
University	 of	 Trier	 Software Engineering Group

Performance Debugging Study

University	 of	 Trier	 Software Engineering Group

Performance Debugging Study

The goal of this study is to find out how software developers understand
and fix performance bugs in an unknown project with the help of a profiling
tool and sketching. The study is carried out in three phases:

1.   Introduction to our profiling tool and the underlying sampling approach
2.   Pair programming debugging session with four "real world"

performance bugs
3.   Questionnaire

The whole study will be video and audio recorded. During the first two
phases, we encourage the participants to think aloud and to sketch while
understanding and fixing the bugs.

2

University	 of	 Trier	 Software Engineering Group

Thinking Aloud

3

Video Introduction

University	 of	 Trier	 Software Engineering Group

Introduction to the Sampling Approach

University	 of	 Trier	 Software Engineering Group

Introduction to the Sampling Approach

8

Video Introduction

University	 of	 Trier	 Software Engineering Group

IDE Integration

Our tool integrates the sampling results in-situ in the source code editor of the IntelliJ Java IDE.
The following slides explain the visualizations and how to use the tool.

To enable the profiling for the next run of the program, just click on the corresponding button in the
toolbar:

9

Turn	 on	 profiling	 with	 a	 click	 on	 the	 hourglass	

If	 profiling	 is	 ac9vated,	 the	
background	 of	 the	 hourglass	
turns	 green	

University	 of	 Trier	 Software Engineering Group

Basic In-situ Visualization for Methods

10

Method	 9me	
Method‘s	 callers	 Method‘s	 callees	

Self	 9me	 (hatched	 part)	

Threads	

A	 callee	 (consuming	 60,18	 %	
of	 the	 method	 9me)	

University	 of	 Trier	 Software Engineering Group

Color Scale

11

Low	 run9me	 High	 run9me	

Run9me	 increases	

Color	 becomes	 warmer	

The	 color	 of	 the	 visualiza9on	 depends	 on	 the	 methods	 run9me	

University	 of	 Trier	 Software Engineering Group

Examples

12

Beck	 et	 al.,	 „In	 situ	 understanding	 performance	 boQlenecks	 through	 visually	 augmented	 code,	 “	
In	 ICPC	 ’13,	 May	 2013,	 pp.	 63-‐72	

University	 of	 Trier	 Software Engineering Group

Popup Window – Runtime Tab

13

Click	 on	 the	 visualiza1on	 to	 open	 a	 popup	 window	

The	 run9me	 tab	 shows	 a	 list	 of	 callers	 and	 callees	 	
(doesn‘t	 have	 to	 	 be	 all	 callers	 and	 callees	 one	 can	 see	 in	 the	 code	 since	 it	 shows	 the	 result	 of	 a	 sampling)	

Determines	 the	 width	 of	 the	 hatched	 part	

University	 of	 Trier	 Software Engineering Group

Popup Window – Runtime Tab – Navigation

14

Navigate	 to	 a	 caller/callee	 method	 with	
a	 click	 on	 its	 name.	

If	 you	 just	 navigated	 to	 a	 method	
through	 a	 click	 on	 a	 callee	 you	 can	
go	 back	 where	 you	 came	 from	 with	
a	 click	 on	 the	 corresponding	 caller	
within	 the	 Run9me	 tab	 of	 the	
current	 method.	 Or	 you	 use	 the	
IntelliJ	 build	 in	 naviga9on	 tool.	

University	 of	 Trier	 Software Engineering Group

Popup Window – Threads Tab

15

The	 threads	 tab	 shows	 all	 threads	 execu1ng	 this	 method,	 grouped	 by	 type	 (color)	

University	 of	 Trier	 Software Engineering Group

Visualization for Classes

16

A	 class	 can	 have	 run9me	 as	 well.	
The	 class	 run1me	 tells	 in	 what	
percentage	 of	 the	 whole	 run9me	
arbitrary	 methods	 of	 that	 class	 were	
ac9ve.	 Its	 self	 9me	 determines	 in	
what	 percentage	 methods	 of	 that	
class	 were	 execu9ng	 instruc9ons	
themselves	 (analogous	 to	 method	
self	 9me).	

The	 callers	 and	 callees	 of	 a	 class	 are	
also	 classes.	 Thus	 the	 callers	 of	 a	
class	 are	 all	 classes	 of	 which	 a	
method	 called	 a	 method	 from	 the	
current	 class.	 And	 the	 callees	 of	 a	
class	 are	 all	 classes	 of	 which	 a	
method	 was	 called	 from	 a	 method	 of	
the	 current	 class.	

The	 class	 visualiza9on	 works	 analogous	 to	 a	 method	 visualiza9on.	

University	 of	 Trier	 Software Engineering Group

The Callee Tooltip

17

With	 a	 c l i ck	 on	 the	 ca l lee	
visualiza9on,	 a	 text	 occurs	 showing	
the	 name	 of	 the	 callee(s)	 to	 which	
the	 visualiza9on	 belongs.	

Navigate	 to	 a	 called	 method	
with	 a	 click	 on	 its	 name	
within	 the	 callee	 tool9p.	

University	 of	 Trier	 Software Engineering Group

Overview

18

Open	 the	 overview	
with	 a	 click	 on	 the	
the	 corresponding	
tool	 buQon	 you	 can	
find	 on	 the	 right	
b o r d e r	 o f	 t h e	
IntelliJ	 window.	

University	 of	 Trier	 Software Engineering Group

Overview

19

Switch	 to	 this	 tab	 to	 show	 the	 run9me	 list	 aggregated	 for	 classes	

Apply	 filters	

Navigate	 to	 a	 method	 or	
class	 through	 a	 click	 on	
its	 name	 in	 the	 overview.	 	

University	 of	 Trier	 Software Engineering Group

Hands-on Example

University	 of	 Trier	 Software Engineering Group

Introductory Tasks

Open project "Study Introduction Project" in IntelliJ:

1.  Open the file SearchTreePerformanceTest.java
2.  Activate the profiling tool and run the project using run configuration

“SearchTreePerformanceTest”.
3.  Briefly tell what the performance test actually tests and describe in what context it will run (e.g.

data structure, variables, input, methods, measurements, comments, …)
4.  Which two methods consume the most runtime within the main method of the class

SearchTreePerformanceTest ?
5.  Try to follow the callees of the methods found in Task 4 till you end up in a method which has

no callee. What observations did you make?
6.  Why is the self time of the methods you ended up in Task 5 so high in the context of the

performance test? You may sketch while finding the answer.
7.  Explain how the method buildTree works with the help of the profiling visualization. Why is

this method faster than just inserting every single node?
8.  Try to explain the runtime difference for the performance test at hand.

21

University	 of	 Trier	 Software Engineering Group

Debugging Session

University	 of	 Trier	 Software Engineering Group

Performance Bug 1

Open project "Apache Commons Collections" in IntelliJ and open file
"PerformanceTest_01.java” of the package “performancetests”.
To use the profiling tool, please select run configuration “PerformanceTest_01”.

1.  Switch driver and navigator.
2.  Look at the given performance test and try to understand the difference between

the two test cases.
3.  Verify the performance bug in the method retainAll with the help of the profiling

tool and try to understand it.
4.  Propose a solution/fix for the bug. Please create a sketch describing the problem

and your solution.
5.  Implement your bug fix.
6.  Verify your fix using the profiling tool.

23

University	 of	 Trier	 Software Engineering Group

Questions - Tool

1.  What information from the profiling tool or other parts of the IDE
was required to understand the performance bug?

2.  Do you think that the in-situ visualization of the profiling data was
beneficial compared to a list representation?

24

University	 of	 Trier	 Software Engineering Group

Questions - Sketches

1.  What information from the profiling tool or other parts of the IDE
were important for creating your sketches?

2.  How would you characterize the purpose and value of your

sketches made during the debugging session?

3.  Do you think that your sketch could help to explain the

performance bug to someone else?

25

University	 of	 Trier	 Software Engineering Group

Performance Bug 2

Open project "Apache Commons Collections" in IntelliJ and open file
"PerformanceTest_02.java” of the package “performancetests”.
To use the profiling tool, please select run configuration “PerformanceTest_02”.

1.  Switch driver and navigator.
2.  Look at the given performance test and try to understand the difference between

the two test cases.
3.  Verify the performance bug in the method retainAll with the help of the profiling

tool and try to understand it.
4.  Propose a solution/fix for the bug. Please create a sketch describing the problem

and your solution.
5.  Implement your bug fix.
6.  Verify your fix using the profiling tool.

26

University	 of	 Trier	 Software Engineering Group

Questions - Tool

1.  What information from the profiling tool or other parts of the IDE
was required to understand the performance bug?

2.  Do you think that the in-situ visualization of the profiling data was
beneficial compared to a list representation?

27

University	 of	 Trier	 Software Engineering Group

Questions - Sketches

1.  What information from the profiling tool or other parts of the IDE
were important for creating your sketches?

2.  How would you characterize the purpose and value of your

sketches made during the debugging session?

3.  Do you think that your sketch could help to explain the

performance bug to someone else?

28

University	 of	 Trier	 Software Engineering Group

Performance Bug 3

Open project "Apache Commons Collections" in IntelliJ and open file
"PerformanceTest_03.java” of the package “performancetests”.
To use the profiling tool, please select run configuration “PerformanceTest_03”.

1.  Switch driver and navigator.
2.  Look at the given performance test and try to understand it.
3.  Verify the performance bug in the method containsAll with the help of the

profiling tool and try to understand it.
4.  Propose a solution/fix for the bug. Please create a sketch describing the problem

and your solution.
5.  Implement your bug fix.
6.  Verify your fix using the profiling tool.

29

University	 of	 Trier	 Software Engineering Group

Questions - Tool

1.  What information from the profiling tool or other parts of the IDE
was required to understand the performance bug?

2.  Do you think that the in-situ visualization of the profiling data was
beneficial compared to a list representation?

30

University	 of	 Trier	 Software Engineering Group

Questions - Sketches

1.  What information from the profiling tool or other parts of the IDE
were important for creating your sketches?

2.  How would you characterize the purpose and value of your

sketches made during the debugging session?

3.  Do you think that your sketch could help to explain the

performance bug to someone else?

31

University	 of	 Trier	 Software Engineering Group

Performance Bug 4

Open project "Guava Libs" in IntelliJ and open file "PerformanceTest_04.java” of
the package “performancetests”.
To use the profiling tool, please select run configuration “PerformanceTest_04”.

1.  Switch driver and navigator.
2.  Look at the given performance test and try to understand the difference between

the two test cases.
3.  Verify the performance bug in the method contains which is called on variable

immutableSet with the help of the profiling tool and try to understand it.
4.  Propose a solution/fix for the bug. Please create a sketch describing the problem

and your solution.
5.  Implement your bug fix.
6.  Verify your fix using the profiling tool.

32

University	 of	 Trier	 Software Engineering Group

Questions - Tool

1.  What information from the profiling tool or other parts of the IDE
was required to understand the performance bug?

2.  Do you think that the in-situ visualization of the profiling data was
beneficial compared to list representation?

33

University	 of	 Trier	 Software Engineering Group

Questions - Sketches

1.  What information from the profiling tool or other parts of the IDE
were important for creating your sketches?

2.  How would you characterize the purpose and value of your

sketches made during the debugging session?

3.  Do you think that your sketch could help to explain the

performance bug to someone else?

34

University	 of	 Trier	 Software Engineering Group

Final Questionnaire
(one for each participant)

