Performance Debugging Study

Universitat Trier

Performance Debugging Study

The goal of this study is to find out how software developers understand
and fix performance bugs in an unknown project with the help of a profiling
tool and sketching. The study is carried out in three phases:

1. Introduction to our profiling tool and the underlying sampling approach

2. Pair programming debugging session with four "real world"
performance bugs

3. Questionnaire

The whole study will be video and audio recorded. During the first two
phases, we encourage the participants to think aloud and to sketch while
understanding and fixing the bugs.

Universitat Trier Software Engineering Group \

Thinking Aloud

Video Introduction

Universitat Trier

Introduction to the Sampling Approach

Universitat Trier

Video Introduction

IDE Integration

Our tool integrates the sampling results in-situ in the source code editor of the Intelli) Java IDE.
The following slides explain the visualizations and how to use the tool.

To enable the profiling for the next run of the program, just click on the corresponding button in the
toolbar:

Run Tools VCS Window Help [Starl:/End Profiling Run Tools VCS Window Help
| |) SearchTreeTest v | P W& P [? ‘ | | SearchTreeTest v | P & 9~ ['ﬁ

| introduction> (] SearchTreeTest> i introduction> " SearchTreeTest

ava i~| e SearchTreeTestjava % i va X | © SearchTreeTest.java X
L} If profiling is activated, the

background of the hourglass

Turn on profiling with a click on the hourglass turns green

Universitat Trier Software Engineering Group

Basic In-situ Visualization for Methods

Method time

Method’s callers \ l / Method‘s callees

public static woid test()f_)[iil<_ Threads

{ i —— .
long time = System.currentTimeMillis(): Self time (hatChed part)
long 1;
do
{ .
factorial(20); 0BG | < A callee (consuming 60,18 %
1 = System.currentTimeMillis(): of the method time)

} while (1 - time < 1000);

Universitat Trier Software Engineering Group

Color Scale

The color of the visualization depends on the methods runtime

Low runtime High runtime

Runtime increases

R

Color becomes warmer

Universitat Trier Software Engineering Group

Examples

method comment

main () [608% L] no callers, one callee, no considerable
self time

paint () "09a% P[] one caller, one callee, some self time

lighting () TRk multiple callees, four threads of the same
type

hitObject () (/BSMIIE] high method time, multiple callers and
callees, high self time

cross () "[0aa%] [low method time, no callees, only self
time

Beck et al., ,In situ understanding performance bottlenecks through visually augmented code, “
In ICPC’13, May 2013, pp. 63-72

Universitat Trier Software Engineering Group

Popup Window - Runtime Tab

“{TJ Click on the visualization to open a popup window

Determines the width of the hatched part

public static void test ()} |iSnonl 5z

{ test(): method time: 13,49% - self time: 5,37% (39,82% of : method time:)
long time = System.cu F e I
long 1; ‘ q
do Callers | Callees |
{ 34,54% de.unitrier.TestClass.runTest() 60,18% de.unitrier.TestClass.factorial(int)

factorial(2)f: - 134,10% de.unitrier.Container.doStuff()
1 = Systepl.curren 790% de.unitrier.MyThread4.run()
} while (1 # time < 1 790% de.unitrier.MyThread2.run()
} . 7,90% de.unitrier.MyThread.run()
7,65% de.unitrier.MyThread3.run()

The runtime tab shows a list of callers and callees
(doesn‘t have to be all callers and callees one can see in the code since it shows the result of a sampling)

Universitat Trier Software Engineering Group

Popup Window - Runtime Tab - Navigation

public static void test ()} |iSaonml> 5z

{ test(): method time: 13,49% - self time: 5,37% (39,82% of : method time:)
long time = System.cul g s
o ¥ Runtime | Threads |
long 1; ’
do Callers | Callees |
{ 34,54% de.unitrier.TestClass.runTest() 60,18% de.unitrier.TestClass.factorial(int)

factorial(20);: IR 34,10% de.unitrier.Container.doStuff()
1 = System.curren 7,90% de.unitrier.MyThread4.run()
} while (1 - time < 1 790% de.unitrier.MyThread2.run()
} 7,90% de.unitrier.MyThread.gen()
7,65% de.unitrier.MyThread3.ru

38 MyThread extends Thread

If you just navigated to a method

through a click on a callee you can

go back where you came from with Navigate to a caller/callee method with
a click on the corresponding caller a click on its name.

within the Runtime tab of the
current method. Or you use the
IntelliJ build in navigation tool. & o

Universitat Trier Software Engineering Group

Popup Window - Threads Tab

The threads tab shows all threads executing this method, grouped by type (color)

public static Set<Long> te
{

Set<Long> set = new HashSe

long time = System.current
long 1;
do
{
set.add(factorial(20))|
1 = System.currentTime
} while (1 - time < 500); |
return set;

33 MyThread extends Thread | 0,

public void run() [[028% bf

33 MyThread? extends Ihreadbl

Universitat Trier

b [EEEEEE

Runtime

0,42% Thread-9:166: de.unitrier.MyThread2
0,59% Thread-7:158: de.unitrier.MyThread2
0,47% Thread-5:160: de.unitrier. My Thread2
0,83% Thread-10:165: de.unitrier.MyThread2
0,55% Thread-12:168: de.unitrier.MyThread2
0,42% Thread-4:167: de.unitrier.MyThread2
0,54% Thread-3:161: de.unitrier.MyThread2
0,51% Thread-11:164: de.unitrier.MyThread2
0,55% Thread-6:159: de.unitrier.MyThread2
0,51% Thread-8:163: de.unitrier.MyThread2
10,41% Thread-0:147: java.lang.Thread
69,74% main:1: java.lang.Thread

4,47% Thread-16:177: de.unitrier.MyThread4
4,72% Thread-15:175: de.unitrier.MyThread4
1,49% Thread-13:170: de.unitrier.MyThread3
2,87% Thread-14:173: de.unitrier.MyThread3
0,47% Thread-2:149: de.unitrier.MyThread
0,47% Thread-1:150: de.unitrier.MyThread

Total number of threads: 18

test(): method time: 29,40% - self time: 15,09% (51,31% of method time)

Software Engineering Group

Visualization for Classes

public class IestClasst_F

A class can have runtime as well.
The class runtime tells in what
percentage of the whole runtime
arbitrary methods of that class were
active. Its self time determines in
what percentage methods of that
class were executing instructions
themselves (analogous to method
self time).

The callers and callees of a class are
also classes. Thus the callers of a
class are all classes of which a
method called a method from the
current class. And the callees of a
class are all classes of which a
method was called from a method of
the current class.

The class visualization works analogous to a method visualization.

Universitat Trier

Software Engineering Group

The Callee Tooltip

public static Set<Long> test()t_}
{

Set<Long> set = new HashSet<>():

long time = System.currentTimeMillis():

long 1;

do

{

8% | 6.27% |
41,78% de.unitrier.TestClass.factorial (long)
6,27% java.util'\HashSet.add(java.lang.Object)

set.add(factorial(20)) s
1l = System.currentTi
} while (1 - time < 50

With a click on the callee Navigate to a called method
visualization, a text occurs showing with a click on its name
the name of the callee(s) to which within the callee tooltip.

the visualization belongs.

Universitat Trier Software Engineering Group

File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help

Overview

Open the overview

DHO ¢« XH0 QA & > ¥ [Cvany] b ¥ ¥F ? 8
[TestProject [src) [£1de) [unitrier € TestClassjava
Bl project v|© % | #- b [© Ajava x | ©Bjava x | @ TestClassijova x | ProfilingArtifactOverview -)
>[5 TestProject (C:\Users\lunzmast| 6 i [} Filter artifacts (separate with comma)
> Bkl External Libraries 7 public class TescClassh RN "Imcluue ”
CICT
of ! public static void main(String[] args) | EEEEEN, o Apply
v & exclude |
H 10 [0 §
¢ 1 runtest(); NSNS | | |
& 12 B.runOnA() ;
i . — T
14 Runtime | Artifact's name |
3 o
15 2] static class C {...} de.unu:net.TestClass.tesc()
20 public static void runTest ()| SRS I, ;| -v- 12n9.Thread.run()
21 © { }_: |:| com.intellij.rt.execution.application.App}
22 /MismatchedueryAndipdateOfCollection/)_> I:l java.net.ServerSocket.implAccept (java.net.
23 ArrayList<A> objects = new ArrayList<>();
¥ G o B b_}l:l java.net.ServerSocket.accept ()
24 for (int i = 0; i < 5; i++) :
25 ‘ YHEEE) | iave.net.PlainsocketImpl.accept (java.net.
26 A o = new B(); [%15%] YBESE) || iave.net.DualstackPlainSocketInpl. socketAc
27 new C().runonC() ; SN »BEEE) | iava.net.AbstractPlainSocketImpl.accept (3¢
28 objects.add (o) : »EBEEE || iave.net.DualstackPlainSocketInpl.accept0
22 } _: D com.intellij.rt.execution.application.App!
31 9 new Thread (new Runnable ())_}l:l java.lang.reflect.Method.invoke (java.lang.
32 { yI2ZBER) || sun.reflect.Delegati Teore]
33 goverride YIS || sun.reflect.NativeMethodAccessorImpl.invol
34ief public void z“un()}_:ﬂ)_:|:| de.unitrier.TestClass.main(java.lang.Strir
35 { YEEEER) || sun.reflect.Nati Inpl. invol
38 B.zunona() ; (ESSEZRIN yISGEN} | e unitrier.TestClass.runTest()
37 try e
o (ISR || ce.unitrier.TestClasssC.runonC()

Run [Main

» [+ i nC:\Program ...

" brocess finished with exit code 0

2 2: Favorites

» | »

"~ with a click on the
g the corresponding
* tool button you can
¢ find on the right
: border of the
. Intelli) window.

“ Eventlog

0 6:TODO [E Terminal 171 Maven Projects
[Allfiles are up-to-date (3 minutes ago)

13:6 CRLF : UTF8 % @&

Software Engineering Group

Universitat Trier

Overview

Switch to this tab to show the runtime list aggregated for classes

ProfilingArtifactOv{ rview L2 |
Filter artifacts (separate with comma)

[include

[l

exclude
h
| Methods | Classes|

Runtime | Artifact's name | ’
(}de.unil:rier.l‘estclas:.ces:()

java.lang.Thread.run()
com.intellij.rt.execution.application.AppMain$l.run()
java.net.PlainSocketImpl.accept(java.net.SocketI

1! 1 Apply filters

"“ —

v v

-

java.net.ServerSocket.implAccept (java.net.Socket)

v v v vvvy

-

java.net.ServerSocket.accept ()

v

java.net.DualStackPlainSocketImpl.socketAccept (java.net.SocketImpl
java.net.AbstractPlainSocketImpl.accept (java.net.SocketImpl)
java.net.DualStackPlainSocketImpl.acceptO(int, java.net.InetSocket
com.intellij.rt.execution.application.AppMain.main(java.lang.Strin |
java.lang.reflect.Method.invoke (java.lang.Object, java.lang.Object
sun.reflect.Delegati mpl.invoke (java.lang.Object,

v v v

Navigate to a method or
class through a click on
e e e e A its name in the overview.

sun.reflect.NativeMethodAccessorImpl.invoke0 (java.lang.reflect.Met

-

-
v Vv Vv vy

-

hd
Ll v n)

v -
l!
Ll

de.unitrier.TestClass.runTest()
> I;] de.unitrier.TestClass$C.runOnC()

:_} de .unitrier.TestClass.factorial(long)
s .unitrier.A.runOna()

de.unitrier.TestClasss$l.run()
de.unitrier.MyThread4.run()
de.unitrier.MyThread2.run()

II
haad
L

> .o
o I

A
EEEE
3

g

java.lang.ClassLoader.loadClass(java.lang.String)
java.lang.ClassLoader.loadClass(java.lang.String, boolean)

sun.misc.Launcher$AppClassLoader.loadClass(java.lang.String, boole

o v v

java.net.URLClassLoader$l.run()
java.net.URLClassLoader.findClass(java.lang.String)
java.security.AccessController.doPrivileged(java.security.Privileg
sun.l L lper. [LoadMain (boolean, int, java.la

v v
pdheadhdhaciid
I]]) |

N
Bigin
-VV

de.unitrier.A.A()

Universitat Trier Software Engineering Group

Hands-on Example

UniverSitﬁt Trier Software Engineering Group

Introductory Tasks

Open project "Study Introduction Project” in Intelli):

1. Openthefile SearchTreePerformanceTest.java

2. Activate the profiling tool and run the project using run configuration
“SearchTreePerformanceTest".

3. Briefly tell what the performance test actually tests and describe in what context it will run (e.g.
data structure, variables, input, methods, measurements, comments, ...)

4, Which two methods consume the most runtime within the main method of the class
SearchTreePerformanceTest ?

5. Tryto follow the callees of the methods found in Task 4 till you end up in a method which has
no callee. What observations did you make?

6. Why is the self time of the methods you ended up in Task 5 so high in the context of the
performance test? You may sketch while finding the answer.

7. Explain how the method buildTree works with the help of the profiling visualization. Why is
this method faster than just inserting every single node?

8. Tryto explain the runtime difference for the performance test at hand.

Universitat Trier Software Engineering Group

Debugging Session

UniverSitﬁt Trier Software Engineering Group

Performance Bug 1

Open project "Apache Commons Collections" in Intelli] and open file
"PerformanceTest 01.java” of the package “performancetests”.
To use the profiling tool, please select run configuration “PerformanceTest 01".

1. Switch driver and navigator.

2. Look at the given performance test and try to understand the difference between
the two test cases.

3. Verify the performance bug in the method retainall with the help of the profiling
tool and try to understand it.

4. Propose a solution/fix for the bug. Please create a sketch describing the problem
and your solution.

5. Implement your bug fix.
6. Verify your fix using the profiling tool.

Universitat Trier Software Engineering Group

Questions - Tool

1. What information from the profiling tool or other parts of the IDE
was required to understand the performance bug?

2. Do you think that the in-situ visualization of the profiling data was
beneficial compared to a list representation?

Universitat Trier Software Engineering Group |

Questions - Sketches

1. What information from the profiling tool or other parts of the IDE
were important for creating your sketches?

2. How would you characterize the purpose and value of your
sketches made during the debugging session?

3. Do you think that your sketch could help to explain the
performance bug to someone else?

Universitat Trier Software Engineering Group ¢

Performance Bug 2

Open project "Apache Commons Collections" in Intelli] and open file
"PerformanceTest 02.java” of the package “performancetests”.
To use the profiling tool, please select run configuration “PerformanceTest 02".

1. Switch driver and navigator.

2. Look at the given performance test and try to understand the difference between
the two test cases.

3. Verify the performance bug in the method retainall with the help of the profiling
tool and try to understand it.

4. Propose a solution/fix for the bug. Please create a sketch describing the problem
and your solution.

5. Implement your bug fix.
6. Verify your fix using the profiling tool.

Universitat Trier Software Engineering Group

Questions - Tool

1. What information from the profiling tool or other parts of the IDE
was required to understand the performance bug?

2. Do you think that the in-situ visualization of the profiling data was
beneficial compared to a list representation?

Universitat Trier Software Engineering Group |

Questions - Sketches

1. What information from the profiling tool or other parts of the IDE
were important for creating your sketches?

2. How would you characterize the purpose and value of your
sketches made during the debugging session?

3. Do you think that your sketch could help to explain the
performance bug to someone else?

Universitat Trier Software Engineering Group ¢

Performance Bug 3

Open project "Apache Commons Collections" in Intelli] and open file
"PerformanceTest 03.java” of the package “performancetests”.
To use the profiling tool, please select run configuration “PerformanceTest 03".

1. Switch driver and navigator.
2. Look at the given performance test and try to understand it.

3. Verify the performance bug in the method containsall with the help of the
profiling tool and try to understand it.

4. Propose a solution/fix for the bug. Please create a sketch describing the problem
and your solution.

5. Implement your bug fix.
6. Verify your fix using the profiling tool.

Universitat Trier Software Engineering Group

Questions - Tool

1. What information from the profiling tool or other parts of the IDE
was required to understand the performance bug?

2. Do you think that the in-situ visualization of the profiling data was
beneficial compared to a list representation?

Universitat Trier Software Engineering Group |

Questions - Sketches

1. What information from the profiling tool or other parts of the IDE
were important for creating your sketches?

2. How would you characterize the purpose and value of your
sketches made during the debugging session?

3. Do you think that your sketch could help to explain the
performance bug to someone else?

Universitat Trier Software Engineering Group ¢

Performance Bug 4

Open project "Guava Libs" in Intelli) and open file "PerformanceTest 04.java"” of
the package “performancetests”.
To use the profiling tool, please select run configuration “PerformanceTest 04".

1. Switch driver and navigator.

2. Look at the given performance test and try to understand the difference between
the two test cases.

3. Verify the performance bug in the method contains which is called on variable
immutableSet with the help of the profiling tool and try to understand it.

4. Propose a solution/fix for the bug. Please create a sketch describing the problem
and your solution.

5. Implement your bug fix.
6. Verify your fix using the profiling tool.

Universitat Trier Software Engineering Group

Questions - Tool

1. What information from the profiling tool or other parts of the IDE
was required to understand the performance bug?

2. Do you think that the in-situ visualization of the profiling data was
beneficial compared to list representation?

Universitat Trier Software Engineering Group |

Questions - Sketches

1. What information from the profiling tool or other parts of the IDE
were important for creating your sketches?

2. How would you characterize the purpose and value of your
sketches made during the debugging session?

3. Do you think that your sketch could help to explain the
performance bug to someone else?

Universitat Trier Software Engineering Group ¢

Final Questionnaire

(one for each participant)

UniverSitﬁt Trier Software Engineering Group

