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Executive summary: context and scope of the study

• This work is a follow-up to an earlier study written by the authors in October 2022 on the

”System-level impacts of 24/7 carbon-free electricity procurement in Europe”.

• In this study, we explore how and why space-time load-shifting flexibility can be used to meet high 24/7

carbon-free energy targets, as well as what potential benefits it may offer to 24/7 participants and to the

rest of the energy system.

• To answer these questions, we expand the mathematical model developed in the previous work by

incorporating spatial and temporal demand flexibility provided by electricity consumers that follow 24/7

carbon-free energy goals. The space-time flexibility is based on the example of data centers; however, the

findings of this study are generally applicable to a wide range of companies with flexible demand.

• We model the European power system (ENTSO-E area) clustered to 37 zones. The model co-optimizes

investment and dispatch decisions of locally procured generation & storage assets to meet electricity

demand of data centers (the 24/7 CFE participants), as well as investment and dispatch decisions of

assets in the rest of the European electricity system to meet the demand of other consumers.

Furthermore, depending on a level of flexiblity available, data centers could benefit from co-optimizing

load shifting (across space and/or time) and procurement strategies to match every kWh of electiricty

consumption with carbon-free energy around-the-clock more efficiently. We place data centers in a

selection of European countries: Ireland, Denmark, Germany, Finland, and Portugal. All model runs are

done for 2025 with hourly resolution. 2

https://zenodo.org/record/7180097
https://www.entsoe.eu/data/map/


Executive summary: key findings

1. Demand flexibility enables better access to clean electricity and creates more options for consumers to

match demand with carbon-free electricity around-the-clock.

2. Some flexible electricity consumers, such as data centers, can shift computing jobs and associated power

loads in both time and location. These mechanisms facilitate the efficiency and affordability of 24/7 CFE

procurement. The co-optimized space-time load-shifting can reduce the costs of 24/7 CFE by up to 34%,

depending on the level of flexibility and technologies available.

3. Demand flexibility is especially helpful for resource-constrained locations where hourly matching with

24/7 CFE is difficult.

4. Space-time load-shifting facilitates economically efficient redistribution of loads to locations with good

carbon-free resources. When paired with long-duration energy storage, the efficiency gains of this effect

are even larger.

5. In the European energy system, the hourly profiles of wind power generation have a low correlation over

long distances due to different weather conditions. Spatial load flexibility enables the system to move load

to locations when and where there is high wind generation, thus saving costs of energy storage and

reducing curtailment of excess generation.
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Introduction



Introduction

• Climate change is driving a global effort to rapidly decarbonise

electricity systems across the globe. Many public and private

energy buyers join this effort. For example, more than 400

members of the RE100 group have committed to procure enough

renewable energy to match 100% of their electricity consumption

on an annual basis.

• Fully decarbonizing electricity grids, however, requires covering

demand with carbon-free energy at all times, not just during

periods of abundant sunshine or wind. This challenge requires

embracing innovative strategies for decarbonization. There is

growing interest from leaders in voluntary clean electricity

procurement to cover their consumption with carbon-free energy

supply on a truly 24/7 basis. Achieving 24/7 Carbon-Free Energy

(CFE) means that every kilowatt-hour of electricity consumption

is met with local carbon-free electricity sources around-the-clock.

• The 24/7 Carbon-Free Energy Compact, coordinated by the

United Nations now includes more than 120 signatories on a

mission to realize a 24/7 Carbon-Free Energy future. 5
Image: sustainability.google/progress/energy/
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Introduction

• In October 2022, we published a study on the

”System-level impacts of 24/7 carbon-free electricity procurement in Europe”

� Code behind the study.

• In the study, we investigated the means and costs of pursuing different clean electricity procurement

strategies for companies in a selection of European countries. We also explored how the 24/7 CFE

commitments affect the European electricity system as a whole.

• The study concluded with the following take-aways:

(i) 24/7 CFE commitments lead to lower emissions for both the participants and the system;

(ii) 24/7 CFE also reduces the needs for flexibility in the rest of the system;

(iii) Reaching CFE for 90-95% of the time can be done with only a small cost premium. Reaching 100%

CFE target is possible but costly with existing renewable and storage technologies, with costs increasing

rapidly above 95%. 100% CFE target could have a much smaller cost premium if long duration storage or

clean firm generation technologies are available.

(iv) 24/7 CFE procurement stimulates innovation and learning, and creates an early market for the

advanced technologies.

• These European study results align with the results in studies done by Princeton ZERO lab (2021) for

regions in the United States and by IEA (2022) for India and Indonesia. 6
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Motivations

• In the previous study, we focused on a large range of European companies from the commercial and

industry (C&I) sectors that join 24/7 CFE efforts in aggregate. The implicit assumption we made was that

all 24/7 CFE participants have inflexible demand.

• In reality, many participants of the 24/7 CFE movement have some degree of flexibility in their electricity

consumption. This flexibility takes the form of various mechamisms for temporal demand management

available for a wide range of C&I consumers.

• A large potential for demand side flexibility is available in the information and communications

technology (ICT) sector. Big companies such as Amazon, Google, IBM, and Microsoft are centralizing

data centers to achieve economies of scale and form a computing infrastructure that is managed

collectively via network operation centers. Thus, data center operators have the ability to shift computing

jobs and associated power loads in time (via scheduling of flexible compute jobs) and in space (via

migration of flexible compute jobs across locations).
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Why is this important? 1/2

• Demand for digital services is rapidly growing. Since 2010,

internet traffic has expanded 25-fold. Global data center energy

use represents now nearly 1% of final electricity demand

worldwide. Data centres and data transmission networks are

responsible for 0.9% of energy-related GHG emissions (around

300 Mt CO2-eq in 2020).

• Despite rapidly growing demand for digital services, the growth of

associated emissions was modest due to energy efficiency

improvements, decarbonisation of electricity grids and renewable

energy purchases by ICT companies above and beyond the policy

obligations. Based on IEA (2022) estimates, Amazon, Microsoft,

Meta and Google have become the four largest purchasers of

corporate renewable energy, having contracted over 38 GW to

date with power purchase agreements (PPAs).

• Moreover, some of the ICT companies have become the front

runners of the 24/7 CFE movement. Google has committed to the

goal of 24/7 Carbon-Free Energy by 2030. Similarly, Microsoft

has announced its own 100/100/0 by 2030 commitment.

Renewable energy capacity procured with power

purchase agreements globally [GW].

ICT sector (dark blue), all other sectors (light blue)
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Why is this important? 2/2

Data centre operators (Pact Associations) that signed

the Climate Neutral Data Centre Pact

• The initiatives to measure and reduce the environmental impacts

of digital infrastructure is spanning far beyond big companies like

Google and Microsoft.

• In 2021, over 100 data data centre operators and industry

associations in Europe signed

the Climate Neutral Data Centre Pact aiming to make data

centres climate neutral by 2030. The pledged targets include

measures to increase power usage effectiveness and carbon-free

energy supply. The CFE target is declared to be “[..] 75% of

renewable energy or hourly carbon-free energy by December 31,

2025 and 100% by December 31, 2030.”

• Considering (i) a constant growth of global internet traffic, (ii) a

large electricity consumption of data centers distributed in power

grids worldwide, and (iii) the need to rapidly decarbonise

electricity systems across the globe, it is important to understand

the possible efficiency benefits that space-time load shifting

flexibility can provide for the 24/7 carbon-free energy paradigm.
9
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A growing body of research

• The unique characteristics of data centers as electricity consumers and the active interest of ICT sector

companies in sustainable energy drive a growing interest in the research community. Among many other,

Wang et al. (2015), Toosi et al. (2017), Grange et al. (2018), Velasco et al. (2018), and

He & Shen (2021) investigated selected aspects of spatial or temporal demand management strategies in

the context of supplying data centers power demand with intermittent renewable energy supply.

• Zhang & Zavala (2022) elaborated a mathematical problem that captures both spatial & temporal

load-shifting flexibility provided by data centers. The authors suggest market clearing formulation treats

data centers as prosumers that simultaneously request load and provide a load-shifting flexibility service to

the grid. The illustrated clearing formulation satisfies fundamental economic properties of the competitive

markets, such as revenue adequacy and cost recovery.

• The Google research team published a paper on Carbon-Aware Computing for Datacenters

(Radovanović et al. (2023)). The paper introduced methodology and principles behind a carbon-intelligent

compute management system, which minimizes electricity-based carbon footprint and power infrastructure

costs by shifting temporally flexible workloads for all datacenter clusters across Google’s fleet.
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Focus of the study

• In this study, we explore how and why space-time load-shifting flexibility can be used to meet high 24/7

carbon-free energy targets, as well as what potential benefits it may offer to 24/7 participants and to the

rest of the energy system. We aim to answer the following questions:

– How can demand flexibility reduce the resources and costs for 24/7 CFE matching?

– How can spatial and temporal demand flexibilities be utilized to achieve high 24/7 CFE goals?

– What are the individual effects of spatial and temporal demand flexibility, as well what are the synergies

from their co-optimization?

– How would advanced technologies, such as long duration storage, affect the value of demand flexibility?

• For this purpose, we elaborate the mathematical model developed in the previous study, by including

spatial and temporal demand flexibility provided by electricity consumers following 24/7 CFE goals. Thus,

a flexible 24/7 participant could benefit from co-optimizing utilization of available demand flexibility

(across space and/or time) and procurement strategies to match every kWh of electricity consumption

with carbon-free energy around-the-clock more resource-efficient.

• The modelling exercise in this study is based on the example of data centers, i.e., facilities used to house

networked computer servers that store, process and distribute large amounts of data. Nevertheless, the

findings of this study are generally applicable to a wide range of companies and organisations with flexible

demand and an interest in 24/7 carbon-free energy procurement, as well as to energy industry experts and

stakeholders with an empirical interest in the European energy system. 11



Study design



A quick overview

• This study is done in a spirit of open and reproducible research. The whole scientific workflow from the

publicly available raw input data to optimized electricity system, visualizations and compilation of this

study is available at github.com/PyPSA/247-cfe.

• In this study, we build upon the mathematical model of 24/7 CFE procurement developed in the former

work of authors: System-level impacts of 24/7 carbon-free electricity procurement in Europe (October

2022)

• We encode a set of new equations and routines, which allow for modelling spatial (computing jobs

migration) and temporal (computing jobs scheduling) load flexibility provided by data centers. The

mathematical model of temporal flexibility generalizes a broad range of flexible C&I consumers.

• We place data centers (i.e., electricity consumers committed to 24/7 CFE goals) in a selection of European

countries: Ireland, Denmark, Germany, Finland, and Portugal. These countries have different weather

patterns, renewable potentials, national energy and climate policies, legacy fleets of generation capacities,

degree of interconnectons, etc. Apart from that, we consider several scenarios for CFE procurement

targets, degrees of data center flexibility, and technologies available for 24/7 consumers. These differences

help to understand and generalize the interplay of demand flexibility and 24/7 CFE procurement.

12
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Study design: European power system

European electricity system clustered to 37 zones

NB power generation capacity fleet before optimization

• In each scenario, we model the full European power

system (ENTSO-E area) clustered to 37 zones. Each

zone represents an individual country. Some countries that

straddle different synchronous areas are split to individual

bidding zones, such as DK1 (West) and DK2 (East).

• The model co-optimizes investment and dispatch

decisions of generation & storage assets to meet electricity

demand of data centers (flexible 24/7 CFE consumers), as

well as investment and dispatch decisions of assets in the

rest of the European electricity system to meet the

demand of other consumers.

• The modelling is done for 2025. Input data such as

technology cost assumptions, national renewable policies,

decommissioning of legacy power plant fleet, and

system-wide assumptions (e.g., price for EU ETS) are

parametrised accordingly.

• All model runs are done with hourly resolution, i.e., no

time sampling.
13
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Study design: data centers

Five data centers interconnected by virtual links,

forming a complete graph

• We consider five data centers that are located in Ireland,

Denmark (West/DK1), Germany, Finland, and Portugal.

These locations (i) include zones where data centers have

an important share in national electricity demand [1,2,3],

and (ii) include zones that have electricity systems with

unique characteristics, such as local generation mix,

renewable potentials, national energy and climate policies,

degree of interconnections, etc.

• Data centers have a nominal load of 100 MW (baseload

profile). The data center operator aims to achieve a given

24/7 CFE matching score at all locations.

• Load shifts take place via “virtual links”. Virtual links

form a complete graph, i.e., every pair of data centers is

connected by a unique link.

• Data centers have the same share of flexible workloads.
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Study design: data center load flexibility

• The premise of data center flexibility is that a known number of

computing jobs, and associated power usage is “flexible”, i.e.,

electricity loads can potentially be shifted in space (across

datacenter locations), or to other times (by delaying jobs’

execution).a

• Thus, the dispatched load d̃t of a data center can deviate from

the nominal requested load dt . The dispatched load d̃t is

constrained by the data center capacity (an upper limit) and the

inflexible loads (a lower limit). The range of possible deviations of

the dispatched and nominal loads is assumed to lie within f [%] of

the nominal load, such as:

[1− f ] · dt ≤ d̃t ≤ [1 + f ] · dt ∀t ∈ T (1a)

d̃t = dt + (∆t −∆t) ∀t ∈ T (1b)

where ∆t ,∆t ∈ R+ stand for positive/negative deviation of d̃t
and dt in hour t.

aA change in cluster-level CPU usage can be accurately mapped into a change in

its power usage, see Radovanovic et al. (2021)
15
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Study design: space-time load shifting

• To capture spatial flexibility, we model a

spatial load management system that can

shift load across data center locations via

virtual links.

• To capture temporal flexibility, we model

a load scheduling system that can shift

load of a data center over time.

• The spatial and temporal load shifting are

subject to a shared set of computing

capacity constraints; the temporal shifting

is further constrained by the daily

compute usage conservation rule.

• For the mathematics and detail on the

optimization model, see Annex A:

Methodology.
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Study design: scenario space

• We model various scenarios for data center demand flexibility, which include

Three modes of operation:

– Co-optimized spatial and temporal load management

– Isolated spatial load management (shifting flexible loads across locations)

– Isolated temporal load management (shifting flexible loads in time)

and four scenarios for flexible loads range: f = {0%, 10%, 20%, 40%}.

• Two scenarios for 24/7 CFE hourly matching targets: CFEscores = {98% and 100%}.

• Further, we assume two palettes of carbon-free technologies available for procurement for data center

operators participating in 24/7-CFE:

– Palette 1 includes technologies available on the European market now: onshore wind, utility scale solar

PV, battery storage.

– Palette 2 includes all above plus Long Duration Energy Storage (LDES) system.

Technology assumptions are provided in Annex B: Tools and data sources.

• For interested parties, we publish an online Annex with a full pack of modelling results alongside this

study. The materials include modelling results for all scenario combinations in a form of plots and

summary CSV files.

17
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Study design: limitations

• This study is done in a spirit of modelling for insight rather than modelling for numbers. The design of

this study does not aim at quantifying the real-life benefits of demand side flexibility for data centers. It is

rather a model experiment to explore how and why flexibility of demand can be beneficial for achieving

24/7 carbon-free energy goals. The results we present should thus be viewed with a fair degree of caution,

i.e., as a modelling-based insight rather than quantitative projection.

• Quantifying the actual costs and benefits for the ICT industry of utilizing demand flexibility requires

additional empirical research. Further studies could usefully explore the costs and technical potentials of

achieving a certain share of flexible workloads, which are not considered in this study. Thus, a range of

flexible loads is fixed per scenario and flexibility utilization (i.e., shifting of loads in space and time) is

modeled as a “zero-cost” variable. Including information on implicit flexibility costs would help to quantify

the flexibility benefits with a greater degree of accuracy. Another empirical improvement could address

technical aspects and properties of flexible workloads, such as physical constraints associated with quick

ramping of power usage up/down, reliability & performance constraints, etc. Further research is needed to

capture the promising role of clean firm generation technologies in achieving 24/7 CFE goals with some

degree of spatial and/or temporal load flexibility. This case is particularly relevant, since the authors’

previous modeling work demonstrated that 24/7 CFE procurement could create an early market and drive

deployment of advanced technologies, such as LDES and clean firm generation.

18
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Modelling results and analysis



An overview

The results section is organized as follows:

1. Procurement and 24/7 CFE costs as a function of load flexibility.

2. Economic efficiency of co-optimized space-time load shifts.

3. Isolating values of spatial and temporal load shifting.

4. Insights from time-series data for optimized space-time load shifts.

5. Economically efficient redistribution of data center average loads.

6. Further remarks.
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Procurement as a function of load flexibility (100% CFE)
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Let us first consider the following scenario: (i)

100% CFE target, (ii) technology palette 1

(without LDES), and (iii) co-optimized spatial

& temporal load flexibility.

A plot on the left shows the cost-optimal

portfolio capacity required to match demand

with carbon-free electricity around-the-clock.

Results are displayed per each location and

share of flexible loads f .

As shown in the previous study, 100% hourly

matching with renewable generators and battery

storage requires a large portfolio for inflexible

demand case. The cost-optimal mix of solar

PV, wind and battery storage depends on the

local resources.

The required portfolio capacity is significantly

reduced when load shifting becomes possible.

This effect takes place in all locations.
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24/7 CFE costs as a function of load flexibility (100% CFE)
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The cost breakdown on the left shows the

average costs (per MWh of consumption) of

meeting demand with the 24/7 CFE policy

netted by revenue sold to the regional grid.

(NB for the 100% CFE target, 24/7 consumers

have nearly no grid imports in the consumption

mix.) With inflexible demand, only selected

regions benefit from good resources for solar

(PT) or wind (DK) and achieve hourly CFE

matching with lower costs. Overall, the

100% CFE hourly matching target remains

costly with palette 1 technologies.

Load shifting reduces the costs for 24/7

procurement in all locations, and especially in

locations where hourly matching with CFE is

expensive (IE, DE). Thus, demand flexibility

enables achieving 24/7 CFE in a more

cost-effective way, and this effect is particularly

notable for the resource-constrained places. 21
24/7 CFE 100% – palette 1 tech – spatial & temporal shifts



Procurement as a function of load flexibility (98% CFE)

If we now turn to a scenario with lower CFE

target of 98 % (keeping technology palette 1

and both spatial & temporal load flexibility

enabled), we see that this procurement policy

can be met by procuring much less onshore

wind and solar capacity.

This observation is in line with the previous

study, which showed that the last 2% of hourly

CFE matching nearly doubles the required

resources and costs (without LDES or clean

firm generation).

With a CFE target of 98%, the total procured

capacity still reduces in all locations with

increasing potential for demand flexibility, i.e.,

increasing share of flexible workloads. The

effects include (i) a reduction of battery storage,

(ii) a small reduction of overall renewable

capacity, and (iii) a swap of solar capacity with

wind due to higher capacity factor of the latter.
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24/7 CFE costs as a function of load flexibility (98% CFE)

There are two distinct observations in the

breakdown of costs for meeting the CFE 98%

policy: (i) the cost component associated with

imports of electricity from the regional grid

enters the mix of options to meet the CFE

policy; (ii) as mentioned above, the net average

cost of CFE procurement is much lower than for

CFE 100%.

Shifting of load across space and time enables

access to clean electricity at times of day when

certain locations have high renewable

penetration and creates more options to match

demand with CFE for times and locations

where renewable potential is scarce (for details,

we provide a time-series analysis below).

As a result, CFE 98% policy is more affordable

in all locations with increasing demand

flexibility.
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Procurement as a function of load flexibility (100% CFE w/ LDES)

0.
PT

0.1
PT

0.2
PT

0.4
PT

0.
IE

0.1
IE

0.2
IE

0.4
IE

0.
FI

0.1
FI

0.2
FI

0.4
FI

0.
DK

0.1
DK

0.2
DK

0.4
DK

0.
DE

0.1
DE

0.2
DE

0.4
DE

0

200

400

600

800

1000

1200

1400

DC
 p

or
tfo

lio
 c

ap
ac

ity
 [M

W
]

onshore wind
solar
battery

hydrogen electrolysis
hydrogen fuel cell

Let’s now look at the results for the

technological palette 2 (with LDES), keeping

the CFE 100% target and both spatial &

temporal load flexibility enabled.

When 24/7 consumers have access to a LDES

system, the required portfolio of renewable

capacity for the 100% CFE target is

significantly reduced. The LDES system helps

to align the load with the generation of

procured variable renewable resources.

Co-optimization of demand flexibility with

LDES promotes further efficiency gains. LDES

paired with load shifting makes it possible to

smooths out variations of renewable generation

and achieve 24/7 hourly matching with even

fewer resources. Though, the absolute values of

capacity reduction with higher flexibility are

expectedly lower than w/o LDES.
24

24/7 CFE 100% – palette 2 tech – spatial & temporal shifts



24/7 CFE costs as a function of load flexibility (100% CFE w/ LDES)
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These efficiency gains translate to further 24/7

costs reduction.

For the inflexible demand case, a LDES system

(with costs of 2.5 €/kWh) helps to bridge hours

with no renewable feed-in and reduce the costs

compared to the technology palette 1 case.

Once load shifting is possible, co-optimization

of spatial shifting, temporal shifting, and LDES

helps a 24/7 consumer to match its demand

with carbon-free electricity around-the-clock at

lower costs.

Co-optimization of load shifting and LDES

eliminates the need for battery storage for the

100% CFE target in wind-dominant locations

(DK); however, for solar-dominant locations

(PT), some share of batteries is still

cost-optimal, even with high degree of flexibility.
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Economic efficiency of co-optimized space-time load shifts (100% CFE)
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A plot on the left shows the total annual costs [e/a]

for achieving 24/7 CFE policy in all locations (left

y-axis) and their relative representation as a percentage

of the zero flexibility scenario’s costs (right y-axis). The

costs are plotted as a function of the load flexibility

potential. The values represent the total procurement

costs, not a 24/7 ”premium” (the additional costs to

the price of electricity in a local market).

The plot gives a summary perspective on the

observations above: increasing potential of demand

flexibility facilitates the efficiency and affordability of

24/7 CFE procurement. If 10% of loads are flexible, the

total costs of achieving 100% CFE decreased by 11%.

The costs decrease even further as flexibility increases.

The cost reduction is proportionally higher in the

resource-constrained locations (IE, DE) where hourly

matching with CFE is more expensive. This suggests

that demand flexibility is especially helpful for locations

where 24/7 approach is difficult.
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Isolating values of spatial and temporal load shifting

The results above are for the case when data centers co-optimize shifting of the flexible loads across locations

and over time. It is also interesting to look at the economic efficiency when flexibility usage is isolated, i.e., data

centers implement either a spatial or a temporal load management system. The plots below show total annual

costs for achieving 24/7 policy with isolated spatial (left) and temporal (right) load shifting.
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Share of flexible workloads.
 Costs reduction in max flexibility scenario: 5% (41.4 MEUR/a)
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Isolating values of spatial and temporal load shifts (100% CFE)

The modelling results for isolated spatial and temporal load shifting shown above reveal the following:

• The estimated value of spatial load management (for this scenario) is nearly six times bigger (31% and

6% of cost reductions, accordingly).

• When implemented together, the space-time load shifting can yield higher overall economic efficiency

gains (34%); however, the effects do not add up because the spatial and temporal load shifts are subject

to a shared set of computing capacity constraints (eq. 13a-13c).

• When analysing time-series data below, we show four individual channels for cost savings attributed to

both spatial and temporal load management (two channels for each). The relatively low value of temporal

flexibility can be explained by the fact that the two cost saving channels of temporal load shifting are

limited in this scenario, while the two cost saving channels of spatial load shifting are actively utilized.1

• Supplementary graphics in the Annex reveal that spatial load management enables reduction of both

locally procured generation and battery storage capacity, while temporal load management mainly reduces

the needs for battery storage.

1For temporal shifts: (i) the variability of grid emission intensity does not play a role because data centers have to rely on

locally procured resources at 100% CFE score; (ii) the daily compute usage conservation rule (eq. 10) limits the ability of using

temporal shifts to reduce the capacity fleet of wind and solar PV. For spatial shifts: (i) shifting workloads across locations

enables taking advantage of difference in weather conditions and (ii) taking advantage of differences in local resources.
28



Isolating values of spatial and temporal load shifts (98% CFE)

Let’s switch our focus to the scenario with 98% CFE score and technology palette 1. Similarly, the plots below

show results for isolated spatial (left) and temporal (right) load shifting. A notable difference is that the value

of spatial flexibility is much smaller (18% of cost savings), while the value of temporal flexibility is larger (14%).

At the 98% CFE score, 24/7 consumer complements own portfolio of procured CFE technologies with imports

of electricity from the regional grid (as shown above). Thus, temporal shifts are also responsive to local grid’s

carbon intensity, which drives its rising value. Shifting loads across locations still delivers a larger chunk of

efficiency gains, but the absolute gains drop with a smaller portfolio of the CFE resources and the option to

occasionally rely on grid imports. NB Data for the co-optimized case is in the supplementary graphics.
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Share of flexible workloads.
 Costs reduction in max flexibility scenario: 14% (46.0 MEUR/a)
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Isolating values of spatial and temporal load shifts (100% CFE w/ LDES)

Finally, the same perspective for the scenario with 100% CFE score and palette 2 (with LDES). Once a LDES

system is added to the technology mix of the 24/7 consumer, it can store excess generation from variable

renewable resources for extended periods. It helps matching demand with CFE around-the-clock with

considerably fewer resources everywhere, including the resource-constrained locations. Co-optimization of spatial

load management and LDES brings additional synergies. Long duration storage helps harvesting renewable

electricity in the best locations and spatial flexibility indirectly opens access to the cheaper clean electricity for

all locations. We discuss this effect in more detail in the analysis of redistribution of average data center loads.

0. 0.1 0.2 0.4

Share of flexible workloads.
 Costs reduction in max flexibility scenario: 20% (84.3 MEUR/a)

0

50

100

150

200

250

300

350

400

24
/7

 C
FE

 to
ta

l a
nn

ua
l c

os
ts

 [M
EU

R 
pe

r y
ea

r] DE
DK
FI
IE
PT

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Re
la

tiv
e 

co
st

s [
%

 o
f z

er
o 

fle
xi

bi
lit

y 
sc

en
ar

io
]

0. 0.1 0.2 0.4

Share of flexible workloads.
 Costs reduction in max flexibility scenario: 8% (32.0 MEUR/a)

0

50

100

150

200

250

300

350

400

24
/7

 C
FE

 to
ta

l a
nn

ua
l c

os
ts

 [M
EU

R 
pe

r y
ea

r] DE
DK
FI
IE
PT

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Re
la

tiv
e 

co
st

s [
%

 o
f z

er
o 

fle
xi

bi
lit

y 
sc

en
ar

io
]

30



Insights from time-series data for optimized space-time load shifts

The time-series data for space-time load shifts reveals several distinct patterns in the load-shifting. Let’s take a

look at the selected scenario (see bottom right for details). The plot below shows the hourly spatial load shifts

for a data center in Ireland. Negative values mapped to blue color represent loads “received” from other

locations in a given hour, while positive values mapped to red color represent loads “sent” away.
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Insights from time-series data for optimized space-time load shifts

Another perspective on the hourly spatial load shifts for the same scenario (i.e., the same model run) but

another location: a data center in Germany. Similarly, the negative values mapped to blue color represent loads

“received” from other locations in a given hour, while positive values mapped to red color represent loads

“sent” away.
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Insights from time-series data for optimized space-time load shifts

The heatmap plots above reveal several insightful observations on utilization of spatial flexibility. The spatial

shifts of load have two distinct utilization patterns:

1. A stochastic pattern: In the European energy system, the hourly profiles of wind power generation have a

low correlation over long distances due to different weather conditions. Spatial flexibility allows the system

to take advantage of these differences: spatial flexibility enables “load arbitrage” between locations with

different weather conditions. These load shifts are notable by the “vertical stripes” of a sudden color

change (i.e., directions of spatial shifts) in the heatmaps above.

In the Annex, we provide energy balance plots illustrating an example this behavior: a data center located

in Ireland experiences a tough situation on 03-04 March, due to calm days in the region and low feed-in of

the wind generators procured with PPAs. Imports from the regional grid do not help, because the local

electricity mix is dirty in this period and data center’s planned CFE score is 100%. However, a data center

in Denmark experiences good wind conditions on 03-04 March and has excess generation of CFE from the

procured porfolio. Thus, a load shift between the two data centers helps to resolve the situation.

To cover the load with CFE around-the-clock in a scenario with limited load flexibility (10% of flexible

workloads instead of 40%—see this scenario in the Annex), a data center in Ireland has to procure a

much bigger portfolio of solar PV and battery storage. Furthermore, a data center in Denmark has to

curtail the excess generation of clean electricity (unless it is sold to the regional grid). Overall, load

flexibility facilitates a better utilization of locally procured resources by reducing the volume of renewable

curtailment (more detail in the Annex). 33



Insights from time-series data for optimized space-time load shifts

2. A daily/seasonal pattern: other load shifts are caused by the differences in quality of local resources.

These load shifts are notable by the structured shapes a color change (i.e., directions of spatial shifts) in

the flexibility utilization heatmaps.

The quality of local resources, i.e., the average capacity factors of wind or solar PV in a given region,

translates into the levelised costs of electricity (LCOE) for renewable generators. When spatial load

shifting is possible, a rational 24/7 consumer can adjust their own procurement strategy by contracting

generators in better locations (lower LCOE) and co-optimizing spatial loads shifts accordingly.

The heatmaps above illustrate this behavior well: a data center located in Ireland—a region with poor

solar resources—tends to shift loads away during the daytime from the mid-spring till mid-autumn.

Instead, a data center located in Germany—a region with better solar resources—tends to receive loads

during this period. It works just about reciprocally for wind-related load shifts: a data center in Germany

benefits from having partners in Denmark and Ireland, the two very windy regions in Europe.

In the supplementary graphics, we provide an example of a data center in Germany in the first week of

May, where spatial load shifts have a clear daily profile (as can also be seen in the heatmap).
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Insights from time-series data for optimized space-time load shifts

Let us switch our attention to the temporal load management (while staying with the same scenario, see

bottom right for details). The plot below shows the hourly temporal load shifts for a data center in Portugal.

Negative values mapped to blue color represent “increase” of a load, i.e., workloads are shifted to a given hour

from other times, while positive values mapped to red color represent “decrease” of a load, thus workloads are

shifted away from a given hour to another time.
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Insights from time-series data for optimized space-time load shifts

Another perspective on the hourly temporal load shifts for the same location (data center in Portugal) but

another CFE score: 98%. The color mapping stays as above.
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Hourly CFE score of supply from grid

The (modelled) hourly CFE score of electricity supply from grid for Portugal.
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Insights from time-series data for optimized space-time load shifts

What can we learn about the temporal flexibility usage from the utilization heatmap plots above?

1. In the scenario with a 100% CFE score, data centers mainly rely on spatial flexibility utilization; the usage

of temporal flexibility is comparably small.

The potential for carbon-aware temporal load shifting is created by the variability of the regional grid

emission intensity. However, to achieve the 100% CFE score, the 24/7 consumer relies mainly on its own

procured generators and storages, i.e., there is (nearly) no imports from the regional grid. This effect was

explained in detail in our previous research (pp. 33, 41, 47).2 Thus, the variability of grid emission

intensity does not have much influence.

Temporal flexibility could also be helpful in aligning the demand with the generation of procured renewable

generators; however, the potential of using temporal shifts to reduce the capacity fleet is limited by (i) the

daily compute usage conservation rule (eq. 10) and (ii) the fact that temporal and spatial load shifts are

subject to a shared set of computing capacity constraints (eq. 13a-13c), whereas spatial shifts bring more

efficiency gains in this scenario, as shown above.

2In fact, in the discussion section of the previous study, we show that 24/7 consumers can occasionally rely on grid imports in

the 100% CFE case, but that requires certain conditions to be met.
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Insights from time-series data for optimized space-time load shifts

2. The results for the scenario with 98% CFE score show a different trend: temporal flexibility is actively

utilized to shift load from night to mid-day hours, and this pattern has a seasonal profile.

At the 98% CFE score, 24/7 consumer complements own portfolio of procured CFE technologies with

imports of electricity from the regional grid. Thus, temporal shifts are responsive to the regional grids’

carbon intensity, i.e., workloads are shifted to “greener” times. The carbon content of the regional grid

correlates with a profile of solar PV feed-in, what gives the shape for the temporal flexibility utilization.

The hourly CFE score of the electricity supply from the regional grid in Portugal is provided above, the

data other locations is the the Annex.

We provide supplementary graphics illustrating utilization of temporal flexibility in different contexts with

energy balance plots for selected locations and time frames. For a data center in Portugal (the first week

of May), the energy balance plot shows the co-optimized utilization of temporal and spatial load flexibility.

The temporal load shifts help to align data center’s demand profile with procured solar PV generation and

electricity imports in hours when the regional grid has a high CFE score. For a data center in Ireland (the

first week of December), the temporal load flexibility is used to minimize consumption during a difficult

period of low renewable energy feed-in.
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Insights from time-series data for optimized space-time load shifts

We wrap up our time-series results section with a brief look at the hourly spatial load shifts for the scenario

when LDES is added to the technology mix. Spatial flexibility utilization has a more “binary” and complex

pattern. This can be attributed to optimization across the nodes x time periods graph of all flexibility elements’

dispatch decisions and the synergies among them. In particular, co-optimized utilization of spatial shifts and

LDES system enables harvesting renewable resources in the best locations, storing it over long periods and

providing an access to low-cost carbon-free electricity for all data centers when it is needed the most.
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Economically efficient redistribution of data center average loads (100% CFE)
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The analysis of the time-series data for space-time load shifts

revealed interesting insights. However, a natural question to ask

based on the results above is whether space-time flexibility also

leads to the net shift of loads? In other words: Does load flexibility

facilitate a redistribution of the average utilization of data centers?

A plot on the left summarised the time-series data and shows

changes in the average utilization of data centers in each of the

five locations as a function of load flexibility.

A interesting aspect of this result is that when 24/7 procurement is

done with onshore wind, solar PV and battery storage, the increase

of data center average utilization does not occur in locations with

“greener” backgrounds grids, such as DK or FI. Instead, the

average utilization of data centers increases in locations with good

renewable resources that have generation profiles distinct to other

locations. Such locations include Portugal (notable for its excellent

solar resources, resulting in a high capacity factor for solar PV) and

Ireland (notable for its good wind resources and a generation profile

that is also uncorrelated to the four continental locations).
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Economically efficient redistribution of data center average loads (100% CFE w/ LDES)
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When LDES is added to the technology mix, the changes in data

center average loads have another pattern. The average utilization

increases only for the data center in Denmark, which has the best

wind conditions among the five locations. This observation

supports the findings on the synergy between space-time load

flexibility and LDES in the context of 24/7 CFE shown in the

sections on 24/7 costs, isolated values of space-time flexibility,

and time-series analysis.

Overall, the space-time load-shifting flexibility enables taking

advantage of differences in local resource quality, harvesting

renewable electricity in the best locations and indirectly opening

access to it for all locations. When paired with the LDES, the

efficiency gains of this effect become even larger. The LDES allows

storing CFE over long periods, thus overcoming the restrictions of

battery storage and the daily usage conservation rule of the

temporal shifts.

Finally, the space-time load-shifting flexibility facilitates the

economically efficient redistribution of loads, helping data centers

to match demand with carbon-free electricity around-the-clock in a

more cost-effective way.
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Further remarks

• In the previous study, we showed that 24/7 carbon free energy matching results in a notable and

systematic reduction of emissions both for participating consumers and in a regional grid (system-level

emissions).

• While preparing this study, we observed that load flexibility per se does not decrease emissions further

below relative to the high 24/7 CFE procurement baseline; however, flexibility makes achieving CFE

targets and the associated system effects more cost-effective.

• This effect takes place because 24/7 participants with higher CFE scores rely more on their own portfolio

of CFE resources and less on grid imports. For the high CFE scores considered in this study, imports from

the local grid are possible; however, the hourly CFE score of imported electricity has to be high enough to

match the CFE target. Thus, load flexibility is mainly used to optimize resources for matching demand

with carbon-free electricity around-the-clock, which leads to the system effects of 24/7 procurement, such

as lower system-wide emissions, at reduced procurement costs.

• Test model runs done without the 24/7 procurement constraint (eq. 15), i.e., simulating a case when data

centers cover demand purely with grid purchases without any policy regarding the origin of electricity,

result in active shifting flexible loads to “greener” times and locations (driven by the merit-order

economics). In that scenario, the increased load flexiblity would be ceteris paribus responsible for a

significant reduction in system-level emissions. 43
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Further remarks

• As shown in this study, space-time load shifting makes clean electricity more accessible and gives flexible

consumers more options for matching demand with carbon-free electricity around-the-clock. As a result,

data center operators and other commercial and industrial consumers with flexible demands can achieve

high degrees of CFE matching at lower costs, and may be interested in joining the 24/7 CFE movement.

Therefore, the system decarbonization impact associated with the 24/7 CFE procurement could be

amplified with greater participation while requiring fewer resources.

• There is a number of initiatives to improve the European Guarantee of Origin (GO) mechanism—the

largest standardized market for Energy Attribute Certificates (EACs) in the world—that has currently no

recognised system of verifying renewable electricity supply on an hourly basis. For example, the EnergyTag

initiative is developing a framework for adding a timestamp to EACs, which will make them more reflective

of the physical availability of clean energy and allow companies trading CFE credits on hourly basis.

ENTSO-E also published a position paper highlighting the need for the 24/7 GO system. When a market

for the 24/7 GOs is created, the space-time load-shifting flexibility provided by data centers will

theoretically decrease demand for GOs in hours when carbon-free electricity is the most expensive, which

in turn will reduce certificate costs for all electricity consumers interested in sustainability goals,

regardless of their ability to shift loads.
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Conclusions

Conclusion 1: Demand flexibility enables better access to clean electricity and createsmore options for consumers

to match demand with carbon-free electricity around-the-clock.

Conclusion 2: Some flexible electricity consumers, such as data centers, can shift computing jobs and associated

power loads in both time and location. These mechanisms facilitate the efficiency and affordability of 24/7

CFE procurement. The co-optimized space-time load-shifting can reduce the costs of 24/7 CFE by up to 34%,

depending on the level of flexibility and technologies available.

Conclusion 3: Demand flexibility is especially helpful for resource-constrained locations where hourly matching

with 24/7 CFE is difficult.

Conclusion 4: Space-time load-shifting facilitates economically efficient redistribution of loads to locations with

good carbon-free resources. When paired with long-duration energy storage, the efficiency gains of this effect are

even larger.

Conclusion 5: In the European energy system, the hourly profiles of wind power generation have a low correlation

over long distances due to different weather conditions. Spatial load flexibility enables the system to move load

to locations when and where there is high wind generation, thus saving costs of energy storage and reducing

curtailment of excess generation.
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The value of space-time load-shifting flexibility
for 24/7 carbon-free electricity procurement

This study is done in a spirit of open and reproducible research:

� https://github.com/PyPSA/247-cfe

A fixed link to the complete pack of results for this study:

® https://doi.org/10.5281/zenodo.8185850

For questions and collaboration inquiries, please contact

Dr. Iegor Riepin, iegor.riepin@tu-berlin.de

Prof. Tom Brown, t.brown@tu-berlin.de

Suggested citation: Riepin, I. & Brown, T., The value of space-time load-shifting flexibility for 24/7

carbon-free electricity procurement, Department of Digital Transformation in Energy Systems TU Berlin,

26 July 2023. Zenodo. DOI: doi.org/10.5281/zenodo.8185850

46

https://github.com/PyPSA/247-cfe
https://doi.org/10.5281/zenodo.8185850


Annex A: Methodology



Energy system model

• This study is done with a modified version of

PyPSA-Eur – an open optimization model of the

European energy system.

• PyPSA-Eur offers an automated and configurable

software pipeline enables scientific workflow from

freely available and open raw input data to

optimized energy system.

• The model is suitable both for operational studies,

as well as generation and transmission expansion

planning studies.

• PyPSA-Eur is an open-source project:

� PyPSA-Eur on GitHub

� Documentation

® Feature summary
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Mathematical model of 24/7 CFE procurement

• The mathematical model of 24/7 CFE procurement is based on the former work of authors:

System-level impacts of 24/7 carbon-free electricity procurement in Europe published in October 2022.

The study included mathematics additional to the PyPSA-Eur model to encode a situation when a

fraction of C&I consumers in a selected European countries commit to the 24/7 CFE goals. The resulting

problem optimized investment and operational decisions to meet projected electricity demand for the

24/7 CFE consumers, as well as the demand of other consumers in the European electricity system, while

meeting all relevant engineering, reliability, and policy constraints.

• In this study, we enhance the mathematical model of 24/7 CFE procurement by considering demand

flexibility provided by data centers. The load flexibility involves temporal (computing jobs scheduling) and

spatial (computing jobs migration) load shifting.

• Thus, a data center operator (i.e., a flexible consumer following 24/7 CFE goal) can meet a given CFE

target by either procuring energy generation and storage assets directly, and buying electricity from a local

grid in hours when electricity mix is sufficiently clean (like in the previous study), as well as utilize spatial

and/or temporal flexibility to achieve hourly matching of demand with clean electricity more efficiently.
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Matching electricity supply and demand: a case of inflexible consumer

The model optimizes a portfolio of carbon-free generation and storage technologies procured by the C&I

consumers that commit to 24/7 CFE goal. The portfolio assets have to be located in the same market zone.

The hourly demand of 24/7 participating consumer dt for hour t can be met by a combination of the following:

• dispatch gr,t of procured carbon-free generators r ∈ CFE

• dispatch ḡs,t of procured storage technologies s ∈ STO (requires charge g
¯s,t

)

• imports of electricity from the grid imt .

∑
r∈CFE

gr,t +
∑

s∈STO

(
ḡs,t − g

¯s,t

)
− ext + imt = dt ∀t (2)

NB: the excess from the local supply ext can either be sold to

the grid at market prices or curtailed.

imt ext

dt gCFE ,t gSTO,t
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24/7 CFE matching: a case of inflexible consumer

The 24/7 CFE matching is modelled with a constraint (3), which matches demand of participating consumers

with carbon-free resources on an hourly basis. The constraint ensures that sum over generators from procured

CFE resources r ∈ CFE , discharge and charge from storage technologies s ∈ STO, as well as import from the

grid imt multiplied by the grid’s CFE factor CFEt must be higher or equal than a certain CFE score x multiplied

with the total load dt :∑
r∈CFE ,t∈T

gr,t +
∑

s∈STO,t∈T

(
ḡs,t − g

¯s,t

)
−
∑
t∈T

ext +
∑
t∈T

CFEt · imt ≥ x ·
∑
t∈T

dt (3)

The CFE score x [%] measures the degree to

which hourly electricity consumption is matched

with carbon-free electricity generation within

the regional grid. The matric is calculated

using both CFE contracted by 24/7 participant,

as well as CFE coming from the regional grid mix.

The 24/7 CFE matching concept is aligned with

24/7 CFE: Methodologies and Metrics paper

by Google.
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24/7 CFE matching: grid CFE factor

The grid CFE factor CFEt in eq. (3) defines the percentage of clean electricity in each MWh of imported

electricity from the grid to supply participating 24/7 loads in a given hour. The factor depends on the

generation mix in the region where 24/7 participant is located, as well as on the generation mix in other regions

from which electricity is imported to the local region (importt).

Using notation on the right, the average cleanness of the rest of

the electricity system is:

ImportCFEt =
At

At + Dt

The CFE factor of grid supplya for a given hour t is:

CFEt =
Bt + ImportCFEt ∗ importt

Bt + Et + importt

aGenerators contracted by 24/7 consumers (C) are excluded from the

grid supply. Here we follow Xu et al. (2021)

Note that the grid CFE factor is affected by capacity procured by 24/7 consumers. This introduces a nonconvex term to the

optimization problem. The nonconvexity can be avoided by treating the grid CFE factor as a parameter that is iteratively updated

(starting with CFEt = 0 ∀t). In the previous study, we concluded that one forward pass (i.e. 2 iterations) yields very good

convergence. This observation holds true also for the optimization problem behind this study with multiple 24/7 consumers.
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24/7 CFE matching: excess CFE

The excess CFE represents generation from the procured resources above consumption of the 24/7 participant

in a particular hour. The excess CFE is not counted toward the CFE score – and thus it is subtracted on the

left-hand side of the eq. (3). While it does not contribute to the CFE Score, excess CFE could potentially be

stored (using batteries) and shifted to another hour, sold to the regional grid at market prices, or curtailed.

The total amount of CFE exported to the regional grid is constrained to a certain level on an annual basis. The

export limit (ExLimit) is set to 20% of annual 24/7 participating consumer’s demand. Thus, constraint (4)

gives the 24/7 participant flexibility to sell electricity to the regional grid, while avoiding the situation that sales

to the grid become significantly larger than CFE supply to own demand.

∑
t∈T

exportt ≤ ExLimit ·
∑
t∈T

dt (4)

The market prices are derived from the dual variable of each zone’s energy balance constraint. An infinitely

small relaxation of the constraint, i.e., one unit of load less to be met, returns the marginal costs of providing

that unit, which can be used as the electricity price indicator in a competitive market.
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Spatial load shifting problem 1/3

We introduce a concept of spatial load management system that allows for shifting load across locations. The

load shifts take place via virtual links – ICT-based pathways between data centers.
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Spatial load shifting problem 2/3

We introduce a concept of spatial load management system that allows for shifting workloads across locations.

The load shifts take place via virtual links – ICT-based pathways between data centers.

Here we follow a mathematical formulation of virtual links proposed by Zhang & Zavala (2022). Let Θ be the

set of all virtual links; let δϑ ∈ R+ be load shifts (flows via virtual pathways); and let NDC be the set of data

centers (flexible consumers). We can define Θsnd
n := {ϑ ∈ Θ|snd(ϑ) = n} ⊆ Θ and

Θrec
n := {ϑ ∈ Θ|rec(ϑ) = n} ⊆ Θ to be the set of sending and receiving virtual links at node n ∈ NDC .

The nodal energy balance defined for inflexible consumers (eq. 2) is now extended by variables representing

shifts of load across locations, since the dispatched load at a given node can include shifts to/from other data

center nodes:

∑
r∈CFE

gr,n,t +
∑

s∈STO

(
ḡs,n,t − g

¯s,n,t

)
− exn,t + imn,t =

dn,t +
∑

ϑ∈Θrec
n

δϑ,t −
∑

ϑ∈Θsnd
n

δϑ,t ∀n ∈ NDC , t ∈ T
(5)

imn,t exn,t

d̃n,t gCFE ,n,t gSTO,n,t
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Spatial load shifting problem 3/3

Computing capacity constraints (eq. 6) ensure

that the dispatched load at each data center

d̃n,t does not exceed available capacity (an

upper limit, eq. 6b), as well as that a certain

data center does not shift load that exceeds

flexible jobs share (a lower limit, eq. 6c).

d̃n,t = dn,t +
∑

ϑ∈Θrec
n

δϑ,t −
∑

ϑ∈Θsnd
n

δϑ,t ∀n ∈ NDC , t ∈ T

(6a)

d̃n,t ≤ [1 + f ] · dn,t ∀n ∈ NDC , t ∈ T (6b)

d̃n,t ≥ [1− f ] · dn,t ∀n ∈ NDC , t ∈ T (6c)

NB spatial load shifts are not subject to any electricity network transmission constraints; as such, the only source

of congestion for the virtual links is computing capacity constraints (i.e., availability of flexible workloads).

The 24/7 CFE matching constraint for inflexible consumer (eq. 3) is now defined over a set of data center

nodes n ∈ NDC and is extended on the right-hand side by spatial load shifts. Thus, flexible consumer can

benefit from an additional degree of freedom that helps relaxing the constraint for locations and times when

providing demand with carbon-free electricity is difficult:∑
r∈CFE ,t∈T

gr,n,t +
∑

s∈STO,t∈T

(
ḡs,n,t − g

¯s,n,t

)
−
∑
t∈T

exn,t +
∑
t∈T

CFEn,t · imn,t ≥

xn ·
∑
t∈T

dn,t +
∑

ϑ∈Θrec
n

δϑ,t −
∑

ϑ∈Θsnd
n

δϑ,t

 ∀n ∈ NDC

(7)
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Temporal load shifting problem 1/3

To capture temporal flexibility, we introduce a concept a data center temporal load management system that

allows for shifting load from a given time to another time point in the future.
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Temporal load shifting problem 2/3

To capture temporal flexibility, we introduce a concept a data center temporal load management system that

allows for shifting load from a given time to another time point in the future.

Consider a time horizon of our optimization problem T = {t1, t2, ..., tT }. For simplicity, let us assume that there

is a single flexible consumer (i.e., no spatial load shifts) with a demand-side temporal load management

mechanism denoted with a singleton set {s′}. Let variables ḡs′,t , g
¯s

′,t
∈ R+ be workloads that are resheduled in

time, i.e., shifted from a time t to a later time t′. Thus, the dispatched load d̃t of flexible consumer can deviate

from the nominal value dn,t due to temporal load management.

The nodal energy balance is now extended with variables representing shifts of load across time:

∑
r∈CFE

gr,t +
∑

s∈STO

(
ḡs,t − g

¯s,t

)
− ext + imt =

dt +
∑
s′

(
ḡs′,t − g

¯s
′,t

)
{NDC}, ∀t ∈ T

(8)

imt ext

d̃t gCFE ,t gSTO,t
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Temporal load shifting problem 3/3

Computing capacity constraints for temporal load shifting

problem (eq. 9) ensure that workloads delayed to a given

time t do not exceed available cluster capacity (an upper

limit, eq. 9b), as well as that only flexible workloads can

be shifted in time (a lower limit, eq. 9c).

d̃t = dt +
∑
s′

(
ḡs′,t − g

¯s
′,t

)
∀t ∈ T (9a)

d̃t ≤ [1 + f ] · dt ∀t ∈ T (9b)

d̃t ≥ [1− f ] · dt ∀t ∈ T (9c)

We follow Radovanovic et al. (2021) implementing the daily usage conservation rule – an additional constraint

to ensure that the cluster-level daily compute usage is preserved when flexible workload is shifted in time:

∑
t|t∈t(DAYS)

(
ḡs′,t − g

¯s
′,t

)
= 0 {s′} (10)

The 24/7 CFE matching constraint is also extended to account for the temporal load management mechanism.

Consumer with temporally flexible demand benefits from an additional degree of freedom that helps achieving a

CFE target by shifting load away from hours when matching demand with carbon-free electricity is expensive:∑
r∈CFE ,t∈T

gr,t +
∑

s∈STO,t∈T

(
ḡs,t − g

¯s,t

)
−
∑
t∈T

ext +
∑
t∈T

CFEt · imt ≥

x ·
∑
t∈T

(
dt +

∑
s′

(
ḡs′,t − g

¯s
′,t

))
{NDC}

(11)
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Spatially-temporal load shifting problem 1/3
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Spatially-temporal load shifting problem 2/3

The temporal and spatial flexibility of electricity demand can be co-optimized to help achieve clean electricity

targets. The resulting mathematical problem brings together the formulations of spatial and temporal load

management systems shown above.

We consider a set of data centers (flexible consumers) n ∈ NDC located in various locations within the electricity

network. Data centers are interconnected with virtual links Θsnd
n ,Θrec

n (complete graph). Each data center also

has a temporal load management mechanism Sdsm
n := {s′ ∈ S|dsm(s′) = n}.

The nodal energy balance is adjusted to account for variables representing load shifts across space and time:

∑
r∈CFE

gr,n,t +
∑

s∈STO

(
ḡs,n,t − g

¯s,n,t

)
− exn,t + imn,t =

dn,t +
∑

ϑ∈Θrec
n

δϑ,t −
∑

ϑ∈Θsnd
n

δϑ,t +
∑

s′∈Sdsm
n

(
ḡs′,n,t − g

¯s
′,n,t

)
∀n ∈ NDC , t ∈ T

(12)

imn,t exn,t

d̃n,t gCFE ,n,t gSTO,n,t
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Spatially-temporal load shifting problem 3/3

Computing capacity constraints (eq. 13)

now ensure that the dispatched load at

each data center d̃n,t does not exceed

the limits for each data center n ∈ NDC

considering both spatial and temporal

load shifts at each time point t.

d̃n,t = dn,t +
∑

ϑ∈Θrec
n

δϑ,t −
∑

ϑ∈Θsnd
n

δϑ,t

+
∑

s′∈Sdsm
n

(
ḡs′,n,t − g

¯s
′,n,t

)
∀n ∈ NDC , t ∈ T

(13a)

d̃n,t ≤ [1 + f ] · dn,t ∀n ∈ NDC , t ∈ T (13b)

d̃n,t ≥ [1− f ] · dn,t ∀n ∈ NDC , t ∈ T (13c)

The daily compute usage conservation rule is applied to each data center:∑
t|t∈t(DAYS)

(
ḡs′,t − g

¯s
′,t

)
= 0 ∀s′ ∈ Sdsm

n (14)

Finally, the 24/7 CFE matching constraint is adjusted accordingly. With co-optimization of temporal or spatial

load shifting, flexibility can be harnessed to achieve clean electricity targets more efficiently:∑
r∈CFE ,t∈T

gr,n,t +
∑

s∈STO,t∈T

(
ḡs,n,t − g

¯s,n,t

)
−
∑
t∈T

exn,t +
∑
t∈T

CFEn,t · imn,t ≥

xn ·
∑
t∈T

dn,t +
∑

ϑ∈Θrec
n

δϑ,t −
∑

ϑ∈Θsnd
n

δϑ,t +
∑

s′∈Sdsm
n

(
ḡs′,n,t − g

¯s
′,n,t

) ∀n ∈ NDC

(15)
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Annex B: Tools and data sources



PyPSA: an energy modelling ecosystem

• pypsa.org project provides a free, user-friendly and

performant model environment to support a

smooth energy transition around the world.

• The project includes individual packages that

enable to go all the way from data processing

(e.g., calculating renewable energy potentials or

collecting energy assets data) to creating complex

energy optimization problems.

• All packages are build in a modular sense so that

they may be used independently from each other

but interact easily.

• PyPSA development and maintenance is

coordinated by the Department of Energy Systems

@ TU Berlin (ENSYS).
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Data sources: electricity grid

Basic validation of grid model in

Hörsch et al. (2018)

• Grid data contains AC lines at and above 220 kV voltage

level, all high voltage DC lines, and substations for the full

ENTSO-E area.

• Grid data is collected by a modified � GridKit extraction

of the ENTSO-E Transmission System Map. GridKit

uses spatial and topological analysis to transform map

objects from the ENTSO-E interactive map into a network

model of the electric power system. The full grid model

contains near 6760 lines and 3640 substations.

• The number of nodes fed into optimization model is

adjustable, what allows for spatial and topological analysis

at different levels. The number of nodes can vary

between 37 (the number of independent countries /

synchronous areas) and several hundred (for

computational tractability).
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Data sources: power plants

• Existing power generation fleet data is collected with a

powerplantmatching toolset.

• Powerplantmatching cleans, standardizes and merges the

data from multiple open power plant datasets to create a

combined dataset, which includes all the important

information about power plants in Europe in a

ready-to-use format for energy system modelling.

• The toolset allows to update the combined data as soon

as new input datasets are released.

• Powerplantmatching is an open-source project maintained

by TU Berlin team.

� GitHub

� Documentation
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Data sources: technology cost assumptions

• The database of assumptions for energy system

technologies (such as capital and operational costs,

efficiencies, lifetimes, etc.) is retrieved from the repository

PyPSA/technology-data.

• The technology-data project compiles information about

energy technologies from a variety of sources. The

complied dataset has standardized technology names and

energy units. All values are linked to original sources.

• technology-data is an open-source project maintained by

TU Berlin team.

� GitHub

� Documentation Cost assumptions used in this study originate from the

technology data catalogue published by

The Danish Energy Agency.
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Data sources: renewable potentials and time series

Converting weather data to energy system data

• Renewable power potentials and generation profiles are

processed by the atlite package, which converts terabytes

of weather data (like wind speeds, solar influx) into the

data for energy systems modelling.

• With atlite, we process datasets for land cover

(CORINE2018), natural protection areas (NATURA2000),

and bathymetry (GEBCO2018) to conduct own geospatial

land availability analysis.

• The standard data source for renewable time time-series

estimation is ECMWF’s ERA5 dataset (reanalysis weather

data in ca. 30km x 30km and hourly resolution).

• atlite is also an open-source project maintained by

TU Berlin team.

� GitHub

� Documentation
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Other background system assumptions

• Electrical demand time-series is based on the OPSD project. We assume the same demand profile per

bidding zone for 2025 and 2030, as in the representative year 2013.

• We assume 2013 as the representative climate year for renewable in-feed.

• Renewable expansion in the background electricity system is endogenous; we implement renewable

generation targets by country that follow the national energy and climate plans. For countries w/o a

2025 target, a linear increase from renewable generation in 2020 to 2030 target is assumed. The modelled

CO2 emission intensity of electricity generation in European energy system matches the estimated values

for 2025/2030.

• National policies and decommissioning plans for coal and nuclear power plants are based on the

Europe Beyond Coal, and world-nuclear.org projects.

• We assume price for EU ETS allowances to be 80 e/tCO2 for 2025. The price for natural gas is assumed

to be 35 e/MWh.3

3Aligned with natural gas price assumptions in the REPowerEU Plan issued by the European Commission in 2022.
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Assumptions about technologies available for 24/7 CFE consumers

Year Technology CAPEX FOM VOM Efficiency lifetime

(overnight cost) (%/year) (€/MWh) (per unit) (years)

2025 utility solar PV 612 €/kW 1.7 0.01 - 37.5

2025 onshore wind 1077 €/kW 1.2 0.015 - 28.5

2025 battery storage 187 €/kWh 0 - - 22.5

2025 battery inverter 215 €/kW 0.3 - 0.96 10.0

2025 hydrogen storage4 2.5 €/kWh 0 - - 100.0

2025 electrolysis 550 €/kW 2.0 - 0.67 27.5

2025 fuel cell 1200 €/kW 5.0 - 0.50 10.0

Data is originally retrieved from the DEA’s catalogue for energy technologies

4Underground hydrogen storage in salt cavern
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Annex C: Supplementary

graphics



Hourly CFE score of supply from grid – DE 2025

0.0 0.2 0.4 0.6 0.8 1.0
Hourly CFE score of electricity supply from grid

Days of year

Ho
ur

s o
f a

 d
ay

Carbon Heat Map | DE

69



Hourly CFE score of supply from grid – DK 2025
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Hourly CFE score of supply from grid – IE 2025
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Hourly CFE score of supply from grid – FI 2025

0.0 0.2 0.4 0.6 0.8 1.0
Hourly CFE score of electricity supply from grid

Days of year

Ho
ur

s o
f a

 d
ay

Carbon Heat Map | FI

72



24/7 CFE costs as a function of load flexibility:

isolated spatial load shifting

Isolating values of spatial and temporal load management for a scenario with CFE score of 100% and

technology palette 1. The plots below show the average costs (per MWh of consumption) (left) and the total

annual costs (per annum) for achieving 24/7 policy in all locations (right) with spatial load shifting.
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24/7 CFE costs as a function of load flexibility:

isolated temporal load shifting

Isolating values of spatial and temporal load management for a scenario with CFE score of 100% and

technology palette 1. The plots below show the average costs (per MWh of consumption) (left) and the total

annual costs (per annum) for achieving 24/7 policy in all locations (right) with temporal load shifting.
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Economic efficiency of co-optimized space-time load shifts

98% CFE and 100% CFE w/ LDES

The two plots below complement the discussion on ”Isolated values of spatial and temporal load shifts”. The

plots show the total annual costs [e/a] for achieving 24/7 CFE policy in all locations (left y-axis) and their

relative representation as a percentage of the zero flexibility scenario’s costs (right y-axis). The costs are plotted

as a function of the load flexibility potential.

Left panel: 98% CFE scenario; right panel: 100% CFE w/ LDES scenario;
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Reduction of renewable energy curtailment

The plots below show the absolute amount of energy curtailment [GWh] from the portfolio of CFE generators

procured by a data center operator as a function of load flexibility. The results are displayed per share of flexible

loads f = {0%, 10%, 20%, 40%}.
Left panel: technology palette 1 (no LDES); right panel: technology palette 2 (with LDES)
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Data center CFE supply and demand

The plot on the right shows

the nodal energy balance

[MW*h/h], i.e., the

(cost-optimal) matching of

data center consumption

with carbon-free energy

supply.

Data center in Ireland.

The first week of March.

40% of flexible workloads.

100% CFE score.
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Data center CFE supply and demand

The plot on the right shows

the nodal energy balance

[MW*h/h], i.e., the

(cost-optimal) matching of

data center consumption

with carbon-free energy

supply.

Data center in Ireland.

The first week of March.

10% of flexible workloads.

100% CFE score.
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Data center CFE supply and demand

The plot on the right shows

the nodal energy balance

[MW*h/h], i.e., the

(cost-optimal) matching of

data center consumption

with carbon-free energy

supply.

Data center in Denmark.

The first week of March.

40% of flexible workloads.

100% CFE score.
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Data center CFE supply and demand

The plot on the right shows

the nodal energy balance

[MW*h/h], i.e., the

(cost-optimal) matching of

data center consumption

with carbon-free energy

supply.

Data center in Denmark.

The first week of March.

10% of flexible workloads.

100% CFE score.
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Data center CFE supply and demand

The plot on the right shows

the nodal energy balance

[MW*h/h], i.e., the

(cost-optimal) matching of

data center consumption

with carbon-free energy

supply.

Data center in Germany.

The first week of May.

40% of flexible workloads.

100% CFE score.
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Data center CFE supply and demand

The plot on the right shows

the nodal energy balance

[MW*h/h], i.e., the

(cost-optimal) matching of

data center consumption

with carbon-free energy

supply.

Data center in Portugal.

The first week of May.

40% of flexible workloads.

98% CFE score.
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Data center CFE supply and demand

The plot on the right shows

the nodal energy balance

[MW*h/h], i.e., the

(cost-optimal) matching of

data center consumption

with carbon-free energy

supply.

Data center in Ireland.

The first week of

December.

40% of flexible workloads.

98% CFE score.
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Data center CFE supply and demand

The plot on the right shows

the nodal energy balance

[MW*h/h], i.e., the

(cost-optimal) matching of

data center consumption

with carbon-free energy

supply.

Data center in Ireland.

The first week of March.

40% of flexible workloads.

100% CFE score.

+ LDES (palette 2).
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Data center CFE supply and demand

The plot on the right shows

the nodal energy balance

[MW*h/h], i.e., the

(cost-optimal) matching of

data center consumption

with carbon-free energy

supply.

Data center in Ireland.

The first week of March.

0% of flexible workloads.

100% CFE score.

+ LDES (palette 2).
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Data center CFE supply and demand

The plot on the right shows

the nodal energy balance

[MW*h/h], i.e., the

(cost-optimal) matching of

data center consumption

with carbon-free energy

supply.

Data center in Denmark.

The first week of March.

40% of flexible workloads.

100% CFE score.

+ LDES (palette 2).
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Data center CFE supply and demand

The plot on the right shows

the nodal energy balance

[MW*h/h], i.e., the

(cost-optimal) matching of

data center consumption

with carbon-free energy

supply.

Data center in Denmark.

The first week of March.

0% of flexible workloads.

100% CFE score.

+ LDES (palette 2).
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