R =T - T S B e

o

11

Validating JIT Compilers
via Compilation Space Exploration

Anonymous Author(s)

Abstract

We introduce compilation space exploration (CSE), a novel,
widely-applicable method for testing the just-in-time (JIT)
compilers of modern language virtual machines (VMs). Our
key insight is to systematically explore the large compilation
space of a JIT compiler and differentially test the resulting
JIT compilations of a program on a single VM. To create a
lightweight, VM-agnostic realization of CSE, we strategically
mutate test programs by leveraging JIT-relevant operations
(e.g., loops). We realize our technique in Artemis, a tool
for the Java virtual machine (JVM). Our evaluation using
Artemis has led to 85 bug reports for three widely-used pro-
duction JVMs, namely HotSpot, OpenJ9, and the Android
Runtime, of which 53 have already been confirmed or fixed.
All the reported bugs concern JIT compilers, and many are
critical, demonstrating the clear effectiveness and strong
practicability of our technique. We expect that the general-
ity and practicability of our approach will make it broadly
applicable for understanding and validating JIT compilers;
this work opens this promising direction.

Keywords: JIT compiler, JVM, virtual machines, testing

1 Introduction

Modern language virtual machines (VMs) such as the Java
virtual machine (JVM) and JavaScript engines are among the
most critical, widely-used system software ever written. In
VMs, a source program is commonly run either by interpret-
ing bytecode or by executing machine code, which is dynam-
ically compiled by just-in-time (JIT) compilers. Well-known
JIT compilers include HotSpot C1/C2, Graal, V8 Turbofan,
and Berkeley Packet Filter (BPF) JIT in the Linux kernel. The
JIT compiler, usually an optimizing compiler, is one of the
most complicated components in modern VMs. It improves
the runtime performance by exploiting a variety of analysis
and optimization techniques like global value numbering,
loop unrolling and vectorization, all of which are considered
intricate and error-prone [64]. This makes the JIT compiler
a primary source of bugs for modern VMs [43, 53, 61, 63].

In this paper, we refer to JIT compiler bugs as bugs that
do not manifest when JIT compilers are disabled (e.g., by
the -Xint option in HotSpot). Like other compiler bugs, for
instance C [29, 64], JIT compiler bugs can be generally classi-
fied into two categories, crashes and mis-compilations, where
the first causes the VM to crash during the compilation or
execution of the compiled machine code, and the second
compiles bytecode to incorrect machine code.

Recently, both industry and academia have invested sig-
nificant effort in testing VMs and achieved promising re-
sults [11, 12, 22, 41, 43, 48, 49, 68, 69]. However, due to their
inherent limitations, we still lack effective techniques to
specifically test JIT compilers. First, JIT compiler bugs are
typically deep while tests generated by existing techniques
are not designed to capture deep bugs—a large number of
the generated tests are syntactically invalid [12, 22, 41] or
semantically invalid [11, 69], leading to few tests capable of
exercising the deep JIT compiler. On the other hand, even
for tests that are able to exercise the JIT compiler, it cannot
be systematically tested since these tests fail to explore the
immense compilation space [43, 48, 49, 68]. Consequently,
most of the disclosed bugs are shallow and irrelevant to JIT
compilers, for example, early-stage parser or verifier bugs.

One mitigation to this problem might be the KEX' ap-
proach which involves executing a program twice: one with
the JIT compiler forced to compile every method right before
invoking them for the first time (e.g., by ~Xcomp in HotSpot),
and the other with the JIT compiler completely disabled (e.g.,
by -Xint in HotSpot) [28, 61]. This approach then compares
the final program outputs and reports a JIT compiler bug if
they differ. Due to its simplicity, KEX has been widely used
in both industry [1, 41] and academia [4]. However, as we
will discuss next, it is unable to explore the large compilation
space even with respect to a single program. Thus, it has
limited bug-finding capability.

Compilation space modulo VM. This paper introduces
compilation space modulo VM (compilation space for short),
a simple yet novel concept for testing VMs, especially their
JIT compilers. Assuming a simplified VM that does not sup-
port on-stack-replacement [16], de-optimization [23], and
background compilation, the compilation space of a program
with n method calls consists of O(2") likely JIT compilations
because, for each method call, the VM can either interpret the
method or opt for the JIT compiler and execute the machine
code. The key of the compilation space is that the program
outputs from running any JIT compilation are the same. It
should be noted that the compilation space is considered far
more complicated (i.e., containing far more JIT compilations)
in terms of a full-featured VM; we formalize this in Section 3.

In contrast, the KEX approach can only consider few com-
pilations, rather than the huge compilation space. Figure 1
depicts the compilation space of a simple Java program, as-
suming a simplified JVM as aforementioned. The program

IKEX is short for “constant times of execution” because some work executes
for a third time with all the default VM options.

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

Conference’17, July 2017, Washington, DC, USA

1class T {

2 void baz() {3}

5 void bar() { baz(); }

i void foo() { bar(); 3

5 public static void main(
String[] args) {

6 foo();

73

Q call bytecode
QO call machine code

5}

Anon.

start

call main()
call foo()
call bar()

call baz()

Figure 1. The compilation space (right) of a simple Java program (left), assuming a simplified JVM which does not support
on-stack-replacement, de-optimization, and background compilation. For each method call, the JVM can either interpret the
method or opt for the JIT compiler and execute the machine code after compilation.

consists of 4 method calls and thereby the space produces
16 likely compilations. KEX is capable of generating the left-
most (the 1st) and right-most (the 16th) compilations while
it cannot generate any of the others in between.

Compilation space exploration. This paper further pro-
poses to systematically explore the compilation space. The
basic idea is to guide the VM and the JIT compiler under
testing to compile different parts of a single program in order
to progressively explore all likely JIT compilations. Since the
program output from running each JIT compilation should
be the same, a JIT compiler bug will be reported if there are
any output deviations between any two JIT compilations.
Our high-level idea is to take a real-world program, execute
it for a sufficient number of times where each time we drive
the JIT compiler to partially compile a distinct code segment,
and ensure the program outputs are the same. We name this
Compilation Space Exploration (CSE).

An ideal realization of CSE is to feature a VM under test-
ing with the ability for on-demand JIT compilation, but this
requires substantial VM-specific manual effort. Instead, this
paper proposes “JIT-Op Neutral Mutation” (JoNM), a novel,
systematic strategy which can control the VM to make dif-
ferent decisions on when and how to JIT-compile which
code segment of a program, through simple source-level
program mutations rather than cumbersome VM-level VM
modifications. The crux is to leverage JIT-relevant operations
(JIT-ops) such as loops and method calls during program mu-
tation. In particular, given a language virtual machine VM and
a seed program P, JoNM derives a subset # of P’s mutants
by stochastically sampling a corpus of P’s methods to in-
sert, delete, or modify JIT-ops. JONM guarantees all mutants
P’ € P to be semantically equivalent to the seed program
P, and pinpoints a JIT compiler bug if one of their program
outputs diverges: AP’ € P.VM(P) # VM(P’).? Through JoNM,
we are able to steer the VM to deviate from one JIT compila-
tion to another and jump among different JIT compilations
in the space with flexibility, for instance, jumping from the

2Without loss of generality, this paper assumes that every test program
requires no program inputs. Therefore, we omit the input argument I of
the formula VM(P, I) throughout the whole paper.

1st to the 6th in Figure 1. Furthermore, considering JIT-ops
are generally similar among all VMs, a JoNM implemen-
tation is applicable to all implementations of a single VM
(e.g., HotSpot and OpenJ9 of JVM, V8 and SpiderMonkey of
JavaScript engines).

We have implemented JoNM for JVM in the Artemis
tool. It focuses on program mutations via two kinds of JIT-
ops: method calls and loops. Our evaluation on top of three
widely-used production JVMs, namely HotSpot, OpenJ9, and
the Android Runtime (ART), clearly shows Artemis’ effec-
tiveness. Specifically, we have filed a total of 85 bugs for
three tested JVMs, where 53 have been confirmed or fixed
as of 10 April 2023. It is worth mentioning that all our re-
ported bugs are JIT compiler bugs and many are critical: 12
OpenJ9 bugs are tagged as blocker, the most severe, release-
blocking type of bugs; 10 HotSpot bugs are marked as at
least P3, i.e., major loss of function; and 13 OpenJ9 bugs are
long latent across >4 major and many minor releases. Fur-
thermore, our reported bugs resulted from diverse errors in
various JIT compiler components (e.g., loop optimization and
code generation). We also received positive feedback from
both HotSpot and Open]9’s developers like ‘T noticed that
you filed quite a few bug reports for the JITs recently, thanks
a lot for that ...I’'m looking forward to learning more about
your research.”

Contributions. Overall, our contributions are as follows:

e We introduce the novel concept of Compilation Space
modulo VM, with the key that the program outputs
from running all JIT compilations within the space are
the same.

e We propose Compilation Space Exploration, a simple,
widely-applicable methodology for testing JIT compil-
ers, aiming to explore the compilation space system-
atically and discover JIT compiler bugs through JIT
compilation’s differential testing.

e We propose the JIT-Op Neutral Mutation strategy to
simulate CSE from the source-code level, a novel VM-
agnostic realization for CSE.

e We implement JoNM for JVM as the Artemis tool and
conduct an extensive evaluation that results in 85 bugs

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

Validating JIT Compilers via Compilation Space Exploration

for three widely-used production JVMs: HotSpot, Open]9,
and ART. We make Artemis, along with all the reported
bugs, publicly available via the following link to benefit
the community and facilitate future research:

https://anonymous.com/anonymous/anonymous

2 Illustrative Examples

This section presents the required background on JIT compil-
ers and a concrete HotSpot bug to motivate and illustrate CSE
as well as Artemis. The bug originates from a JavaFuzzer-
generated test [19] and manifests by Artemis’ mutations.

2.1 Background: JIT Compilers

JIT compilers are essential components of numerous criti-
cal system software like modern VMs, emulators [3], and
specialization [26, 39]. They aim to improve the runtime
performance by dynamic compilation and native execution,
while also providing fast start-up times through interpreta-
tion [9, 13, 27, 40]. To this end, the JIT compiler translates
bytecode into machine code on-the-fly, and the VM then exe-
cutes the compiled machine code directly on the underlying
hardware, rather than interpreting the bytecode. Neverthe-
less, the JIT compilation is not immediately activated upon
VM start-up. Instead, the VM profiles bytecode when in-
terpreting to spot and compile frequently interpreted code
segments, or “hot code”. In particular, the VM maintains a
counter for each method and control-flow back-edge (i.e., a
loop). It increments the counter whenever the corresponding
method is invoked or back-edge is executed. When a counter
reaches a predefined compilation threshold, the associated
hot code (method or loop) is queued for JIT compilation,
where the JIT compilation of hot loops is also known as OSR
(On-Stack Replacement) compilation since continuing the ex-
ecution of a method from the middle involves replacing the
active bytecode stack frame by a native stack frame [16].

Usually, the JIT compilation is leveled (or tiered) and pro-
ceeds progressively [24, 46]. That said, the hot code is likely
re-compiled or further optimized at a higher level as the
counter gets larger. Higher-level compilations are expected
to be more aggressive and produce more efficient machine
code at the cost of more compilation time.

In addition to compilation and optimization, there are
chances that the VM bails out to the interpreter from the
compiled machine code. This is because the JIT compilation
is often based on profiled, compile-time speculative, and op-
timistic assumptions; any violation against the assumptions
invalidates the compiled machine code, forcing the VM to
continue by re-interpreting bytecode. This process is typ-
ically termed de-optimization [23] and the circumstances
that can lead to de-optimization are called uncommon traps.
For example, JVM often de-virtualizes an invokevirtual
call to an invokedirect call when CHA (Class Hierarchy
Analysis) infers that there is exactly one implementation for

Conference’17, July 2017, Washington, DC, USA

1class T {

2 boolean z = false; byte 1 = 0;

3 void g() {

4 // (some omitted lines...)

5 for (int m : k) {

6 // (some omitted lines...)

7 switch ((m >>> 1) % 10 + 36) {

8 case 36:

9 for (int w = -2967; w < 4342; w += 4);
10 new PrintStream(new OutputStream() {
11 public void write(int b) {3}

12 s

13 1 += 2;

14 case 40: break;

15 case 41: k[1] = 9;

16 }

17 }

18 }

19 void o() { if (2) { return; } g(); 2
20 void p() {

21 for (int q = 2; g < 5; ++q) {

22 z = true;

23 for (int u = @; u < 9676; ut+)
24 00);

25 z = false;

26 o();

2 3

28 System.out.println(l);

29 }

30 public static void main(String[] q) {
31 Tt=new TO; t.pO; t.pO;

Figure 2. JDK-«xx triggers a mis-compilation in HotSpot.
JavaFuzzer generates the seed while Artemis inserts the
highlighted code snippets. Code shown in this example is a
cleaned-up version from a very large test program.

the invoked method inside JVM. However, JVM has to de-
optimize when this assumption is broken, i.e., a new imple-
mentation (e.g., a subclass) for the invoked method is loaded.
Other uncommon traps include violating the assumptions of
null-check, bounds-check, etc. De-optimization causes the
counter to be decremented.

Note that different VMs employ different static/dynamic
compilation thresholds/heuristics to increment/decrement
counters. This section provides only a high-level overview.

2.2 Illustrative HotSpot Example

Artemis detects JIT compiler bugs in the JVM by applying
JoNM (Section 1 and Section 3.3) to Java source programs
which we hereafter call seeds. Specifically, Artemis mutates
the seed program by synthesizing loops and inserting them
into the seed program. The synthesized loops are guaranteed
neutral so that they will not affect the semantics of the seed
program. As a result, Artemis’ mutations guide the JVM to
produce different JIT compilations when running the mu-
tants. By comparing the program outputs between a seed
program and its mutants, a JIT compiler bug can be spotted
if the outputs are different.

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

https://anonymous.com/anonymous/anonymous
https://bugs.openjdk.net/browse/

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

Conference’17, July 2017, Washington, DC, USA

HotSpot JDK-«++. Figure 2 presents a test that causes
HotSpot to mis-compile. It was detected at OpenJDK 11.0.15
(revision 915a327) but also affects JDK 17 and 20. In this
example, we used JavaFuzzer to generate the seed program
and Artemis to derive the mutant (highlighted). Since the
original test case is large and complex, we reduced it automat-
ically using Perses [57] and C-Reduce [52], and performed
further manual cleanup.

The seed keeps incrementing T.1 by 2 (Line 13) in a loop
(Line 5) and printing its value (Line 28). In this example,
all T’s methods are interpreted until the seed exits since no
compilation thresholds are reached. Upon receiving the seed,
Artemis attempts two kinds of mutations. First, it tries to
JIT-compile T.o() by pre-invoking it for 9676 times (Lines
23-24) before the actual method call at Line 26. Given that
directly invoking T.o() interferes with the semantics (i.e.,
resulting in different T.1), Artemis inserts an additional
control flag z and a piece of control prologue into T.o()
(highlighted, Line 19) so that it can return early while being
pre-invoked. Second, Artemis heats up T.g() by introduc-
ing a simple loop at Line 9. Such mutations, albeit simple,
notably influence how HotSpot executes the program:

e T.0() isfirst JIT-compiled by C1 at L3 level and then JIT-
compiled again by C2 at L4 level once it is hot enough.
After that, it is de-optimized when called at Line 26
because the JIT compiler assumes z == true.

e The loop at Line 9 is OSR-compiled by C2 at L4 level
supposing that w < 4342 and de-optimized when the
loop exits. T.g() is also JIT-compiled at L4 level.

Consequently, HotSpot mis-compiles the mutant and out-
puts a different T. 1 from the seed. The root cause is that the
Global Code Movement pass incorrectly moves a store (to
T.1) instruction from an outer loop to an inner loop because
their estimated frequencies are the same. However, in fact,
the inner loop executes three more iterations than the outer
loop. To fix this, the developers adjusted their frequency
estimation heuristics to prevent such illegal movements.

It is worth mentioning that this bug cannot be detected
simply by the KEX approach, as it requires the JIT compiler
to (1) partially compile some specific code segments and
(2) de-optimize. We provided another OpenJ9 bug in our
supplementary material to illustrate CSE and Artemis.

3 CSE and The Artemis Implementation

This section formalizes compilation space modulo VM (Sec-
tion 3.1) and CSE (Section 3.2), and explains how JoNM (Sec-
tion 3.3) and Artemis (Section 3.4) work.

3.1 Compilation Space modulo VM
A VM typically maintains a set of M + 1 counters C,,, = {c; |
0 <i < MAc; > 0} for a given method m with M back-edges.

3Lines 10-12 are part of our synthesized code that aims to make the mutation
neutral. Section 3.4 contains further details.

Anon.

These counters include the method counter, denoted by cq,
and the back-edge counters, denoted by ¢; through cys. To
facilitate multi-level compilation, a VM usually defines N
compilation thresholds Z, - - - , Zn, where 0 < Z; < Z;14 <
+00. These compilation thresholds divide the counter values
into N + 1 ranges: [Z;_1, Z;); without loss of generality, this
paper sets Zy = 0 and Zn41 = +00.

This paper measures the hotness of a counter and a method
by temperature. Specifically, a counter c is said to have tem-
perature 7(c) = t; ifand only if ¢ € [Z;,Z;11) A0 < i < N,
where the temperature 7(c) satisfies a total order, i.e., t; <
t;1 always holdsfor 0 < i < N — 1.

Definition 3.1 (Temperature). A method m’s temperature,
7(m), is determined by the maximal temperature of all its
counters Cy,:
(m) = max 7(c).
ceCy,

A method with temperature ty indicates that it is being
interpreted, while a method with temperature t;;o implies
that it is executing machine code, i.e., it has already” been
JIT- or OSR-compiled at the i-th compilation level.

A called method can be heated up by method calls and
loops, and cooled down by colorful uncommon traps; this
paper names them JIT-relevant operations (JIT-ops). The tem-
perature vector u’, of method m tells how its temperature
changes over time when it is called at the i-th time. The
temperature change is typically induced by various JIT-ops.
The temperature vector reflects how a VM compiles and de-
optimizes m when it is invoked for the i-th time. For example,
we can infer from u!, = (to, t1, to)., that: m is interpreted
when it is immediately called for the i-th time, but it is sub-
sequently heated up and compiled at level 1 through JIT
or OSR compilation; however, it is then de-optimized and
re-interpreted until this method call is completed.

A JIT compilation (JIT-comp) is a sequence of temperature
vectors. It is analogous to an annotated method call trace,
reflecting how a VM executes (interprets or compiles) a pro-
gram method call by method call. Note that every program
comes with a default JIT-comp for every VM; this is the one
generated when running the program with all default JIT
compiler-related options. The following shows an example
JIT-comp of a program with respect to OpenJ9:

¢ = <t0>1q.main - <t0>$_'r - <t0>$.f‘ - <t0>1q.b -

k k
i <t0>T,f - <t2>T_b -

211 211 0
R <t0>T.f - <t2>T.b - <t0>3ystem.out.println'

It tells that (1) the first k calls to T.b() enable itself to be
JIT-compiled at temperature t,, the warm compilation level
in OpenJ9, (2) all subsequent calls to T.b() directly execute
the compiled machine code, and (3) all other methods are
continuously interpreted until T.main() exits.

4Suppose background compilations are not supported or disabled.

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478

480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

Validating JIT Compilers via Compilation Space Exploration

Considering that a JIT compiler can compile, optimize, and
de-optimize a method at many theoretically” valid program
points beyond the method entry, executing a single program
with n method calls can generate Q(2") likely JIT-comps
with respect to a single VM.

Definition 3.2 (Compilation Space modulo VM). Given a
program P and a language virtual machine VM, all JIT-comps
that can be generated by VM with respect to program P con-
structs the compilation space of P modulo language virtual
machine VM:

Sw(P) ={p | WM(P,¢p) # L}

where VM(P, @) requires VM to generate the JIT-comp ¢ first
and then returns the program output after running program
P along with the JIT-comp ¢, or L if VM cannot generate ¢.

3.2 Compilation Space Exploration

The crux of the compilation space concept is that a VM
should always yield the same program output no matter
which JIT-comp ¢ € Syw(P) is generated when executing
program P. Therefore, a JIT compiler bug exists in VM when

3¢1a(p2. @1 € SVM(P)/\([JZ € SVM(P) e VM(P, (,01) * VM(P, (pz)

Our goal is to systematically explore the compilation space
of a real-world program and pinpoint JIT compiler bugs of
a VM by validating the program output of every legitimate
JIT-comps in the space. We name this Compilation Space
Exploration (CSE).

Possible realizations. An ideal realization of this goal is
to equip a VM with the ability of on-demand JIT compila-
tion. However, this requires considerable engineering effort
and is considered infeasible in practice because (1) practical
VMs are specially designed to allow JIT/OSR compilation
and de-optimization only at specific program points, which
makes some theoretically valid JIT-comps invalid, and (2)
the space for even a small program is vast, often difficult or
even impossible to compute due to implicit builtin library
method calls (e.g., a single System.out.println() call in-
volves dozens of builtin method calls). Another issue with
this realization is that the implementations are tightly bound
to specific VMs, thus not portable.

A practical realization is to fuzz the JIT compiler-related
options of a VM like JOpFuzzer [25], but (1) this needs sub-
stantial expertise and manual work to understand every JIT
compiler option in order to generate valid JIT-comps, and
(2) the space exploration capability is largely constrained
by the number and effects of VM options. In addition, the
understanding of one VM’s options cannot be used by other
VMs, which renders this realization not portable. We experi-
mented with this realization by randomly choosing compi-
lation thresholds for every test program, but our one-week
’Some program points are considered valid for JIT/OSR compilation and

de-optimization, while may be forbidden by a practical VM for some specific
considerations like performance.

Conference’17, July 2017, Washington, DC, USA

effort did not lead to any interesting findings. Our experi-
ences also tell us that compiler developers are not willing
to fix bugs resulting from rarely used VM options. These
motivated us to look for a new CSE realization.

3.3 JIT-Op Neutral Mutation

In this paper, we present a novel strategy called “JIT-Op
Neutral Mutation” (JoNM) which attempts to simulate CSE
from the source-code level with the help of JIT-ops, while
being lightweight, VM-agnostic, and practical for any VM
(JVM, JavaScript engines, etc.).

We leverage the feature that VMs intensively rely on JIT-
ops for JIT compilation and de-optimization. Specifically,
VMs require method calls and loops to enable JIT compilation
and uncommon traps to de-optimize. Our insight is that
controlling the use of JIT-ops can help guide the VM and
the JIT compiler under testing to JIT/OSR-compile or de-
optimize distinct code segments of a single seed program.
We rely on the mutations to steer a VM to deviate from
one JIT-comp to another and explore the whole compilation
space progressively as more mutants are generated.

In particular, given a seed program P, JoNM derives a sub-
set P of P’s mutants by stochastically sampling a corpus of
P’s methods to insert, delete, or modify JIT-ops (i.e., method
calls, loops, and uncommon traps), while guaranteeing the
mutations neutral to P’s semantics. That said, every gener-
ated mutant P’ € P is expected to (1) produce a different
JIT-comp from P (by JIT/OSR-compiling a distinct code seg-
ment or de-optimizing at a distinct program point), and (2)
preserve the same program output as P’s. In this way, the sys-
tematic exploration of P’s compilation space modulo VM can
be simulated by running a sufficient number of P’s mutants.
Hence, a JIT compiler bug exists in VM if

3P’. P’ € P — VM(P) # WM(P').

For simplicity, we omit the JIT-comp argument and directly
use VM(P) when executing P by requiring VM to generate the
default JIT-comp.

Versus other realizations, JONM has several advantages:

o Lightweight and simple: JONM simulates CSE at the
source level, thus requiring negligible manual effort
to understand VMs and no modifications to the VMs.

o VM-agnostic and widely-applicable: Since JIT-ops are
typically similar among all implementations of the same
type of VMs (e.g., HotSpot and OpenJ9 for JVM, V8 and
SpiderMonkey for JavaScript engines), a single JoNM
implementation can be used to test the same types of
VM implementations (e.g., all JVM implementations).

o Practical: Since JoNM can generate tests based on either
real-world programs or programs generated by program
generators, therefore (1) any found bug is likely to im-
pact real-world users/vendors, and (2) it can empower
any given program generator with the ability of testing
JIT compilers.

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

Conference’17, July 2017, Washington, DC, USA

Anon.

Algorithm 1: The Artemis procedure for testing JIT

Algorithm 2: Loop synthesis for JoNM

1 procedure Test(VirtualMachine VM, Program P)
2 R <« VM(P) // Run P with P’s default JIT-comp
3 fori « 1...MAX_ITER do

4 P’ « JoNM(P)

5 R’ < VM(P’) // Run P’ with P"’s default JIT-comp
6 if R # R then // Discrepancies imply bugs
7 ‘ ReportJITCompilerBug(P’)

s function JoNM(Program P)

9 P’ —P

10 foreach Method m € P’ .Methods() do
1 if FlipCoin() then

12 ¢ < Random mutator from LI, SW, and MI

13 p < Random program point within method m
14 L « SynLoop(¢, p)

15 P’ « ¢.Mutate(P’,m,p,L)

1 return P’

3.4 The Artemis Implementation

We implemented JoNM for finding JVM’s JIT compiler bugs
as Artemis which focuses mainly on synthesizing neutral
loops using two kinds of JIT-ops: method calls and loops.
Algorithm 1 describes Artemis’ main process. For each
seed P, Artemis attempts to mutate it (Line 4) and run the
mutant P’ with its default JIT-comp (Line 5) for MAX_ITER
times (Line 3). Since the mutations are neutral, it reports
a bug once there is an output discrepancy between P and
one of its mutants (Lines 6—7). JoONM works on P’’s exclusive
methods (methods defined and overriden in P’). In particular,
it stochastically (Line 11) selects a corpus of P”’s exclusive
methods (Line 10) and mutates through three predefined
mutators (Line 12), i.e., Loop Inserter (LI), Statement Wrapper
(SW), and Method Invocator (MI), at an arbitrary program point
p (Line 13), with the help of a synthesized loop L which
could heat up m to a higher temperature at program point p
(Line 14). Finally, the synthesized loop L would be inserted
into the program point p by the selected mutator ¢ (Line 15).

Loop synthesis. SynLoop (Algorithm 2) follows the para-
digm of programming-by-sketch to synthesize L, i.e., syn-
thesizing programs by filling holes left in a predefined skele-
ton [55, 67]. In this paper, we design three types of holes
for a loop skeleton: expression holes (<expr>), statement holes
(<stmts>), and placeholders (<placeholder:*>), where the first
would be filled by a Java expression and the others by Java
statements. Figure 3 presents the loop skeleton of every pre-
defined mutator. We equip each skeleton’s loop header with
customizable MIN, MAX, and STEP to ensure triggering differ-
ent JIT/OSR compilation levels on different JVMs.

Given a mutator ¢ and a program point p, SynLoop synthe-
sizes aloop L by filling ¢’s loop skeleton leveraging variables
V that are available at p. In particular, it first synthesizes
an expression for each <expr> and a statement list for each

1 function SynLoop(Mutator ¢, ProgPoint p)
2 L « ¢.loop_skeleton

// Initialized as the skeleton

3 V p.Variables() // Variable set available at p

4 V' <0 // Saving reused variables in synthesis
5 foreach ExprHole h € L.expr_holes do

6 ‘ L « Substitute(L, i, SynExpr(#,V,V’))

7 foreach StmtsHole h € L.stmts_holes do

8 | L« Substitute(L, A, SynStmts(n,V, V"))

9 foreach Variablev € V/ do

10 ‘ L « Backup v; L; Restore v;

11 return L

12 function SynExpr(ExprHole Ii, VarSetV, VarSet V')

13 T = GetType(h)

14 if T is a primitive-alike type then

/* Rule 1: return a random value with the primitive
alike type T within the type T’s domain range. x/

/* Rule 2: return a random variable v € V with the
type T; meanwhile expand V' by V' « {0} UV’'. %/

15 else if T is an array type then

/* Rule: create an array with dimension T.dimen and
random size; let each array element as an

expression hole typed T.comp_type and fill them by

SynExpr; return the created array finally. */
16 else if T has a non-parameter constructor then
Y ‘ return T()
18 else
19 ‘ return null
2 function SynStmts(StmtsHole h, VarSetV, VarSet V')
21 S « Random statement skeleton
2 foreach ExprHole i € S.expr_holes do
5 | S« Substitute(S, A, SynExpr(h,V,V’))
24 return S

<stmts>, respectively, then substitutes L’s holes with the corre-
sponding, synthesized code (Lines 5-8). Note, it does not fill
<placeholder:#>s; they are left to the corresponding mutator
(i.e., by ¢.Mutate). It also backups the value of every reused
variable in both syntheses by a set V' (Line 4) and restores
their values afterward (Lines 9-10) because the synthesized
code may update reused variables in V.

Expression synthesis. SynExpr synthesizes an expression
concerning the hole 7’s type T (Line 13):

o For primitive-like types including boxed and unboxed [47]
primitive types and String, SynExpr either (1) gener-
ates a random value with type T or (2) reuses an existing
T-typed variable v € V. In the latter case, it also saves
the reused variable v to V’.

o For array types, SynExpr first creates an array instance
with component type T.comp_type, dimension T.dimen,
and random size for each dimension. It then fills the
array by regarding each array element as an expression
hole with type T.comp_type and recursively invokes

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649

651
652
653
654
655
656
657
658

660

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715

Validating JIT Compilers via Compilation Space Exploration

1 for (int i=min(MIN,<expr>); i<max (MAX,<expr>); i+=STEP) {
2 <stmts>;
5} // LI.loop_skeleton

5 boolean exec = false;
6 for (int i=min(MIN,<expr>); i<max (MAX,<expr>); i+=STEP) {

7 <stmts>;

8 if (lexec) { <placeholder:stmt>; exec = true; }

9 <stmts>;

10} // SW.loop_skeleton

12 for (int i=min (MIN,<expr>); i<max (MAX,<expr>); i+=STEP) {

13 <stmts>;
14 P.m_ctrl = true; <placeholder:method>; P.m_ctrl = false;
15 <stmts>;
16} // MI.loop_skeleton

Figure 3. Loop skeletons of LI, SW, and MI. Symbols <expr>s
and <stmts>s are expression and statement holes that should
be synthesized when synthesizing loops, respectively; yet
<placeholder:>s are placeholders that should be substituted
when the corresponding mutator is making mutations.
Hyper-parameters MIN, MAX, and STEP are customizable.

SynExpr to synthesize an expression for each element.
Finally, it returns the array.

e For reference types, SynExpr always creates a new ob-
ject if there is a non-parameter constructor. Otherwise,
a null is returned. Artemis does not reuse reference
variables since access to their fields or methods is likely
to update their values implicitly.

Statement synthesis. Instead of generating statements from
scratch, Artemis collects a corpus of statement skeletons
from HotSpot, OpenJ9, and ART’s test suites, by following
existing practices in VM testing [20]. Each statement skele-
ton is a sequence of consecutive Java statements with <expr>
holes only. SynStmts then randomly picks a statement skele-
ton (Line 21) and fuses an expression for each expression
hole inside it (Lines 22-23).

In JoNM, <stmts> and statement skeletons are not a must.
However, the synthesized loop L becomes far more diverse
in terms of the control- and data-flow because of them. This
makes L capable of triggering varied optimization passes in
JIT compilers of the tested JVM. Together with V’, this also
prevents L from being optimized away by the compiler.

Mutator’s mutation. The synthesized loop L is finalized
and P’ is mutated by three mutators: Loop Inserter (LI),
Statement Wrapper (SW), and Method Invocator (MI).

Loop Inserter. LI.1oop_skeleton does not contain any <place
holder:*>, so it directly inserts L into program point p. Con-
sequently, the loop would heat up m to be OSR-compiled at
some compilation levels. Depending on the JVM, this may
also bring an extra de-optimization when the loop exits.

Statement Wrapper. SW firstly replaces <placeholder:stmt>
with the statement s right after p, then removes s from
P’, and finally inserts L at p. As a result, the statement s

Conference’17, July 2017, Washington, DC, USA

is wrapped by the synthesized loop, and the control- and
data-flow at p are greatly affected. To avoid changing the se-
mantics, SW guarantees the wrapped statement s is executed
only once by introducing a control flag exec (Figure 3, SW,
Line 5). Like LI, SW can bring OSR compilations (and perhaps
de-optimizations).

Method Invocator. MI is designed to trigger JIT compilation
in addition to OSR compilation. Specifically, MI first replaces
<placeholder:method> (Figure 3, MI, Line 14) by a synthesized
method call to m using SynExpr and the following skeleton
(<expr>s are m’s arguments)

m(<expr>, <expr>, ...);

Next, from all method calls to m in P’, MI selects a random
one and inserts the finalized L right before it. Such insertion
drives JVM to JIT-compile m before the selected call.

Yet, introducing additional method calls to m may change
the semantics. To avoid this, MI synthesizes another piece of
code using SynStmts, SynExpr, and the following skeleton

if (P.m_ctrl) { <stmts>; return <expr>; }

and inserts the synthesized code as the very first statement
of m. The above skeleton involves a control variable m_ctrl
which is introduced as a new class field. In L, P.m_ctrl is set
to true before calling m and set back to false afterward (Fig-
ure 3, MI, Line 14). Thus, running L causes the synthesized
code to be executed only once and m always early returns
without executing any other statements.

Figure 2 provides a concrete example for MI. In this exam-
ple, the method m is T.o(); the highlighted code at Lines 22—
25 is our synthesized loop L which pre-calls T.o() for 9676
times; and the method call o() at Line 26 is our picked call.
To preserve the semantics, a control variable z is introduced
to class T at Line 2 and set to true before pre-calling T.o().
During pre-calls, our synthesized code highlighted at Line 19
is executed and early-returns, leaving other statements of
T.0() unexecuted. Later, T.z is set to false such that our
picked call can execute as normal.

Other considerations. The performed mutations so far are
not completely neutral because the collected statement skele-
tons may have unexpected behaviors like throwing excep-
tions. Thus, all three mutators—after their aforementioned
mutator-specific mutations—apply the following three muta-
tions as their final step: (1) rename every variable in L with
a new name to avoid name conflict, (2) replace System.out
and System.err by a PrintStream that prints nothing (e.g.,
Figure 2, Lines 10-12) before executing L, and restore their
values afterward to avoid unexpected output, and (3) catch
and discard every exception likely to be thrown by L.

Implementation details. We have implemented Artemis
in ~3,000 lines of Java and ~2,000 lines of Python. It relies
on the Spoon framework [50] to parse the Java source code
as well as for enabling skeleton definition and instantiation
capabilities. We also extracted a total of 7,823 statement

716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770

771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825

Conference’17, July 2017, Washington, DC, USA

skeletons by parsing HotSpot, OpenJ9, and ART’s existing
test suites, following existing practices in VM testing [20].

4 FEvaluation

This section describes the evaluation of our approach by
applying Artemis to validate three widely-used production
JVMs: HotSpot, Open]9, and ART. Highlights of our results
as of 10 April 2023 are as follows:

e Many detected bugs: We have reported 85 bugs, of
which 53 have been confirmed or fixed by the corre-
sponding developers. The 85 bugs affect all the three
tested JVMs with at least 16 bugs for each VM.

e All JIT compiler bugs: All our reported bugs mani-
fest themselves only when JIT compilers are enabled;
otherwise, these bugs disappear.

e Many serious bugs: Many of the reported bugs are
critical, blocking the development of the next release
or being long-latent across several major releases.

We believe that (1) the high quantity and quality of our re-
ported bugs have demonstrated the clear effectiveness of our
approach in finding JIT compiler bugs, and (2) at least 16 bugs
per JVM shows the general applicability of our approach.

4.1 Testing Setup

JVMs and versions. Our evaluation focused on three widely-
used production JVMs: HotSpot, OpenJ9, and ART. We chose
HotSpot and OpenJ9 based on their popularity by following
existing work [11, 12, 69]. ART was selected as our subject
because of its tremendous user base [14]. The open-source
nature, openness, and activeness of their bug systems also
help us track bugs, discussions, and fixes. For HotSpot and
OpenJ9, we chose JDK 8, 11, and 17 to test because they are
long-term supported (LTS). ART is excluded from choos-
ing JDK versions because it does not support class bytecode
directly.(’ For each selected JVM, we built its latest trunk ver-
sion at the time of testing, and tested it with (1) background
compilation (if supported) disabled and (2) 1GiB Java heap
memory. We did not test the latest stable releases since their
bug fixes are only available in subsequent stable releases.
Such a long time gap as well as the concurrency from back-
ground compilation hinder us from distinguishing whether
a newly detected bug duplicates an existing one. Finally, our
testing mainly focused on the x86_64 Linux platform.

Seed programs. We used JavaFuzzer [19], a random Java
program generator, to generate seed programs for Artemis
because JavaFuzzer-generated programs are generally com-
plex, providing rich opportunities for Artemis to mutate.
Moreover, our experience tells us that JavaFuzzer-generated
code can be effectively reduced by combining Perses [57] and
C-Reduce [52]. However, it should be noted that Artemis
is agnostic to seed programs, which means Artemis can be

SART natively supports dex bytecode transpiled from class bytecode.

Anon.

Table 1. Statistics of reported JIT compiler bugs.

HotSpot Open]J9 ART Total

Reported 32 37 16 85
Numbers of reported JIT compiler bugs

Duplicate 8 5 2 15
Confirmed 22 19 12 53
Fixed 4 12 10 26

Types of reported JIT compiler bugs

Mis-comp. 1 9 8 18
Crash 30 28 8 66
Performance 1 0 0 1

incorporated with other Java program generators or even
real-world programs. We did not use them in our evaluation
mainly because it typically takes a long time to reduce the
tests generated by them.

Synthesis parameters. Our experience suggests that eight
mutants appear to strike a good cost/effectiveness balance
for exploring the compilation spaces of the seed programs
generated by JavaFuzzer; thereby in our evaluation, we set
MAX_ITER to 8 to simulate exploring eight JIT-comps for
each seed program. Since different JVMs define different
default compilation thresholds, to ensure JIT and OSR com-
pilations, MIN and MAX are set accordingly: 5,000 and 10,000
in HotSpot/Open]9 while 20,000 and 50,000 in ART. We let
Artemis pick a random STEP ranging from 1 to 10 when
synthesizing loops.

4.2 Quantitative Results

Numbers of bugs. We have filed in total 85 bugs for the
three tested JVMs, including 32 in HotSpot, 37 in OpenJ9, and
16 in ART. The first half of Table 1 presents the current status
of the reported cases. As of 10 April 2023, 53 of them have al-
ready been confirmed and 26 have been fixed. We recognize
a reported bug as “Confirmed” if the corresponding VM de-
velopers can reproduce the bug in their settings. Otherwise,
we leave them in the “Reported” category regardless whether
we have a complete crashing log for reproduction and diag-
nosis. Although we ensured that all reported bugs behave
with different symptoms (e.g., stacktraces), two bugs for ART
and five for Open]9 still stem from the same root causes as
some bugs that we had reported previously; we also reported
eight unique HotSpot bugs duplicating those reported by
other developers or users, showing that Artemis can find
bugs that common users actually encounter in development.
We categorized all these as “Duplicate”.

Type of bugs. The reported JIT compiler bugs can be cate-
gorized into the following types:

Mis-compilation. JIT compiler incorrectly compiles the pro-
gram, which incurs a semantic disagreement between byte-
code and machine code, i.e., running them yields different

826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923

925
926
927
928
929
930
931
932
933
934
935

Validating JIT Compilers via Compilation Space Exploration

program outputs. This is likely due to (1) bytecode compila-
tion, (2) upper-level optimization, or (3) de-optimization.

Crash. JVM crashes either when compiling the code or when
executing the compiled machine code. The symptoms are
various, e.g., segmentation faults or assertion failures.

Performance issue. Executing the compiled machine code
causes JVM to be obviously slower than interperting the
bytecode. This is typically user-perceivable and there are
chances that the JVM process is finally killed by the under-
lying operating system.

The second half of Table 1 classifies our reported bugs into
these three categories. More than 20% are mis-compilations,
the most interesting and hard-to-detect bugs [4]. We found
only one performance bug in which the HotSpot process
running the test is killed on Ubuntu while it runs noticeably
slow on Windows. Even though we have detected many
mis-compilations on both Open]9 and ART, HotSpot is an
exception possibly because HotSpot, as the most prevalent
JVM, is much more mature than other JVMs.

Importance of bugs. It is worth mentioning that all the re-
ported bugs are JIT compiler bugs that are otherwise hidden
by the bytecode interpreter if JIT compilers are disabled.

In addition, quite a few of the bugs are deemed serious.
In particular, 12 out of the 37 Open]9 bugs were tagged as
blocker, the most severe, release-blocking type of bugs;
we also detected 10 out of the 32 HotSpot bugs marked as
>P3 (major loss of function); there have been 13 long latent
OpenJ9 bugs across >4 major and many minor releases, es-
caping the testing campaigns by earlier and contemporary
tools. The developers were surprised by the effectiveness
of our testing effort and even asked “Do you think there are
going to be many more?”

Furthermore, we received very positive feedback from the
respective VM developers:

e HotSpot developers are looking forward to our research:
“T'm #++ from the HotSpot Compiler Team at Oracle and I
noticed that you filed quite a few bug reports for the JITs
recently, thanks a lot for that! ...Is there anything you
could share with us? ...I'm looking forward to learning
more about your research ...”

e Open]9 developers even invited us to make further con-
tributions with friendly support: “I'm not sure how you
are finding these problems. ... @+ is interested in having
you open a Pull Request to deliver the test cases ... We'd
try to make it easy so you don’t need to be concerned
much about test frameworks ...~

Affected JIT compiler components. Bugs we have re-
ported are diverse, affecting various JIT compiler compo-
nents as shown in Table 2. Because it is difficult to recognize
which components are affected for mis-compilations and per-
formance issues (if not-yet fixed), we only consider crashes.

Conference’17, July 2017, Washington, DC, USA

Table 2. Affected JIT compiler components by reported JIT
compiler crashes in HotSpot and OpenJ9. Columns “#” are the
number of JIT compiler crashes affecting the corresponding
component. “Code Execution” represents that the crashes
happen when JVMs are executing the compiled machine
code. “Other JIT Components” includes JIT-INT interaction,
synchronization, etc. “Garbage Collection” indicates that the
JIT compiler triggers a crash in the garbage collector.

HotSpot Component # | Open]9 Component #

Inlining, C1 1
Ideal Graph Building, C2 4
Ideal Loop Optimizat., C2 10
Global Constant Prop., C2 1
Global Value Number., C2 5
Escape Analysis, C2 1
Register Allocation, C2 2

3

3

Local Value Propa. 1
Global Value Propa. 2
Loop Vectorization 1
De-optimization 1
Register Allocation 1
Code Generation 2
Recompilation [45] 1
Other JIT Compone. 6
Garbage Collection 13

Code Generation, C2
Code Execution, C2

We also exclude JVMs having fewer than 10 crashes because
their results are not considered reliable.

HotSpot. The 30 crashes affect 8 C1/C2 components, where
most are of C2. This is reasonable because C2 is considered
far more complicated than C1 with more aggressive opti-
mizations. 29 out of the 32 crashes happen when C1 or C2 is
compiling and the other three (i.e., column “Code Execution”)
happen when executing the compiled code. Specifically, the
most affected component is ideal loop optimization, followed
by global value numbering and ideal graph building.

Openj9. The affected components of Open]9 are different
from HotSpot. Specifically, the 28 crashes affect >8 JIT com-
piler components, where 26 of them happen when OpenJ9’s
JIT compiler is compiling the code, and the other two happen
when executing the compiled code. To our surprise, most
crashes occur inside the garbage collector. We discussed
these crashes with Open]9’s developers and learned that
these are indeed JIT compiler bugs because it is the JIT com-
piler that corrupts the heap memory, causing the garbage
collector to crash. Furthermore, if these heap memory corrup-
tions are mishandled, they can result in serious exploitable
security vulnerabilities [15], suggesting that JIT compiler
bugs pose a significant threat as they can impact various VM
components beyond the JIT compiler itself. For JIT compiler
components, the most affected are global value propagation
and code generation.

Mutation cost. Given a seed program, the cost of Artemis
to generate a single mutant is low. On average, it took ~1.65
seconds for Artemis to complete both (syntax and semantic)
source parsing and loop synthesis, where the former cost
~0.67 seconds and the latter ~0.88 seconds. In a setting of
large-scale JVM fuzzing, where Artemis and its dependent
skeleton engine Spoon [50] are booted only once but drived

937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045

Conference’17, July 2017, Washington, DC, USA

Table 3. Mutation cost of Artemis in seconds. Row “Single-
run” refers to the cost of generating a single mutant via
Artemis. Row “Large-scale” is the cost when Artemis is
booted only once but generates a magnitude of mutants.

Mean Median Min Max

1.65
0.16

1.68
0.16

0.76
0.06

2.01
2.19

Single-run
Large-scale

to generate numerous mutants for quantities of seed pro-
grams, the mutation cost is negligible: it took only ~157
milliseconds to mutate a seed program on average. Table 3
shows more statistics, in which the relatively large cost “2.19”
occurs only at the very first mutation (when being booted).

4.3 Comparative Study and Throughput

To further investigate the effectiveness of our approach, we
conducted a comparative study with KEX to show the power
of exploring more JIT-comps. We also collected relevant
statistics and measured the throughput of Artemis.

In this study, we reused the synthesis parameters men-
tioned in Section 4.1 and chose Open]9 (JDK 11, revision
4ca209b5) as the test target. We used JavaFuzzer as the seed
generator. For each seed, we first ran it once with its default
JIT-comp in OpenJ9. Next, we ran it again by forcing every
method to be JIT-compiled before their first invocations by
the -Xjit:count=0 Open]9 option. In this section, we call
the JIT-comp generated in this manner “forced-JIT JIT-comp”.
Then, we mutated the seed 8 times using Artemis and ran
each mutant with their default JIT-comps. Finally, we com-
pared the program outputs and counted the number of seed
programs leading to output discrepancies.

We conducted the study on an AMD server with a Ryzen
Threadripper 3990X 64-core processor for 7 days. To demon-
strate that Artemis works well even on commodity ma-
chines, we enabled 16 of the 64 cores. During this process,
we discarded seed programs or mutants that cannot finish
within 2 minutes. Table 4 presents the results.

Results. During 7 days, Artemis drived JavaFuzzer to gener-
ate 42,559 seeds and mutated them for 340,472 times. Among
these seeds, Artemis successfully steered 154 to trigger dis-
crepancies, where 89.6% (138) cannot be triggered simply
by comparing the default JIT-comp with the forced-JIT one.
There are 5 seeds for which Artemis was unable to trigger
any difference within 8 mutants. We inspected them in de-
tail and found that they involve JIT/OSR compilations of
builtin method calls, which is beyond the current capability
of Artemis. We will discuss this further in Section 4.5.

Throughput. In this process, Artemis invoked OpenJ9
>383,031 times, with a throughput of >0.63 OpenJ9 invoca-
tions per second. That being said, Artemis can test a pro-
gram in ~15s (including 9 source-bytecode compilations and

10

Anon.

Table 4. Comparative study between CSE and KEX. The
first two columns read the number of seeds and mutants
generated. Columns “CSE” and “KEX” list the number of seed
programs for which the corresponding approach can spot
output discrepancies. Column “Both” is the number of seed
programs that both approach can find output discrepancies.

#Seeds #Mutants CSE KEX Both

42,559 340,472 154 21 16

10 Open]J9 invocations). Most CPU time is spent on source-
bytecode compilation and executing the synthesized loops.
Considering that (1) Artemis relies mainly on loops due
to which the mutant often takes long (typically dozens of
seconds) to finish, and (2) we only enabled 16 cores during
evaluation, we believe that this throughput is practical.

4.4 More Examples

Artemis is fruitful in finding diverse bugs such as segmenta-
tion faults (SIGSEGV), fatal arithmetic error (SIGFPE), emer-
gency abort (SIGABRT), assertion failures, mis-compilations,
and performance issues. We have discussed a small selec-
tion to highlight the diversity in our supplementary material.
Readers are also encouraged to visit Artemis’ website for a
complete reference to each reported JIT compiler bug.

4.5 Discussions

Design choices. In this paper, we chose to realize CSE via
a semantics-preserving, black-box strategy called JONM.

Semantics-preserving. Although a non-semantics-preserving
strategy may help reveal more crash bugs, it not only is inca-
pable of detecting mis-compilation bugs—which are deemed
more difficult, important, and harmful [4]—but also intro-
duces a huge mutation space that is more difficult to system-
atically sample. In contrast, a semantics-preserving strategy
like JONM helps construct a tractable mutation space, capture
mis-compilation bugs, and also find many crash bugs.

Black-box. Versus white-box realizations, black-box ones
like ours are in general simpler and more portable, helping
quickly expose JIT compiler bugs in any VM. On the other
hand, it would be fruitful to integrate white-box techniques
(e.g., guiding mutation by profiling data) for more effective
realizations of CSE, which we consider as interesting and
promising future work.

Capabilities and limitations. In theory, CSE aims to sys-
tematically explore the compilation space of every real-world
program and validate their program outputs. In practice,
JoNM simulates the systematic space exploration by tak-
ing into consideration the portability issue and trade-offs
between the size of a program and its compilation space.
Artemis has confirmed its effectiveness, usefulness, and
broad applicability by finding many serious JIT compiler

1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100

1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155

Validating JIT Compilers via Compilation Space Exploration

bugs in every tested production JVM (Section 4.2) with prac-
tical throughput (Section 4.3).

Currently, Artemis only focuses on mutating the exclu-
sive methods of a program; this may miss some JIT compiler
bugs caused by builtin methods. Further, albeit acceptable,
relying on loops limits the throughput of space exploration.
A simple workaround is to set smaller JIT compilation thresh-
olds and smaller MAX in testing. However, we decide to adopt
the default thresholds as the discovered issues this way affect
users more commonly and our one-week effort using this
workaround did not yield anything interesting. A possible
reason could be that this workaround increases the number
of methods to be JIT-compiled, which considerably reduces
the compilation space. As a comparison, our one-week effort
using the default thresholds led to more than 154 discrep-
ancies (Section 4.3). Considering our very positive results,
we expect to find many additional serious JIT compiler bugs
when running a larger, more extensive testing campaign
(e.g., using more time and cores). Finally, Artemis does not
currently support concurrency and floating point. These are
generally deemed difficult challenges in compiler testing and
expected to be addressed with finer-grained approaches [36].

Future work. CSE enables several promising opportuni-
ties for future work. First, it would be interesting to devise
additional effective and efficient mutations to mitigate the
issues that Artemis currently faces. Specifically, the key is to
find (1) mutations that can help improve throughput, and (2)
general uncommon traps that can take effect in as many VMs
as possible. Second, JoNM applies a stochastic sampling over
all possible program points. Future work could explore other
mutation strategies capable of finding interesting program
points that are more likely to trigger diverse optimizations.
This may help expose JIT compiler bugs in early mutations,
accelerating the testing process. Third, integrating white-
box techniques and expressive loop idioms [36, 63] into loop
synthesis is also promising to explore. Finally, it would be
interesting to extend our work to validate other VMs such
as JavaScript engines. This is promising because CSE and
JoNM have offered a general, high-level methodology, and
Artemis has been shown effective in finding many critical
JIT compiler bugs in three widely-used production JVMs.

5 Related Work

This work on JIT compiler testing lies at the intersection
of VM testing and compiler testing. Thanks to the impor-
tance of VMs and compilers, both industry and academia
have invested substantial effort to improve their quality. This
section surveys the most relevant related work.

Testing JVMs. JVM testing is the most relevant thread of
work; Table 5 shows a summary.

Sirer et al. proposed a program generator for Java byte-
code following a production grammar [54]; JavaFuzzer [19]
and JFuzz [1] are two grammar-based random Java source

11

Conference’17, July 2017, Washington, DC, USA

generators; dexfuzz generates new bytecode tests by stochas-
tically mutating existing seed programs in a domain-aware
manner [28]; classfuzz leverages code coverage to guide byte-
code mutation and generation [12]; classming focuses on
smashing the control- and data-flow of the live bytecode
area by inserting control-flow altering bytecode sequences
(e.g., goto, throw) into seed programs [11]; JavaTailor ex-
tracts five types of code ingredients from historical bug-
revealing programs and synthesizes mutants by inserting
them to seed programs [69]; JAttack derives new tests by
executing human-written skeletons and dynamically filling
skeleton holes [68]. These techniques, working at either the
bytecode or source level, rely on differential testing over
different JVMs to detect JVM bugs. In contrast, our approach
differs in several aspects. First, our work introduces a novel
metamorphic testing [10] approach: CSE explores the whole
compilation space and differentially tests any two JIT-comps
of a single program and a single VM. Second, JoNM sim-
ulates this by differentially testing a seed program and its
mutant inside a single VM. Third, our approach specifically
targets JIT compiler(s) in JVM, and JoNM is specially de-
signed around JIT-relevant operations, i.e., loops, method
calls, and uncommon traps.

There has been work on specifically testing JVM’s JIT
compilers. Yoshikawa et al. designed a random program
generator [66]. They test the JIT compiler by directly AOT-
compiling (ahead-of-time) the generated program using the
JIT compiler under test, running the compiled machine code
natively, and comparing the program outputs with several
Java runtimes running bytecode. The tool dexfuzz applies
the same comparison in their evaluation using different JVM
backends [28]. These efforts belong to the KEX family which
compares the results of only a constant number of classical
JIT-comps. However, CSE aims to explore the whole compila-
tion space systematically. JITfuzz fuzzed JIT compiler guided
by coverage and optimization-activating mutators [63]. JOp-
Fuzzer explored and tested JIT compiler-related options [25].
Versus Artemis, both tools require substantial expertise and
human effort for understanding different JVMs. Furthermore,
JITfuzz is incapable of uncovering mis-compilations without
differential testing and JOpFuzzer is limited to the number
and functionality of exposed JIT compiler options. Neverthe-
less, these efforts are orthogonal to ours and are promising
to be integrated into CSE.

Finally, work on other JVM aspects such as side channels
of JIT compilation [5, 6], type systems [7, 8], garbage col-
lections [44, 58], and JVM performance [33, 34] were also
proposed recently. These have distinct scopes from our work.

Testing other VMs. Other VMs such as JavaScript engines
are heavily tested for quality assurance via generative [2,
18, 20, 22, 41, 48, 59, 65] or mutational [2, 21, 49, 60] fuzzing
techniques and deep learning techniques [31, 65]. There has
been work on testing other VMs such as BPF [42, 43, 62],

1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210

1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265

Conference’17, July 2017, Washington, DC, USA

Anon.

Table 5. The most closely related work to ours on JVM testing. “# Reported Bugs”: the number of bugs (if any) that the
corresponding work listed in their paper; “Syntactical-Valid”: whether the generated tests are syntactically valid; for mutation-
based work (of which “Test Generation” is marked “M”), “Semantic-Preserving”: whether their mutations preserve the seed’s
semantics; “JIT-Specific Testing”: whether the work specifically aims at JIT compilers; and “Systematic Exploration”: whether
the work can systematically explore the compilation space modulo the VM under testing.

g
=]
£ w 3
- i =] =
" 5] s g 5 9
® § E £ 2 7 B
M 5 L = = SR
T 5 = 2 2 8 & g
£ 5 & B £ & § E Towhatextendcan
s 8 O £ = § T & E
2 & - - T £ & 9 2 generated tests finally
5§ & 3 % 8 E 5 & % ;
> % B B B & @ B & reach the JIT compiler?
Sirer et al. [54] DSL ’99 - G B D v X X Occasionally reach
Yoshikawa et al. [66] QSIC '03 - G B D v - v % Relies on AOT compilation
o JavaFuzzer [19] - - G S D v - X X Occasionally reach
E JFuzz [1] - - G S D v - X X Occasionally reach
a0 dexfuzz [28] VEE ’15 - G B D v - v %X Relies on AOT compilation
;§ classfuzz [12] PLDI'16 62 M B D X X X X Occasionally reach
& classming [11] ICSE’19 14 M B D X X X X Occasionally reach
= JavaTailor [69] ICSE’22 10 M B D Vv X X x Depends on ingredients
=3 JAttack [68] ASE "22 6 G S D v - X X Depends on templates
2 JITfuzz [63] ICSE’23 36 M S D Vv x v X Depends on seeds and mutators
;ﬁ JOpFuzzer [25] ICSE23 41 M S P V v VX Dependson VM options
~ Artemis - 8 M s P V V V V Reachbydesign

G: generation-based; M: mutation-based; B: . class bytecode; S: . java source-code;
D: differential testing: over multiple VMs (or compilers), i.e., requiring other VMs as references;
P: metamorphic testing: on the single VM under testing, not requiring any other VM.

Ethereum [17], and Pharo VM [51]. Among them, the most
related are JIT-Picker [4], Fuzz]IT [61], and Jitterbug [43]. JIT-
Picker uncovers JIT compiler bugs of JavaScript engines by
differentially testing their interpreter and JIT compiler’s fine-
grained internal state (i.e., intermediate values of variables at
specific program points) using KEX. FuzzJIT wraps existing
code with a loop template to trigger JIT compilation. Albeit
similar to LI, Fuzz]JIT is specific to the loop template and
unaware of the existence of the large compilation space.
Jitterbug applies formal methods to model JIT correctness
and verify BPF JITs. However, they target JITs implemented
as static (AOT) compilers in a restricted environment like the
Linux kernel. All efforts on VM testing have found many bugs
in popular VMs such as V8 and BPF. It would be promising
to extend Artemis to other VMs like JavaScript engines and
BPF VMs by leveraging CSE for validating the JIT compilers.

Testing compilers. More research has concentrated on
compilers. Program generators like Csmith [64] and YARP-
Gen (35, 36] can produce random C programs. SPE applies
skeletal program enumeration to generate C programs [67].
Alive [38] and Alive2 [37] attempt to validate optimizations.

Another popular technique is EMI (Equivalence Modulo
Input), a practical and effective idea that tests compilers by
differential testing between a seed program and its EMI vari-
ants and has found thousands of bugs in GCC and LLVM [29].
Practical testing tools based on EMI exploit either the dead
or live code region to derive EMI variants. Specifically, Orion
randomly prunes the dead code from a seed program [29];
Athena enforces Markov Chain Monte Carlo (MCMC) to

12

guide dead code deletion [30]; and Hermes inserts semantic-
preserving code into the live area [56]. CLSmith adapts EMI
to OpenCL [32].

Concepturally, JONM belongs to the family of EMI tech-
niques, especially live-code mutation. However, our muta-
tions are fundamentally different from all proposed EMI
work. First, JONM aims to simulate CSE whose goal is to sys-
tematically explore the compilation space modulo the VM
under testing. Second, our mutations are applied on VM’s (op-
timizing) dynamic JIT compilers instead of static compilers,
where the former heavily interacts with the corresponding
VM at runtime. Finally, our mutations are specially designed
around JIT-ops which can trigger JIT/OSR compilation or
de-optimization at runtime; this cannot be achieved by any
EMI mutations proposed by far.

6 Conclusion

We have presented the novel concept of compilation space
modulo VM and an effective method CSE for detecting JIT
compiler bugs in modern VMs. We proposed JoNM to simu-
late CSE, a lightweight, VM-agnostic, and practical strategy
leveraging JIT-ops for semantics-preserving mutations. We
implemented the strategy as Artemis specifically for JVM,
and our evaluation has led to 85 JIT compiler bugs on three
widely-used production JVMs: HotSpot, OpenJ9, and ART.
We believe that the generality of CSE and JoNM likely make
them applicable and effective in other VMs such as validating
the JIT compilers of JavaScript engines. This work introduces
and opens this promising line of exploration.

1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320

1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375

Validating JIT Compilers via Compilation Space Exploration

References

(1]
(2]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

ART. 2018. JFuzz. https://android.googlesource.com/platform/art/+/
refs/heads/master/tools/jfuzz

Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick
Jauernig, Ahmad-Reza Sadeghi, and Daniel Teuchert. 2019. NAUTILUS:
Fishing for Deep Bugs with Grammars. In Proceedings of the 2019 ISOC
Network and Distributed System Security Symposium (NDSS ’19).
Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator.
In Proceedings of the 2005 USENILX Annual Technical Conference (ATC
05).

Lukas Bernhard, Tobias Scharnowski, Moritz Schloegel, Tim Blazytko,
and Thorsten Holz. 2022. Jit-Picking: Differential Fuzzing of JavaScript
Engines. In Proceedings of the 2022 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS 22).

Tegan Brennan, Nicolas Rosner, and Tevfik Bultan. 2020. JIT Leaks:
Inducing Timing Side Channels through Just-In-Time Compilation. In
Proceedings of the 2020 IEEE Symposium on Security and Privacy (SP
20).

Tegan Brennan, Seemanta Saha, and Tevfik Bultan. 2020. JVM Fuzzing
for JIT-Induced Side-Channel Detection. In Proceedings of the 2020
ACM/IEEE International Conference on Software Engineering (ICSE "20).
Stefanos Chaliasos, Thodoris Sotiropoulos, Georgios-Petros Drosos,
Charalambos Mitropoulos, Dimitris Mitropoulos, and Diomidis Spinel-
lis. 2021. Well-Typed Programs Can Go Wrong: A Study of Typing-
Related Bugs in JVM Compilers. Proc. ACM Program. Lang. 5, OOPSLA
(2021).

Stefanos Chaliasos, Thodoris Sotiropoulos, Diomidis Spinellis, Arthur
Gervais, Benjamin Livshits, and Dimitris Mitropoulos. 2022. Find-
ing Typing Compiler Bugs. In Proceedings of the 2022 ACM SIGPLAN
International Conference on Programming Language Design and Imple-
mentation (PLDI "22).

Craig David Chambers and David Michael Ungar. 1989. Customiza-
tion: Optimizing Compiler Technology for SELF, a Dynamically-Typed
Object-Oriented Programming Language. In Proceedings of the 1989
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI °89).

Tsong Yueh Chen, Shing Chi Cheung, and Shiu Ming Yiu. 1998. Meta-
morphic testing: a new approach for generating next test cases. De-
partment of Computer Science, The Hong Kong University of Science and
Technology, Tech. Rep. HKUST-CS98-01 (1998).

Yuting Chen, Ting Su, and Zhendong Su. 2019. Deep Differential Test-
ing of JVM Implementations. In Proceedings of the 2019 International
Conference on Software Engineering (ICSE ’19).

Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao.
2016. Coverage-Directed Differential Testing of JVM Implementations.
In Proceedings of the 2016 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’16).

Timothy Cramer, Richard Friedman, Terrence Miller, David Seberger,
Robert Wilson, and Mario Wolczko. 1997. Compiling Java Just in Time.
IEEE Micro 17, 3 (1997).

David Curry. 2022. Android Statistics (2022).
businessofapps.com/data/android-statistics

CVE. 2023. Security Vulnerabilities (Memory Corruption).
https://www.cvedetails.com/vulnerability-list/opmemc-1/memory-
corruption.html

Stephen J. Fink and Feng Qian. 2003. Design, Implementation and
Evaluation of Adaptive Recompilation with on-Stack Replacement. In
Proceedings of the 2003 International Symposium on Code Generation
and Optimization: Feedback-Directed and Runtime Optimization (CGO
03).

Ying Fu, Meng Ren, Fuchen Ma, Heyuan Shi, Xin Yang, Yu Jiang,
Huizhong Li, and Xiang Shi. 2019. EVMFuzzer: Detect EVM Vulnera-
bilities via Fuzz Testing. In Proceedings of the 2019 ACM Joint Meeting
on European Software Engineering Conference and Symposium on the

https://www.

13

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Conference’17, July 2017, Washington, DC, USA

Foundations of Software Engineering (ESEC/FSE ’19).

Samuel Grof8. 2018. FuzzIL: Coverage Guided Fuzzing for JavaScript
Engines. Master’s thesis. Karlsruhe Institute of Technology.
Mohammad R. Haghighat, Dmitry Khukhro, Andrey Yakovlev, Nina
Rinskaya, and Ivan Popov. 2018. JavaFuzzer. https://github.com/
AzulSystems/JavaFuzzer

HyungSeok Han, DongHyeon Oh, and Sang Cha. 2019. CodeAl-
chemist: Semantics-Aware Code Generation to Find Vulnerabilities
in JavaScript Engines. In Proceedings of the 2019 ISOC Network and
Distributed System Security Symposium (NDSS ’19).

Xiaoyu He, Xiaofei Xie, Yuekang Li, Jianwen Sun, Feng Li, Wei Zou,
Yang Liu, Lei Yu, Jianhua Zhou, Wenchang Shi, and Wei Huo. 2021.
SoFi: Reflection-Augmented Fuzzing for JavaScript Engines. In Pro-
ceedings of the 2021 ACM SIGSAC Conference on Computer and Com-
munications Security (CCS ’21).

Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with
Code Fragments. In Proceedings of the 2012 USENIX Conference on
Security Symposium (Security ’12).

Urs Holzle, Craig Chambers, and David Ungar. 1992. Debugging
Optimized Code with Dynamic Deoptimization. In Proceedings of the
1992 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’92).

HotSpot. 2022. Tiered Compilation. https://github.com/
openjdk/jdk11u-dev/blob/master/src/hotspot/share/runtime/
tieredThresholdPolicy.hpp

Haoxiang Jia, Ming Wen, Zifan Xie, Xiaochen Guo, Rongxin Wu,
Maolin Sun, Kang Chen, and Hai Jin. 2023. Detecting JVM JIT Compiler
Bugs via Exploring Two-Dimensional Input Spaces. In Proceedings of
the 2023 International Conference on Software Engineering (ICSE °23).
Konstantinos Kallas, Tammam Mustafa, Jan Bielak, Dimitris Karnikis,
Thurston HY. Dang, Michael Greenberg, and Nikos Vasilakis. 2022.
Practically Correct, Just-in-Time Shell Script Parallelization. In Pro-
ceedings of the 2022 USENIX Symposium on Operating Systems Design
and Implementation (OSDI ’22).

Alexey Khrabrov, Marius Pirvu, Vijay Sundaresan, and Eyal de Lara.
2022. JITServer: Disaggregated Caching JIT Compiler for the JVM
in the Cloud. In Proceedings of the 2022 USENLX Annual Technical
Conference (ATC ’22).

Stephen Kyle, Hugh Leather, Bjorn Franke, Dave Butcher, and Stu-
art Monteith. 2015. Application of Domain-Aware Binary Fuzzing
to Aid Android Virtual Machine Testing. In Proceedings of the 2015
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE ’15).

Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler Valida-
tion via Equivalence modulo Inputs. In Proceedings of the 2014 ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI ’14).

Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding Deep Com-
piler Bugs via Guided Stochastic Program Mutation. In Proceedings of
the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA ’15).
Suyoung Lee, HyungSeok Han, Sang Kil Cha, and Sooel Son. 2020.
Montage: A Neural Network Language Model-Guided JavaScript En-
gine Fuzzer. In Proceedings of the 2020 USENIX Security Symposium
(Security °20).

Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F.
Donaldson. 2015. Many-Core Compiler Fuzzing. In Proceedings of the
2015 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’15).

David Lion, Adrian Chiu, Michael Stumm, and Ding Yuan. 2022. Inves-
tigating Managed Language Runtime Performance: Why JavaScript
and Python are 8x and 29x slower than C++, yet Java and Go can be
Faster?. In Proceedings of the 2022 USENIX Annual Technical Conference
(ATC °22).

1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430

https://android.googlesource.com/platform/art/+/refs/heads/master/tools/jfuzz
https://android.googlesource.com/platform/art/+/refs/heads/master/tools/jfuzz
https://www.businessofapps.com/data/android-statistics
https://www.businessofapps.com/data/android-statistics
https://www.cvedetails.com/vulnerability-list/opmemc-1/memory-corruption.html
https://www.cvedetails.com/vulnerability-list/opmemc-1/memory-corruption.html
https://github.com/AzulSystems/JavaFuzzer
https://github.com/AzulSystems/JavaFuzzer
https://github.com/openjdk/jdk11u-dev/blob/master/src/hotspot/share/runtime/tieredThresholdPolicy.hpp
https://github.com/openjdk/jdk11u-dev/blob/master/src/hotspot/share/runtime/tieredThresholdPolicy.hpp
https://github.com/openjdk/jdk11u-dev/blob/master/src/hotspot/share/runtime/tieredThresholdPolicy.hpp

1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485

Conference’17, July 2017, Washington, DC, USA

(34]

(35

—

(36

—

(37]

(39]

(40]
[41]

[42]

[43]

(4]

(45

[’

[46

—

(47]

[48

[

(51]

(52]

David Lion, Adrian Chiu, Hailong Sun, Xin Zhuang, Nikola Grcevski,
and Ding Yuan. 2016. Don’t Get Caught in the Cold, Warm-up Your
JVM: Understand and Eliminate JVM Warm-up Overhead in Data-
Parallel Systems. In Proceedings of the 2016 USENLX Symposium on
Operating Systems Design and Implementation (OSDI ’16).

Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2020. Random
Testing for C and C++ Compilers with YARPGen. Proc. ACM Program.
Lang. 4, OOPSLA (2020).

Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2023. Fuzzing
Loop Optimizations in Compilers for C++ and Data-Parallel Languages.
Proc. ACM Program. Lang. PLDI (2023).

Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and
John Regehr. 2021. Alive2: Bounded Translation Validation for LLVM.
In Proceedings of the 2021 ACM SIGPLAN International Conference on
Programming Language Design and Implementation (PLDI "21).

Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John
Regehr. 2015. Provably Correct Peephole Optimizations with Alive.
In Proceedings of the 2015 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’15).

Henry Massalin and Calton Pu. 1989. Threads and Input/Output in
the Synthesis Kernal. In Proceedings of the 1989 ACM Symposium on
Operating Systems Principles (SOSP ’89).

John McCarthy. 1960. Recursive Functions of Symbolic Expressions
and Their Computation by Machine, Part I. Commun. ACM 3, 4 (1960).
MorzillaSecurity. 2016. funfuzz. https://github.com/MozillaSecurity/
funfuzz

Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina
Torlak, and Xi Wang. 2019. Scaling Symbolic Evaluation for Automated
Verification of Systems Code with Serval. In Proceedings of the 2019
ACM Symposium on Operating Systems Principles (SOSP ’19).

Luke Nelson, Jacob Van Geffen, Emina Torlak, and Xi Wang. 2020.
Specification and verification in the field: Applying formal methods
to BPF just-in-time compilers in the Linux kernel. In Proceedings of
the 2020 USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI "20).

Khanh Nguyen, Lu Fang, Guoqing Xu, Brian Demsky, Shan Lu,
Sanazsadat Alamian, and Onur Mutlu. 2016. Yak: A High-Performance
Big-Data-Friendly Garbage Collector. In Proceedings of the 2016
USENIX Conference on Operating Systems Design and Implementation
(OSDI ’16).

OpenJ9. 2020. Recompilation. https://github.com/eclipse-openj9/
openj9/blob/master/doc/compiler/runtime/Recompilation.md
Open]J9. 2022. Optimization Levels. https://www.eclipse.org/openj9/
docs/jit

Oracle. 2023. Autoboxing. https://docs.oracle.com/javase/8/docs/
technotes/guides/language/autoboxing.html

Jihyeok Park, Seungmin An, Dongjun Youn, Gyeongwon Kim, and
Sukyoung Ryu. 2021. JEST: N+1-Version Differential Testing of
Both JavaScript Engines and Specification. In Proceedings of the 2021
IEEE/ACM International Conference on Software Engineering (ICSE °21).
Soyeon Park, Wen Xu, Insu Yun, Daehee Jang, and Taesoo Kim. 2020.
Fuzzing JavaScript Engines with Aspect-preserving Mutation. In Pro-
ceedings of the 2020 IEEE Symposium on Security and Privacy (SP °20).
Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera,
and Lionel Seinturier. 2015. Spoon: A Library for Implementing Anal-
yses and Transformations of Java Source Code. Software: Practice and
Experience 46 (2015).

Guillermo Polito, Stéphane Ducasse, and Pablo Tesone. 2022.
Interpreter-Guided Differential JIT Compiler Unit Testing. In Pro-
ceedings of the 2022 ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation (PLDI "22).

John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and
Xuejun Yang. 2012. Test-Case Reduction for C Compiler Bugs. In
Proceedings of the 2012 ACM SIGPLAN Conference on Programming

14

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Anon.

Language Design and Implementation (PLDI ’12).

Chris Rohlf and Yan Ivnitskiy. 2011. Attacking Clientside JIT compilers.
Black Hat USA (2011).

Emin Giin Sirer and Brian N. Bershad. 2000. Using Production Gram-
mars in Software Testing. In Proceedings of the 1999 Conference on
Domain-Specific Languages (DSL ’99).

Armando Solar-Lezama. 2008. Program Synthesis by Sketching. Ph.D.
Dissertation. Advisor(s) Bodik, Rastislav.

Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding Compiler
Bugs via Live Code Mutation. In Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 16).

Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong
Su. 2018. Perses: Syntax-Guided Program Reduction. In Proceedings of
the 2018 International Conference on Software Engineering (ICSE ’18).
Chenxi Wang, Haoran Ma, Shi Liu, Yifan Qiao, Jonathan Eyolfson,
Christian Navasca, Shan Lu, and Guoqing Harry Xu. 2022. Mem-
Liner: Lining up Tracing and Application for a Far-Memory-Friendly
Runtime. In Proceedings of the 2022 USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’22).

Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2017. Skyfire: Data-
Driven Seed Generation for Fuzzing. In Proceedings of the 2017 IEEE
Symposium on Security and Privacy (SP ’17).

Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2019. Superion:
Grammar-Aware Greybox Fuzzing. In Proceedings of the 2019 Interna-
tional Conference on Software Engineering (ICSE °19).

Junjie Wang, Zhiyi Zhang, Shuang Liu, Xiaoning Du, and Junjie Chen.
2023. FuzzJIT: Oracle-Enhanced Fuzzing for JavaScript Engine JIT
Compiler. In Proceedings of the 2023 USENIX Security Symposium (Se-
curity °23).

Xi Wang, David Lazar, Nickolai Zeldovich, Adam Chlipala, and
Zachary Tatlock. 2014. Jitk: A Trustworthy in-Kernel Interpreter
Infrastructure. In Proceedings of the 2014 USENLX Conference on Oper-
ating Systems Design and Implementation (OSDI ’14).

Mingyuan Wu, Minghai Lu, Heming Cui, Junjie Chen, Yuqun Zhang,
and Lingming Zhang. 2023. JITfuzz: Coverage-guided Fuzzing for
JVM Just-in-Time Compilers. In Proceedings of the 2023 International
Conference on Software Engineering (ICSE °23).

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Find-
ing and Understanding Bugs in C Compilers. In Proceedings of the
2011 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’11).

Guixin Ye, Zhanyong Tang, Shin Hwei Tan, Songfang Huang, Dingyi
Fang, Xiaoyang Sun, Lizhong Bian, Haibo Wang, and Zheng Wang.
2021. Automated Conformance Testing for JavaScript Engines via
Deep Compiler Fuzzing. In Proceedings of the 2021 ACM SIGPLAN
International Conference on Programming Language Design and Imple-
mentation (PLDI "21).

Takahide Yoshikawa, Kouya Shimura, and Toshihiro Ozawa. 2003.
Random Program Generator for Java JIT Compiler Test System. In
Proceedings of the 2003 International Conference on Quality Software
(QSIC °03).

Qirun Zhang, Chengnian Sun, and Zhendong Su. 2017. Skeletal Pro-
gram Enumeration for Rigorous Compiler Testing. In Proceedings of
the 2017 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’17).

Zhiqiang Zhang, Nathan Wiatrek, Milos Gligoric, and August Shi.
2022. Compiler Testing via Template Java Programs. In Proceedings of
the 2022 International Conference on Automated Software Engineering
(ASE °22).

Yingquan Zhao, Zan Wang, Junjie Chen, Mengdi Liu, Mingyuan Wu,
Yuqun Zhang, and Lingming Zhang. 2022. History-Driven Test Pro-
gram Synthesis for JVM Testing. In Proceedings of the 2022 International
Conference on Software Engineering (ICSE 22).

1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540

https://github.com/MozillaSecurity/funfuzz
https://github.com/MozillaSecurity/funfuzz
https://github.com/eclipse-openj9/openj9/blob/master/doc/compiler/runtime/Recompilation.md
https://github.com/eclipse-openj9/openj9/blob/master/doc/compiler/runtime/Recompilation.md
https://www.eclipse.org/openj9/docs/jit
https://www.eclipse.org/openj9/docs/jit
https://docs.oracle.com/javase/8/docs/technotes/guides/language/autoboxing.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/autoboxing.html

	Abstract
	1 Introduction
	2 Illustrative Examples
	2.1 Background: JIT Compilers
	2.2 Illustrative HotSpot Example

	3 CSE and The Artemis Implementation
	3.1 Compilation Space modulo VM
	3.2 Compilation Space Exploration
	3.3 JIT-Op Neutral Mutation
	3.4 The Artemis Implementation

	4 Evaluation
	4.1 Testing Setup
	4.2 Quantitative Results
	4.3 Comparative Study and Throughput
	4.4 More Examples
	4.5 Discussions

	5 Related Work
	6 Conclusion
	References

