
HORIZON EUROPE FRAMEWORK PROGRAMME

CLOUDSTARS
(Grant agreement No 101086248)

Cloud Open-Source Research Mobility Network

SECONDMENT REPORT

Coordinator: Universitat Rovira i Virgili

HORIZON 101086248 | 01/01/2023
Secondment report

TABLE OF CONTENTS

GENERAL INFORMATION ON THE PROJECT 3

DESCRIPTION OF THE TECHNICAL WORK 4

2

HORIZON 101086248 | 01/01/2023
Secondment report

GENERAL INFORMATION ON THE PROJECT

Name: Aitor Arjona Pérez
Position: PhD Student
Organization: Universitat Rovira i Virgili
To: IBM Research Zurich
Duration of Secondment
(with date of arrival and
departure):

90 days (1 April - 30 June)

Empresarial tutor: Dr. Bernard Metzler
Tasks: T3.3
WP: WP3
Objectives of Secondment: The objective includes, but is not limited to, studying current research

challenges related to ephemeral data storage for large-scale scientific
data analytics in the Cloud in the context of the GEDS open-source
software project (https://github.com/IBM/GEDS) being currently
developed at the host organization.

Skills and Knowledge
Acquired:

Viable approaches for efficient data sharing on co-located containers in
Kubernetes deployments.

Papers Published:
Dissemination activities
(mass media,
presentations, talks,
workshops, conferences):

Presented on Workshop on Serverless Computing Experience
http://www.wikicfp.com/cfp/servlet/event.showcfp?eventid=174201&co
pyownerid=93722

Links to Published Works:
Github repositories and
project name:

https://github.com/aitorarjona/cloudstars-kubernetes-shared-volumes

Collaborations with other
partners:

3

http://www.wikicfp.com/cfp/servlet/event.showcfp?eventid=174201©ownerid=93722
http://www.wikicfp.com/cfp/servlet/event.showcfp?eventid=174201©ownerid=93722
https://github.com/aitorarjona/cloudstars-kubernetes-shared-volumes

HORIZON 101086248 | 01/01/2023
Secondment report

DESCRIPTION OF THE TECHNICAL WORK

4

Towards efficient and secure data sharing between
co-located serverless containers in Kubernetes

CLOUDSTARS EU Research Mobility Program Secondement Report

Aitor Arjona
Universitat Rovira i Virgili

Tarragona, Spain
aitor.arjona@urv.cat

ABSTRACT
The serverless computing paradigm is widely recognized
as a practical solution for highly elastic compute and data-
intensive workloads in the Cloud. Emerging serverless Cloud
services based on container technologies provide higher de-
grees of flexibility for adopting new applications. However,
managing temporary data in serverless environments re-
mains a challenge. The stateless nature of serverless com-
puting requires reliance on disaggregated storage, leading
to latency issues due to data movements and performance
degradation. Existing caching and temporary data store ap-
proaches present limitations in handling large datasets or
impose additional infrastructure costs and management com-
plexities.
To address these challenges, we propose the inclusion

of GEDS (Generic Ephemeral Data Store) in serverless Ku-
bernetes architectures. The objective is to leverage node
locality using the ephemeral host file system allocated for
each serverless container, enabling applications to effectively
store and share temporary data across concurrent and suc-
cessive invocations. This article explores the limitations and
opportunities for effective data sharing between serverless
co-located containers in Kubernetes deployments. Our find-
ings demonstrate how by using memory-mapped files and
file descriptor passing through shared volume mounts pro-
vides effective storage resources sharing between containers
efficiently and securely.

CCS CONCEPTS
• Computer systems organization→ Cloud computing;
• Information systems→ Distributed storage.

KEYWORDS
ephemeral storage, serverless, Kubernetes, Cloud

1 INTRODUCTION
The serverless computing model, originally designed for
lightweight web services with fluctuating demand, has un-
dergone significant infrastructure improvements over the

years that have significantly broadened its applicability. We
are witnessing the emergence of new serverless services in
public Clouds that go beyond themore constrained Functions-
as-a-Service model, offering in contrast greater levels of flex-
ibility [3, 12]. Some of them base their service on offering
serverless containers on top of standard infrastructures such
as Kubernetes. For example, IBM Cloud Code Engine [7]
offers a fully-managed serverless service allowing users to
deploy Kubernetes constructs, such as Deployments or Jobs.
Similarly, Google Cloud Run [2] provides a serverless man-
aged service for Knative deployments. These container-based
services enable a broader range of workloads to be adopted
and benefit from a serverless experience.

However, the serverless paradigm continues to face a well-
known limitation in terms of managing temporary data. The
stateless nature of serverless computing leads to a data-
shipping architecture, where serverless applications must
rely on remote disaggregated storage due to the inability
to retain state or provide addressability between contain-
ers [14]. This limitation significantly hampers the adoption
of a serverless approach for complex applications that in-
volve large temporary data movements across stages of a
workflow.

This work proposes to address the aforementioned chal-
lenge by enabling serverless containers to share storage re-
sources across containers running on the same host but also
within the entire compute cluster. To achieve this, we study
the potential of leveraging GEDS (Generic Ephemeral Data
Store) as storage system. GEDS is a storage middleware for
ephemeral temporary data, with the goal of reducing the re-
source footprint of the storage system by running co-located
within the compute cluster. The objective of this work is to
examine the current design and architecture of GEDS and
propose improvements to enhance its applicability for the ef-
fective sharing of storage resources in serverlessmulti-tenant
scenarios. Our focus lies in exploring the opportunities for
data sharing to leverage data locality in co-located but iso-
lated containers on Kubernetes deployments for serverless
workloads.

In summary, this work provides the following insights:

Aitor Arjona

(1) We propose improvements to the GEDS architecture,
with the goal of enabling data sharing exploiting
node-locality. The suggested changes involve deploy-
ing GEDS as a daemon on each compute cluster node.
Application containers communicate and coordinate
with the system to access and share data between
co-located and remote containers.

(2) We study and benchmark the performance of dif-
ferent mechanisms for shared volume mounts in
co-located containers within the same Kubernetes
worker nodes, namely hostPath volumes and CSI
drives. Due to security concerns associated with Host
Path volume mounts, we propose utilizing a custom
CSI driver that mounts shared local volumes between
containers of the same tenant on the same node.

(3) We conduct various experiments to evaluate the be-
havior of differentmechanisms for data sharing in Ku-
bernetes when using shared volume mounts. Specif-
ically, we demonstrate how containers can utilize
memory mapping backed by files stored in the shared
volume as a secure approach to shared memory be-
tween containers. Read-only memory maps do not
contribute to memory usage, allowing for efficient
resource utilization for cached data. Additionally, we
show how file descriptors can be safely passed to
read and write data on resources allocated in differ-
ent containers on the same node.

This document serves as a report for the research insights
and activities conducted during the author’s tenure in IBM
Research Zurich laboratories in themonths of April to June of
2023 as part of the Cloudstars researcher mobility program1.

2 BACKGROUND AND RELATEDWORK
Temporary data refers to data produced within workflow
stages for sharing data between tasks — it is short-lived, it
can be re-generated and it’s only useful during the work-
flow execution. Temporary data management in serverless
workloads has been extensively studied due to its impact on
performance and scalability [15].

One commonly adopted solution for temporary data stor-
age is the utilization of DRAM-based caching mechanisms
within the serverless compute cluster [19, 22, 23]. Neverthe-
less, it is arguable whether these approaches effectively han-
dle large data volumes, as memory-based stores can quickly
overflow.

Alternatively, Klimovic et al. [16], Stuedi et al. [25] suggest
employing a high-performance disaggregated ephemeral
data storage solution for temporary data in serverless work-
loads. The rationale behind this approach is that temporary

1https://cloudstars.eu

data stores can relax data durability guarantees and priori-
tize performance. In the event of a failure, the workflow can
be re-executed to regenerate any data lost. By using a disag-
gregated approach, their storage system can accommodate
large data volumes by allowing flexible scaling of both com-
pute and storage resources independently. However, it also
comes at the cost of additional infrastructure expenses and
increased data latency due to remote access, requiring high-
performance hardware that may not be readily available in
standard Cloud environments.

Romero et al. [21] propose Faa$T, a transparent collab-
orative caching system that is deployed co-located within
concurrent distributed instances of a serverless application.
The aim of their approach is to reduce data access latency by
intercepting calls to object storage. In Faa$T, data durability
guarantee can be configured in order to achieve better per-
formance for ephemeral data. However, the system’s current
design either persists all data or treats all data as ephemeral,
which poses a challenge for scenarios where some data, such
as output data, needs to be persisted while allowing tem-
porary data to be ephemeral. A more granular approach is
needed to address such mixed durability requirements effec-
tively.
Merenstein et al. [18] introduce F3 in their recent publi-

cation. F3 enables to share ephemeral data among functions
within a Functions-as-a-Service (FaaS) platform. Their sys-
tem supports transparent integration, as applications inter-
act with it through the standard POSIX file system interface.
Contrary to Faa$T, F3 offers to selectively determine the per-
sistence of data at both the file and directory levels. However,
F3 relies on a network file system as a persistency layer, re-
quiring additional management and allocation of resources
for storage. Consequently, applications utilizing object stor-
age for data access must employ other storage middleware
to fulfill this requirement.

In summary, existing approaches from academia either fall
short in supporting large temporary data, which is a crucial
requirement for large-scale data-intensive workloads [15],
or involve the deployment of additional non-serverless re-
sources, which undermines the benefits of a serverless archi-
tecture in terms of reduced management burden. In contrast,
GEDS addresses these limitations by providing efficient shar-
ing of ephemeral data with a lower resource footprint. Our
focus lies on exploiting locality for data sharing between
containers running on the same node. Additionally, GEDS
enables fine-grained control over data durability semantics,
allowing for more flexible and tailored data management
strategies.

https://cloudstars.eu

Towards efficient and secure data sharing between co-located serverless containers in Kubernetes

Figure 1: GEDS architecture diagram (© IBM)

3 GEDS: GENERIC EPHEMERAL DATA
STORE

In this section, we introduce GEDS, the storage middleware
being developed in the host organization at the time of writ-
ing. Figure 1 displays an architecture diagram of GEDS. GEDS
is open source and is available in Github2.
GEDS approach differs from related work by prioritizing

the reduction of resource footprint dedicated to storage. In
contrast to other approaches, GEDS runs co-located within
the application code, loaded as a static or dynamic library.
GEDS leverages hardware-accelerated network interconnect
(RDMA) and storage (NVMe) available in the compute cluster
nodes for fast and efficient access to warm temporary data.
Moreover, GEDS implements a tiered architecture that allows
to spill data to disaggregated lower tiers, thereby enabling it
to accommodate larger data sets.

GEDS integrates with Cloud Object Storage, which serves
two important purposes. Firstly, it enables reading input data
through GEDS using file semantics, as the majority of data
in the Cloud is typically available in Cloud Object Storage.
This provides an opportunity to optimize data ingestion for
serverless workloads, such as implementing caching mecha-
nisms for frequently accessed or shared input data. Secondly,
Cloud Object Storage is utilized as a persistency layer for
storing output data. This ensures the durability of the pro-
cessed data, allowing for subsequent access as needed, while
also providing relaxed data persistency guarantees for tem-
porary data under the same storage system. By leveraging
Cloud Object Storage for both input and output data, GEDS

2https://github.com/IBM/GEDS

leverages existing Cloud infrastructures and takes advan-
tage of the scalability, reliability and serverless management
offered by these services.

3.1 Improving GEDS to leverage node
locality

The current implementation of GEDS involves embedding
the GEDS client as a static or dynamic linked library within
the application code. However, this design decision becomes
a limiting factor when attempting to share storage resources
managed by GEDS among multiple processes or containers
on the same machine. GEDS lacks the capability to efficiently
share data between co-located clients. Even when the data
is already available on the same machine, co-located GEDS
clients still rely on the metadata service to obtain the data
location and establish a TCP connection over the published
network interface to access it.

In this section, we propose architectural changes to GEDS
with the objective to make it more suitable for resource
sharing in the same node, between unrelated processes, and
consequently, between containers.
The proposed architecture is illustrated in Figure 2. The

primary design change involves decoupling GEDS from the
application container and running it as a separate back-
ground process, commonly known as a daemon. To establish
communication with the GEDS daemon, the application can
employing a lightweight GEDS client and IPC (Inter-Process
Communication) mechanisms such as UNIX pipes or sockets.
By adopting this approach, different unrelated processes run-
ning on the same machine can make use of a shared GEDS
client instance.

It is crucial to enable zero-copy direct access to data gener-
ated by one process from other data consumer processes, in
order to avoid passing and copying data between the GEDS
daemon process and application processes through IPC. This
can be achieved by enabling the application direct access
to the underlying storage media (such as memory or disk),
or direct access to GEDS mechanisms to retrieve data from
remote nodes if necessary (network). The primary responsi-
bility of the GEDS daemon is then to handle synchronization
concerns. Applications utilizing GEDS should be able to ac-
cess data seamlessly through a unified interface, regardless
of whether the data is locally shared or located remotely.

Before implementing a definitive solution, we first need a
deep understanding of the limitations associated with data
sharing in the targeted environment, which in this case is a
Kubernetes cluster deployment. Specifically, we aim to as-
sess how storage resources can be efficiently shared between
Kubernetes Pods and identify the challenges and limitations
involved. The work described focuses on providing insights

https://github.com/IBM/GEDS

Aitor Arjona

GEDS
GEDS

CSI Node
Driver

Application
Pod

Shared Ephem
eral

Storage Volum
eApplication

Pod

...

Worker Node

GEDS
GEDS

CSI Node
Driver

Application
Pod

Shared Ephem
eral

Storage Volum
eApplication

Pod

...

Worker Node

...

IPC for
syncronization

cross-node
data transfers

native storage
data access

provisionwrite remote
data

Figure 2: Proposed GEDS architecture to leverage locality

into this issue rather than proposing a specific implementa-
tion. The actual adoption of the proposed architecture is left
as potential future work, which can be explored by future
visiting researchers at the host organization.

At a first glance, we can differentiate threemain challenges
to be addressed in this approach:

(1) Security and isolation: Since we want to share data
between containers, we are potentially breaking con-
tainer boundaries. In multi-tenant Cloud environ-
ments, where physical nodes are shared by different
tenants, it becomes crucial to maintain resource isola-
tion and data security between containers of different
tenants while allowing resource sharing among con-
tainers of the same tenant.

(2) Performance: A reasonable balance between secu-
rity/isolation guarantees and performance is key in
realistic multi-tenant Cloud scenarios. Our solution
must find a compromise between security while en-
suring reasonable performance.

(3) Elasiticity: Serverless workloads are characterized
by high elasticity, where containers can be rapidly
allocated and deallocated. To accommodate server-
less workloads, the storage system must be capable
of scaling out and in accordingly, efficiently handling
the dynamic nature of serverless resource demands.

The following sections provide insight into how each of
the challenges above can be addressed when adopting the
proposed GEDS architecture.

4 SHARING STORAGE RESOURCES
BETWEEN KUBERNETES PODS

Efficient and secure sharing of host resources is crucial in or-
der to effectively leverage locality for co-located containers
on the same node. Our focus lies in efficiently sharing re-
sources for ephemeral storage, particularly for data-intensive
applications. Specifically, we aim to share storage resources
such as files, volumes, and file descriptors. In this regard,
cross-process synchronization and other Inter-Process Com-
munication (IPC) mechanisms like queues, locks, atomic
shared objects, or semaphores are out of scope of this work.
This section provides insight and discussion on various alter-
natives available in Kubernetes that can serve to accomplish
our goal. All experiments and source code is publicly avail-
able in Github3.

4.1 The “infamous” Host Path volume
mounts

In a nutshell, the main objective is to enable efficient data
sharing between co-located Pods, leveraging locality. How-
ever, achieving this goal presents a challenge due to Kuber-
netes design philosophy, which prioritizes scalability and
high availability by treating stateless resources as ephemeral
and replaceable. For instance, worker nodes in Kubernetes
are replaceable, which means that resources from a failed
node are redistributed to the remaining healthyworker nodes.
This means that assigning Pods to specific nodes to use some
data from drives located in it, although possible, is considered
a bad practice. As a result, Kubernetes relies on disaggregated

3https://github.com/aitorarjona/cloudstars-kubernetes-shared-volumes

https://github.com/aitorarjona/cloudstars-kubernetes-shared-volumes

Towards efficient and secure data sharing between co-located serverless containers in Kubernetes

storage mechanisms for data persistency, such as Network
File Systems (NFS).

Nevertheless, Kubernetes does offer the option to expose
subdirectories of the underlying host node to its running
containers trough Host Path volume mounts [13]. However,
this approach presents several inconveniences. Firstly, the
user needs to be aware of the structure of volumes and file
systems available on the host, as the mounted host path
must be specified in the Pod manifest. Moreover, the use of
hostPath volume mounts has a notorious history of signifi-
cant vulnerability issues that should not be ignored [20]. A
vulnerability was found (CVE-2017-1002101) which exploited
a symlink race condition, allowing the Pod to mount the
root file system with root access inherited from the privi-
leged kubelet permissions. Interestingly, although a security
patch was applied, it resulted in another vulnerability with
similar implications (CVE-2021-25741). It is important to high-
light the official Kubernetes documentation’s perspective on
hostPath volumes [13]:

HostPath volumes present many security risks,
and it is a best practice to avoid the use of Host-
Paths when possible. When a HostPath volume
must be used, it should be scoped to only the
required file or directory, and mounted as Read-
Only.

In conclusion, while hostPath volumes offer an effective
solution for accessing and sharing storage host resources
in self-managed or on-premises Kubernetes deployments
through volume mount bindings, their multiple security con-
cerns make them unsuitable for a multi-tenant Cloud sce-
nario.

4.2 Container Storage Interface
The Container Storage Interface (CSI) in Kubernetes is pro-
vided as a mechanism that enables third-party vendors to im-
plement and extend newKubernetes Storage Classes, thereby
harnessing a diverse range of storage technologies for use
within Kubernetes [27]. To accomplish this, vendors are re-
quired to implement a standard interface that incorporates
the necessary logic for interacting with the desired storage
system.
The CSI controller driver is responsible for the control

logic when new Kubernetes volumes are created. It interacts
with the underlying storage system to provision the required
storage or managing permissions. For instance, a NFS CSI
driver might create a new file system on the NFS server when
a volume is created. This component must be unique within
the cluster, although the driver can implement replication
with a leader election protocol for increased availability in
case of failure.

The CSI node driver handles the actual setup of storage
on the host node where the Pod is scheduled. Following the
NFS example, the CSI node driver would perform the actual
mount operation of the remote NFS at a specific path to make
it accessible from within the container. This component is
deployed as a daemonset and runs on all worker nodes.
Both components must implement a gRPC service and

respond to RPC calls to perform actions. The CSI frame-
work includes additional components like the snapshotter
controller, but for simplicity, they are not discussed here.
This approach is better suited for our objectives. Firstly,

it ensures a clear separation of concerns between users and
the logic of mounting ephemeral storage volumes across co-
located containers. In this regard, users only need to specify
the desired ephemeral volume class and its total capacity,
leaving the CSI driver responsible for handling all the neces-
sary setup andmaking the storage available to the containers.
Secondly, the CSI driver has the capability to still imple-

ment logic that enables the sharing of storage resources
among containers belonging to the same tenant via mount
bindings. In essence, a CSI driver implementing volume
mount bindings from the host is virtually equivalent to
hostPath volume mounts. This effectively fulfills the our
requirement of sharing storage resources between contain-
ers.

Lastly, butmost importantly, this approach addresses all se-
curity concerns associated with the hostPath volumemounts.
The risk of a potential chroot jail break, as seenwith hostPath
mounts, is lower since the volume binding logic is handled
by the CSI driver rather than within the application Pod
itself.
We conclude that a custom CSI driver for GEDS imple-

menting volume mount bindings presents a reasonable com-
promise between security (ensured by the CSI driver) and
performance (achieved through native storage resource ac-
cess via volume mounts).

4.3 Ephemeral storage performance
After discussion, we conducted a benchmark to assess the
performance of the different ephemeral storage options avail-
able. The benchmark involves reading and writing a file to
the ephemeral volume using a single process within a run-
ning Pod. We compared three options:

(i) Ephemeral emptyDir volume backed by the host root file
system [9]. (ii) hostPath volume mounted on the temporary
file system on the host (/tmp). (iii) CSI driver implementing
a hostPath volume mount. Specifically, we used the official
CSI driver for hostPath 4. Although this driver is a “mock”
implementation for CI/CD testing, it effectively provides

4https://github.com/kubernetes-csi/csi-driver-host-path

https://github.com/kubernetes-csi/csi-driver-host-path

Aitor Arjona

Figure 3: CSI driver architecture diagram

100 1000 10000

File Size (MB)

60

70

80

90

100

T
h

ro
u

g
h

p
u

t
(M

B
/

s)

csi hostpath emtpyDir

Figure 4: Ephemeral storage comparison read bench-
mark

functionality similar to hostPath volume mounts by imple-
menting a wrapper over volume mounts using CSI.
To conduct the benchmark, we used dd configured with

a block size of 2KB (count) and specified the total number
of blocks to be read/written accordingly (repeat). We used
oflag=direct and iflag=direct in dd to bypass write and
read cache, respectively. The underlying storage medium
used in the benchmark was a spinning disk, mounted as the
root file system on the host node. These experiments are
run on the infrastructure for research available at the host
premises.
Figures 4 and 4 show the read and write results, respec-

tively. The three options yield similar results for both reading
and writing. However, for large files, the CSI driver provides

10mb 100mb 1000mb 10000mb

File Size (MB)

60

70

80

90

100

T
h

ro
u

g
h

p
u

t
(M

B
/

s)
csi hostpath emptydir

Figure 5: Ephemeral storage comparison write bench-
mark

better throughput. This baseline comparison with emptyDir

ephemeral volume types will be useful for assessing the per-
formance overhead of the final implementation, in order to
further optimize the system.
Similarly, we wanted to compare an emptyDir volume

backed by memory with an emptyDir volume backed by a
high-performance NVMe drive. The objective was to assess
the performance of backing data to disk using NVMe drives
in tier zero. We used the dd command-line tool to perform
the experiment, with the same conditions as above.
Figures 6 and 7 show the read and write results of this

experiment, respectively. We can observe that for writing a
large file, the throughput is comparable. However, reading
from disk is almost half slower than from memory. These

Towards efficient and secure data sharing between co-located serverless containers in Kubernetes

10 100 1000 10000

File Size (MB)

0

1

2

3

4

5

6

7

T
h

ro
u

g
h

p
u

t
(G

B
/

s)

emptyDirMemory localdisk

Figure 6: emptyDir ephemeral storage read benchmark

10 100 1000 10000

File Size (MB)

0.0

0.5

1.0

1.5

2.0

2.5

T
h

ro
u

g
h

p
u

t
(G

B
/

s)

emptyDirMemory localdisk

Figure 7: emptyDir ephemeral storage write benchmark

results can vary greatly when using caching, which was
disabled for this experiment to assess the raw performance.
Nonetheless, these results indicate that spilling data to disk
when memory is full do not present significant performance
degradation if using high-performance disks.

4.4 Memory mapping files in shared
volume mounts

After discussing the viability of effectively and securely shar-
ing host volumes across multiple containers, we want to
explore the potential benefits it offers.
One such possibility is the Linux kernel’s capability to

memory-map files. In the Linux kernel, it is possible to map
a kernel address space to a user address space, which is what

int fd = open("/tmp/shared_file.bin",
O_CREAT | O_RDWR, S_IRUSR |
S_IWUSR | S_IRGRP | S_IWGRP);

ftruncate(fd, BUFFER_SIZE);
char *mmap_ptr = mmap(nullptr, BUFFER_SIZE,

PROT_WRITE, MAP_SHARED, fd, 0);

memset(mmap_ptr, '\0', BUFFER_SIZE);
strcpy(mmap_ptr, "Hello world!");

printf("%s", mmap_ptr);
printf("Press enter to continue...");
getchar();
printf("%s", mmap_ptr);

munmap(mmap_ptr, BUFFER_SIZE);
close(fd);

Listing 1: Container A code.

we call memory mapping [10]. This is beneficial for perfor-
mance as it eliminates copying data back and forth between
the kernel and user memory space, reducing memory access
penalties and overheads.

Memory mappings that are backed by a file allow users to
read and write the file contents as if it were a contiguous sec-
tion of memory, instead of using common file operations like
seek or read. The kernel cache memory pages, which may
be unordered, are directly mapped onto the virtual memory
of the user process in the correct order. This allows user pro-
cesses to read data directly from the kernel memory pages,
avoiding to copy data to the user’s process memory space.
The required memory pages are loaded from the file automat-
ically and lazily. This type of mapping is commonly referred
to as a file-backed mapping or memory-mapped file.
When multiple processes map the same region of a file

with the MAP_SHARED flag enabled [10], the physical memory
pages are shared among them. In the case of shared memory
mappings, modifications to the mapping’s contents are in-
stantly visible to other processes sharing the same mapping
and are also reflected in the underlying file.

In this regard, we want to assess the behavior of shared
memory maps between different isolated containers that
share a common volume mount binding.

First, we run a simple experiment to check if two contain-
ers can share data by memory mapping the same file. For it,
we run two Pods mounting the same hostPath subdirectory
on /tmp and we allocate them on the same node using the
nodeSelector tag on the Pod manifest. As seen in Section 4.2,
hostPath mounts use volume mount bindings, which could
also be possible using a CSI driver.

Aitor Arjona

int fd = open("/tmp/shared_file.bin",
O_RDWR, S_IRUSR | S_IWUSR
| S_IRGRP | S_IWGRP);

char *mmap_ptr = mmap(nullptr, BUFFER_SIZE,
PROT_WRITE, MAP_SHARED, fd, 0);

printf("%s", mmap_ptr);
strcpy(mmap_ptr, "Goodbye World!\0");

munmap(mmap_ptr, BUFFER_SIZE);
close(fd);

Listing 2: Container B code.

First, container A (Listing 1) opens and creates a file in the
shared volume, we run ftruncate to allocate the file size on
disk. Next, we proceed to create a memory map backed by
that file, note the MAP_SHARED flag. Then, we copy the string
"Hello World!" at the beginning of the buffer. On the other
hand, container B (Listing 2) also opens the same file and
memory-maps it, also using the MAP_SHARED flag. Container B
prints the buffer contents, "Hello World!". Next, we modify
the buffer. From Container A, we print the buffer content, and
now see "Goodbye World!". Finally, both containers unmap
and close the file. From this simple experiment, we can verify
that both containers shared the same memory pages backed
by the file mounted on the shared volume.

Next, we want to examine how memory is accounted for
when using memory maps of a shared file between con-
tainers. In Kubernetes with containerd, resource constraints
are managed by cgroups [1]. For this experiment, we use a
similar setting as before. In this scenario, Container A will
perform a memset syscall to populate the memory-mapped
buffer. This ensures that this container “touches” all memory
pages that correspond to the memory map. On the other
hand, Container B will perform a md5 checksum calculation
on the buffer, reading its entire content iteratively. To mon-
itor memory usage, we retrieve the value from a cgroups

virtual file 5 located within the container.
Figure 8 shows the cgroups memory usage in bytes of

both containers. “Writer process” corresponds to Container
A, responsible for allocating and populating the memory
map, while “Reader process” corresponds to Container B,
which performs the md5 checksum. We see that the memory
map size (512𝑀𝐵) is allocated to the Container A when the
memset operation is called. However, Container A can read
the buffer without requiring additional memory allocation
for the memory-mapped pages.
Furthermore, we want to assess whether cgroups cor-

rectly manages exceeding the allocated resources when using

5/sys/fs/cgroup/memory/memory.usage_in_bytes

0 10 20 30 40

Wallclock time (s)

101

102

cg
ro

u
p

s
m

em
or

y
u

sa
g

e
(M

B
)

Writer process

Reader process

Figure 8: cgroupsmemory usage in bytes of two contain-
ers which write and read to a shared memory-mapped
file buffer, respectively.

0 2 4 6 8 10 12 14

Wallclock time (s)

0

50

100

150

200

250

cg
ro

u
p

s
m

em
or

y
u

sa
g

e
(M

B
)

Process OOM killed

Figure 9: cgroupsmemory usage in bytes andOOMerror
of a container which writes to a memory-mapped file
buffer.

memory-mapped files. To investigate this, we repeated the
experiment with a container that had a memory limit of
256𝑀𝐵, while utilizing a 512𝑀𝐵 memory-mapped file. Fig-
ure 9 shows the result. Indeed, cgroups kills the process with
an out-of-memory error at the memset operation.
This finding is particularly noteworthy for write-once,

read-many data scenarios. A “main” container can allocate
read-only shared cached data on a shared memory map. Sub-
sequently, multiple “worker” containers can access and read
that data without incurring additional resource allocation,

Towards efficient and secure data sharing between co-located serverless containers in Kubernetes

0 100 200 300 400 500 600

Wallclock time (s)

0

1

2

3

4

5

6

M
em

or
y

(G
B

)

free

cache

Memory alloc

Memory free

Figure 10: Operating system memory usage with a
memory-mapped in a memory constrained scenario.

resulting in a more memory-efficient approach to sharing
data among co-located Kubernetes containers.

Finally, we want to investigate the allocation of memory
at the host level when utilizing shared memory-mapped
files between containers. For this experiment, we set up a
minikube [11] Kubernetes cluster with the virtualbox driver,
configured with 6𝐺𝐵 of RAM for the virtual machine. In
this case, the shared memory map backed by the file at the
shared volume has a size of 10𝐺𝐵. We generated this file
using dd, copying data from /dev/zero. We run a resource-
constrained Pod (md5-pod), with a maximum of 512𝑀𝐵 of
memory. This Pod memory-maps the aforementioned large
file and performs a md5 checksum on the buffer. In parallel,
we launch another Pod (mem-pod) which allocated 5𝐺𝐵 of
memory by performing multiple malloc and memset calls. As
a result, only 1𝐺𝐵 of free memory remained for the host
operating system and other Pods on the minikube node. We
measure the memory consumption using vmstat tool.
Figure 10 presents the result of this experiment. We can

see that the remaining 1𝐺𝐵 of memory is allocated as cache
memory by the kernel, rather than being occupied by user
processes. In this case, the allocated cache memory is utilized
by the md5-pod during its computation of the md5 checksum
over the large buffer, leaving little to no free memory for the
operating system. Then, we terminate the mem-pod, freeing
all allocated memory to this container. This results in the
cache memory usage increasing to 2𝐺𝐵, even though there
is nearly 5𝐺𝐵 of unused free memory. Next, we relaunch the
mem-pod container, consuming again all of the free memory
and a portion of the cache memory, leaving only 1𝐺𝐵 of
memory available for caching.

With this experiment, we observe that memory-mapped
files are indeed accounted as cache memory by the kernel.
Notably, there appears to be a limitation on the amount of
memory that can be allocated for caching, warranting further
investigation to determine potential limitations. Additionally,
it is worth mentioning that we were able to memory-map a
file significantly larger than the available physical memory
on the node. In such cases, the kernel handles swapping the
pages of the file-backed map accordingly.

4.5 Sharing file descriptors
An intriguing capability when sharing volume mount binds
between containers involves passing file descriptors opened
in one container and read or write from them in another
container.
This functionality is already possible between unrelated

processes on Linux systems through the use of Unix sock-
ets [5, 8]. By using the sendmsg and recvmsg system calls
with the SCM_RIGHTS flag enabled on the sent message, we
can set an array of opened file descriptors as the message
payload and have them duplicated on the receiving process.
The Linux kernel processes messages with the SCM_RIGHTS

flag by creating the appropriate file descriptors in the re-
ceiving process file descriptor table, which will point to the
corresponding underlying opened device at the kernel. Se-
mantically, this operation is equivalent to dup [4], which
creates a duplicate of a file descriptor, returning a different
file descriptor table entry. In this sense, both file descriptors
share the underlying status, buffer, and offset. This means
that reading any amount of bytes on one process will move
the offset of the duplicated file descriptor the same amount.
However, if this behavior is not desired, the sending process
may close its file descriptor, making the duplicated one still
available, and reopen the resource (e.g. file) if necessary.

Remarkably, containers sharing a common volume mount
bind can achieve the very same behavior by placing the Unix
named socket on the shared volume. To evaluate this behav-
ior, we conducted a simple experiment adapted from [24],
which involves two Pods, sender and receiver, deployed on
the same node. The code for the sender and receiver Pods
is listed in Listings 3 and 4, respectively. The Pods were
configured to mount the same hostPath volume. The sender
Pod creates a named Unix pipe within the shared volume.
It also opens a file, located on the private ephemeral vol-
ume allocated for the container (/tmp). Then, it sends the
file descriptor using sendmsg to the named socket using the
SCM_RIGHTS flag. Simultaneously, the receiver Pod establishes
a connection to the Unix socket and calls recvmsg to receive
the file descriptor. It then proceeds to read data from the file
descriptor, print it, and write some data back to the begin-
ning of the buffer. The sender process can then seek back

Aitor Arjona

// Setup socket for sending messages
sockfd = socket(AF_LOCAL, SOCK_STREAM, 0);
bzero(&servaddr, sizeof(servaddr));
servaddr.sun_family = AF_LOCAL;
strcpy(servaddr.sun_path, socket_path);
connect(sockfd, (struct sockaddr *)&servaddr,

sizeof(servaddr));

// Open a local private file and send
// the fd trough sendmsg with SCM_RIGHTS flag
fd = open(file_path, O_RDWR);
send_fd(sockfd, "", 1, fd);

// Wait for receiving process to modify
// the file and read the result
printf("Press enter to continue...\n");
getchar();
lseek(fd, 0, SEEK_SET);
read(fd, buf, 12);
printf("%s", buf);

Listing 3: Sender process code.

// Setup socket for receiving messages
unlink(sockpath);
listenfd = socket(AF_LOCAL, SOCK_STREAM, 0);
bzero(&servaddr, sizeof(servaddr));
servaddr.sun_family = AF_LOCAL;
strcpy(servaddr.sun_path, socket_path);
bind(listenfd, (struct sockaddr *)&servaddr,

sizeof(servaddr));
listen(listenfd, 5);
clilen = sizeof(cliaddr);
connfd = accept(listenfd,

(struct sockaddr *)&cliaddr, &clilen);

// Call recvmsg and set received fd
recv_fd(connfd, buf, 1, &fd);

// Read and write to the received fd
read(fd, buf, 13);
printf("%s", buf);
lseek(fd, 0, SEEK_SET);
write(fd, "Hola Mundo!\0", 12);

Listing 4: Receiver process code.

the offset and read the data written by the receiver process.
Note that the opened file is located on the private ephemeral
volume allocated for the sender Pod, which is not visible for
the receiver Pod.
Through this experiment, we observed that a Pod effec-

tively gained access to a file located within the isolated con-
tainer of another co-located Pod by leveraging file descriptor
sharing via Unix sockets on a shared volume mount. This

approach provides a viable avenue for secure and efficient
resource sharing between containers.

4.6 Discussion on file system access and
FUSE

In this section, we will address the challenges associated
with providing a file system interface for GEDS.

Many file systems from industry and academia are imple-
mented trough FUSE [17]. FUSE [6], or File System in User
Space, is a Linux framework to implement virtual file sys-
tems outside of the kernel, in user space. To support FUSE,
the storage system needs to implement the FUSE interface,
which includes functions for mounting and unmounting file
systems, as well as operations on files and directories such
as opening files, reading data, seeking, etc.

By utilizing FUSE as an adapter, applications can transpar-
ently access alternative storage systems that may do not pro-
vide native file system access. A notable example is S3FUSE,
a commonly used FUSE file system that allows accessing
S3 data as if it were a file system. Operations like opening,
seeking, writing, and reading are translated into correspond-
ing RESTful operations over the underlying object storage
system.
Currently, GEDS implements a file-like interface, which

needs to be used explicitly. One approach is to implement
a FUSE interface for GEDS. However, providing a POSIX
file system interface for an ephemeral data store like GEDS
has significant implications. Applications that access data
through a file system interface generally expect the data to
be persisted as if it was being read from and written to a local
disk. Yet, this does not align with the nature of ephemeral
data storage systems, where data persistency is not enforced
in order to prioritize performance. Although FUSE provides
enough flexibility to not require a complete POSIX compli-
ance, applications utilizing the ephemeral FUSE file system
must adjust their usage accordingly and not expect a per-
sistent file system, defeating in part the purpose of trans-
parency.

GEDS already addresses this challenge by integrating both
persistent and ephemeral data under a unified system inter-
face. In the native API, the user explicitly specifies data per-
sistency using prefixes such as geds:// for ephemeral data
or s3:// for persisted data on object storage. However, with
file system access, applications may store data in arbitrary
locations without explicitly indicating its persistence. Some
propose using special sub-directories or employing specific
file open flags to indicate persistency on file system oper-
ations [18]. Nonetheless, these approaches also defeat the
promise of backwards compatibility for legacy applications.

Towards efficient and secure data sharing between co-located serverless containers in Kubernetes

Even seemingly minor changes can require in-depth knowl-
edge of the application internals to ensure proper handling
of data persistency.

Given the considerations mentioned, we contend that file
system access can be considered an additional feature of
GEDS to accommodate a wider range of use cases. How-
ever, it should not be the primary system interface. To fully
harness the potential of the system, applications should uti-
lize the native GEDS interface, and explicitly indicate the
data persistency as required. This approach not only helps to
avoid potential overhead penalties associated with FUSE [26],
but also ensures correctness on data persistency.

5 CONCLUSION
In this report, we have explored how GEDS can be leveraged
to benefit from locality by sharing storage resources among
co-located containers.
Specifically, we have seen how, by securing a shared vol-

ume on co-located containers, we enable efficient data han-
dling operations such as memory mapping and passing file
descriptors between isolated containers. Our approach pro-
motes native storage access efficiency, minimizing unneces-
sary data copies and aiming for secure zero-copy data access.

These novel approaches have substantial implications for
emerging serverless Cloud services based on container tech-
nologies and standard infrastructures like Kubernetes. By
leveraging GEDS, the performance of data-intensive appli-
cations deployed on these platforms can be significantly
boosted, leading to improved overall efficiency and scalabil-
ity.

Future work directions: We now indicate future work
for secondments carried out on the host organization can
address some of the issues introduced in this report. (i) Com-
plete a prototype integration of GEDS with the proposed
architecture. (ii) Investigate the viability and implications of
sharing a cache between different clients. We can assume
a GEDS deployment per tenant, although this could bene-
fit security, it also introduces repeated services per node.
(iii) Investigate Kubernetes scheduling to pack on one node
as many containers as possible, in order to further exploit
locality benefits discussed in this report.

ACKNOWLEDGMENTS
I would like to express my gratitude to my hosts at IBM
Zurich, Bernard Metzler, Pascal Spörri, and Radu Stoica, for
their warm hospitality and unwavering support. I also thank
my fellow project colleagues, Luis Veiga, Pezhman Nasirifard,
and René Schwermerene, as well as the entire Cloudstars
Research Mobility Program partners for their collaborative
efforts.

This work has been carried out in the context of the Cloud
Open Source Research Mobility Network CLOUDSTARS
(grant number 101086248), which is funded by the Marie
Skłodowska-Curie Actions (MSCA) EU program. Aitor Ar-
jona is a URV Martí Franquès grant fellow.

REFERENCES
[1] [n. d.]. cgroups(7) - Linux manual page — man7.org. https://man7.org/

linux/man-pages/man7/cgroups.7.html. [Accessed 17-Jul-2023].
[2] [n. d.]. Cloud Run: Container to production in seconds | Google Cloud

— cloud.google.com. https://cloud.google.com/run. [Accessed 18-Jul-
2023].

[3] [n. d.]. Dataproc Serverless Google Codelabs — code-
labs.developers.google.com. https://codelabs.developers.google.com/
dataproc-serverless. [Accessed 25-07-2023].

[4] [n. d.]. dup(2) - Linux manual page — man7.org. https://man7.org/
linux/man-pages/man2/dup.2.html. [Accessed 18-Jul-2023].

[5] [n. d.]. fd-passing — keithp.com. https://keithp.com/blogs/fd-passing/.
[Accessed 19-Jul-2023].

[6] [n. d.]. FUSE The Linux Kernel documentation. https://www.kernel.
org/doc/html/next/filesystems/fuse.html. [Accessed 17-Jul-2023].

[7] [n. d.]. IBM Cloud Code Engine - IBM. https://www.ibm.com/cloud/
code-engine. (Accessed on 07/13/2023).

[8] [n. d.]. Know your SCM_RIGHTS — blog.cloudflare.com. https://blog.
cloudflare.com/know-your-scm_rights. [Accessed 19-Jul-2023].

[9] [n. d.]. Kubernetes Volumes. https://kubernetes.io/es/docs/concepts/
storage/volumes/#emptydir. [Accessed 15-Jul-2023].

[10] [n. d.]. Memory mapping — The Linux Kernel documenta-
tion. https://linux-kernel-labs.github.io/refs/heads/master/labs/
memory_mapping.html. (Accessed on 06/29/2023).

[11] [n. d.]. minikube start — minikube.sigs.k8s.io. https://minikube.sigs.
k8s.io/docs/start/. [Accessed 17-Jul-2023].

[12] [n. d.]. Open Source Big Data Analytics Amazon EMR Serverless —
Amazon Web Services — aws.amazon.com. https://aws.amazon.com/
emr/serverless/. [Accessed 25-07-2023].

[13] [n. d.]. Volumes — kubernetes.io. https://kubernetes.io/docs/concepts/
storage/volumes. [Accessed 14-Jul-2023].

[14] Joseph M. Hellerstein, Jose Faleiro, Joseph E. Gonzalez, Johann
Schleier-Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang
Wu. 2018. Serverless Computing: One Step Forward, Two Steps Back.
arXiv:1812.03651 [cs.DC]

[15] Ana Klimovic, Yawen Wang, Christos Kozyrakis, Patrick Stuedi, Jonas
Pfefferle, and Animesh Trivedi. 2018. Understanding Ephemeral
Storage for Serverless Analytics. In 2018 USENIX Annual Techni-
cal Conference (USENIX ATC 18). USENIX Association, Boston, MA,
789–794. https://www.usenix.org/conference/atc18/presentation/
klimovic-serverless

[16] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas
Pfefferle, and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Stor-
age for Serverless Analytics. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). USENIX Association,
Carlsbad, CA, 427–444. https://www.usenix.org/conference/osdi18/
presentation/klimovic

[17] Kunal Lillaney, Vasily Tarasov, David Pease, and Randal Burns. 2019.
Agni: An Efficient Dual-Access File System over Object Storage. In
Proceedings of the ACM Symposium on Cloud Computing (Santa Cruz,
CA, USA) (SoCC ’19). Association for Computing Machinery, New
York, NY, USA, 390–402. https://doi.org/10.1145/3357223.3362703

[18] Alex Merenstein, Vasily Tarasov, Ali Anwar, Scott Guthridge, and Erez
Zadok. 2023. F3: Serving Files Efficiently in Serverless Computing. In

https://man7.org/linux/man-pages/man7/cgroups.7.html
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://cloud.google.com/run
https://codelabs.developers.google.com/dataproc-serverless
https://codelabs.developers.google.com/dataproc-serverless
https://man7.org/linux/man-pages/man2/dup.2.html
https://man7.org/linux/man-pages/man2/dup.2.html
https://keithp.com/blogs/fd-passing/
https://www.kernel.org/doc/html/next/filesystems/fuse.html
https://www.kernel.org/doc/html/next/filesystems/fuse.html
https://www.ibm.com/cloud/code-engine
https://www.ibm.com/cloud/code-engine
https://blog.cloudflare.com/know-your-scm_rights
https://blog.cloudflare.com/know-your-scm_rights
https://kubernetes.io/es/docs/concepts/storage/volumes/#emptydir
https://kubernetes.io/es/docs/concepts/storage/volumes/#emptydir
https://linux-kernel-labs.github.io/refs/heads/master/labs/memory_mapping.html
https://linux-kernel-labs.github.io/refs/heads/master/labs/memory_mapping.html
https://minikube.sigs.k8s.io/docs/start/
https://minikube.sigs.k8s.io/docs/start/
https://aws.amazon.com/emr/serverless/
https://aws.amazon.com/emr/serverless/
https://kubernetes.io/docs/concepts/storage/volumes
https://kubernetes.io/docs/concepts/storage/volumes
https://arxiv.org/abs/1812.03651
https://www.usenix.org/conference/atc18/presentation/klimovic-serverless
https://www.usenix.org/conference/atc18/presentation/klimovic-serverless
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://doi.org/10.1145/3357223.3362703

Aitor Arjona

Proceedings of the 16th ACM International Conference on Systems and
Storage (Haifa, Israel) (SYSTOR ’23). Association for Computing Ma-
chinery, New York, NY, USA, 8–21. https://doi.org/10.1145/3579370.
3594771

[19] Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang, Lucien Ngale,
Stéphane Pouget, Josiane Kouam, Renaud Lachaize, Jinho Hwang,
Tim Wood, Daniel Hagimont, Noël De Palma, Bernabé Batchakui,
and Alain Tchana. 2021. OFC: An Opportunistic Caching System for
FaaS Platforms. In Proceedings of the Sixteenth European Conference
on Computer Systems (Online Event, United Kingdom) (EuroSys ’21).
Association for Computing Machinery, New York, NY, USA, 228–244.
https://doi.org/10.1145/3447786.3456239

[20] Fred Raynal. [n. d.]. Kubernetes and HostPath, a Love-Hate Relation-
ship — blog.quarkslab.com. https://blog.quarkslab.com/kubernetes-
and-hostpath-a-love-hate-relationship.html. [Accessed 14-Jul-2023].

[21] Francisco Romero, Gohar Irfan Chaudhry, Íñigo Goiri, Pragna
Gopa, Paul Batum, Neeraja J. Yadwadkar, Rodrigo Fonseca, Chris-
tos Kozyrakis, and Ricardo Bianchini. 2021. Faa$T: A Transparent
Auto-Scaling Cache for Serverless Applications. In Proceedings of the
ACM Symposium on Cloud Computing (Seattle, WA, USA) (SoCC ’21).
Association for Computing Machinery, New York, NY, USA, 122–137.
https://doi.org/10.1145/3472883.3486974

[22] Simon Shillaker and Peter Pietzuch. 2020. Faasm: Lightweight Isolation
for Efficient Stateful Serverless Computing. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20). USENIX Association, 419–433.
https://www.usenix.org/conference/atc20/presentation/shillaker

[23] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann
Schleier-Smith, Joseph E. Gonzalez, Joseph M. Hellerstein, and Alexey
Tumanov. 2020. Cloudburst. Proceedings of the VLDB Endowment 13,
12 (aug 2020), 2438–2452. https://doi.org/10.14778/3407790.3407836

[24] W. Richard Stevens. 1998. UNIX Network Programming: Network-
ing APIs: Sockets and XTI; Volume 1 (hardcover ed.). Prentice Hall.
1009 pages. https://lead.to/amazon/com/?op=bt&la=en&cu=usd&
key=013490012X

[25] Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Radu Stoica, Bernard
Metzler, Nikolas Ioannou, and Ioannis Koltsidas. 2017. Crail: A High-
Performance I/O Architecture for Distributed Data Processing. IEEE
Data Eng. Bull. 40, 1 (2017), 38–49.

[26] Bharath Kumar Reddy Vangoor, Vasily Tarasov, and Erez Zadok. 2017.
To FUSE or Not to FUSE: Performance of User-Space File Systems. In
15th USENIX Conference on File and Storage Technologies (FAST 17).
USENIX Association, Santa Clara, CA, 59–72. https://www.usenix.
org/conference/fast17/technical-sessions/presentation/vangoor

[27] Product Evangelist Yifat Perry. [n. d.]. Kubernetes CSI: Ba-
sics of CSI Volumes and How to Build a CSI Driver — blu-
exp.netapp.com. https://bluexp.netapp.com/blog/cvo-blg-kubernetes-
csi-basics-of-csi-volumes-and-how-to-build-a-csi-driver. [Accessed
14-Jul-2023].

https://doi.org/10.1145/3579370.3594771
https://doi.org/10.1145/3579370.3594771
https://doi.org/10.1145/3447786.3456239
https://blog.quarkslab.com/kubernetes-and-hostpath-a-love-hate-relationship.html
https://blog.quarkslab.com/kubernetes-and-hostpath-a-love-hate-relationship.html
https://doi.org/10.1145/3472883.3486974
https://www.usenix.org/conference/atc20/presentation/shillaker
https://doi.org/10.14778/3407790.3407836
https://lead.to/amazon/com/?op=bt&la=en&cu=usd&key=013490012X
https://lead.to/amazon/com/?op=bt&la=en&cu=usd&key=013490012X
https://www.usenix.org/conference/fast17/technical-sessions/presentation/vangoor
https://www.usenix.org/conference/fast17/technical-sessions/presentation/vangoor
https://bluexp.netapp.com/blog/cvo-blg-kubernetes-csi-basics-of-csi-volumes-and-how-to-build-a-csi-driver
https://bluexp.netapp.com/blog/cvo-blg-kubernetes-csi-basics-of-csi-volumes-and-how-to-build-a-csi-driver

	Abstract
	1 Introduction
	2 Background and related work
	3 GEDS: Generic Ephemeral Data Store
	3.1 Improving GEDS to leverage node locality

	4 Sharing storage resources between Kubernetes Pods
	4.1 The ``infamous'' Host Path volume mounts
	4.2 Container Storage Interface
	4.3 Ephemeral storage performance
	4.4 Memory mapping files in shared volume mounts
	4.5 Sharing file descriptors
	4.6 Discussion on file system access and FUSE

	5 Conclusion
	Acknowledgments
	References

