
University	
 of	
 Trier	
 Software Engineering Group

Performance Debugging Study

University	
 of	
 Trier	
 Software Engineering Group

Performance Debugging Study

The goal of this study is to find out how software developers understand
and fix performance bugs in an unknown project with the help of a profiling
tool and sketching. The study is carried out in three phases:

1.   Introduction to our profiling tool and the underlying sampling approach
2.   Pair programming debugging session with four "real world"

performance bugs
3.   Questionnaire

The whole study will be video and audio recorded. During the first two
phases, we encourage the participants to think aloud and to sketch while
understanding and fixing the bugs.

2

University	
 of	
 Trier	
 Software Engineering Group

Thinking Aloud

3

Video Introduction

University	
 of	
 Trier	
 Software Engineering Group

Introduction to the Sampling Approach

University	
 of	
 Trier	
 Software Engineering Group

Introduction to the Sampling Approach

8

Video Introduction

University	
 of	
 Trier	
 Software Engineering Group

IDE Integration

Our tool integrates the sampling results in-situ in the source code editor of the IntelliJ Java IDE.
The following slides explain the visualizations and how to use the tool.

To enable the profiling for the next run of the program, just click on the corresponding button in the
toolbar:

9

Turn	
 on	
 profiling	
 with	
 a	
 click	
 on	
 the	
 hourglass	

If	
 profiling	
 is	
 ac9vated,	
 the	

background	
 of	
 the	
 hourglass	

turns	
 green	

University	
 of	
 Trier	
 Software Engineering Group

Basic In-situ Visualization for Methods

10

Method	
 9me	

Method‘s	
 callers	
 Method‘s	
 callees	

Self	
 9me	
 (hatched	
 part)	

Threads	

A	
 callee	
 (consuming	
 60,18	
 %	

of	
 the	
 method	
 9me)	

University	
 of	
 Trier	
 Software Engineering Group

Color Scale

11

Low	
 run9me	
 High	
 run9me	

Run9me	
 increases	

Color	
 becomes	
 warmer	

The	
 color	
 of	
 the	
 visualiza9on	
 depends	
 on	
 the	
 methods	
 run9me	

University	
 of	
 Trier	
 Software Engineering Group

Examples

12

Beck	
 et	
 al.,	
 „In	
 situ	
 understanding	
 performance	
 boQlenecks	
 through	
 visually	
 augmented	
 code,	
 “	

In	
 ICPC	
 ’13,	
 May	
 2013,	
 pp.	
 63-­‐72	

University	
 of	
 Trier	
 Software Engineering Group

Popup Window – Runtime Tab

13

Click	
 on	
 the	
 visualiza1on	
 to	
 open	
 a	
 popup	
 window	

The	
 run9me	
 tab	
 shows	
 a	
 list	
 of	
 callers	
 and	
 callees	
 	

(doesn‘t	
 have	
 to	
 	
 be	
 all	
 callers	
 and	
 callees	
 one	
 can	
 see	
 in	
 the	
 code	
 since	
 it	
 shows	
 the	
 result	
 of	
 a	
 sampling)	

Determines	
 the	
 width	
 of	
 the	
 hatched	
 part	

University	
 of	
 Trier	
 Software Engineering Group

Popup Window – Runtime Tab – Navigation

14

Navigate	
 to	
 a	
 caller/callee	
 method	
 with	

a	
 click	
 on	
 its	
 name.	

If	
 you	
 just	
 navigated	
 to	
 a	
 method	

through	
 a	
 click	
 on	
 a	
 callee	
 you	
 can	

go	
 back	
 where	
 you	
 came	
 from	
 with	

a	
 click	
 on	
 the	
 corresponding	
 caller	

within	
 the	
 Run9me	
 tab	
 of	
 the	

current	
 method.	
 Or	
 you	
 use	
 the	

IntelliJ	
 build	
 in	
 naviga9on	
 tool.	

University	
 of	
 Trier	
 Software Engineering Group

Popup Window – Threads Tab

15

The	
 threads	
 tab	
 shows	
 all	
 threads	
 execu1ng	
 this	
 method,	
 grouped	
 by	
 type	
 (color)	

University	
 of	
 Trier	
 Software Engineering Group

Visualization for Classes

16

A	
 class	
 can	
 have	
 run9me	
 as	
 well.	

The	
 class	
 run1me	
 tells	
 in	
 what	

percentage	
 of	
 the	
 whole	
 run9me	

arbitrary	
 methods	
 of	
 that	
 class	
 were	

ac9ve.	
 Its	
 self	
 9me	
 determines	
 in	

what	
 percentage	
 methods	
 of	
 that	

class	
 were	
 execu9ng	
 instruc9ons	

themselves	
 (analogous	
 to	
 method	

self	
 9me).	

The	
 callers	
 and	
 callees	
 of	
 a	
 class	
 are	

also	
 classes.	
 Thus	
 the	
 callers	
 of	
 a	

class	
 are	
 all	
 classes	
 of	
 which	
 a	

method	
 called	
 a	
 method	
 from	
 the	

current	
 class.	
 And	
 the	
 callees	
 of	
 a	

class	
 are	
 all	
 classes	
 of	
 which	
 a	

method	
 was	
 called	
 from	
 a	
 method	
 of	

the	
 current	
 class.	

The	
 class	
 visualiza9on	
 works	
 analogous	
 to	
 a	
 method	
 visualiza9on.	

University	
 of	
 Trier	
 Software Engineering Group

The Callee Tooltip

17

With	
 a	
 c l i ck	
 on	
 the	
 ca l lee	

visualiza9on,	
 a	
 text	
 occurs	
 showing	

the	
 name	
 of	
 the	
 callee(s)	
 to	
 which	

the	
 visualiza9on	
 belongs.	

Navigate	
 to	
 a	
 called	
 method	

with	
 a	
 click	
 on	
 its	
 name	

within	
 the	
 callee	
 tool9p.	

University	
 of	
 Trier	
 Software Engineering Group

Overview

18

Open	
 the	
 overview	

with	
 a	
 click	
 on	
 the	

the	
 corresponding	

tool	
 buQon	
 you	
 can	

find	
 on	
 the	
 right	

b o r d e r	
 o f	
 t h e	

IntelliJ	
 window.	

University	
 of	
 Trier	
 Software Engineering Group

Overview

19

Switch	
 to	
 this	
 tab	
 to	
 show	
 the	
 run9me	
 list	
 aggregated	
 for	
 classes	

Apply	
 filters	

Navigate	
 to	
 a	
 method	
 or	

class	
 through	
 a	
 click	
 on	

its	
 name	
 in	
 the	
 overview.	
 	

University	
 of	
 Trier	
 Software Engineering Group

Hands-on Example

University	
 of	
 Trier	
 Software Engineering Group

Introductory Tasks

Open project "Study Introduction Project" in IntelliJ:

1.  Open the file SearchTreePerformanceTest.java
2.  Activate the profiling tool and run the project using run configuration

“SearchTreePerformanceTest”.
3.  Briefly tell what the performance test actually tests and describe in what context it will run (e.g.

data structure, variables, input, methods, measurements, comments, …)
4.  Which two methods consume the most runtime within the main method of the class

SearchTreePerformanceTest ?
5.  Try to follow the callees of the methods found in Task 4 till you end up in a method which has

no callee. What observations did you make?
6.  Why is the self time of the methods you ended up in Task 5 so high in the context of the

performance test? You may sketch while finding the answer.
7.  Explain how the method buildTree works with the help of the profiling visualization. Why is

this method faster than just inserting every single node?
8.  Try to explain the runtime difference for the performance test at hand.

21

University	
 of	
 Trier	
 Software Engineering Group

Debugging Session

University	
 of	
 Trier	
 Software Engineering Group

Performance Bug 1

Open project "Apache Commons Collections" in IntelliJ and open file
"PerformanceTest_01.java” of the package “performancetests”.
To use the profiling tool, please select run configuration “PerformanceTest_01”.

1.  Switch driver and navigator.
2.  Look at the given performance test and try to understand the difference between

the two test cases.
3.  Verify the performance bug in the method retainAll with the help of the profiling

tool and try to understand it.
4.  Propose a solution/fix for the bug. Please create a sketch describing the problem

and your solution.
5.  Implement your bug fix.
6.  Verify your fix using the profiling tool.

23

University	
 of	
 Trier	
 Software Engineering Group

Questions - Tool

1.  What information from the profiling tool or other parts of the IDE
was required to understand the performance bug?

2.  Do you think that the in-situ visualization of the profiling data was
beneficial compared to a list representation?

24

University	
 of	
 Trier	
 Software Engineering Group

Questions - Sketches

1.  What information from the profiling tool or other parts of the IDE
were important for creating your sketches?

2.  How would you characterize the purpose and value of your

sketches made during the debugging session?

3.  Do you think that your sketch could help to explain the

performance bug to someone else?

25

University	
 of	
 Trier	
 Software Engineering Group

Performance Bug 2

Open project "Apache Commons Collections" in IntelliJ and open file
"PerformanceTest_02.java” of the package “performancetests”.
To use the profiling tool, please select run configuration “PerformanceTest_02”.

1.  Switch driver and navigator.
2.  Look at the given performance test and try to understand the difference between

the two test cases.
3.  Verify the performance bug in the method retainAll with the help of the profiling

tool and try to understand it.
4.  Propose a solution/fix for the bug. Please create a sketch describing the problem

and your solution.
5.  Implement your bug fix.
6.  Verify your fix using the profiling tool.

26

University	
 of	
 Trier	
 Software Engineering Group

Questions - Tool

1.  What information from the profiling tool or other parts of the IDE
was required to understand the performance bug?

2.  Do you think that the in-situ visualization of the profiling data was
beneficial compared to a list representation?

27

University	
 of	
 Trier	
 Software Engineering Group

Questions - Sketches

1.  What information from the profiling tool or other parts of the IDE
were important for creating your sketches?

2.  How would you characterize the purpose and value of your

sketches made during the debugging session?

3.  Do you think that your sketch could help to explain the

performance bug to someone else?

28

University	
 of	
 Trier	
 Software Engineering Group

Performance Bug 3

Open project "Apache Commons Collections" in IntelliJ and open file
"PerformanceTest_03.java” of the package “performancetests”.
To use the profiling tool, please select run configuration “PerformanceTest_03”.

1.  Switch driver and navigator.
2.  Look at the given performance test and try to understand it.
3.  Verify the performance bug in the method containsAll with the help of the

profiling tool and try to understand it.
4.  Propose a solution/fix for the bug. Please create a sketch describing the problem

and your solution.
5.  Implement your bug fix.
6.  Verify your fix using the profiling tool.

29

University	
 of	
 Trier	
 Software Engineering Group

Questions - Tool

1.  What information from the profiling tool or other parts of the IDE
was required to understand the performance bug?

2.  Do you think that the in-situ visualization of the profiling data was
beneficial compared to a list representation?

30

University	
 of	
 Trier	
 Software Engineering Group

Questions - Sketches

1.  What information from the profiling tool or other parts of the IDE
were important for creating your sketches?

2.  How would you characterize the purpose and value of your

sketches made during the debugging session?

3.  Do you think that your sketch could help to explain the

performance bug to someone else?

31

University	
 of	
 Trier	
 Software Engineering Group

Performance Bug 4

Open project "Guava Libs" in IntelliJ and open file "PerformanceTest_04.java” of
the package “performancetests”.
To use the profiling tool, please select run configuration “PerformanceTest_04”.

1.  Switch driver and navigator.
2.  Look at the given performance test and try to understand the difference between

the two test cases.
3.  Verify the performance bug in the method contains which is called on variable

immutableSet with the help of the profiling tool and try to understand it.
4.  Propose a solution/fix for the bug. Please create a sketch describing the problem

and your solution.
5.  Implement your bug fix.
6.  Verify your fix using the profiling tool.

32

University	
 of	
 Trier	
 Software Engineering Group

Questions - Tool

1.  What information from the profiling tool or other parts of the IDE
was required to understand the performance bug?

2.  Do you think that the in-situ visualization of the profiling data was
beneficial compared to list representation?

33

University	
 of	
 Trier	
 Software Engineering Group

Questions - Sketches

1.  What information from the profiling tool or other parts of the IDE
were important for creating your sketches?

2.  How would you characterize the purpose and value of your

sketches made during the debugging session?

3.  Do you think that your sketch could help to explain the

performance bug to someone else?

34

University	
 of	
 Trier	
 Software Engineering Group

Final Questionnaire
(one for each participant)

