Arax, a runtime system that de-

couples applications from heterogeneous accelerators within

1

ar
X

iv
:2

30
5.

01
29

1v
1

 [
ee

ss
.S

Y
]

 2
 M

ay
 2

02
3

Pavlidakis et al.

Capabilities MPS
[23]

StarPU
[1]

Gandiva
[34]

DCUDA
[12]

AvA
[36] Arax

Heterogeneity - ✓ - - ✓ ✓
Spatial sharing ✓ - - - - ✓

Dynamic
resource assign. - - ✓ ✓ - ✓

Reducing effort - - - - ✓ ✓

Table 1: Capabilities of Arax vs. state-of-the-art ap-
proaches.

a single server. Our approach is based on RPC, a mechanism
that is proven to be very successful in decoupling complex
software stacks, using clear and conceptually simple bound-
aries. The client-side stubs of Arax allow applications to be
written once using a simple API, without considering any
low-level details, such as the number or type of accelerators.
The core component of Arax is a backend service, the Arax
server, that dynamically maps application tasks and data to
available accelerators at runtime. This enables spatial accel-
erator sharing and adjusts resources at runtime. Last but not
least, Arax includes a stub generator (Autotalk) that reduces
porting effort for existing accelerator-enabled applications.
Table 1 summarizes the main capabilities of Arax, compared
to state-of-the-art approaches. The whole Arax ecosystem is
available at GitHub1.

The RPC-based approach of Arax allows decoupling ac-
celerators from applications. Arax applications do not
need to perform accelerator selection, memory allocation,
or task assignment operations; all are handled transparently
by Arax. This approach allows Arax to perform memory
allocations lazily and only when the actual task assignment
occurs. To improve accelerator utilization while ensuring
application performance Arax provides three capabilities:

(a) Spatial sharing that manages existing mechanisms in
heterogeneous accelerators, transparently, and across all ap-
plications in a server. We use asynchronous host-threads to
issue tasks to GPU streams and FPGA command queues. Re-
garding FPGAs, Arax loads bitstreams with multiple kernels
that need to be collocated in the same FPGA. The advantage
of our approach is that it moves all the related management
from individual applications to the shared Arax runtime and
can make decisions across all applications.

(b)Elasticity and dynamic resource assignment to ap-
plications at runtime. To achieve this, Arax requires fine-
grain access to application tasks and their data. Arax uses
asynchronous operations to issue independent tasks across
different accelerators, while ensuring that tasks with depen-
dencies execute in-order.
(c) Live-migration that moves application tasks across

heterogeneous accelerators. Unlike existing approaches, our

1https://github.com/CARV-ICS-FORTH/arax

migration mechanism does not require application modifi-
cations or specialized accelerator support. Arax uses task
arguments to keep track of the data used by each task and
transfers only relevant data upon task migration. Although
arbitrary pointers may result in moving large amounts of
memory, our approach is adequate to support real applica-
tions, such as TensorFlow and Caffe.

Finally, Arax includes Autotalk, a generator that creates
stubs for a given accelerator API based on a description of
the target API. Applications are then linked dynamically
with the stub library that internally calls the Arax API. Cur-
rently, Autotalk generates stubs for a subset of CUDA that
can support Caffe and TensorFlow.
We evaluate Arax using Caffe, TensorFlow, and Rodinia.

Our results show that Arax applications can run without
any modifications at low overhead—up to 12% compared
to native—when other approaches, i.e., AvA [36], result in
up to 30% overhead for the same applications. In addition,
Arax provides elasticity, decreasing total application turn-
around time by 2× compared to native execution without
elasticity support. Our migration mechanism adds 7% over-
head compared to standalone execution. Finally, our sharing
mechanism provides up to 20% improvement in total execu-
tion time compared to NVIDIA MPS.

The main contributions of this paper are:

(1) We propose an RPC-based approach to decouple appli-
cations fromheterogeneous acceleratorswithin servers.

(2) We present a mechanism for spatial sharing of het-
erogeneous accelerators and dynamic and transparent
assignment of tasks to accelerators.

(3) We present an application live-migration mechanism
that reduces data movement based on data ownership
by tasks.

(4) We present a stub generator that allows existing appli-
cations to use Arax with minimal effort and demon-
strate our approach with Caffe and TensorFlow.

(5) We demonstrate and evaluate Arax in an accelerator-
rich server environment, using GPUs, FPGAs, and
CPUs, with Caffe, TensorFlow, and Rodinia.

2 DESIGN
Figure 1 shows a high-level overview of Arax. Applications
use the Arax API to access available accelerators, regard-
less of their types. Applications create task queues and issue
tasks, providing their data in the form of Arax buffers. Tasks
and buffers are being transported to the Arax server via a
transport layer over shared memory, mapped to both the ap-
plication and server address spaces. The Arax server assigns
dynamically and asynchronously application tasks to accel-
erators, managing accelerator streams and command queues,
maintaining task ordering, and handling data dependencies.

2

Arax: A Runtime Framework for Decoupling Applications from Heterogeneous Accelerators Pavlidakis et al.

Client1

Arax Na�ve Apps

Exis�ng Apps (Caffe/TensorFlow)

Client Stub

Server

CUDA
NVIDIA GPU

OpenCL
Intel FPGA

ROCm
AMD GPU

Client2

K

K
Streams

K

K

K

K

K

K

Command
queues

K

K
Streams

K

K

Accelerator Selector

Server

Stub

Arax Library Arax Library

T

T

T

T

T

T

T

T

Task Queues Shared Address Space

T Tasks K Kernels B BuffersAccelerator Threads

B B

B B

Buffers Client 1
B B

B B

Buffers Client 2

Arax

Client 1 Client 2
Transport

 Layer

Generated by Autotalk

Figure 1: Arax high-level overview. The main compo-
nents of Arax are: Clients, Server, Transport layer, and
Autotalk.

Finally, Arax’s stub generator, Autotalk, allows generating
the stub library automatically for a particular accelerator
API, given a description file of the API calls. Next, we discuss
each component of Arax in more detail.

2.1 Client
Arax provides three basic abstractions: (a) tasks, (b) task
buffers, and (c) task queues. Table 2 shows an overview of the
main Arax API calls.

Tasks. A task can be either a compute or a transfer task.
A compute task is an accelerator kernel, while a transfer
task is a data transfer between the host and the accelerator.
Both tasks are executed without interruption and are asyn-
chronous. Arax provides synchronization primitives to allow
applications to wait for their completion. A compute task
takes the kernel name and its corresponding arguments as pa-
rameters, i.e., inputs, outputs, and arguments required from a
kernel. The kernel name is associated with the actual kernel
at the server (§2.2). Unlike existing accelerator APIs, task
arguments do not include accelerator-specific information,
such as thread number or thread block size. The parameters
for a transfer task include the task buffers provided by Arax
and any data from the application address space.

Task buffers. A buffer represents the input and output
data of a task. Multiple tasks or applications can operate on
the same buffer concurrently. It is important to note that
Arax decouples the accelerator memory management from
applications using a lazy memory allocation strategy. When

Abstraction API call Description

Tasks a_issue() Issue a task
a_wait() Wait for a task

Task Buffers
a_allocate() Allocate Buffer
a_free() Free Buffer

a_sync_to(), a_sync_from() Transfer Data

Task Queues a_acquire() Acquire a queue
a_release() Release a queue

Table 2: Methods of Arax API.

an application requests memory, Arax stores the requested
allocation size but does not allocate this memory on the
accelerator (§2.2). The actual allocation will be performed
only after the task is successfully assigned to an accelerator.
In the meantime, applications can continue issuing tasks
since buffers are implemented as opaque types in the shared
memory. For all allocations in the shared memory, we use
the Doug Lea allocator. This abstraction hides accelerator
memory, and applications are unaware of which accelerator
hosts their data.

Task queues. Applications issue tasks to task queues, sim-
ilar to existing programming models, e.g., CUDA/ROCm
streams and OpenCL command queues. The main difference
of Arax is that these queues are not assigned directly to an
accelerator. Instead, Arax is responsible for assigning them
to one or more accelerators at runtime (§2.2), while ensuring
that asynchronous tasks will be executed in-order. Each task
queue holds tasks with dependencies. To denote indepen-
dent sets of work, applications need to acquire different task
queues. This approach works well for the ML frameworks
we examine due to the inherent serialization of NN layers.

2.2 Server
The Arax server is responsible for maintaining task issue
order and managing data dependencies while performing
dynamic task assignment and data placement to accelerators.
These mechanisms allow Arax to provide efficient spatial
sharing and elastic allocation of resources.

Spatial Sharing. The spatial sharing mechanism of Arax
is based on streams/command queues and host-threads (Arax
accelerator threads). In particular, to execute kernels in par-
allel, the server spawns multiple threads per physical accel-
erator. Each accelerator thread internally creates different
streams (CUDA and ROCm) or command queues (OpenCL).
The design of spatial sharing in Arax can support advanced
task assignment policies that do not rely on low-level accelerator-
specific APIs. To enable spatial sharing for NVIDIA GPUs,
we require a single context; thus, the Arax server is imple-
mented as a single process for all accelerators. Regarding

3

Pavlidakis et al.

GPU

Compute Memory

FPGA

Compute Memory
D

Server

T

T
Task QueueC0

1

Old
Thread

2 Re-AssignTaskQueue

Address Space

3

4 Alloc & Transfer

Mark Orphan

Transfer & Free

New
Thread

T Tasks Accelerator Threads Data

Transport

 Layer

Accelerator Selector

D

D

D

Figure 2: The steps required for an application migra-
tion. The task queue is marked orphan (1) and reas-
signed to a new thread (2). The relevant data are then
transferred to the new accelerator via the server mem-
ory (3,4).

FPGAs, the Arax server loads a bitstream that contains mul-
tiple kernels, similar to Vinetalk [19]. The server can select
and load the appropriate bitstream to serve each task.

Applicationmigration. Even when accelerators are sha-
red, there can be load imbalances. Arax offers an application
migration mechanism to correct load imbalances. This migra-
tion mechanism can move application tasks and their data
across heterogeneous accelerators. The migration mecha-
nism cannot stop a task during execution. Instead, it waits
for the task to finish and moves any pending tasks and their
data to another accelerator. There are three challenges that
our migration mechanism needs to tackle:

(i) Migrate an application without interrupting its execution.
Arax offers task queues to applications to issue their tasks.
The Arax server stops and resumes the execution of a task
queue, and thus it does not affect the execution of the appli-
cation. In particular, Arax performs the following steps: (a)
The server marks this task queue as an orphan (Figure 2; step
1). At this point, accelerator threads cannot launch tasks
from this task queue. (b) Since then, there could have been
tasks issued for execution; the server waits for them to finish
before re-assigning this task queue to a different accelerator
thread (Figure 2; step 2). (c) From here on, any remaining
task from this particular task queue will be invoked to the

new accelerator. We note that, during the migration, the
application continues issuing tasks to its task queues.
(ii) Move only the data of the migrated task. The server

should move only the data required from the migrated task
and not all the application state. Existing checkpoint ap-
proaches [4, 34] migrate all the application state, which in-
volves transfers in the range of gigabytes. The Arax server
maintains metadata for each task and is aware of the data
required. After assigning the task queue to a new accelerator
thread, the server instructs the previous accelerator thread to
copy the task data from its accelerator memory to the server
memory and free the corresponding allocations (Figure 2;
step 3). The server then notifies the new accelerator thread
to allocate and copy that data from the server’s memory
(Figure 2; step 4) using the native accelerator API. We note
that the server memory is an intermediate buffer to transfer
data across different accelerators. As part of our future work,
we plan to eliminate this extra copy using accelerator-to-
accelerator transfers, at least for the cases supported [24].

(iii) Migrate themost recent version of the data.Before a data
migration, we must ensure that the data required from the
migrated task(s) are up-to-date. To achieve that, the server
allows only one valid copy of the data (at any given time) to
the distinct accelerator memories in multi-accelerator setups.

Dynamic task assignment. The server assigns the in-
coming task queues to the underlying accelerators. Individual
tasks from the same task queue can be assigned to different
accelerators. This assignment involves task and data migra-
tions for tasks with dependencies. When the server detects
an unassigned, non-empty task queue, it assigns it to an
accelerator using a round-robin policy (default). Advanced
assignment policies can be implemented with relatively low
effort. This is facilitated by the fact that Arax already collects
information regarding the memory footprint of each task,
the number of tasks per accelerator, and the data ownership.
As a proof of concept that our accelerator selector can

host advanced assignment policies, we also implement an
elastic assignment policy. This policy is essential to han-
dle load fluctuations or data bursts by performing dynamic
task assignments. The server keeps track of the assigned
task queues per accelerator and knows the owner of each
task queue. Consequently, the accelerator selector can in-
crease/decrease the accelerators assigned to an application
based on the load.
For instance, lets assume that we have a low-priority ap-

plication with two task queues, i.e., task queue1 and task
queue2. Initially, both task queues are assigned to the same
accelerator. When the accelerator selector detects idle accel-
erators, it expands the resources used by the low-priority
application by assigning task queue2 to the idle accelerator.
Reversely, when another high-priority application arrives,

4

Arax: A Runtime Framework for Decoupling Applications from Heterogeneous Accelerators Pavlidakis et al.

Client
Applica�on

Server

Accelerator

T

T
Task QueueC0

Compute Memory

1
2

GetTask

Address Space

AssignTaskQueue

Transfer
4

3
Allocate

Accelerator Thread

IssueTasks

Transport

 Layer

Accelerator Selector

T Tasks DataAccelerator Threads D

DD

D

Figure 3: Arax dynamic task assignment. Application
issues tasks to a task queue. Initially, the task queue
is assigned to an accelerator (1), then the accelerator
thread gets a task (2). It allocates accelerator memory
for that data (3) and copies the data from the applica-
tion (4).

the server shrinks the accelerators used from the low-priority
application by moving task queue2 to the accelerator where
task queue1 executes. This re-assignment requires moving
the application state between accelerators, i.e., application
migration. Consequently, the high-priority application can
make exclusive use of the idle accelerator.
To perform memory management, the server maintains

internally a mapping of the allocated buffers per task queue
and their corresponding sizes. We note that the actual mem-
ory allocation is performed only after its corresponding task
queue has been assigned to a physical accelerator (Figure 3;
step 1). After the selection of the physical accelerator, the
thread of that accelerator gets a task from the task queue
(Figure 3; step 2) and checks if any memory has already
been allocated in that particular accelerator memory. If not,
it performs the actual allocation (Figure 3; step 3) and keeps
a reference to that memory segment so that it can be used for
deallocation purposes. After that, the accelerator thread can
issue the task to the accelerator. If the task is a data transfer,
the accelerator thread copies the data from the client address
space to the accelerator memory (Figure 3; step 4).

To support different accelerator types, the server spawns
separate accelerator threads. Each thread uses the accelera-
tor’s native API to communicate with that particular ac-
celerator. Currently, Arax supports NVIDIA GPUs using
CUDA, Intel Altera FPGAs using OpenCL, and AMD GPUs
using ROCm.When receiving a compute task, the accelerator
thread uses the kernel name—passed as a task parameter—
to find the appropriate kernel program and loads it to the
physical accelerator for execution. For this reason, the server
maintains a dispatch table that associates kernel names with
the actual kernel programs in the server stub.
We assume that kernels are implemented by third-party

experts using the native accelerator’s API. Accelerators offer
libraries such as RAND (Random Number Generation) and
BLAS (Basic Linear Algebra Subroutine). The function calls
in these libraries can involve multiple kernel invocations
internally, which cannot be extracted in case the library is
closed-source (e.g., NVIDIA cuBLAS and cuRAND). To over-
come this limitation, we incorporate these libraries into Arax,
as-is, forming different server stubs, one for each accelerator.
The server stubs are compiled using the accelerator-specific
compilers. For NVIDIA GPUs we use NVCC, for Intel FPGAs
we use AOCL, and for AMD GPUs we use HIPCC.

2.3 Transport Layer
Arax applications and the Arax server are separate processes.
Consequently, Arax requires an IPC mechanism for the ap-
plications and the server to exchange tasks and data. We use
a shared memory approach to avoid system calls in the com-
mon path. Our initial implementation of the shared memory
transport layer uses an extra copy of the data. In particular,
application data are copied in the shared memory segment.
Then, the server copies the data to the accelerator memory.
We evaluate the impact of this copy in Section 4.1. We believe
that future versions of Arax should consider zero-copy mech-
anisms by using shared pointers between the application and
server address spaces.

2.4 Autotalk: stub-generator
Existing frameworks are complex and require considerable
manual effort to port them to different accelerator APIs. Arax
reduces this effort by providing Autotalk, a generator that
creates client and server stubs for each accelerator API offline
(Figure 4; Offline). The generated stubs are linked with the
applications and the Arax server during their initialization
(Figure 4; Online). The offline phase is performed once and
consists of three main steps: parse, generate, and extract.
Step 1: Parse. The Autotalk parser gets as input an accel-
erator API header and produces an API specification file
(Figure 4; API specifications). The specification file contains
for each API call, the number of arguments, their order, and

5

Pavlidakis et al.

Extractor

Client

Server

CUDA

Applica�on
PTX

API
header

Client
stub

Server
stub

Parser

Offline Online

preload
Client

load
Server

Generator

API Specifica�ons

User Annota�ons

load

Figure 4: Client and Server stub generation (offline
phase) and loading (online phase). The three steps of
the offline phase are performed by the parser, the gen-
erator, and the extractor.

the return value. The current version of Autotalk targets
the CUDA API (v10.1) and can automatically create the API
specification file for 85% of the existing functions (1800 in
total) without requiring any user intervention.
Step 2: Generate. The Autotalk generator takes as input
the API specification file that has been produced from the
parser and an annotation file provided by the user (Figure 4;
User Annotations). This user-provided annotation file con-
tains information about the function calls that cannot be
auto-produced from the Autotalk parser and require manual
effort. The parser fails for some API calls because they take
pointers as parameters, the bounds of which cannot be gen-
erated automatically in C/C++, and the address space they
belong to (host or device), cannot be found automatically.
The user annotation file provides this information with size
expressions that calculate the bounds of each pointer. It also
specifies the address space of the pointer parameter based
on each API’s documentation. The user annotation file is
created once and consists of 2-3 lines of code for each func-
tion that cannot be generated automatically. Currently, these
functions are about 270 (out of the 1800 in CUDA API v10.1).
The generator produces the client and server stubs using the
API specification and the user annotation files. The client
stub contains an implementation of the accelerator API used
by applications over the Arax API. The server stub contains
the function calls to accelerator libraries (e.g., BLAS, RAND).
Step 3: Extract. Autotalk uses cuobjdump [21] to extract
kernels from the native CUDA applications that are not in-
cluded in accelerator libraries (Figure 4; Extractor); these
kernels are in PTX format [25] and are dynamically linked
with the server executable so they can be invoked at runtime.

2.5 Implementation issues
The current version of Arax supports the execution of ker-
nels on CPU and three accelerator types: NVIDIA GPUs,
AMD GPUs, and Intel Altera FPGAs. To add a new accel-
erator, one should implement an new accelerator thread

that will contain the following functions: accelAlloc()
and accelFree() that are responsible for memory alloca-
tions and de-allocations respectively; accelSyncTo() and
accelSyncFrom() that transfer data to and from the acceler-
ator; accelMemset() that sets device memory to a particular
value and accelDevcpy() that performs a transfer within
an accelerator. These functions are implemented once for
each accelerator type using the native accelerator API.
Accelerator APIs offer function calls that query specific

device information, such as cudaGetDeviceProperties(),
and cudaGetDeviceCount(). The design of Arax hides the
number and type of the underlying accelerators, so it cannot
provide such information. Instead, the Arax server returns
some “synthesized” information, ensuring that calls depend-
ing on such information will run correctly. This information
is based on the specifications of the accelerator with mini-
mal resources; by doing so, we ensure that an application
will execute to at least one accelerator. We note that this
approach is acceptable for the applications used in our exper-
imental evaluation; however, other applications may require
advanced policies, which is left as future work.

Existing applications can use library handles or generators,
such as cuBLAS handles or cuRAND generators. Typically,
library handles and generators are opaque structures that
store the context required from a library. However, these
handles do not have the same semantics in all accelerator
libraries. For instance, CBLAS (the BLAS library for CPUs)
does not have the notion of handles. Such cases are man-
aged by Arax before issuing a task to an accelerator: The
accelerator threads that are implemented using the native
accelerator API prepare handles and generators according to
the semantics of each accelerator and use them during the
kernel invocation.

3 EXPERIMENTAL METHODOLOGY
For our evaluation, we use two servers with different accel-
erator types, as shown in Table 3. The first server (S1) is
equipped with one FPGA and two different GPUs, while the
second (S2) with two identical NVIDIA GPUs. The NVIDIA
RTX 4000 is equipped with 8 GB of GDDR6, has 2304 CUDA
cores, and is connected over PCIe v3 x16. The NVIDIA RTX
2080 Ti has 11 GB GDDR6, consists of 4352 CUDA cores, and
uses a PCIe v3 x8 port in our server. For the NVIDIA GPUs,
we use CUDA v10.1. The Intel Arria 10 FPGA (de5a_net_ddr4)
has 4 GB of DDR4 and uses PCIe v3 x8. We use OpenCL 1.2
and Quartus 20.1 to implement and compile the bitstreams
and the server accelerator threads. AMD RX550X GPU has
512 compute cores, has 4 GB of GDDR5 VRAM, and uses
PCIe v3 x16. For the AMD GPU, we use ROCm v4.1.0.

6

Arax: A Runtime Framework for Decoupling Applications from Heterogeneous Accelerators Pavlidakis et al.

ID CPU RAM
(GB)

PCIe
Gen Accelerators

S1 AMD EPYC 7551P
32-Core @ 3.0GHz 128 3.0

NVIDIA RTX 4000,
Intel Arria 10,
AMD RX550X

S2 Intel Xeon CPU E5-2620
8-Core @ 2.10GHz 256 3.0

2x
NVIDIA

RTX 2080 Ti
Table 3: Servers configurations.

Suite App. Input Data
(MB)

Output Data
(MB)

Kernel
code

Rodinia

BFS 40 4

CUDA
ROCm
OpenCL

Gaussian (2k) 32 32
Gaussian (1k) 8 8

Hotspot 8 4
Hotspot3D 16 8
LavaMD 60 25

NN 16 8
NW 512 256

Particle 1.5 0.25
Pathfinder 1024 0.6

Caffe

Mnist 284 279

CUDA
ROCm

Siamese 566 556
Cifar 1052 1050

Googlenet 3416 3400
Alexnet 5472 5470
Caffenet 4274 4274

TF Mnist 5460 5460

CUDAKeras+
TF

CV 3316 3216
GDL 3974 3871
GNN 2784 2780
RS 5310 5310

Table 4: Applications and their memory footprint.

In our evaluation, we use a set of micro-benchmarks and
real-world applications. We use micro-benchmarks to evalu-
ate the overhead Arax introduces compared to native kernel
execution and data transfers. For kernel execution, we use
an empty kernel, without computation and data. Regarding
data transfers, we copy varying amounts of data from the
application to the accelerator via the Arax primitives.
Table 4 shows the real-world applications and their in-

puts/outputs used for our evaluation. Similar to AvA [36],
we use applications from Rodinia [5] as well as model train-
ing and inference from Caffe [14] and TensorFlow [9] version
2.3.2. The last column of Table 4 indicates the accelerator en-
vironment for which each kernel is available. We use CUDA
for NVIDIA, ROCm for AMD, and OpenCL for FPGA. Using
optimized accelerator kernels is orthogonal to our work.
For Caffe Mnist, Siamese, and Cifar, we use the datasets

downloaded by the scripts provided in the Caffe repository.

Workload
id Description

Iterations
per

instance
(k)

Epochs
per

instance

A 2xMnist 10 500
B 4xMnist 10 500
C 2xCifar 9 100
D 4xCifar 9 100
E 2xGaussian - -
F 4xGaussian - -
G 2xLavaMD - -
H 4xLavaMD - -
I Mnist-Siamese 100-50 5000-50
J Siamese-Cifar 12-9 30-100
K 2xMnist-Siamese-2xCifar 100-12-9 5000-30-100
L 3xMnist-Siamese-2xCifar 100-12-9 5000-30-100
M Hotspot-Guassian - -
N Gaussian-LavaMD - -
O Particle-Hotspot - -

P Gaussian-Hotspot-
LavaMD-Particle - -

Table 5: Workloads for spatial sharing.

For Caffe Googlenet, Alexnet, and Caffenet, we use the Im-
ageNet dataset [28]. For TensorFlow Mnist [17] we use the
dataset in LeCun et. all [16]. For Keras, we use Computer
Vision (CV), Generative Deep Learning (GDL), Graph Neural
Networks (GNN), and a Recommendation System (RS) ap-
plications, with the code and datasets provided in the Keras
repository [15]. Regarding Rodinia datasets, we increase their
size by 10× and the kernel execution time by 8×, compared
to previous works [36] because the default values are small
for executing on a real system (as opposed to simulation).
In all native application runs used as baselines, we add a

warm-up phase that initiates the accelerator and moves its
power state from idle to maximum. With this warm-up, we
avoid the latency implied to the first accelerator call. The
FPGA warm-up phase includes the creation of the context,
the command queue, the program, and kernel creation, while
it excludes the bitstream loading time. In runs with Arax,
this warm-up phase is performed by our server. We exclude
this warm-up time from all our comparisons.

Finally, to evaluate accelerator sharing, we create a set of
workloads with concurrently running applications. These
workloads are listed in Table 5 and contain a mix of compute-
and data-intensive applications. Workloads A-H use multiple
instances of the same application, while I-P include different
applications.

4 EXPERIMENTAL EVALUATION
Our evaluation tries to answer the following questions:

7

Pavlidakis et al.

• What is the overhead of Arax for decoupling applica-
tions from accelerators (§4.1)?

• How effective is accelerator sharing in Arax (§4.2)?
• What is the performance improvement of elasticity
(§4.3)?

• What is the overhead of application migration (§4.4)?
• What is the overhead introduced by Arax in real-life
ML frameworks (§4.5)?

4.1 Overhead of accelerator decoupling
In this section, we evaluate the performance of Arax with
heterogeneous accelerators. We use Rodinia [5], which offers
OpenCL, ROCm, and CUDA kernels. To execute Rodinia in
Arax, we port the host code of its CUDA version. Figure 5
shows a breakdown of the total execution time achieved for
Arax and native execution. The breakdown consists of: (i)
the initialization phase, i.e., generation of application inputs,
(ii) the accelerator calls, i.e., memory allocations, memory
transfers, and the actual kernel execution, and (iii) the ac-
celerator warm-up, i.e., an accelerator call that changes the
accelerator power state. We note that the warm-up time is
not considered in our comparisons.
Figure 5(a) shows the execution time of Rodinia when

running on an NVIDIA GPU. The relative performance of
Arax is between 1% and 5% for all benchmarks, except NW
(78%) and Pathfinder (62%). The reason for that is the low
computation-to-communication ratio NW and Pathfinder
exhibit. In particular, the computation-to-communication
ratio for NW is 0.3: 0.9 ms for computation over 3 ms for
transferring data. Pathfinder is 0.12: 21 ms for computation
over 179 ms for transferring data. The other Rodinia applica-
tions have more significant computation-to-communication
ratios than Pathfinder. For instance, Gaussian’s computation-
to-communication ratio is 30: 330 ms for computation over
11 ms for transferring data. We run some Rodinia applica-
tions with varying computation-to-communication ratios
to validate our findings. For instance, Hotspot3D transfers
input data to the accelerator and performs a configurable
number of passes upon this data. The relative performance
of Arax compared to native CUDA for ten iterations is 1.13×.
As we increase the number of iterations to 100 and 1000, the
relative performance compared to native is 1.03× and 1.01×,
respectively. The overall overhead of Arax is 5.5% (geometric
mean) for Rodinia applications, ranging from 1% up to 78%.

Figure 5(b) and Figure 5(c) show the total execution time
of Rodinia when running on an Intel FPGA and an AMD
GPU accordingly. We observe that the relative performance
of Arax compared to AMD GPUs is 2% across all applica-
tions, except NW and Pathfinder (8% and 55% respectively).
Similarly, the performance for FPGA is up to 3% for all appli-
cations, except NW and Pathfinder (9% and 14% accordingly).

The difference in relative performance between theNVIDIA
GPU and the other two, i.e., FPGA and AMD GPU, is because
the kernel execution takes much less time in the NVIDIA
GPU. As a result, the computation-to-communication ratio
is proportionally smaller in NVIDIA GPUs than in the AMD
GPU or the FPGA.

Cost analysis for kernel launch and data transfer. To
measure the overhead of a kernel launch, we time the execu-
tion of an empty kernel. Since kernel launch is asynchronous,
we also place a barrier to ensure that the kernel has finished
its execution. Figure 6 shows the corresponding operations
for the case of CUDA and Arax. As we can see, a simple
launch kernel in CUDA costs approximately 9000 CPU cy-
cles, mainly because it involves a system call. The device
barrier operation, which is required to wait for the kernel
to finish, costs about 2300 CPU cycles. On top of that, Arax
introduces a constant overhead of approximately 1500 CPU
cycles that are always applied before the launch kernel. This
overhead is small compared to the duration of the actual
launch kernel call and becomes proportionally negligible
as the kernel duration increases. This effect favors kernels
running on AMD GPUs and Intel FPGAs since they exhibit
a slower execution than NVIDIA GPUs. For example, the
NVIDIA GPU can execute Pathfinder 11× faster than the
FPGA and 2× faster on the AMD GPU. Thus, the overheads
of Arax are less pronounced when it is compared to native
OpenCL (FPGA) and ROCm (AMD).

To measure the overhead implied to a data transfer, we cre-
ate a micro-benchmark that transfers variable size data. On
average, Arax is 1.7× slower than native CUDA, due to the
extra copy performed to the shared memory segment. In par-
ticular, to transfer 1 GB data from an application to the accel-
erator, Arax requires 180 ms for the CUDA copy and another
135 ms for the copy from the application to the shared mem-
ory. The extra copy in the shared memory achieves 8.2 GB/s
throughput (measured by the STREAM [20] benchmark, us-
ing a single CPU-core). We note that this overhead affects
primarily the applications that exhibit a low computation-to-
communication ratio. As part of our future work, we plan to
use zero-copy between the applications and server address
spaces to minimize this overhead.

Arax vsAvA. Weuse Rodinia to compareArax andAvA [36],
which is a state-of-the-art framework for heterogeneous ac-
celerators. Figure 7 shows the normalized execution time to
native for both Arax and AvA. Arax performs between 10%–
32% better than AvA for Gaussian, Hotspot, LavaMD, and
Particle. This is because the overhead of task issue in Arax is
less than AvA. In AvA, every accelerator call goes through
the hypervisor, which is not the case for Arax. For NW and
Pathfinder, Arax results in 78% and 62% more execution time
than native. For these benchmarks, AvA introduces 40% and

8

Arax: A Runtime Framework for Decoupling Applications from Heterogeneous Accelerators Pavlidakis et al.

Ar
ax

BF
S

NA
T

Ar
ax

Ga
us

sia
n

NA
T

Ar
ax

Ho
tS

po
t

NA
T

Ar
ax

Ho
tS

po
t3

D
NA

T
Ar

ax
La

va
M

D
NA

T
Ar

ax
NN

NA
T

Ar
ax

NW
NA

T
Ar

ax
Pa

rti
cle

NA
T

Ar
ax

Pa
th

fin
de

r
NA

T0

500

1000

1500

2000

2500

3000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

(a) CUDA-NVIDIA GPU
Ar

ax
BF

S
NA

T
Ar

ax
Ga

us
sia

n
NA

T
Ar

ax

Ho
tS

po
t

NA
T

Ar
ax

La
va

M
D

NA
T

Ar
ax

NN
NA

T
Ar

ax
NW

NA
T

Ar
ax

Pa
rti

cle
NA

T
Ar

ax
Pa

th
fin

de
r

NA
T0

500

1000

1500

2000

2500

3000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

(b) ROCm-AMD GPU

Ar
ax

BF
S

NA
T

Ar
ax

Ga
us

sia
n

NA
T

Ar
ax

Ho
tS

po
t

NA
T

Ar
ax

Ho
tS

po
t3

D
NA

T
Ar

ax
La

va
M

D
NA

T
Ar

ax
NN

NA
T

Ar
ax

NW
NA

T
Ar

ax
Pa

rti
cle

NA
T

Ar
ax

Pa
th

fin
de

r
NA

T0

2000

4000

6000

8000

10000

12000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

(c) OpenCL-FPGA

Figure 5: Overhead of Arax compared to native (NAT) usingRodinia benchmarks over heterogeneous accelerators.

Launch
Kernel

Kernel
exec.

Device
Barrier

230009000

Issue
Task
1500

Arax Na�ve CUDA

Launch

Kernel

Kernel

exec.

Device

Barrier

Issue

Kernel

Figure 6: Breakdown of overhead for launching an
empty kernel with Arax (CPU cycles).

BFS

Gau
ssi

an

Hots
po

t

Lav
aM

D NN NW
Par

tic
le

Pat
hfi

nd
er

0.0

0.5

1.0

1.5

2.0

2.5

Re
la

tiv
e

Pe
rfo

m
an

ce
 (x

)

Arax AvA

Figure 7: Execution timenormalized to native forArax
and AvA.

3% overhead, respectively, compared to native. These two ap-
plications have a low computation-to-communication ratio,
and the data copy in Arax across the application and server
address spaces becomes more pronounced. This indicates
that zero-copy data transfers from the client to server address
space are necessary for applications with a low computation-
to-communication ratio.

A B C D E F G H I J K L M N O P
0

500

1000

1500

2000
Ex

ec
ut

io
n

tim
e

(s
) Native

MPS
Arax

Figure 8: Effectiveness of sharing with NVIDIA GPUs
for Arax, native (without MPS), and MPS.

4.2 Effectiveness of accelerator sharing
Wenow compare Arax sharing with NVIDIAMPS [23], AMD,
and FPGA sharing mechanisms. Even though AMD GPUs
do not provide any documentation regarding sharing, our
experimentation reveals that they offer spatial sharing by
default. Intel Altera FPGAs do not natively support spatial
sharing; as a matter of fact, when an application starts, it
binds the FPGA, and all subsequent applications fail to start.
Instead, with Arax, applications do not have direct access to
the FPGA; hence they do not acquire the FPGA exclusively,
and they can share its resources.
Figure 8 compares sharing mechanisms upon NVIDIA

GPUs. We compare Arax (spatial sharing) with MPS (spatial
sharing) and native CUDA (time-slice sharing) using the
workloads listed in Table 5. The x-axis shows the different
workloads, while the y-axis shows the total execution time
achieved. Overall, the execution time of Arax is comparable
to MPS. However, with four concurrent instances, workloads
B, D, F, H, K, P, Arax has between 4% and 20% less execution
time. Even thoughwe could not investigate the reason behind

9

Pavlidakis et al.

E F G H M N O P
0

20000

40000

60000

80000

100000

Ex
ec

ut
io

n
tim

e
(s

)

Native Single-KernelBS
Native Multi-KernelBS
Arax Multi-KernelBS

(a) Intel FPGA
E F G H M N O P

0

2000

4000

6000

8000

10000

Ex
ec

ut
io

n
tim

e
(s

)

Native
Arax

(b) AMD GPU

Figure 9: Effectiveness of sharing with Intel FPGAs
and AMD GPUs for Arax and Native. For FPGAs we
compare Arax with a multi-kernel & a single-kernel
bitstream.

this, due to the closed-source nature of NVIDIA MPS, we run
further micro-benchmarks with different GPU models, i.e.,
RTX 2080, V100, and TITAN V, with a varying number of
in-flight kernels and concurrent instances. This evaluation
shows the same performance improvement of Arax over
MPS. To verify these findings, we disclosed them to NVIDIA,
which has confirmed them as two separate issues2.

Comparing Arax with native CUDA (time-slice sharing),
we observe that Arax provides 31% (geometric mean) less
execution time for all workloads. With four concurrent in-
stances, the performance improvement is more pronounced.
In particular, Arax has between 1.32× and 2× less execution
time compared to native.
Figure 9(a) shows the execution time when multiple ap-

plications use the same FPGA for native (time-slice sharing)
and Arax (spatial sharing). We examine two versions of na-
tive FPGA sharing: (a) The Single-KernelBS case in which
the bitstream loaded to the FPGA contains one kernel, and
(b) the Multi-KernelBS case in which the bitstream contains
multiple kernels. The drawback of the former is that the
FPGA requires reconfiguration to execute a kernel that is
not in the current bitstream—an operation that costs about
15 s. In the latter case, i.e.,Multi-KernelBS, the execution time
of an individual kernel, running standalone, increases due
to conflicting requirements upon the bitstream compilation.
For instance, Gaussian execution takes about 9200 s when
a single kernel bitstream (Single-KernelBS) is used. For the
multi-kernel case (Multi-KernelBS), the execution time in-
creases by 17% for the two kernel bitstream and by 52% for
the four kernel bitstream.

The spatial sharing capability provided byArax (Figure 9(a);
AraxMulti-KernelBS) decreases execution time from 3% up to
85% compared to the single kernel bitstream (Figure 9(a); Na-
tive Single-KernelBS) and between 9% and 75% compared to

2ID 3559606, ID 3350973

themulti-kernel bitstream (Figure 9(a); NativeMulti-KernelBS).
This improvement is because Arax allows applications to
execute in parallel in the FPGA, while in the native case, the
FPGA is time-shared.
Comparing the native single kernel bitstream with the

multi-kernel one, we observe that the Single-KernelBS is be-
tween 6% - 50% faster than Multi-KernelBS for workloads
E-N. This happens because the reconfiguration time is less
than the performance degradation implied by the conflicting
requirements of Multi-KernelBS. For workload O (Particle-
Hotspot), Multi-KernelBS has 81% less execution time com-
pared to Single-KernelBS. These two kernels do not have
conflicting requirements, so their performance degradation
is minimal compared to the FPGA reconfiguration time. As
the number of reconfigurations increases, as in workload P
(Gaussian-Hotspot-Lava-Particle), it is worth packing kernels
in the same bitstream to avoid the reconfiguration overhead.
In workload P, the execution time of Multi-KernelBS is 40%
less than Single-KernelBS.

Figure 9(b) compares Araxwith AMD spatial sharing. Arax
provides comparable performance to the AMD native exe-
cution. In some workloads, such as M and N, Arax provides
45% and 66% performance improvement. Due to the limited
information provided by AMD, we extrapolate that there
might be performance issues similar to NVIDIA MPS.

4.3 Performance gains of elasticity
Arax can opportunistically grow and shrink the number of
homogeneous or heterogeneous accelerators provided to an
application.

Elasticity with homogeneous accelerators. To evaluate
the performance of elasticity, we modify a representative set
of the Arax Rodinia applications to use multiple task queues
and, consequently, multiple accelerators. Figure 10 depicts
the execution time of one application, when increasing the
amount of NVIDIA GPUs and the corresponding streams,
from one (1xgpu-1xstr) to two (2xgpu-2xstr). For this experi-
ment, we use the S2 server from Table 3, and each application
creates eight task queues. The first GPU uses a PCIe v3 ×8,
while the second one uses a PCIe v3 ×16. Due to this het-
erogeneity aspect, we could not see a linear performance
improvement when using two GPUs.

Gaussian (1k) and LavaMD do not scale as the number of
streams in a GPU increases (1xgpu-1xstr, 1xgpu-2xstr, 1xgpu-
4xstr). This happens because their kernels occupy almost all
the GPU threads, so two or more kernels cannot execute in
parallel in a GPU. On the contrary, when we provide two
GPUs (2xgpu-1xstr, 2xgpu-2xstr) to Gaussian, its execution
time decreases by 1.35× compared to four streams in a GPU
(1xgpu-4xstr). LavaMD execution time decreases by 1.7×
compared to four streams.

10

Arax: A Runtime Framework for Decoupling Applications from Heterogeneous Accelerators Pavlidakis et al.

LavaMD Gaussian Particle NW
0

500
1000
1500
2000
2500
3000
3500

Ex
ec

ut
io

n
tim

e
(m

s)

1xgpu-1xstr
1xgpu-2xstr
1xgpu-4xstr
2xgpu-1xstr
2xgpu-2xstr

Figure 10: Performance improvement of applications
when increasing the number of homogeneous acceler-
ators or GPU streams.

Particle execution time decreases as we increase the num-
ber of streams per GPU. In particular, the execution time
of two streams (1xgpu-2xstr) and four streams (1xgpu-4xstr)
compared to one stream (1xgpu-1xstr) decreases by 1.6× and
2.6×, respectively. This happens because four Particle ker-
nels do not contend for resources in the GPU, and there is
not much serialization due to data transfers. The execution
time in the two GPU setups (2xgpu-1xstr) is comparable to
the one GPU configuration with two streams (1xgpu-2str),
whereas it is 1.4× worst compared to the one GPU with four
streams setup (1xgpu-4xstr). Finally, NW execution time de-
creases by up to 16% when increasing the number of GPUs
and streams. NW scaling is limited because the computation-
to-communication ratio is small.

Elasticitywithheterogeneous accelerators. Wenow eval-
uate the elasticity over heterogeneous accelerators using the
same applications as in homogeneous elasticity. We note
that these applications do not need any modifications due
to Arax’s accelerator agnostic API. Figure 11 shows the exe-
cution times of four representative applications using multi-
ple heterogeneous accelerators. Each application is running
with the following configurations: (a) 1xFPGA, (b) 1xFPGA
and 1xNVIDIA, (c) 1xFPGA, 1xNVIDIA with two streams and
1xAMD, (d) 1xFPGA, 1xNVIDIA, and 1xAMDwith two streams,
We use the S1 server and four task queues for each applica-
tion.
As shown in Figure 11, the execution time of LavaMD,

Gaussian, and NW decreases by 2× when an NVIDIA GPU
is used along with an FPGA, shown with the FPGA and
FPGA+NVIDIA bars. As we add more accelerators along with
the FPGA, shown with the FPGA+2strNVIDIA+AMD and
FPGA+NVIDIA+2strAMD bars, the execution time of LavaMD,
Gaussian, and NW decreases by 1.95×, 1.8×, and 1.3× com-
pared to FPGA+NVIDIA, respectively.
Finally, we notice that the performance improvement of

Particle between the FPGA only setup and the setup with the
FPGA and an NVIDIA GPU is only 2%. This is because the
execution in RTX 4000 is slower than in the FPGA. When we

LavaMD Gaussian Particle NW
0

500
1000
1500
2000
2500
3000
3500

Ex
ec

ut
io

n
tim

e
(m

s)

FPGA
FPGA+NVIDIA
FPGA+2xstrNVIDIA+AMD
FPGA+NVIDIA+2xstrAMD

Figure 11: Performance improvement of applications
when increasing the number of heterogeneous acceler-
ators or GPU streams.

add more accelerators, shown as FPGA+2strNVIDIA+AMD
and FPGA+NVIDIA+2strAMD, the performance increases by
1.5× compared to the FPGA+NVIDIA setup.

4.4 Overhead of application migration
Arax’s application migration moves application tasks and
their data across heterogeneous accelerators. In this section,
we evaluate migration overheads using Rodinia and Caffe
running over homogeneous and heterogeneous accelerators.

LowPriority HighPriority

sta
ndalo

ne
ela

stic
0

2

4

6

Ex
ec

ut
io

n
tim

e
(s

)

(a) 134 MB
sta

ndalo
ne

ela
stic

0

20

40

60
Ex

ec
ut

io
n

tim
e

(s
)

(b) 514 MB
sta

ndalo
ne

ela
stic

0

200

400

600

Ex
ec

ut
io

n
tim

e
(s

)
(c) 2 GB

Figure 12: Effectiveness of migration when decreasing
the accelerators provided to a low-priority application
upon the arrival of a high-priority one. We compare
elasticity with the standalone execution in which ap-
plications are statically assigned to accelerators. We
use datasets from 134 MB up to 2 GB.

Application migration with homogeneous accelera-
tors. We use the Gaussian application and the S2 server to
evaluate our migration mechanism. To increase/decrease the
accelerators assigned to an application, we require an assign-
ment policy. We use the elastic assignment policy described
in §2.2. We run two applications, one with low-priority and
one with high-priority. The low-priority application starts
first, and the high-priority arrives after a while. In the stan-
dalone setup, the low-priority application is statically as-
signed to an accelerator (A1) while the second accelerator

11

Pavlidakis et al.

is idle (A2). When the high-priority arrives, it is assigned
to A2. With elasticity enabled, the low-priority application
initially uses both A1 and A2 since the load is low. Upon the
arrival of the high-priority application, the accelerator selec-
tor shrinks the resources provided to the low-priority one.
The accelerator selector uses the Arax application migration
mechanism to move the low-priority application state to A1.
Now the low-priority application uses A1, while the A2 is
freed for the high-priority one.

Figures 12(a), 12(b), and 12(c) show the execution time for
applications with datasets from 134 MB up to 2 GB. We com-
pare elasticity with the standalone execution time. Figure 12
shows that the execution time of the high-priority applica-
tion increases by only 7% compared to standalone execution.
The execution time of the low-priority application decreases
slightly since it uses more resources at the beginning of its
execution. By breaking down the overhead of our migration
mechanism, we observed that 80% of the total time is spent
in the first data transfer from the accelerator to the server
memory. This data transfer must wait for all the issued ker-
nels (approximately 600 in-flight kernels) in the accelerator
hardware queue to finish, and then it can start transferring
data. The Gaussian kernel execution time increases as we in-
crease the data size from 134 MB to 2 GB. The average kernel
duration is 550 𝜇s with 134 MB and 12 ms with 2 GB. As a
result, the waiting time of the transfer call increases; for the
134 MB, the transfer has to wait for 0.33 s, i.e., 600 kernels ×
550 𝜇s, whereas for the 2 GB, it waits for 9 s, i.e., 600 kernels
× 15 ms. We can use kernel preemption [26] to reduce the
waiting time of our migration mechanism, but this is beyond
the purpose of this paper.

Application migration for tasks with dependencies
and heterogeneous accelerators. Now we evaluate the ef-
fectiveness and overheads of our migration mechanism for
applications containing tasks with dependencies. Frame-
works, such as Caffe, may not have kernels for all accelerator
types. In particular, Caffe cannot run on AMD GPUs or FP-
GAs since BLAS is not supported for these two accelerators.

To emulate this scenario, we run Mnist, Siamese, and Cifar
(with ten epochs) using the NVIDIA GPU as the primary
accelerator and executing some kernels in the CPU, AMD
GPU, and Intel FPGA, as a “helper accelerator”. We execute
im2col and col2im kernels to the helper accelerator in all
setups. Regarding the FPGA, we implement the im2col and
col2im using OpenCL. In all setups, a migration is triggered
every time an im2col or a col2im task is popped by the main
accelerator. The Arax server checks for every task if the cur-
rent accelerator thread has the kernel required from that task.
If the required kernel is not in the server stub of an acceler-
ator thread, the accelerator selector sets the task queue to
another accelerator that supports this kernel. The task queue

Mnist Siamese Cifar
NVIDIA-CPU 202 401 520
NVIDIA-AMD 100 213 213
NVIDIA-FPGA 248 N.A. N.A.

CPU only (single-core) 190 378 490
NVIDIA only 7 13 19

Table 6: The execution time (seconds) of Caffe when
the execution is migrated from the NVIDIA GPU to
another accelerator. CPU only and NVIDIA only repre-
sent the native execution without migrations.

re-assignment triggers data migrations. Consequently, we
perform 380k migrations for Mnist (380k times an im2col
and a col2im were not supported), 760k for Siamese, and
890k for Cifar.
Table 6 shows the execution time of Caffe running over

heterogeneous accelerators. By comparing the NVIDIA-CPU
execution with the native execution using only the CPU,
we observe 6% performance degradation due to migrations.
On the other hand, by comparing the NVIDIA-CPU, NVIDIA-
AMD, and NVIDIA-FPGA with the setup that uses only the
NVIDIA GPU (without migrations), the performance is much
worse, mainly due to the performance of the kernels to other
accelerators. FPGA kernels (im2col, col2im) run 10× worst
than the NVIDIA GPU since they are un-optimized.

4.5 Overhead for Caffe and TensorFlow
In this section, we examine the applicability of our API
to complex, real-life ML frameworks and the performance
achieved. Arax provides a complete API that can be used di-
rectly from new applications (manual-porting) and Autotalk
that can be used to auto-port complex frameworks, such
as Caffe and TensorFlow. Figure 13 shows manual-porting,
Autotalk, and native CUDA execution time when executing
the Caffe framework. We show the training phase with ten
epochs of three networks Mnist, Siamese, and Cifar (Fig-
ure 13(a)). The relative performance of manual-porting com-
pared to native CUDA is between 3% and 17%. With more
than ten epochs, as Figure 13(b) shows, the execution time
increases between 9% and 28%. This slight increase (less than
9%) is because the number of data transfers increases with
more epochs. To find themaximum performance degradation
regarding training, we run Googlenet, Alexnet, and Caffenet,
which perform thousands of epochs and use gigabytes of data.
Figure 13(e) shows manual-porting and the native CUDA ex-
ecution time (in hours) for Googlenet, Alexnet, and Caffenet.
The performance degradation of manual-porting is between
13% and 28%. The geometric mean of the overhead implied
to all Caffe applications is 12.5%.

12

Arax: A Runtime Framework for Decoupling Applications from Heterogeneous Accelerators Pavlidakis et al.

Native Manual-porting Autotalk

Mnist Siamese Cifar
0

5

10

15

20

25

Ex
ec

ut
io

n
Ti

m
e

(s
)

(a) Train: 10 Epochs

Mnist Siamese Cifar
0

150

300

450

600

750

Ex
ec

ut
io

n
Ti

m
e

(s
)

(b) Train: More than 100 Epochs
Mnist Siamese Cifar

0

2

4

6

8

10

Ex
ec

ut
io

n
Ti

m
e

(s
)

(c) Inference: 1000 Iterations
Mnist Siamese Cifar

0

20

40

60

80

100

Ex
ec

ut
io

n
Ti

m
e

(s
)

(d) Inference: 10000 Iterations

Googlenet Alexnet Caffenet
0

1

2

3

4

5

6

Ex
ec

ut
io

n
Ti

m
e

(h
ou

rs
)

(e) Train: Caffe Models

Figure 13: The overheads of Arax using manual-porting and Autotalk (automatic stub generation) compared to
native CUDA for Caffe with varying epochs and iterations.

Mnist CV GDL GNN RS
Native CUDA 49 190 27 51 235

Autotalk 80 240 28 54 250
Table 7: The execution time (seconds) of TensorFlow
and Keras for Autotalk and native CUDA.

Figures 13(c) and 13(d) present the inference phase for
manual-porting, Autotalk, and native CUDA. We run infer-
ence for Mnist, Siamese, and Cifar with 1k and 10k iterations.
The maximum performance degradation for 1k iteration of
manual-porting compared to native is 30% with Cifar. For 10k
iterations, the degradation is between 24% and 42%. As ex-
plained, the increase in the execution time of manual-porting
compared to native CUDA is due to the data transfers. Au-
totalk adds a minimal overhead compared to manual-porting
up to 16%. This happens because with manual-porting we
can use fewer barriers and decrease the times that the appli-
cation blocks. The geometric mean of the overhead implied
to all TensorFlow applications is 12.9%.

We use Autotalk to convert TensorFlow and Keras to Arax
API. To evaluate the correctness-completeness of Autotalk,
we run the unit-tests of TensorFlow, achieving 90% cover-
age. We also run Mnist and a representative set of Keras
applications for the vanilla case, and Arax: some prelimi-
nary results are presented in Table 7. Our findings suggest
that Arax and Autotalk can transparently handle complex,
real-life frameworks without significant effort.

5 RELATEDWORK
We categorize related work in four areas: (a) static accel-
erator assignment, (b) dynamic accelerator assignment, (c)
accelerator virtualization, and (d) accelerator spatial sharing.

Existing programmingmodels, such as CUDA [22], SYCL [11],
and oneAPI [13], enforce applications to select the desired
accelerator types either at compile time or at the beginning

of application execution, resulting in static binding of ap-
plications to accelerators. StarPU [1] performs finer-grain
assignment of a graph of tasks to multiple and heterogeneous
processing units; however, still in a static manner. Arax as-
signs tasks dynamically to the available accelerators. It also
provides spatial sharing across heterogeneous accelerators
and a stub generator to reduce application porting effort.
We note that Arax and StarPU offer a similar approach for
defining independent sets of work. StarPU indicates a set of
dependent tasks with labels, whereas Arax uses task queues.

Arax shares similar goals with recent work in dynamically
assigning GPUs to applications. Gandiva [34] is a cluster-
level scheduler for ML training applications that dynamically
assigns GPUs to applications. DCUDA [12] is a runtime sys-
tem that provides dynamic assignment of applications to
GPUs. The main limitation of these works is that they are ei-
ther based on domain-specific application features or vendor-
specific accelerator mechanisms. Gandiva migration uses
TensorFlow checkpoints, which however, are not provided
by all applications and frameworks [4]. DCUDAprovides sup-
port only for NVIDIA GPUs. In contrast, Arax is accelerator-
agnostic and does rely on application- or accelerator- specific
mechanisms.
Previous work has also explored the concept of accelera-

tor virtualization [7, 30, 36]. API remoting [7, 30] is an I/O
virtualization technique in which API calls are forwarded
to a user-level computing framework [30] or to a remote
server [7]. The main disadvantage of API remoting is the
inability to support multiple APIs, which is not the case for
Arax. AvA [36] is a framework that virtualizes heterogeneous
accelerators. However, with AvA, all accelerator calls, includ-
ing kernels with microsecond execution time, go through
the hypervisor, increasing response time. Additionally, AvA
requires applications to select the accelerators in advance,
leading to static application to accelerator assignment. AvA

13

Pavlidakis et al.

creates a server for each application to execute tasks to ac-
celerators. This design decision does not allow GPU spatial
sharing due to the lack of a single context. Arax is a user-
space approach resulting in less overhead, as we show in our
evaluation. Arax frees applications from accelerator selec-
tion, allowing dynamic task assignment. By creating a single
GPU context, our server enables spatial sharing.
Finally, GPUs support spatial sharing through NVIDIA

MPS [23], while AMD GPUs support it by default. On the
other hand, FPGAs require partial reconfiguration that di-
vides the FPGA into fixed areas; these areas can then accom-
modate different compute kernels. Even though each of these
mechanisms provides spatial sharing primitives for each ac-
celerator type, they still require low-level knowledge of each
accelerator API and its runtime to implement task assign-
ment policies. Moreover, it may require coordination across
different applications, e.g., in the case of FPGAs, which is not
always possible in modern servers. Finally, existing sharing
mechanisms rely on applications to select the accelerator
they will use, leading to inefficiencies. Arax’s advantage is
that it can handle sharing of heterogeneous accelerators,
while abstracting the related complexity away from applica-
tions. For instance, with FPGAs, the Arax server performs
any required partial reconfiguration, loading the appropriate
bitstream that can serve a task. Finally, Arax makes it easy
to apply new task assignment policies transparently to all
applications facilitating further research in the area.

6 CONCLUSIONS
In this paper, we present Arax, a runtime that decouples
applications from low-level accelerator operations, such as
accelerator selection, memory allocation, and task assign-
ment. Arax provides three main capabilities: (a) It assigns
application tasks dynamically to different accelerators at
runtime and performs all required accelerator memory man-
agement internally. (b) It offers fine-grain spatial sharing that
improves the utilization of multiple heterogeneous acceler-
ators. (c) It can perform live application migration across
heterogeneous accelerators without application modifica-
tions or specialized accelerator support. To reduce porting
effort, it provides Autotalk, a stub generator that allows link-
ing existing applications, such as TensorFlow and Caffe, to
the Arax runtime library with minimal user intervention.
Our evaluation using real-world applications shows that

Arax introduces 12% overhead (geometric mean) compared
to native execution. Regarding accelerator sharing, Arax im-
proves the execution time up to 20% compared to NVIDIA
MPS. Also, its elastic resource assignment reduces total ap-
plication turn-around time by up to 2× compared to the
execution without elasticity support.

The extra data copy in the Arax transport layer introduces
80% overhead for applications with low computation to com-
munication ratio. Consequently, future work should examine
optimizations for zero-copy data transfers across application,
server, and accelerator address spaces. In addition, mech-
anisms for low-overhead, on-demand data transfer across
accelerators when using arbitrary pointers as task arguments
can further reduce data transfers during task migrations.

ACKNOWLEDGMENTS
We thank our shepherd Dong Du for his help preparing the
final version of the paper and the anonymous reviewers for
their insightful comments. We thankfully acknowledge the
support of the European Commission projects: HiPEAC (GA
No 871174), EUPILOT (GA No 101034126)3 and DEEP-SEA
(GA No 955606)4.

REFERENCES
[1] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-

AndréWacrenier. 2009. StarPU: AUnified Platform for Task Scheduling
on Heterogeneous Multicore Architectures. In Euro-Par ’09.

[2] Gaurav Batra, Zach Jacobson, Siddarth Madhav, Andrea Queirolo,
and Nick Santhanam. 2018. Artificial-intelligence hardware: New
opportunities for semiconductor companies. In McKinsey & Company,
New York, NY, USA, Tech. Rep.

[3] Lukas Cavigelli, David Gschwend, ChristophMayer, SamuelWilli, Beat
Muheim, and Luca Benini. 2015. Origami: A Convolutional Network
Accelerator. In GLSVLSI ’15.

[4] Shubham Chaudhary, Ramachandran Ramjee, Muthian Sivathanu, N.
Kwatra, and S. Viswanatha. 2020. Balancing Efficiency and Fairness in
Heterogeneous GPU Clusters for Deep Learning. In EuroSys ’20.

[5] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.
Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A Benchmark
Suite for Heterogeneous Computing. In IISWC ’09.

[6] Yunji Chen, Tianshi Chen, Zhiwei Xu, Ninghui Sun, andOlivier Temam.
2016. DianNao Family: Energy-Efficient Hardware Accelerators for
Machine Learning. In MICRO ’16.

[7] Jose Duato, Antonio J. Pena, Federico Silla, Juan C. Fernandez, Rafael
Mayo, and Enrique S. Quintana-Orti. 2011. Enabling CUDA accelera-
tion within virtual machines using rCUDA. In HiPC ’11.

[8] Jouppi Norman et. al. 2017. In-Datacenter Performance Analysis of a
Tensor Processing Unit. In ISCA ’17.

[9] Martín Abadi et. al. 2015. TensorFlow: Large-Scale Machine Learning
on Heterogeneous Systems. https://www.tensorflow.org/ Software
available from tensorflow.org.

[10] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Mas-
sengill, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman,
Logan Adams, Mahdi Ghandi, Stephen Heil, Prerak Patel, Adam

3European PILOT has received funding from the European High-Perfo-
rmance Computing Joint Undertaking (EuroHPC JU) under grant agreement
No 101034126. The JU receives support from the European Union’s Horizon
2020 research and innovation programme and Spain, Italy, Switzerland,
Germany, France, Greece, Sweden, Croatia, and Turkey.
4DEEP-SEA has received funding from the EuroHPC JU under grant agree-
ment No 955606. National contributions from the involved state members
(including the Greek General Secretariat for Research and Innovation) match
the EuroHPC JU funding.

14

https://www.tensorflow.org/

Arax: A Runtime Framework for Decoupling Applications from Heterogeneous Accelerators Pavlidakis et al.

Sapek, Gabriel Weisz, Lisa Woods, Sitaram Lanka, Steven K. Reinhardt,
Adrian M. Caulfield, E. S. Chung, and D. Burger. 2018. A Configurable
Cloud-Scale DNN Processor for Real-Time AI. In ISCA ’18.

[11] Kronos Group. 2022. SYCL2020. Retrieved September 2022 from
https://www.khronos.org/sycl/

[12] Fan Guo, Yongkun Li, John C. S. Lui, and Yinlong Xu. 2019. DCUDA:
Dynamic GPU Scheduling with Live Migration Support. In SoCC ’19.

[13] Intel. 2020. oneAPI. Retrieved September 2022 from https://software.
intel.com/content/www/us/en/develop/tools/oneapi.html#gs.4ac4fz

[14] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, S. Guadarrama, and T. Darrell. 2014. Caffe: Con-
volutional Architecture for Fast Feature Embedding. In arXiv.

[15] Keras. 2014. Keras Code Examples. Retrieved September 2022 from
https://keras.io/examples/

[16] Cortes Lecun. 2022. The mnist database of handwritten digits. Re-
trieved September 2022 from http://yann.lecun.com/exdb/mnist

[17] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based
learning applied to document recognition. Proc. IEEE.

[18] Daofu Liu, Tianshi Chen, Shaoli Liu, Jinhong Zhou, Shengyuan Zhou,
Olivier Teman, Xiaobing Feng, X. Zhou, and Y. Chen. 2015. PuDianNao:
A Polyvalent Machine Learning Accelerator. In ASPLOS ’15.

[19] Stelios Mavridis, Manolis Pavlidakis, Ioannis Stamoulias, Christos
Kozanitis, Nikolaos Chrysos, Christoforos Kachris, Dimitrios Soudris,
and Angelos Bilas. 2017. VineTalk: Simplifying software access and
sharing of FPGAs in datacenters. In FPL’ 17.

[20] John D. McCalpin. 1995. Memory Bandwidth and Machine Balance in
Current High Performance Computers. In TCCA ’95.

[21] NVIDIA. 2021. CUDA Binary Utilities. Retrieved September 2022 from
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html

[22] NVIDIA. 2022. CUDA: Compute Unified Device Architecture. Re-
trieved Sep. 2022 from https://developer.nvidia.com/cuda-toolkit

[23] NVIDIA. 2022. Multi-Process Service. Retrieved September
2022 from https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_
Service_Overview.pdf

[24] NVIDIA. 2022. NVIDIA GPUDirect. Retrieved September 2022 from
https://developer.nvidia.com/gpudirect

[25] NVIDIA. 2022. Parallel Thread Execution ISA. Retrieved Septem-
ber 2022 from https://docs.nvidia.com/cuda/parallel-thread-execution/
index.html

[26] Manos Pavlidakis, Stelios Mavridis, Nikos Chrysos, and Angelos Bilas.
2020. TReM: A Task Revocation Mechanism for GPUs. In HPCC’20.

[27] Heinrich Riebler, Gavin Vaz, Tobias Kenter, and Christian Plessl. 2019.
Transparent acceleration for heterogeneous platforms with compila-
tion to OpenCL. TACO ’19 (2019).

[28] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet
Large Scale Visual Recognition Challenge. IJCV ’15.

[29] Yakun Sophia Shao, Jason Cemons, Rangharajan Venkatesan, Brian
Zimmer, Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter,
Nathaniel Pinckney, Priyanka Raina, Stephen G. Tell, Yanqing Zhang,
William J. Dally, Joel Emer, C. Thomas Gray, Brucek Khailany, and
Stephen W. Keckler. 2021. Simba: Scaling Deep-Learning Inference
with Chiplet-Based Architecture. In MICRO ’21.

[30] Lin Shi, Hao Chen, and Jianhua Sun. 2009. vCUDA: GPU accelerated
high performance computing in virtual machines. In IPDPS’09.

[31] George Teodoro, Rafael Oliveira, Olcay Sertel, Metin Gurcan, Wagner
Meira Jr, Umit Catalyurek, and Renato Ferreira. 2009. Coordinating the
use of GPU and CPU for improving performance of compute intensive
applications. In CLUSTER ’09.

[32] Kuen Hung Tsoi andWayne Luk. 2010. Axel: A Heterogeneous Cluster
with FPGAs and GPUs. In ISFPGA ’19.

[33] Jeffrey S. Vetter, Ron Brightwell, Maya Gokhale, Pat McCormick,
Rob Ross, John Shalf, Katie Antypas, David Donofrio, Travis Hum-
ble, Catherine Schuman, Brian Van Essen, Shinjae Yoo, Alex Aiken,
David Bernholdt, Suren Byna, Kirk Cameron, Frank Cappello, Bar-
bara Chapman, Andrew Chien, Mary Hall, Rebecca Hartman-Baker,
Zhiling Lan, Michael Lang, John Leidel, Sherry Li, Robert Lucas, John
Mellor-Crummey, Paul Peltz Jr., Thomas Peterka, Michelle Strout, and
Jeremiah Wilke. 2018. Extreme Heterogeneity 2018 - Productive Com-
putational Science in the Era of Extreme Heterogeneity. In ASCRWork-
shop on Extreme Heterogeneity.

[34] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian
Sivathanu, Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng,
Hanyu Zhao, Quanlu Zhang, F. Yang, and L. Zhou. 2018. Gandiva:
Introspective Cluster Scheduling for Deep Learning. In OSDI ’18.

[35] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou, Zhi
Li, Yihui Feng, Wei Lin, and Yangqing Jia. 2020. AntMan: Dynamic
Scaling on GPU Clusters for Deep Learning. In OSDI ’20.

[36] Hangchen Yu, Arthur Michener Peters, Amogh Akshintala, and
Christopher J. Rossbach. 2020. AvA: Accelerated Virtualization of
Accelerators. In ASPLOS ’20.

15

https://www.khronos.org/sycl/
https://software.intel.com/content/www/us/en/develop/tools/oneapi.html#gs.4ac4fz
https://software.intel.com/content/www/us/en/develop/tools/oneapi.html#gs.4ac4fz
https://keras.io/examples/
http://yann.lecun.com/exdb/mnist
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://developer.nvidia.com/cuda-toolkit
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://developer.nvidia.com/gpudirect
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html

	Abstract
	1 Introduction
	2 Design
	2.1 Client
	2.2 Server
	2.3 Transport Layer
	2.4 Autotalk: stub-generator
	2.5 Implementation issues

	3 Experimental Methodology
	4 Experimental Evaluation
	4.1 Overhead of accelerator decoupling
	4.2 Effectiveness of accelerator sharing
	4.3 Performance gains of elasticity
	4.4 Overhead of application migration
	4.5 Overhead for Caffe and TensorFlow

	5 Related Work
	6 Conclusions
	References

