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“We are like dwarfs sitting on the shoulders of giants”

from The Metalogicon by John in 1159



iv



Please Update

This book became victim of its own successes. More than 60% of downloads of this book are

for the old versions because the search engines keep track the previous downloads. That is,

when the old version with 80,000 downloads from one web site for example, like research-

gate.net, the new version cannot surface up. The book is released on a rolling fashion. It

means that it released several times during the year. In other words, if you have a copy of

the book and it is older than a month, the chances are that you have an old version. Please

do yourself a favor and download a new version. You can get the last version from zen-

odo https://zenodo.org/record/5521908#.YhxIaVRMFhF. While you are there you

can download several items:

• “Stability of Ships and Other bodies”.

https://zenodo.org/record/5784893#.Yd1uuYpME-0.

• “Fundamentals of Compressible Flow”,

https://zenodo.org/record/5523349#.YhxNZ1RMFhE.

• the world largest gad dynamics tables (over 600 pages).

https://zenodo.org/record/5523532#.YhxOD1RMFhE

• “Basics of Die Casting Design”

https://zenodo.org/record/5523594#.YhxNxFRMFhE

• “The Aquatic Bodies Locomotion serious” exposing the violation of first and second

laws of the thermodynamics by the establishment’s models and showing how to do it

correct , and

• other material like “15 Years Experience Creating Open Content Engineering Material”

describing the depth of the great depth analytically.

Like the largest gas table in world published by Potto Project NFP. All these materials are

authored by the undersigned. If you would like to learn more about this author you can

grab the article “15 Years Experience Creating Open Content Engineering Material.” https:
//zenodo.org/record/5791182#.Yd1v3YpME-0 In the near future the article “20 years of
producing open content engineering.”

Thank you for using this book, Genick
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Abstract

Why Abstract
The doi registration of the book forced the examination of what is written in this book. This

abstract is the result of this examination.

Short Abstract
Broadly speaking there are several approaches to teaching this topic fluid mechanics. This

book takes the practical approach in which tools are provided and pedagogical approach is

subordinated to practical. One of the feature of this approach is to combine advance material

with introductory material so that the interested student can dive in material that the stu-

dent is interested or skip it if not incline to do so. Specifically it means kinematic is taken

a secondary role and large emphasis in given to the integral approach. Those delicate topics

like smoke path are less practical and even though more pedagogical or logical are push to

background. A great emphasis was made to make the material more coherent.

As mandatory topics like the material properties has to presented and discussed. The

discussion presents what are fluids and present the topic of viscosity and surface tension in

midst other properties. Of course, a discussion on pressure and derivatives is provided. A

review of the base material like mechanics etc are supplied. The most extensive converged of

static material is display in this book. The material is not only the most extensive but provide

innovative material that was not publish in other books (at this moment) for example, it has

breakthroughs on ship stability. For example, the erroneous common equations are explained

and the equations that control the ship movement are assigned. This situation is a strange

case where the readers of this book will be more knowledge about ship stability than some of

researchers in this area who are still living in the flat Earth.

The book allocates several chapters to the integral analysis. In addition, the ideal flow is

investigated and illustrated. A large portion dedicated to the differential analysis. Additional

chapter deals with not cover material like added mass and transfer properties. The reason

that these topics are covered is to exposed the students and many cases even the instructors

to important issues that appear in real life. There are two chapters dealingwith one deals with

one–dimensional compressible and one chapter deals with two–dimensional flow. There is a

chapter deals with elementary multi–phase flow.

While this topic is not abstract, it is interesting point out that the USA government and
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others pay to violet these books’ copyrights. The USA government have put large amount of

money to university of California to make publish so it appear as if the government or the

university of California published this book. There are other plagiarizers of the book(s) some

of whichwere sponsored by the government and private donors. There are people like Sandip

Ghosal in hope that no one will know, maybe? These books are open content they are not

public domain! Do not netscape this content.

Long Abstract
Before diving in the specific, the difference between this books and other book have to be

explained. This book is better than other books not because better English (how really cares?)

but because the explanations more complete and other books are missing. Two examples ex-

hibit this difference this book to other books which are pressure at a great depth and ship

stability. For the early topic, this is the only book that provide this solution and the fact that

Sandip Ghosal from Northwestern plagiarizes this material in his class is a compliment
1
The

later topic is ship stability which is very interesting because it starts as a summer project for

my kids who are at time in elementary school. To supplement the ODE material they study

with an actual experiment. The experiment was not successful but grow to be amazing dis-

coveries. This point where the common knowledge of the rotation of ship was discovered.

Mistakenly, in the past it was assumed that the rotation point is at the metacenter, an imag-

inary point which measures the ship’s stability. In fact, all the books on stability, that were

examined, believe in this mistake. This assumption is wrong! Even for stationary conditions!

Furthermore, the rotation point (line) is moving absolutely and relatively to the body (even for

quasi–static stability). In other words, the rotation point is floating, depending on the geom-

etry, a fact which was discovered by Bar-Meir. Even with all other mistakes infecting the ship

stability, this error can reach to 400% (would you would like to be in ship build with design

of error of 400%?). For any pendulum, the rotation point move relatively to the body, creates

two effects: the moment of inertia changes and the pendulum becomes a double pendulum.

The double pendulum has two rotating arms attached to each other. The double pendulum

has no regular period and exhibits chaotic behavior. Large sums of money were spent on the

finding the natural frequency something that does not really exist consequence of erroneous

belief. This book is the only book (currently) describing these phenomena and many other.

What these issues demonstrate that even unclear topics are covered by fundamentals. It

is important to understanding the basic principles of the physics. In the first chapter the pre-

sentation what is considered to be fluid and under what conditions. Later it followed by the

brief history of the fluid mechanics with favorite flavor about the disputes. The chapter also

demonstrate how to find the properties when they are provided. Thermodynamics review

is a very minimalist as it the required class for most students (if not all). Yet, currently this

author is working on thermodynamics book which hopefully be summarized and replace the

current thermodynamics chapter. A review of mechanics is followed and it contains several

1
This issue is complicate. When he confronted with this fact he avoided a discussion. Did he try to claim this

solution to himself?
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innovative ideas that were not published before like how find the centroid of circle segment

(I/A). The next chapter is the most extensive and many innovative material like pressure at

deep ocean. This material plagiarizes by Sandip Ghosal fromNorthwestern University which

is viewed as a compliment.

The next part (not a chapter) deals with integral analysis with mass, momentum, mo-

ment of momentum, energy conservation chapters. The next part is followed by differential

analysis which present conservation of mass, and any quantity. The next chapter deals with

dimensional analysis which this author view as the pinnacle of the is books. The chapter and

external flow and internal flow the dimensional analysis. The potential flow is a traditional

material that can be skip for underground as it complicated and less useful. Yet it is provided

in this book and it is mostly to self study material. The last three chapters deal with one

dimensional compressible flow, two dimensional flow, and multi–phase flow.

The appendixes provide some mathematical background.
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How to Teach or Read Fluids Mechanics

Many commented on this bookwhich appeared on open.umn.edu/opentextbooks/textbooks/
85 and quora.com (even several people suggested to burn this book). The people who like to

burn this book because the book describe the added mass and none traditional topic etc. It

seem reasonable to describe not only thematerial butwhy this specificmaterial is selected and

what is the order they should read. People do not like to deal with the unfamiliar. The rea-

son that people suggested to burn the book is because they assume the added mass is not real

subject. Only after their iterations with other users, the user change his tune as it appeared

done on quora discussion forum.

Additionally Jiarong Hong and Kenneth Miller (form St. Cloud State University) com-

plain that “the book introduces many materials that are rarely–seen from standard textbooks

(e.g. Pushka equations and Nusselt’s methods)” instead of the “micro–scale flow”. These top-

ics are the main point of the book beside the open content idea. Clearly, here this book is

advocating to be a free thinker verse to just follow the path other without or with the mis-

takes. For example, Nusselt’s method produces different results as compared to Buckingham

method. These completely different results cannot compatible in most cases. It is either one

appropriate and one is not so much. There several examples in the book demonstrate this

point. This criticism insist to keep old school method even thought the new and better, much

better presented. In fact it is reflected in Hong’s research work which suffers from this issue.

What should be taught in the first fluidmechanics class depends onwhat one is trying to

achieve. If the purpose to get one, themost likely engineer (there aremanywho read this book

who are not engineer), to familiarize with the basics and aware of the strange phenomena in

fluid than this book is yours. If the purpose to get the check mark that advocating by Dr.

Hong go over material like Buckingham method that is useless then this book is not for you.

In way, this author suffered in first year boredom in the fluid mechanics class teaching similar

to what Dr. Hong advocates. In fact, all the material has to be later self taught by this author

with the exception of dimensional analysis.

Thus according to this logic, for a year class the skeletons has has to be a review of

thermo, mechanics etc. It recommended to review concepts such as the mass centroid etc.

Later, to go over static (hydrostatic) minus ship stability. It suggested to go over Pushka equa-

tion in one class do demonstrate how field is not a frozen and new discovery occurs.

It strongly advised to skip the kinematic such smoke lines, path lines etc. At this stage,

Reynolds Transport Theorem should be covered including mass, momentum, energy in this

order. This to flow by differential analysis including boundary layers. In this part the transi-

xi
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tion from laminar to turbulent should be covered. It has to follow by ideal flow including the

added mass. The added mass has to be covered at basic level. The reason that the added mass

has to be cover is because this topic appear in many area such boiling, Stocks flow, exterior

flow. The dimensional analysis has to woven into through the class.



Prologue For This Book

Version 0.7.0 June 21, 2023

pages (893 pages, size 15M)

For this version, the last missing chapter (hopefully) on the turbo machine (turbine etc) the

skeletonwas constructed even though it is still under the umbrella of theMomentum chapter.

Several additionalGATE exampleswere added. At this stage, thematerial included in the book

is enough for three semesters of basics of fluid mechanics.

This version appeared with a font change and it is hoped the users will like it. The font

change, “crashs” the parpic and wrapfigure macros. These were replace home made macros

to create binding so the images do not get loose.

Thank you to anonymous person who pointed the errors in the vector division and it

will be replaced by an updated material shortly (too many items in the queue.).

Version 0.6.9 May 31, 2023

pages (873 pages, size 15M)

Adding many questions or examples fromGATE. Fining several topics from addedmass. Still

more work to do with the published papers in the next version. This version was rushed

published because request to get more material on GATE.

In the calculations of the aquatic animal locomotion the fluid mechanics play a signif-

icant role. In fact, these calculations also appear in movement of of ship and other floating

bodies. Most of not all the works in these area are full with mistakes some which beyond to

fundamental errors. Such error is the ignoring the added mass when body moves in fluid. In

these situations, the error can be more hundreds percents and yet the author does not under-

stand their lack of understanding. Such a work by a Ph. D. like Giovanni Bianchi and friends

on the paper “ANumerical Model for the Analysis of the Locomotion of a Cownose Ray”. The

problem is that someone put this error, and yet he still think that he is right. He is not unique

as there many others who believe in nonsense. These books are written to prevent this flat

earth believers phenomenon.
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xiv PROLOGUE FOR THIS BOOK

Version 0.6.7 July 5, 2022
pages 831 size 13.3M
New chapter on the open channel flow was added (over 30 pages). There was no time to con-

tinue working on the added mass to finish the theory. From the work on fish propulsion by

this undersign several examples were added to various chapters. Several images got face lift

to improve the quality. It is so confusing to see the phenomenon that critics of the book has

two opposing point of views. One hand, Jiarong Hong from University of Minnesota claims

that Pushka equation should be eliminated from the book on the ground that it is too com-

plicated while on the other hand, Sandip Ghosal from Northwestern University plagiarized

the material and spent most of a week to teach the Pushka equation in his class. Dr. Ghosal

even had a question in final about this material. Personally, I would disdain from individuals

like Jiarong who hate progress as my professor as far as I can. It would be nice to hear and get

input on this topic from others. Should only old material remain as exclusive material? What

if the old material leads to mistakes, should it be maintained as exclusive material?

Version 0.6.2 April 13, 2022
pages 795 size 12.0M
This section deals with added mass again. The reaction to the previous version was over-

whelming somany respond to it. As results of these discussions a clarity appeared. The added

mass was thought to be many small depending added mass elements the velocity components

that can be triggered on and off. None could explain what this existence happened. Until it

was realized in this book that the mass is a scalar with value depend on the direction. Some-

thing that one should grateful to be able to explain. The only question to take the whole field

to except it. It is hoped that the new area of the open channel can be commenced even though

the added mass is rewording. It seems that area was infested with reporting like CNN and

BBC reporting; never know when they are telling the true.

Version 0.6.0 March 22, 2022
pages 773 size 11.8M
The more the added mass was investigated the greater revolution has been made. Could you

imagine that large part the work that with added mass is wrong. Is it possible? This work

dealing with marine maneuvering calculations, build effects under wind (also fluid–solid in-

teractions), high speed planes. While the air solid interaction is not that significant, the water

solid (normally, is extremely important). All these discoveries make this author nauseating,

and wonder if he lost his mind. The feeling of change the entire field while it make one exhil-

arating and put a fear that one cannot discover somuch. Then start to ask whether something

is hallucination happened. Only few topics remained in marine hydrodynamics that were not

touched by this project. It strange to see USA federal government spend money on reports
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and books that are basically contradict physics. Many of the research works that have done

in the area will have to be redone.

Version 0.5.5 March 17, 2022
pages 767 size 12M

A new chapter was added on the added mass as it so misused and to give researchers intro-

duction to this material. Additional source for the erroneous governing equations attempted

to fix in section of this prologue (0.5.2) is the transfer mechanisms discovered by yours truly.

Perhaps in the same category, the existence of the transfer properties which some referred to

them as the invisible properties in plain sight. As the added mass they are with the dimension

of matrix of 6x6. Yet opposed to added mass they where discovered by a single person, this

undersign. This material in process to be added to book.

Version 0.5.2 July 11, 2021
pages 743 size 11M

The rewrite of ship stability section was the most fascinating in this round. After reading that

section (in this book), the reader (mostly undergraduate) will knowmore about the topic than

the (probably almost all) top researchers in the area at time of writing this point. To emphasis

this point some of the specific errors common believe theory and corrections of these errors

spell out (more in the book “Stability of Ships and Other Bodies.”). The common governing

equations of ship motion are erroneous (in some cases the error reach about 400% or more).

One of the main reasons for this error is the wrong determination of of rotation point of the

ship. It is not this author thinks that the researchers in the field are/were incapable. On the

contrary, of the researchers were superb engineers with great physical mathematicians skills

like Ali Hasan Nayfeh. This author even discovered that one of his education root is with this

group researchers. This author mentor was Professor Micheal Bentwich who worked with

Professor Ernest Oliver (Ernie) Tuck whowas a student of JohnNicholas Newman fromMIT

and the author of Marine Hydrodynamics. This author views the science progress by line of

student–professor and himself to be an off chute just to stray way from this doctrine.

It is a phenomenon that people believe that because the material is open content, the

material can be taken away or/and it is worthless and can be ignored. When several research

groups were informed about these new discoveries, On one hand, some simply ignore (well

who want to acknowledge that their 30 years work is worthless
2
). On the other hand, others

claimed that the new discoveries are “just” improvements on the existing material. Such a

diplomatic answer a kin to stating that ignoring gravity is equivalent to applying gravity for

falling objects, and stating that it is just a correction. Other approach to solve the problem, to

2
example of such approach is John F. Wallace from Case Western university, suggested to all his colleagues that

“We should ignore all his [Bar-Meir] work like it never exist.” While not in ship stability but in die casting, the same

idea persists.
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alleged a new rotation location and to ignore the physics, for example, Thor Fossen in his book

“Handbook of Marine Craft Hydrodynamics and Motion Control” asserts that rotation is

around the gravity centroid (Guessing locations alongwith equations salad is a new technique

in science). One more approach published by the USA government and author from MIT
3

which claims that the ship is rotated somewhere but utilized the gravity centroid. So much

money with so little utility.

Version 0.4 April 6, 2020

pages 749 size 11M

What a change and what a strange experience was to write this book. This author got many

publishers who toldme that the undersign need to “hand over” them the book’s copyright and

in return they will allow him to use 50% even more of the book. The most bizarre “offer” was

fromUniversity ofWashington Seattle frommechanical engineering department by Jonathan

Posner. He informed this author that Bar–Meir must hand over the copyright and that Bar-

Meir should be happy if they take over writing the book because they (he and individuals

in his department) more qualify than Bar–Meir because they have a member in the national

academy. Yes, they are well more connected to the establishment. Perhaps the strange of all

was what occur in the following. The theory Bar-Meir developed on great depth pressure

(Pushka’s equation) was plagiarized and taught by Sandip Ghosal from Northwestern Uni-

versity for two or three lectures in his standard fluid mechanics class. This author view this

action as a compliment and do not intend to act legally.

The instructor from mechanical engineering taught this material (Pushka’s Equation)

and was using almost verbatim copy of the example including my nomenclature (from this

book) without acknowledgment. While is flattering that the instructor was plagiarizing my

material, it is disturbing that he and others like him violating the copyright of open content

material.

Version 0.3.2.0 March 18, 2013

pages 617 size 4.8M

It is nice to see that the progress of the book is about 100 pages per year. As usual, the book

contains newmaterial thatwas not published before. While in the near future the focuswill be

on conversion to php, themain trust is planed to be on add several missing chapters. potto.sty

was improved and subUsefulEquaiton was defined. For the content point of view two main

chapters were add.

3
was reviewed by this author



VERSION 0.3.0.5 MARCH 1, 2011 xvii

Version 0.3.0.5 March 1, 2011
pages 400 size 3.5M
A look on the progress which occur in the two and half years since the last time this page

has been changed, shows that the book scientific part almost tripled. Three new chapters

were added included that dealing with integral analysis and one chapter on differential anal-

ysis. Pushka equation (equation describing the density variation in great depth for slightly

compressible material) was added yet not included in any other textbook. While the chapter

on the fluid static is the best in the world (according to many including this author
4
), some

material has to be expanded.

The potto style file has improved and including figures inside examples. Beside the

Pushka equation, the book contains material that was not published in other books. Recently,

many heavy duty examples were enhanced and thus the book quality. The meaning heavy

duty example refers here to generalized cases. For example, showing the instability of the

upside cone versus dealing with upside cone with specific angle.

Version 0.1.8 August 6, 2008
pages 189 size 2.6M
When this authorwas an undergraduate student, he spend time to study thewave phenomenon

at the interface of open channel flow. This issue is related to renewal energy of extracting

energy from brine solution (think about the Dead Sea, so much energy). The common expla-

nation to the wave existence was that there is always a disturbance which causes instability.

This author was bothered by this explanation. Now, in this version, it was proven that this

wavy interface is created due to the need to satisfy the continuous velocity and shear stress

at the interface and not a disturbance.

Potto project books are characterized by high quality which marked by presentation

of the new developments and clear explanations. This explanation (on the wavy interface)

demonstrates this characteristic of Potto project books. The introduction to multi–phase is

another example to this quality. While it is a hard work to discover and develop and bring

this information to the students, it is very satisfying for the author. The number of down-

loads of this book results from this quality. Even in this early development stage, number of

downloads per month is about 5000 copies.

Version 0.1 April 22, 2008
pages 151 size 1.3M
The topic of fluidmechanics is common to several disciplines: mechanical engineering, aerospace

engineering, chemical engineering, and civil engineering. In fact, it is also related to disci-

4
While this bragging is not appropriate in this kind of book it is to point the missing and additional further

improvements needed.
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plines like industrial engineering, and electrical engineering. While the emphasis is some-

what different in this book, the common material is presented and hopefully can be used by

all. One can only admire the wonderful advances done by the previous geniuses who work

in this field. In this book it is hoped to insert, what and when a certain model is suitable than

other models.

One of the difference in this book is the insertion of the introduction to multiphase

flow. Clearly, multiphase is an advance topic. However, some minimal familiarity can be

helpful for many engineers who have to deal with non pure single phase fluid.

This book is the third book in the series of POTTO project books. POTTO project

books are open content textbooks so everyone are welcome to joint in. The topic of fluid

mechanics was chosen just to fill the introduction chapter to compressible flow. During the

writing it became apparent that it should be a book in its own right. In writing the chapter

on fluid statics, there was a realization that it is the best chapter written on this topic. It is

hoped that the other chapters will be as good this one.

This book is written in the spirit of my adviser and mentor E.R.G. Eckert. Eckert, aside

from his research activity, wrote the book that brought a revolution in the education of the

heat transfer. Up to Egret’s book, the study of heat transfer was without any dimensional

analysis. He wrote his book because he realized that the dimensional analysis utilized by

him and his adviser (for the post doc), Ernst Schmidt, and their colleagues, must be taught in

engineering classes. His book met strong criticism in which some called to “burn” his book.

Today, however, there is no known place in world that does not teach according to Eckert’s

doctrine. It is assumed that the same kind of individual(s) who criticized Eckert’s work will

criticize this work. Indeed, the previous book, on compressible flow, met its opposition. For

example, anonymous Wikipedia user name EMBaero claimed that the material in the book

is plagiarizing, he just doesn’t know from where and what. Maybe that was the reason that

he felt that is okay to plagiarize the book on Wikipedia. These criticisms will not change

the future or the success of the ideas in this work. As a wise person says “don’t tell me that

it is wrong, show me what is wrong”; this is the only reply. With all the above, it must be

emphasized that this book is not expected to revolutionize the field but change some of the

way things are taught.

The book is organized into several chapters which, as a traditional textbook, deals with

a basic introduction to the fluid properties and concepts (under construction). The second

chapter deals with Thermodynamics. The third book chapter is a review of mechanics. The

next topic is statics. When the Static Chapter was written, this author did not realize that so

many new ideas will be inserted into this topic. As traditional texts in this field, ideal flowwill

be presented with the issues of addedmass and added forces (under construction). The classic

issue of turbulence (and stability) will be presented. An introduction to multi–phase flow, not

a traditional topic, will be presented next (again under construction). The next two chapters

will deals with open channel flow and gas dynamics. At this stage, dimensional analysis will

be present (again under construction).
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How to contribute to this book
As a copylefted work, this book is open to revisions and expansions by any interested parties.

The only "catch" is that credit must be given where credit is due. This is a copyrighted work:
it is not in the public domain!

If you wish to cite portions of this book in a work of your own, you must follow the

same guidelines as for any other GDL copyrighted work.

Credits
All entries have been arranged in alphabetical order of surname, hopefully. Major contri-

butions are listed by individual name with some detail on the nature of the contribution(s),

date, contact info, etc. Minor contributions (typo corrections, etc.) are listed by name only

for reasons of brevity. Please understand that when I classify a contribution as "minor," it is

in no way inferior to the effort or value of a "major" contribution, just smaller in the sense

of less text changed. Any and all contributions are gratefully accepted. I am indebted to all

those who have given freely of their own knowledge, time, and resources tomake this a better

book!

• Date(s) of contribution(s): 1999 to present

• Nature of contribution: Original author.

• Contact at: genick at potto.org

Steven from artofproblemsolving.com

• Date(s) of contribution(s): June 2005, Dec, 2009

• Nature of contribution: LaTeX formatting, help on building the useful equation and

important equation macros.

• Nature of contribution: In 2009 creating the exEq macro to have different counter

for example.
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Dan H. Olson
• Date(s) of contribution(s): April 2008

• Nature of contribution: Some discussions about chapter on mechanics and correc-

tion of English.

Richard Hackbarth
• Date(s) of contribution(s): April 2008

• Nature of contribution: Some discussions about chapter on mechanics and correc-

tion of English.

John Herbolenes
• Date(s) of contribution(s): August 2009

• Nature of contribution: Provide some example for the static chapter.

Eliezer Bar-Meir
• Date(s) of contribution(s): Nov 2009, Dec 2009

• Nature of contribution: Correct many English mistakes Mass.

• Nature of contribution: Correct many English mistakes Momentum.

Henry Schoumertate
• Date(s) of contribution(s): Nov 2009
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Nomenclature

R̄ Universal gas constant, see equation (2.26), page 50

τ The shear stress Tenser, see equation (6.7), page 178

ℓ Units length., see equation (2.1), page 45

n̂ unit vector normal to surface of constant property, see equation (12.17), page 379

λ bulk viscosity, see equation (8.101), page 263

M Angular Momentum, see equation (6.39), page 199

µ viscosity at input temperature, T, see equation (1.17), page 12

µ0 reference viscosity at reference temperature, Ti0, see equation (1.17), page 12

FFFext External forces by non–fluids means, see equation (6.11), page 179

UUU The velocity taken with the direction, see equation (6.1), page 177

ρ Density of the fluid, see equation (13.1), page 437

Ξ Martinelli parameter, see equation (15.43), page 615

A The area of surface, see equation (4.140), page 111

a The acceleration of object or system, see equation (4.0), page 69

Bf Body force, see equation (2.9), page 47

BT bulk modulus, see equation (13.16), page 440

c Speed of sound, see equation (13.1), page 437

c.v. subscribe for control volume, see equation (5.0), page 150

Cp Specific pressure heat, see equation (2.23), page 49

Cv Specific volume heat, see equation (2.22), page 49

E Young’s modulus, see equation (13.17), page 440

lvii
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EU Internal energy, see equation (2.3), page 46

Eu Internal Energy per unit mass, see equation (2.6), page 47

Ei System energy at state i, see equation (2.2), page 46

G The gravitation constant, see equation (4.70), page 91

g
G

general Body force, see equation (4.0), page 69

H Enthalpy, see equation (2.18), page 48

h Specific enthalpy, see equation (2.18), page 48

k the ratio of the specific heats, see equation (2.24), page 49

kT Fluid thermal conductivity, see equation (7.3), page 208

L Angular momentum, see equation (3.41), page 65

M Mach number, see equation (13.24), page 443

P Pressure, see equation (13.3), page 437

Patmos Atmospheric Pressure, see equation (4.108), page 102

q Energy per unit mass, see equation (2.6), page 47

Q12 The energy transferred to the system between state 1 and state 2, see equation (2.2),

page 46

R Specific gas constant, see equation (2.27), page 50

S Entropy of the system, see equation (2.13), page 48

Suth Suth is Sutherland’s constant and it is presented in the Table 1.1, see equation (1.17),

page 12

Tτ Torque, see equation (3.43), page 66

Ti0 reference temperature in degrees Kelvin, see equation (1.17), page 12

Tin input temperature in degrees Kelvin, see equation (1.17), page 12

U velocity , see equation (2.4), page 46

w Work per unit mass, see equation (2.6), page 47

W12 The work done by the system between state 1 and state 2, see equation (2.2), page 46

z the coordinate in z direction, see equation (4.15), page 72

says Subscribe says, see equation (5.0), page 150
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Everyone is permitted to copy and distribute verbatim copies of this license document, but

changing it is not allowed.

Preamble
The purpose of this License is to make a manual, textbook, or other functional and useful

document "free" in the sense of freedom: to assure everyone the effective freedom to copy

and redistribute it, with or without modifying it, either commercially or non–commercially.

Secondarily, this License preserves for the author and publisher a way to get credit for their

work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the doc-

ument must themselves be free in the same sense. It complements the GNU General Public

License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,

because free software needs free documentation: a free program should come with manuals
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providing the same freedoms that the software does. But this License is not limited to soft-

ware manuals; it can be used for any textual work, regardless of subject matter or whether

it is published as a printed book. We recommend this License principally for works whose

purpose is instruction or reference.

APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice

placed by the copyright holder saying it can be distributed under the terms of this License.

Such a notice grants aworld-wide, royalty-free license, unlimited in duration, to use thatwork

under the conditions stated herein. The "Document", below, refers to any such manual or

work. Anymember of the public is a licensee, and is addressed as "you". You accept the license
if you copy, modify or distribute the work in away requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Docu-

ment or a portion of it, either copied verbatim, or with modifications and/or translated into

another language.

A "Secondary Section" is a named appendix or a front-matter section of theDoc-

ument that deals exclusively with the relationship of the publishers or authors of the Docu-

ment to the Document’s overall subject (or to relatedmatters) and contains nothing that could

fall directly within that overall subject. (Thus, if the Document is in part a textbook of math-

ematics, a Secondary Section may not explain any mathematics.) The relationship could be a

matter of historical connection with the subject or with related matters, or of legal, commer-

cial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are des-

ignated, as being those of Invariant Sections, in the notice that says that the Document is

released under this License. If a section does not fit the above definition of Secondary then

it is not allowed to be designated as Invariant. The Document may contain zero Invariant

Sections. If the Document does not identify any Invariant Sections then there are none.

The "CoverTexts" are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under this

License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most

25 words.

A "Transparent" copy of the Document means a machine-readable copy, repre-

sented in a format whose specification is available to the general public, that is suitable for

revising the document straightforwardly with generic text editors or (for images composed

of pixels) generic paint programs or (for drawings) some widely available drawing editor, and

that is suitable for input to text formatters or for automatic translation to a variety of formats

suitable for input to text formatters. A copy made in an otherwise Transparent file format

whose markup, or absence of markup, has been arranged to thwart or discourage subsequent

modification by readers is not Transparent. An image format is not Transparent if used for

any substantial amount of text. A copy that is not "Transparent" is called "Opaque".
Examples of suitable formats for Transparent copies include plain ASCII without
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markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available

DTD, and standard-conforming simple HTML, PostScript or PDF designed for humanmodi-

fication. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats

include proprietary formats that can be read and edited only by proprietary word processors,

SGML or XML for which the DTD and/or processing tools are not generally available, and

the machine-generated HTML, PostScript or PDF produced by some word processors for

output purposes only.

The "Title Page"means, for a printed book, the title page itself, plus such follow-

ing pages as are needed to hold, legibly, the material this License requires to appear in the title

page. For works in formats which do not have any title page as such, "Title Page" means the

text near the most prominent appearance of the work’s title, preceding the beginning of the

body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title

either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ

in another language. (Here XYZ stands for a specific section name mentioned below, such

as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve
the Title" of such a section when you modify the Document means that it remains a section

"Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states

that this License applies to the Document. These Warranty Disclaimers are considered to be

included by reference in this License, but only as regards disclaiming warranties: any other

implication that theseWarrantyDisclaimersmay have is void and has no effect on themeaning

of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially

or non–commercially, provided that this License, the copyright notices, and the license notice

saying this License applies to the Document are reproduced in all copies, and that you add

no other conditions whatsoever to those of this License. You may not use technical measures

to obstruct or control the reading or further copying of the copies you make or distribute.

However, you may accept compensation in exchange for copies. If you distribute a large

enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may

publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies inmedia that commonly have printed cov-

ers) of the Document, numbering more than 100, and the Document’s license notice requires

Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these

Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover.

Both covers must also clearly and legibly identify you as the publisher of these copies. The
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front cover must present the full title with all words of the title equally prominent and visible.

You may add other material on the covers in addition. Copying with changes limited to the

covers, as long as they preserve the title of the Document and satisfy these conditions, can be

treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should

put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest

onto adjacent pages.

If you publish or distributeOpaque copies of theDocument numberingmore than

100, you must either include a machine-readable Transparent copy along with each Opaque

copy, or state in or with eachOpaque copy a computer-network location fromwhich the gen-

eral network-using public has access to download using public-standard network protocols a

complete Transparent copy of the Document, free of added material. If you use the latter op-

tion, you must take reasonably prudent steps, when you begin distribution of Opaque copies

in quantity, to ensure that this Transparent copy will remain thus accessible at the stated lo-

cation until at least one year after the last time you distribute an Opaque copy (directly or

through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document

well before redistributing any large number of copies, to give them a chance to provide you

with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the con-

ditions of sections 2 and 3 above, provided that you release the Modified Version under pre-

cisely this License, with the Modified Version filling the role of the Document, thus licensing

distribution and modification of the Modified Version to whoever possesses a copy of it. In

addition, you must do these things in the Modified Version:

A. Use in theTitle Page (and on the covers, if any) a title distinct from that of theDocument,

and from those of previous versions (which should, if there were any, be listed in the

History section of the Document). You may use the same title as a previous version if

the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for au-

thorship of the modifications in the Modified Version, together with at least five of the

principal authors of the Document (all of its principal authors, if it has fewer than five),

unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the pub-

lisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for yourmodifications adjacent to the other copy-

right notices.
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F. Include, immediately after the copyright notices, a license notice giving the public per-

mission to use theModified Version under the terms of this License, in the form shown

in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover

Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at

least the title, year, new authors, and publisher of the Modified Version as given on the

Title Page. If there is no section Entitled "History" in the Document, create one stating

the title, year, authors, and publisher of the Document as given on its Title Page, then

add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a

Transparent copy of the Document, and likewise the network locations given in the

Document for previous versions it was based on. These may be placed in the "History"

section. You may omit a network location for a work that was published at least four

years before the Document itself, or if the original publisher of the version it refers to

gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the

section, and preserve in the section all the substance and tone of each of the contributor

acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their

titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the

Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title

with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that

qualify as Secondary Sections and contain no material copied from the Document, you may

at your option designate some or all of these sections as invariant. To do this, add their titles

to the list of Invariant Sections in the Modified Version’s license notice. These titles must be

distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but

endorsements of your Modified Version by various parties–for example, statements of peer

review or that the text has been approved by an organization as the authoritative definition

of a standard.
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You may add a passage of up to five words as a Front-Cover Text, and a passage

of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified

Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by

(or through arrangements made by) any one entity. If the Document already includes a cover

text for the same cover, previously added by you or by arrangement made by the same entity

you are acting on behalf of, you may not add another; but you may replace the old one, on

explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give per-

mission to use their names for publicity for or to assert or imply endorsement of anyModified

Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this Li-

cense, under the terms defined in section 4 above for modified versions, provided that you

include in the combination all of the Invariant Sections of all of the original documents, un-

modified, and list them all as Invariant Sections of your combined work in its license notice,

and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple

identical Invariant Sectionsmay be replaced with a single copy. If there aremultiple Invariant

Sections with the same name but different contents, make the title of each such section unique

by adding at the end of it, in parentheses, the name of the original author or publisher of that

section if known, or else a unique number. Make the same adjustment to the section titles in

the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the var-

ious original documents, forming one section Entitled "History"; likewise combine any sec-

tions Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete

all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents re-

leased under this License, and replace the individual copies of this License in the various

documents with a single copy that is included in the collection, provided that you follow the

rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it in-

dividually under this License, provided you insert a copy of this License into the extracted

document, and follow this License in all other respects regarding verbatim copying of that

document.

7. AGGREGATIONWITH INDEPENDENTWORKS

A compilation of the Document or its derivatives with other separate and in-

dependent documents or works, in or on a volume of a storage or distribution medium, is
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called an "aggregate" if the copyright resulting from the compilation is not used to limit the

legal rights of the compilation’s users beyond what the individual works permit. When the

Document is included in an aggregate, this License does not apply to the other works in the

aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Doc-

ument, then if the Document is less than one half of the entire aggregate, the Document’s

Cover Texts may be placed on covers that bracket the Document within the aggregate, or the

electronic equivalent of covers if the Document is in electronic form. Otherwise they must

appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute trans-

lations of the Document under the terms of section 4. Replacing Invariant Sections with

translations requires special permission from their copyright holders, but you may include

translations of some or all Invariant Sections in addition to the original versions of these In-

variant Sections. You may include a translation of this License, and all the license notices

in the Document, and any Warranty Disclaimers, provided that you also include the original

English version of this License and the original versions of those notices and disclaimers. In

case of a disagreement between the translation and the original version of this License or a

notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or

"History", the requirement (section 4) to Preserve its Title (section 1) will typically require

changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as ex-

pressly provided for under this License. Any other attempt to copy, modify, sublicense or

distribute the Document is void, and will automatically terminate your rights under this Li-

cense. However, parties who have received copies, or rights, from you under this License will

not have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU

Free Documentation License from time to time. Such new versions will be similar in spirit

to the present version, but may differ in detail to address new problems or concerns. See

http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Docu-

ment specifies that a particular numbered version of this License "or any later version" applies

to it, you have the option of following the terms and conditions either of that specified version

or of any later version that has been published (not as a draft) by the Free Software Founda-

tion. If the Document does not specify a version number of this License, you may choose any

version ever published (not as a draft) by the Free Software Foundation.
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ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License

in the document and put the following copyright and license notices just after the title page:

Copyright©YEARYOURNAME. Permission is granted to copy, distribute and/or

modify this document under the terms of theGNUFreeDocumentation License,

Version 1.2 or any later version published by the Free Software Foundation; with

no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy

of the license is included in the section entitled "GNU Free Documentation Li-

cense".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace

the "with...Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover

Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination

of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend

releasing these examples in parallel under your choice of free software license, such as the

GNU General Public License, to permit their use in free software.



About This Author

Genick Bar-Meir is a world–renowned and leading scientist who holds a Ph.D. in Mechan-

ical Engineering from University of Minnesota and a Master in Fluid Mechanics from Tel

Aviv University. Dr. Bar–Meir single handily revolutionized the ship stability field and die

casting fields. Until recently the ship stability understanding is based on metacenter estab-

lished 300 years ago. Bar-Meir demonstrated that previous hold theory prevented the ability

to write the correct governing equations of ship movement. He built the governing equations

and explained that floating bodies have in addition to the added properties there are trans-

fer properties. These transfer properties responsible for the transfer mechanism between the

various modes of movement of the floating body. An example to the revolution in Die Cast-

ing is the critical plunger velocity about 350 different teams from different universities and

countries had attempted to solve this problem. Yet, Bar-Meir was able to obtain the solution

while all the other teams failed miserably. In fact, every team claims that they succeed while

all others fail. How one know that Bar–Meir is right? His equations simply works.

Dr. Bar–Meir was the last student of the late Dr. R. G. E. Eckert (the same one who

that they named Ec is his honor.). Bar-Meir is responsible for major advancements in Fluid

mechanics (Pushka equation (deep ocean pressure), shock dynamics, etc.), particularly in the

pedagogy of FluidMechanics curriculum. Currently, he writes books (there are currently five

very popular books and new baby (book) on the way), and provides freelance consulting of

applications in various fields of fluid mechanics.

Bar-Meir also introduced a new methodology of Dimensional Analysis. Tradi-

tionally, Buckingham’s Pi theorem is used as an exclusive method of Dimensional Analysis.

Bar-Meir demonstrated that the Buckingham method provides only the minimum number

of dimensionless parameters. This minimum number of parameters is insufficient to under-

stand almost any physical phenomenon. He showed that the improved Nusselt’s methods

provides a complete number of dimensionless parameters and thus the key to understand the

physical phenomenon. He extended Nusselt’s methods and made it the cornerstone in the

new standard curriculum of Fluid Mechanics class.

Bar-Meir developed a new foundation (theory) so that improved shock tubes can

be built and utilized. This theory also contributes a new concept in thermodynamics, that of

the pressure potential. Before that, one of the open question that remained in hydrostaticswas

what is the pressure at great depths. The previous common solution had been awkward and

complex numerical methods. Bar-Meir provided an elegant analytical foundation (Pushka

Equation) to compute the parameters in this phenomenon. This solution has practical ap-
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plications in finding depth at great ocean depths and answering questions of geological scale

problems.

In the latest version a new, more accurate and hopefully a simpler method to cal-

culate the stability was developed by Bar–Meir. Additionally, Bar–Meir has shown that the

potential method has limitations because stability is compartmental which the way the po-

tential energy structure. Bar-Meir provided a way to improves this limitation.

In the area of compressible flow, it was commonly believed and taught that there

is only weak and strong shock and it is continued by the Prandtl–Meyer function. Bar–Meir

discovered the analytical solution for oblique shock and showed that there is a “quiet” zone

between the oblique shock and Prandtl–Meyer (isentropic expansion) flow. He also built an-

alytical solution to several moving shock cases. He described and categorized the filling and

evacuating of chamber by compressible fluid in which he also found analytical solutions to

cases where the working fluid was an ideal gas. The common explanation to Prandtl–Meyer

function shows that flow can turn in a sharp corner. Engineers have constructed a design

that is based on this conclusion. Bar-Meir demonstrated that common Prandtl–Meyer expla-

nation violates the conservation of mass and therefore the turn must be a round and finite

radius. The author’s explanations on missing diameter and other issues in Fanno flow and

“naughty professor’s question” are commonly used in various industries.

Earlier, Bar-Meir made many contributions to the manufacturing process and

economy and particularly in the die casting area. This work is used as a base in many nu-

merical works, in USA (for example, GM), British industries, Spain, and Canada. Bar-Meir’s

contributions to the understanding of the die casting process made him the main leading fig-

ure in that area. Initially in his career, Bar–Meir developed a new understanding of Mass

Transfer in high concentrations which are now standard building blocks for more complex

situations.

For some time Bar-Meir has worked on a project like rain barrels design, extrac-

tion energy form breaking system, die casting design improvement for some private compa-

nies. While the extraction energy project provide interesting problems it did not be produce

as much academic advancement because commercial secrecy. In fact, if you interested in de-

veloping these patents you can contact this author (for example extraction of energy from

breaking system has estimated value of hundred of Billions). These hand–on projects where

a great enjoyment and exposed various issues that otherwise were not on the radar of this

author. These “strange” projects leads to new understanding in ship stability (floating bodies).

For example, the stability of floating cylinder is for the first time was solved analytically.

The author used to live with his wife and three children. Now his kids are in med-

ical school or already pass that stage and are on medical career. This fact is a demonstration

that while you can get your kids to understand calculus and do AP in elementary school, you

still can fall in their education. A past project of his was building a four stories house, prac-

tically from scratch. While he writes his programs and does other computer chores, he often

feels clueless about computers and programming. While he is known to look like he knows

about many things, the author just know how to learn quickly. The author spent years work-

ing on the sea (ships) as a engine sea officer but now the author prefers to remain on solid
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ground.
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How This Book Was Written

2023 Version
It is strange that with over 5 billion dollars in research grants one would expect serious break-

throughs the area ship navigation, motion, and stability. Yet most of the work such as location

of the pivot points of the ship rotation, change of the governing equations and so forth were

done by this author. One only can wonder how this can be happened. It is overwhelming the

feeling to be at this situation. The effects are profound and even the exam like GATE has to

change the questions about this topic such as the rolling of ship.

2022 Version
All the breakthroughs that were made recently because of frustration with the poor expla-

nations that existed on marine or ship stability issues such as added mass. For example, the

calculations of research work done in this area on added mass are simply wrong and has to

be redone. This discoveries are important and were added to book.

2021 Version
Many of the programs that were used initially in the bookmatured like vim currently version

8 and up. Some other programs like tgif were replaced by other like ipe and blender. The

main change is that thematerial comesmore from the industry. There aremore examples that

originated from problems that were encounter in the industry. Well probably the engagement

with one work reflects in its writing. It is a hope that this material will be well received as

before.

Initial
This book started because I needed an introduction to the compressible flow book. After a

while it seems that is easier to write a whole book than the two original planned chapters.

In writing this book, it was assumed that introductory book on fluid mechanics should not

contained many new ideas but should be modern in the material presentation. There are

numerous books on fluid mechanics but none is open content. The approach adapted in this

book is practical, and more hands–on approach. This statement really meant that the book

lxxi
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is intent to be used by students to solve their exams and also used by practitioners when they

search for solutions for practical problems. So, issue of proofs so and so are here only either

to explain a point or have a solution of exams. Otherwise, this book avoids this kind of issues.

The structure of Hansen, Streeter and Wylie, and Shames books were adapted

and used as a scaffolding for this book. This author was influenced by Streeter and Wylie

book which was his undergrad textbooks. The chapters are not written in order. The first

4 chapters were written first because they were supposed to be modified and used as fluid

mechanics introduction in “Fundamentals of Compressible Flow.” Later, multi–phase flow

chapter was written. The chapter on ideal flow was add in the later stage.

The presentation of some of the chapters is slightly different from other books

because the usability of the computers. The book does not provide the old style graphical

solution methods yet provides the graphical explanation of things.

Of course, this book was written on Linux (Micro$oftLess book). This book was

written using the vim editor for editing (sorry never was able to be comfortable with emacs).

The graphics were done by TGIF, the best graphic program that this author experienced so

far. The figures were done by GLE. The spell checking was done by ispell, and hope to find a

way to use gaspell, a program that currently cannot be used on new Linux systems. The figure

in cover page was created by Genick Bar-Meir, and is copyleft by him.

Over the time the book introduced me to others and make me engaged in topics

that I was not aware off. For example, the issue rain barrels design leads to several examples

dimensional analyses in the book. Another example, work on how to convert the breaking

energy of cars (consider the change of millage per gallon between the city and the highway).

This brought to the realization the maximum temperature theory. Unfortunately the work

finished before it complete due to lack of funding.



Preface

"In the beginning, the POTTO project was without form, and
void; and emptiness was upon the face of the bits and files. And
the Fingers of the Author moved upon the face of the keyboard.
And the Author said, Let there be words, and there were words."
5
.

This book, Basics of Fluid Mechanics, describes the fundamentals of fluid mechanics

phenomena for engineers and others. This book is designed to replace all introductory text-

book(s) or instructor’s notes for the fluid mechanics in undergraduate classes for engineer-

ing/science students but also for technical peoples. It is hoped that the book could be used as

a reference book for people who have at least some basics knowledge of science areas such as

calculus, physics, etc.

The structure of this book is such that many of the chapters could be usable indepen-

dently. For example, if you need information about, say, statics’ equations, you can read just

chapter (4). I hope this approach makes the book easier to use as a reference manual. How-

ever, this manuscript is first and foremost a textbook, and secondly a reference manual only

as a lucky coincidence.

I have tried to describe why the theories are the way they are, rather than just listing

“seven easy steps” for each task. This means that a lot of information is presented which is not

necessary for everyone. These explanations have been marked as such and can be skipped.
6

Reading everything will, naturally, increase your understanding of the many aspects of fluid

mechanics. Many in the industry, have called and emailed this author with questions since

this book is only source in the world of some information. These questions have lead to more

information and further explanation that is not found anywhere else.

This book iswritten andmaintained on a volunteer basis. Like all volunteerwork, there

is a limit on how much effort I was able to put into the book and its organization. Moreover,

due to the fact that English is my third language and time limitations, the explanations are not

as good as if I had a few years to perfect them. Nevertheless, I believe professionals working in

many engineering fields will benefit from this information. This book contains many worked

examples, which can be very useful for many. In fact, this book contains material that was

not published anywhere else. As demonstration, some of the work was plagiarized in famous

American universities.

I have left some issues which have unsatisfactory explanations in the book, marked

with aMata mark. I hope to improve or to add to these areas in the near future. Furthermore,

5
To the power and glory of the mighty God. This book is only attempt to explain his power.

6
At the present, the book is not well organized. You have to remember that this book is a work in progress.

lxxiii
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I hope that many others will participate of this project and will contribute to this book (even

small contributions such as providing examples or editing mistakes are needed).

I have tried to make this text of the highest quality possible and am interested in your

comments and ideas on how to make it better. Incorrect language, errors, ideas for new

areas to cover, rewritten sections, more fundamental material, more mathematics (or less

mathematics); I am interested in it all. I am particularly interested in the best arrangement of

the book. If you want to be involved in the editing, graphic design, or proofreading, please

drop me a line. You may contact me via Email at “barmeir@gmail.com”.

Naturally, this book contains material that never was published before (sorry cannot

avoid it). This material never went through a close content review. While close content peer

review and publication in a professional publication is excellent idea in theory. In practice,

this process leaves a large room to blockage of novel ideas and plagiarism. Currently there

over 30 individual who publish review of the book and several web site discuss this book in

particular and potto’s books in general. If you would like be “review” or critic to my new

ideas please send me your comment(s) or publish in the your favorite your web site. Even

reaction/comments from individuals like David Marshall who stated that the author should

review other people work before he write any thing new (well, literature review is always

good, isn’t it?). While his comment looks like unpleasant reaction, it brought or cause the

expansion of the explanation for the oblique shock.

Several people have helped me with this book, directly or indirectly. I would like to

especially thank to my adviser, Dr. E. R. G. Eckert, whose work was the inspiration for this

book. I alsowould like to thank to JannieMcRotien (OpenChannel Flow chapter) andTousher

Yang for their advices, ideas, and assistance.

The symbolMETAwas added to provide typographical conventions to blurb as needed.

This is mostly for the author’s purposes and also for your amusement. There are also notes

in the margin, but those are solely for the author’s purposes, ignore them please. They will be

removed gradually as the version number advances.

I encourage anyone with a penchant for writing, editing, graphic ability, LATEX knowl-

edge, andmaterial knowledge and a desire to provide open content textbooks and to improve

them to join me in this project. If you have Internet e-mail access, you can contact me at

“barmeir@gmail.com”.



To Do List and Road Map

This book isn’t complete and probably never will be completed. There will always new prob-

lems to add or to polish the explanations or include more new materials. Also issues that

associated with the book like the software has to be improved. It is hoped the changes in TEX

and LATEX related to this book in future will be minimal and minor. It is hoped that the style

file will be converged to the final form rapidly. Nevertheless, there are specific issues which

are on the “table” and they are described herein.

At this stage, some chapters are missing. Specific missing parts from every chapters

are discussed below. These omissions, mistakes, approach problems are sometime appears in

the book when possible. You are always welcome to add a new material: problem, question,

illustration or photo of experiment. Material can be further illuminate. Additional material

can be provided to give a different angle on the issue at hand.

Properties

The chapter in beta stage and will be boosted in the future.

Turbulence

To add introductory chapter.

Inviscid Flow

The chapter is close to finishing stages. To add K–J condition and Add properties.

Machinery

To expand this chapter to be is own.

Internal Viscous Flow

To expand this Chapter.



INITIAL i

Open Channel Flow
The skeleton chapter was written and now the expansion with examples. To added civil en-

gineering GATE examples.
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1
Introduction to Fluid Mechanics

1.1 What is Fluid Mechanics?
Fluid mechanics deals with the study of all fluids under static and dynamic situations. Fluid

mechanics is a branch of continuous mechanics which deals with a relationship between

forces, motions, and statical conditions in a continuous material. This study area deals with

many and diversified problems such as surface tension, fluid statics, flow in enclose bodies, or

flow round bodies (solid or otherwise), flow stability, etc. In fact, almost any action a person is

doing involves some kind of a fluid mechanics problem. Furthermore, the boundary between

the solid mechanics and fluid mechanics is some kind of gray shed and not a sharp distinction

(see Fig. 1.1 for the complex relationships between the different branches which only part of it

should be drawn in the same time.). For example, glass appears as a solid material, but a closer

look reveals that the glass is a liquid with a large viscosity. A proof of the glass “liquidity” is

the change of the glass thickness in high windows in European Churches after hundred years.

The bottom part of the glass is thicker than the top part. Materials like sand (some call it quick

sand) and grains should be treated as liquids. It is known that these materials have the ability

to drown people. Even material such as aluminum just below the mushy zone
1
also behaves

as a liquid similarly to butter. Furthermore, material particles that “behaves” as solid mixed

with liquid creates a mixture that behaves as a complex
2
liquid. After it was established that

the boundaries of fluid mechanics aren’t sharp, most of the discussion in this book is limited

to simple and (mostly) Newtonian (sometimes power fluids) fluids which will be defined later.

1
Mushy zone refers to aluminum alloy or other alloy with partially solid and partially liquid phases.

2
It can be viewed as liquid solid multiphase flow.

1
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Fig. 1.1 – Diagram to explain part of relationships of fluid mechanics branches.
The fluid mechanics study involve many fields that have no clear boundaries between them.

Researchers distinguish between orderly flow and chaotic flow as the laminar flow and the

turbulent flow. The fluid mechanics can also be distinguish between a single phase flow and

multiphase flow (flowmade more than one phase or single distinguishable material). The last

boundary (as all the boundaries in fluid mechanics) isn’t sharp because fluid can go through

a phase change (condensation or evaporation) in the middle or during the flow and switch

from a single phase flow to a multi phase flow. Moreover, flow with two phases (or materials)

can be treated as a single phase (for example, air with dust particle).

After it was made clear that the boundaries of fluid mechanics aren’t sharp, the study

must make arbitrary boundaries between fields. Then the dimensional analysis can be used

explainwhy in certain cases one distinguish area/principle ismore relevant than the other and

some effects can be neglected. Or, when a general model is need because more parameters are

effecting the situation. It is this author’s personal experience that the knowledge and ability

to know in what area the situation lay is one of the main problems. For example, engineers

in software company (EKK Inc, http://ekkinc.com/ ) analyzed a flow of a complete still

liquid assuming a complex turbulent flow model. Such absurd analysis are common among

engineers who do not know which model can be applied. Thus, one of the main goals of this

book is to explain what model should be applied. Before dealing with the boundaries, the

simplified private cases must be explained.

http://ekkinc.com/
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There are two main approaches of presenting an introduction of fluid mechanics ma-

terials. The first approach introduces the fluid kinematic and then the basic governing equa-

tions, to be followed by stability, turbulence, boundary layer and internal and external flow.

The second approach deals with the Integral Analysis to be followed with Differential Analy-

sis, and continue with Empirical Analysis. These two approaches pose a dilemma to anyone

who writes an introductory book for the fluid mechanics. These two approaches have justi-

fications and positive points. Reviewing many books on fluid mechanics made it clear, there

isn’t a clear winner. This book attempts to find a hybrid approach in which the kinematic is

presented first (aside to standard initial four chapters) follow by Integral analysis and contin-

ued by Differential analysis. The ideal flow (frictionless flow) should be expanded compared

to the regular treatment. This book is unique in providing chapter on multiphase flow. Nat-

urally, chapters on open channel flow (as a sub class of the multiphase flow) and compressible

flow (with the latest developments) are provided.

1.2 Brief History
The need to have some understanding of fluidmechanics startedwith the need to obtainwater

supply. For example, people realized that wells have to be dug and crude pumping devices

need to be constructed. Later, a large population created a need to solve waste (sewage) and

some basic understanding was created. At some point, people realized that water can be used

to move things and provide power. When cities increased to a larger size, aqueducts were

constructed. These aqueducts reached their greatest size and grandeur in those of the City of

Rome and China.

Yet, almost all knowledge of the ancients can be summarized as application of instincts,

with the exception Archimedes (250 B.C.) on the principles of buoyancy. For example, larger

tunnels built for a larger water supply, etc. There were no calculations even with the great

need for water supply and transportation. The first progress in fluid mechanics was made

by Leonardo Da Vinci (1452-1519) who built the first chambered canal lock near Milan. He

also made several attempts to study the flight (birds) and developed some concepts on the

origin of the forces. After his initial work, the knowledge of fluid mechanics (hydraulic) in-

creasingly gained speed by the contributions of Galileo, Torricelli, Euler, Newton, Bernoulli

family, and D’Alembert. At that stage theory and experiments had some discrepancy. This

fact was acknowledged by D’Alembert who stated that, “The theory of fluids must necessarily

be based upon experiment.” For example the concept of ideal liquid that leads to motion with

no resistance, conflicts with the reality.

This discrepancy between theory and practice is called the “D’Alembert paradox” and

serves to demonstrate the limitationsof theory alone in solving fluid problems. As in ther-

modynamics, two different of school of thoughts were created: the first believed that the

solution will come from theoretical aspect alone, and the second believed that solution is the

pure practical (experimental) aspect of fluid mechanics. On the theoretical side, considerable

contributions were made by Euler, La Grange, Helmholtz, Kirchhoff, Rayleigh, Rankine, and

Kelvin. On the “experimental” side, mainly in pipes and open channels area, were Brahms,
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Bossut, Chezy, Dubuat, Fabre, Coulomb, Dupuit, d’Aubisson, Hagen, and Poiseuille.

In themiddle of the nineteen century, firstNavier in themolecular level and later Stokes

from continuous point of view succeeded in creating governing equations for real fluid mo-

tion. Thus, creating a matching between the two school of thoughts: experimental and the-

oretical. But, as in thermodynamics, people cannot relinquish control. As results it created

today “strange” names: Hydrodynamics, Hydraulics, Gas Dynamics, and Aeronautics.

The Navier-Stokes equations, which describes the flow (or even Euler equations), were

considered unsolvable during the mid nineteen century because of the high complexity. This

problem led to two consequences. Theoreticians tried to simplify the equations and arrive

at approximated solutions representing specific cases. Examples of such work are Hermann

von Helmholtz’s concept of vortexes (1858), Lanchester’s concept of circulatory flow (1894),

and the Kutta–Joukowski circulation theory of lift (1906). The experimentalists, at the same

time proposed many correlations to many fluid mechanics problems, for example, flow resis-

tance by Darcy, Weisbach, Fanning, Ganguillet, andManning. The obvious happenedwithout

theoretical guidance, the empirical formulas generated by fitting curves to experimental data

(even sometime merely presenting the results in tabular form) resulting in formulas that the

relationship between the physics and properties made very little sense.

At the end of the twenty century, the demand for vigorous scientific knowledge that

can be applied to various liquids as opposed to formula for every fluid was created by the

expansion of many industries. This demand coupled with new several novel concepts like

the theoretical and experimental researches of Reynolds, the development of dimensional

analysis by Rayleigh, and Froude’s idea of the use of models change the science of the fluid

mechanics. Perhaps the most radical concept that effects the fluid mechanics is of Prandtl’s

idea of boundary layer which is a combination of the modeling and dimensional analysis that

leads to modern fluid mechanics. Therefore, many call Prandtl as the father of modern

fluid mechanics. This concept leads to mathematical basis for many approximations. Thus,

Prandtl and his students Blasius, von Karman, Meyer, and Blasius and several other individ-

uals as Nikuradse, Rose, Taylor, Bhuckingham, Stanton, and many others, transformed the

fluid mechanics to today modern science.

While the understanding of the fundamentals did not change much, after World War

Two, the way how it was calculated changed. The introduction of the computers during the

60s and much more powerful personal computer has changed the field. There are many open

source programs that can analyze many fluid mechanics situations. Today many problems

can be analyzed by using the numerical tools and provide reasonable results. These programs

inmany cases can capture all the appropriate parameters and adequately provide a reasonable

description of the physics. However, there are many other cases that numerical analysis can-

not provide any meaningful result (trends). For example, no weather prediction program can

produce good engineering quality results (where the snowwill fall within 50 kilometers accu-

racy. Building a car with this accuracy is a disaster). In the best scenario, these programs are

as good as the input provided. Thus, assuming turbulent flow for still flow simply provides

erroneous results (see for example, EKK, Inc).
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1.3 Kinds of Fluids
Some differentiate fluid from solid by the reaction to shear stress. The fluid continuously and

permanently deformed under shear stress while the solid exhibits a finite deformation which

does not change with time. It is also said that fluid cannot return to their original state after

the deformation. This differentiation leads to three groups ofmaterials: solids and liquids and

all material between them. This test creates a new material group that shows dual behaviors;

under certain limits; it behaves like solid and under others it behaves like fluid (see Fig. 1.1).

The study of this kind of material called rheology and it will (almost) not be discussed in this

book. It is evident from this discussion that when a fluid is at rest, no shear stress is applied.

The fluid is mainly divided into two categories: liquids and gases.The main difference

between the liquids and gases state is that gas will occupy the whole volume while liquids

has an almost fix volume. This difference can be, for most practical purposes considered,

sharp even though in reality this difference isn’t sharp. The difference between a gas phase

to a liquid phase above the critical point are practically minor. But below the critical point,

the change of water pressure by 1000% only change the volume by less than 1 percent. For

example, a change in the volume by more 5% will required tens of thousands percent change

of the pressure. So, if the change of pressure is significantly less than that, then the change

of volume is at best 5%. Hence, the pressure will not affect the volume. In gaseous phase, any

change in pressure directly affects the volume. The gas fills the volume and liquid cannot. Gas

has no free interface/surface (since it does fill the entire volume).

There are several quantities that have to be addressed in this discussion. The first is

force which was reviewed in physics. The unit used to measure is [N]. It must be remember

that force is a vector, e.g it has a direction. The second quantity discussed here is the area.This

quantity was discussed in physics class but here it has an additional meaning, and it is referred

to the direction of the area. The direction of area is perpendicular to the area. The area is

measured in [m2]. Area of three–dimensional object has no single direction. Thus, these

kinds of areas should be addressed infinitesimally and locally.

The traditional quantity, which is force per area has a new meaning. This is a result of

division of a vector by a vector and it is referred to as tensor. In this book, the emphasis is on

the physics, so at this stage the tensor will have to be broken into its components. Later, the

discussion on the mathematical meaning is presented (later version). For the discussion here,

the pressure has three components, one in the area direction and two perpendicular to the

area. The pressure component in the area direction is called pressure (great way to confuse,

isn’t it?). The other two components are referred as the shear stresses. The units used for the

pressure components is [N/m2].
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The density is a property which requires that

liquid to be continuous. The density can be

changed and it is a function of time and space

(location) but must have a continues property.

It doesn’t mean that a sharp and abrupt change

in the density cannot occur. It referred to the

fact that density is independent of the sam-

pling size. Figure 1.2 shows the density as a

function of the sample size. After certain sam-

ple size, the density remains constant. Thus,

the density is defined as

log ℓlog ℓlog ℓ

ϵϵϵ

ρρρ

Fig. 1.2 – Density as a function of the size of
the sample.

ρ = lim
∆V−→ε

∆m

∆V
(1.1)

It must be noted that ε is chosen so that the continuous assumption is not broken, that is,

it did not reach/reduced to the size where the atoms or molecular statistical calculations are

significant (see Figure 1.2 for point where the green lines converge to constant density). When

this assumption is broken, then, the principles of statistical mechanics must be utilized.

1.4 Shear Stress

h

F
∆ℓ

β

y

U0x

x

Fig. 1.3 – Schematics to describe
the shear stress in fluid me-
chanics.

The shear stress is part of the pressure tensor. How-

ever, here, and many parts of the book, it will be

treated as a separate issue. In solid mechanics,

the shear stress is considered as the ratio of the

force acting on area in the direction of the forces

perpendicular to area (Note what the direction of

area?). Different from solid, fluid cannot pull di-

rectly but through a solid surface. Consider liquid

that undergoes a shear stress between a short distance of two plates as shown in Fig. 1.3.

The upper plate velocity generally will be

U = f (A, F,h) (1.2)

Where A is the area, the F denotes the force, h is the distance between the plates. In this

discussion, the aim is to develop differential equation, thus the small distance analysis is ap-

plicable. From solid mechanics study, it was shown that when the force per area increases, the

velocity of the plate increases also. Experiments show that the increase of height will increase

the velocity up to a certain range. Moving the plate with a zero lubricant (h ∼ 0) results in a

large force or conversely a large amount of lubricant results in smaller force. For cases where

the dependency is linear, the following can be written

U ∝ hF

A
(1.3)
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Equations (1.3) can be rearranged to be

U

h
∝ F

A
(1.4)

Shear stress was defined as

τxy =
F

A
(1.5)

The index x represent the “direction of the shear stress while the y represent the direction

of the area(perpendicular to the area). From equations (1.4) and (1.5) it follows that ratio of the

velocity to height is proportional to shear stress. Hence, applying the coefficient to obtain a

new equality as

τxy = µ
U

h
(1.6)

Where µ is called the absolute viscosity or dynamic viscosity which will be discussed later in

this chapter in a great length.

t0 t1 t2 t3< < <

Fig. 1.4 – The deformation of fluid due to shear stress
as progression of time.

In steady state, the distance the upper

plate moves after small amount of time, δt is

dℓ = Uδt (1.7)

From Figure 1.4 it can be noticed that for a

small angle, δβ ∼= sinβ, the regular approx-
imation provides

dℓ = Uδt =

geometry︷︸︸︷
hδβ (1.8)

From equation (1.8) it follows that

U = h
δβ

δt
(1.9)

Combining equation (1.9) with equation (1.6) yields

τxy = µ
δβ

δt
(1.10)

If the velocity profile is linear between the plate (it will be shown later that it is consistent

with derivations of velocity), then it can be written for small a angel that

δβ

δt
=
dU

dy
(1.11)

Materials which obey equation (1.10) referred to asNewtonian fluid. For this kind of substance

τxy = µ
dU

dy
(1.12)
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Newtonian fluids are fluids which the ratio is constant. Many fluids fall into this category

such as air, water etc. This approximation is appropriate formany other fluids but onlywithin

some ranges.

Equation (1.9) can be interpreted as momentum in the x direction transferred into the

y direction. Thus, the viscosity is the resistance to the flow (flux) or the movement. The

property of viscosity, which is exhibited by all fluids, is due to the existence of cohesion and

interaction between fluid molecules. These cohesion and interactions hamper the flux in y–

direction. Some referred to shear stress as viscous flux of x–momentum in the y–direction.

The units of shear stress are the same as flux per time as following

F

A

[
kgm

sec2
1

m2

]
=
ṁU

A

[
kg

sec

m

sec

1

m2

]

Thus, the notation of τxy is easier to understand and visualize. In fact, this interpretation

is more suitable to explain the molecular mechanism of the viscosity. The units of absolute

viscosity are [Nsec/m2].

Example 1.1: Shear Between Plane Level: Simple
A space of 1 [cm] width between two large plane surfaces is filled with glycerin. Cal-

culate the force that is required to drag a very thin plate of 1 [m2] at a speed of 0.5

m/sec. It can be assumed that the plates remains in equidistant from each other and

steady state is achieved instantly.

Solution
Assuming Newtonian flow, the following can be written (see equation (1.6))

Pavg =
ρgh

2

F =
AµU

h
∼
1× 1.069× 0.5

0.01
= 53.45[N]

Example 1.2: Concentric Cylinders Level: Simple
Castor oil at 25◦Cfills the space between two concentric cylinders of 0.2[m] and 0.1[m]

diameters with height of 0.1 [m]. Calculate the torque required to rotate the inner

cylinder at 12 rpm, when the outer cylinder remains stationary. Assume steady state

conditions.

Solution
The velocity is

U = r θ̇ = 2 π ri rps = 2× π× 0.1×
rps︷ ︸︸ ︷
12/60 = 0.4 π ri

Where rps is revolution per second.

The same way as in Example 1.1, the moment can be calculated as the force times the distance



1.5. VISCOSITY 9

End of Ex. 1.2
as

M = F ℓ =

ri︷︸︸︷
ℓ

2πri h︷︸︸︷
A µU

ro − ri

In this case ro − ri = h thus,

M =
2 π2

ri︷︸︸︷
0.13 �h

µ︷ ︸︸ ︷
0.986 0.4

�h
∼ .0078[Nm]

1.5 Viscosity
1.5.1 General Discussion

Viscosity varies widely with temperature.

However, temperature variation has an op-

posite effect on the viscosities of liquids and

gases. The difference is due to their fundamen-

tally different mechanism creating viscosity

characteristics. In gases, molecules are sparse

and cohesion is negligible, while in the liquids,

the molecules are more compact and cohesion

is more dominate. Thus, in gases, the exchange

of momentum between layers brought Viscos-

ity varies widely with temperature as a result

of molecular movement normal to the gen-

eral direction of flow, and it resists the flow.

This molecular activity is known to increase

with temperature, thus, the viscosity of gases

will increasewith temperature. This reasoning
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Fig. 1.5 – The different of power fluids fami-
lies. Notice that Bingham fluid has large
portion that it is like solid.

is a result of the considerations of the kinetic theory. This theory indicates that gas viscosities

vary directly with the square root of temperature. In liquids, the momentum exchange due

to molecular movement is small compared to the cohesive forces between the molecules.

Thus, the viscosity is primarily dependent on the magnitude of these cohesive forces. Since

these forces decrease rapidly with increases of temperature, liquid viscosities decrease as

temperature increases.

Fig. 1.6a demonstrates that viscosity increases slightly with pressure, but this variation

is negligible formost engineering problems. Well above the critical point, both phases are only

a function of the temperature. On the liquid side below the critical point, the pressure has

minor effect on the viscosity. It must be stress that the viscosity in the dome is meaningless.

There is no such a thing of viscosity at 30% liquid. It simply depends on the structure of the

flow as will be discussed in the chapter on multi phase flow. The lines in the above diagrams



10 CHAPTER 1. INTRODUCTION TO FLUID MECHANICS

(a) Nitrogen viscosity. (b) Argon viscosity.

Fig. 1.6 – Nitrogen (left) and Argon (right) viscosity as a function of the temperature and pressure
after Lemmon and Jacobsen.

are only to show constant pressure lines. Oils have the greatest increase of viscosity with

pressure which is a good thing for many engineering purposes.

1.5.2 Non–Newtonian Fluids

Fig. 1.7 – The shear stress as a function of the
shear rate.

In equation (1.5), the relationship between the ve-

locity and the shear stress was assumed to be lin-

ear. Not all the materials obey this relationship.

There is a large class of materials which shows a

non–linear relationshipwith velocity for any shear

stress. This class of materials can be approximated

by a single polynomial term that is a = bxn. From

the physical point of view, the coefficient depends

on the velocity gradient. This relationship is re-

ferred to as power relationship and it can be writ-

ten as

τ =

viscosity︷ ︸︸ ︷
K

(
dU

dx

)n−1(
dU

dx

)
(1.13)

The new coefficients (n,K) in equation (1.13) are constant. When n = 1 equation represent

Newtonian fluid and K becomes the familiar µ. The viscosity coefficient is always positive.

When n, is above one, the liquid is dilettante.When n is below one, the fluid is pseudoplastic.

The liquids which satisfy equation (1.13) are referred to as purely viscous fluids. Many fluids

satisfy the above equation. Fluids that show increase in the viscosity (with increase of the

shear) referred to as thixotropic and those that show decrease are called rheopectic fluids (see

Figure 1.5).

Materials which behave up to a certain shear stress as a solid and above it as a liquid

are referred as Bingham liquids. In the simple case, the “liquid side” is like Newtonian fluid
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for large shear stress. The general relationship for simple Bingham flow is

τxy = −µ ± τ0 if |τyx| > τ0 (1.14)

dUx

dy
= 0 if |τyx| < τ0 (1.15)

There are materials that simple Binghammodel does not provide adequate explanation and a

more sophisticate model is required. The Newtonian part of the model has to be replaced by

power liquid. For example, according to Ferraris et al (Ferraris, De Larrard, andMartys 2001)

concrete behaves as shown in Figure 1.7. However, for most practical purposes, this kind of

figures isn’t used in regular engineering practice.

Thixotropic and Rheopectic fluids are

two common family of non-Newtonian fluids

that additionally are have hysteresis which the

shape is time depend. Thixotropic Fluid a fluid

wit hysteresis loop is known as thixotropic

fluid; the applicable viscosity of a thixotropic

fluid reduced with the time for a constant

shear stress. For example, the water suspen-

sion with bentonitic clay is used in petroleum

industry as drilling fluid. Clearly, for long use

it advantage to have the viscosity reduced. A

dilatent fluid having with increased viscosity

for constant shear stress with time. Examples

of this category include printer inks and gyp-

sum pastes.
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Fig. 1.8 – Thixotropic and Rheopectic flu-
ids with the hysteresis and the time de-
pended.

1.5.3 Kinematic Viscosity
The kinematic viscosity is anotherway to look at the viscosity. The reason for this new defini-

tion is that some experimental data are given in this form. These results also explained better

using the new definition. The kinematic viscosity embraces both the viscosity and density

properties of a fluid. The above equation shows that the dimensions of ν to be square meter

per second, [m2/sec], which are acceleration units (a combination of kinematic terms). This

fact explains the name “kinematic” viscosity. The kinematic viscosity is defined as

ν =
µ

ρ
(1.16)

The gas density decreases with the temperature. However, The increase of the absolute

viscosity with the temperature is enough to overcome the increase of density and thus, the

kinematic viscosity also increase with the temperature for many materials.
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(a) Air viscosity as a function of the temperature.
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(b) Water viscosity as a function temperature.

Fig. 1.9 – The effect of the temperature on the absolute the kinematic viscosity of water and air

1.5.4 Estimation of The Viscosity
The absolute viscosity of many fluids relatively doesn’t change with the pressure but very

sensitive to temperature. For isothermal flow, the viscosity can be considered constant in

many cases. The variations of air and water as a function of the temperature at atmospheric

pressure are plotted in Figures Fig. 1.9.

In some exams (such as GATE) questions on the kinetice theory of gases and the re-

lationship to viscosty are common. While this method is not practical or provide resonble

results, the fact that it expected this section is provided. Using elastic hard spheres as model

with diamter of σ (of the molecule) then elementary kinetic theory extimates that viscosity

increases with the square root of absolute temperature T :

µ = 1.016 · 5

16σ2

√
k
B
mT

π
(1.17)

where k
B
is the Boltzmann constant. The prediction of the treand is that the gaseous material

increases with the temperature such as

√
1/T . In reality this increase is much more stronger

and it is suggested to ignore this method. More accorate models the inclusion of attractive

interactions yeilds realistic approach.

Some commonmaterials (pure andmixture) have expressions that provide an estimate.

For many gases, Sutherland’s equation is used and according to the literature, provides rea-

sonable results
3
for the range of −40◦C to 1600◦C.

µ = µ0
0.555 Ti0 + Suth
0.555 Tin + Suth

(
T

T0

)3
2

(1.18)

Where

µ viscosity at input temperature, T

µ0 reference viscosity at reference temperature, Ti0

3
This author is ambivalent about this statement.
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Tin input temperature in degrees Kelvin

Ti0 reference temperature in degrees Kelvin

Suth Suth is Sutherland’s constant and it is presented in the Table 1.1. .

Example 1.3: Viscosity Estimation with Sutherland Level: Simple
Calculate the viscosity of air at 800K based on Sutherland’s equation. Use the data

provide in Table 1.1.

Solution
Applying the constants from Suthelnd’s table provides

µ = 0.00001827× 0.555× 524.07+ 120
0.555× 800+ 120 ×

(
800

524.07

)3
2
∼ 2.51 10−5

[
Nsec

m2

]

The viscosity increases almost by 40%. The observed viscosity is about ∼ 3.710−5
[
Nsec
m2

]
.

````````````̀Material

coefficients Chemical

formula

Sutherland TiO[K] µ0(Nsec/m
2)

ammonia NH3 370 527.67 0.00000982

standard air 120 524.07 0.00001827

carbon dioxide CO2 240 527.67 0.00001480

carbon monoxide CO 118 518.67 0.00001720

hydrogen H2 72 528.93 0.0000876

nitrogen N2 111 540.99 0.0001781

oxygen O2 127 526.05 0.0002018

sulfur dioxide SO2 416 528.57 0.0001254

Table 1.1 – The list for Sutherland’s equation coefficients for selected materials.

Substance
Chemical

formula

Temperature

T [◦C]
Viscosity [

Nsec
m2

]

i−C4H10 23 0.0000076

CH4 20 0.0000109

CO2 20 0.0000146

Oxygen O2 20 0.0000203

Mercury vapor Hg 380 0.0000654

Table 1.2 – Viscosity of selected gases.
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Table 1.3 – Viscosity of selected liquids.

Chemical

component

Chemical

formula

Temperature

T [◦C]
Viscosity [

Nsec
m2

]

(C2H5)O 20 0.000245

C6H6 20 0.000647

Br2 26 0.000946

C2H5OH 20 0.001194

Hg 25 0.001547

H2SO4 25 0.01915

Olive Oil 25 0.084

Castor Oil 25 0.986

Clucuse 25 5-20

Corn Oil 20 0.072

SAE 30 - 0.15-0.200

SAE 50 ∼ 25◦C 0.54

SAE 70 ∼ 25◦C 1.6

Ketchup ∼ 20◦C 0,05

Ketchup ∼ 25◦C 0,098

Benzene ∼ 20◦C 0.000652

Firm glass - ∼ 1× 107

Glycerol 20 1.069

Various Carbon Oils
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The kinetic viscosity affected strongly by the

temperature and it depend on the chemistry

of oils. The kinetic viscosity is generally by

what is referred as Arrhenius–type relation-

ship which given by the following (Talavera-

Prieto, Ferreira, Portugal, and Egas 2019)

ν = AeE
a/RT

(1.19)

where ν is kinetic viscosity, A initial factor,

Ea is the activation energy, R the gas con-

stant, and T the absolute temperature. There

are relationship between the initial factor the

the value at high temperature which related by

A = lnν∞.

For wider range of temperature the vis-

cosity three parameters are need and it is given

by Vogel–Fulcher–Tammann (VFT) equation:

Fig. 1.10 – Cotton seed oil kinetic viscosity in
3-D as a function of pressure and tem-
perature. The symbol η should be ν as
figure made by non fluid mechanics af-
terNievesM.C. Talavera–Prieto, AbelG.
M. Ferreira, Anto nio T. G. Portugal, and
Ana P. V. Egas

lnν = AVFT +
BVFT
T − T0

(1.20)

where AVFT = lnν∞ and constants AVFT , BVFT , and T0 are the fitting parameters. When

the situation is more complex more complex equations are required.
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Fig. 1.11 – Liquid metals viscosity as a function of the temperature.
Liquid metal can be considered as a Newtonian fluid for many applications. Furthermore,

many aluminum alloys are behaving as a Newtonian liquid until the first solidification ap-

pears (assuming steady state thermodynamics properties). Even when there is a solidification

(mushy zone), the metal behavior can be estimated as a Newtonian material (further reading
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can be done in this author’s book “Fundamentals of Die Casting Design”). Figure 1.11 exhibits

several liquid metals (from The Reactor Handbook, Vol. Atomic Energy Commission AECD-

3646 U.S. Government Printing Office, Washington D.C. May 1995 p. 258.).

The General Viscosity Graphs
In case “ordinary” fluidswhere information is limit, Hougen et al suggested to use graph

similar to compressibility chart. In this graph, if one point is well documented, other points

can be estimated. Furthermore, this graph also shows the trends. In Figure 1.12a the relative

viscosity µr = µ/µc is plotted as a function of relative temperature, Tr. µc is the viscosity at

critical condition and µ is the viscosity at any given condition. The lines of constant relative

pressure, Pr = P/Pc are drawn. The lower pressure is, for practical purpose, ∼ 1[bar].

Chemical

component

Molecular

Weight

Tc[K] Pc[Bar] µc [
Nsec
m2

]

H2 2.016 33.3 12.9696 3.47

He 4.003 5.26 2.289945 2.54

Ne 20.183 44.5 27.256425 15.6

Ar 39.944 151 48.636 26.4

Xe 131.3 289.8 58.7685 49.

Air “mixed” 28.97 132 36.8823 19.3

CO2 44.01 304.2 73.865925 19.0

O2 32.00 154.4 50.358525 18.0

C2H6 30.07 305.4 48.83865 21.0

CH4 16.04 190.7 46.40685 15.9

Water 18.01528 647.096 K 22.064 [MPa] ∼ 11.

Table 1.4 – The properties at the critical stage and their values of selected materials.

The critical pressure can be evaluated in the following three ways. The simplest way is

by obtaining the data from Table 1.4 or similar information. The second way, if the informa-

tion is available and is close enough to the critical point, then the critical viscosity is obtained

as

µc =

given︷︸︸︷
µ

µr︸︷︷︸
Figure 1.12a

(1.21)

The third way, when none is available, is by utilizing the following approximation

µc =
√
MTcṽc

2/3
(1.22)

Where ṽc is the critical molecular volume andM is molecular weight. Or

µc =
√
MPc

2/3Tc
−1/6

(1.23)

Calculate the reduced pressure and the reduced temperature and from the Figure 1.12a obtain

the reduced viscosity.



1.5. VISCOSITY 17

4 5 6 7 8 9 10
0

2 3 4 5 6 7 8 9 10
1

Reduced Temperature

2

5

1

2

5

10

2

R
ed

u
ce

d
V

is
co

si
ty

Reduced Viscosity

Pr=LD

Pr=0.2

Pr=0.5

Pr=1

Pr=2

Pr=3

Pr=5

Pr=25

critical point

liquid

dense gas

T
Tc

µ µ
c

two-phase
region

May 27, 2008

(a) Reduced viscosity as function of the reduced
temperature.

1

2

3

4

5

6

R
ed

u
ce

d
v
is

co
si

ty

10
-1

2 5 1 2 5 10 2

Reduced Pressure [ ]

Tr=0.8

Tr=1

Tr=1.1

Tr=1.2

Tr=1.4

Tr=1.6

Tr=2

Tr=3

µ µ
0

P
Pc

August 22, 2013

(b) Reduced viscosity as function of the reduced
temperature.

Fig. 1.12 – Relative viscosity

Example 1.4: Oxygen Viscosity Level: Simple
Estimate the viscosity of oxygen,O2 at 100

◦C and 20[Bar].

Solution
The critical condition of oxygen are Pc = 50.35[Bar] , Tc = 154.4 and therefor µc =

18

[
Nsec

m2

]
The value of the reduced temperature is

Tr ∼
373.15
154.4

∼ 2.41

The value of the reduced pressure is

Pr ∼
20

50.35
∼ 0.4

From Figure 1.12a it can be obtained µr ∼ 1.2 and the predicted viscosity is

µ = µc

Table︷ ︸︸ ︷(
µ

µc

)
= 18× 1.2 = 21.6[Nsec/m2]

The observed value is 24[N sec/m2]a.

a
Kyama, Makita, Rev. Physical Chemistry Japan Vol. 26 No. 2 1956.
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Viscosity of Mixtures
In general the viscosity of liquid mixture has to be evaluated experimentally. Even for

homogeneous mixture, there isn’t silver bullet to estimate the viscosity. In this book, only

the mixture of low density gases is discussed for analytical expression. For most cases, the

following Wilke’s correlation for gas at low density provides a result in a reasonable range.

µmix =

n∑
i=1

xi µi∑n
j=1 xiΦij

(1.24)

whereΦij is defined as

Φij =
1√
8

√
1+

Mi
Mj

(
1+

√
µi
µj

4

√
Mj

Mi

)2
(1.25)

Here, n is the number of the chemical components in the mixture. xi is the mole fraction of

component i, and µi is the viscosity of component i. The subscript i should be used for the j

index. The dimensionless parameterΦij is equal to one when i = j. The mixture viscosity is

highly nonlinear function of the fractions of the components.

Example 1.5: Air Viscosity Level: Simple
Calculate the viscosity of a mixture (air) made of 20% oxygen, O2 and 80% nitrogen

N2 for the temperature of 20◦C.

Solution
The following table summarizes the known details

i Component

Molecular

Weight,M

Mole

Fraction,

x

Viscosity, µ

1 O2 32. 0.2 0.0000203

2 N2 28. 0.8 0.00001754

i j Mi/Mj µi/µj Φij

1 1 1.0 1.0 1.0

2 1.143 1.157 1.0024

2 1 0.875 .86 0.996

2 1.0 1.0 1.0

µmix ∼
0.2× 0.0000203

0.2× 1.0+ 0.8× 1.0024 +
0.8× 0.00001754

0.2× 0.996+ 0.8× 1.0 ∼ 0.0000181
[
Nsec

m2

]

The observed value is ∼ 0.0000182
[
Nsec

m2

]
.
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In very low pressure, in theory, the viscosity is only a function of the temperature with

a “simple” molecular structure. For gases with very long molecular structure or complexity

structure these formulas cannot be applied. For somemixtures of two liquids it was observed

that at a low shear stress, the viscosity is dominated by a liquid with high viscosity and at high

shear stress to be dominated by a liquid with the low viscosity liquid. The higher viscosity is

more dominate at low shear stress. Reiner and Phillippoff suggested the following formula

dUx

dy
=




1

µ∞ +
µ0 − µ∞
1+

(
τxy
τs

)2



τxy

(1.26)

Where the term µ∞ is the experimental value at high shear stress. The term µ0 is the ex-

perimental viscosity at shear stress approaching zero. The term τs is the characteristic shear

stress of the mixture. An example for values for this formula, for Molten Sulfur at tempera-

ture 120◦C are µ∞ = 0.0215
(
Nsec
m2

)
, µ0 = 0.00105

(
Nsec
m2

)
, and τs = 0.0000073

(
kN
m2

)
.

This equation (1.26) provides reasonable value only up to τ = 0.001
(
kN
m2

)
.

Fig. 1.12b can be used for a crude estimate of dense gases mixture. To estimate the

viscosity of the mixture with n component Hougen and Watson’s method for pseudocritial

properties is adapted. In this method the following are defined as mixed critical pressure as

Pc
mix

=

n∑
i=1

xi Pc
i

(1.27)

the mixed critical temperature is

Tc
mix

=

n∑
i=1

xi Tc
i

(1.28)

and the mixed critical viscosity is

µc
mix

=

n∑
i=1

xi µc
i

(1.29)
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Example 1.6: Concentric Cylinders Level: Simple

An inside cylinder with a radius of 0.1 [m]

rotates concentrically within a fixed cylin-

der of 0.101 [m] radius and the cylinders

length is 0.2 [m]. It is given that a mo-

ment of 1 [N×m] is required to maintain

an angular velocity of 31.4 revolution per

second (these number represent only aca-

demic question not real value of actual liq-

uid). Estimate the liquid viscosity used be-

tween the cylinders.

h

Ui

ri

ro

Fig. 1.13 – Concentrating cylinders with
the rotating inner cylinder.

Solution
The moment or the torque is transmitted through the liquid to the outer cylinder. Control

volume around the inner cylinder shows thatmoment is a function of the area and shear stress.

The shear stress calculations can be estimated as a linear between the two concentric cylinders.

The velocity at the inner cylinders surface is

Ui = rω = 0.1× 31.4[rad/second] = 3.14[m/s] (1.6.a)

The velocity at the outer cylinder surface is zero. The velocity gradient may be assumed to be

linear, hence,

dU

dr
∼=

0.1− 0
0.101− 0.1

= 100sec−1 (1.6.b)

The used moment is

M =

A︷ ︸︸ ︷
2 π ri h

τ︷ ︸︸ ︷
µ
dU

dr

ℓ︷︸︸︷
ri

(1.6.c)

or the viscosity is

µ =
M

2πri
2 h
dU

dr

=
1

2× π× 0.12 × 0.2× 100
=

(1.6.d)

Example 1.7: Square Block Sliding Level: Simple
A square block weighing 1.0 [kN] with a side surfaces area of 0.1 [m2] slides down an

incline surface with an angle of 20
◦
C. The surface is covered with oil film. The oil

creates a distance between the block and the inclined surface of 1× 10−6[m]. What is

the speed of the block at steady state? Assuming a linear velocity profile in the oil and

that the whole oil is under steady state. The viscosity of the oil is 3× 10−5[m2/sec].

Solution
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End of Ex. 1.7
The shear stress at the surface is estimated for steady state by

τ = µ
dU

dx
= 3× 10−5 × U

1× 10−6 = 30U (1.7.a)

The total fiction force is then

f = τA = 0.1× 30U = 3U (1.7.b)

The gravity force that acting against the friction is equal to the friction hence

Fg = f = 3U =⇒ U =
mg sin 20◦

3
(1.7.c)

Or the solution is

U =
1× 9.8× sin 20◦

3
(1.7.d)

Example 1.8: Viscosity of Disc Level: Intermediate

Develop an expression to estimate

of the torque required to rotate a

disc in a narrow gap. The edge ef-

fects can be neglected. The gap is

given and equal to δ and the rota-

tion speed is ω. The shear stress

can be assumed to be linear.

δ

rR

Fig. 1.14 – Rotating disc in steady state.

Solution
In this cases the shear stress is a function of the radius, r and an expression has to be developed.

Additionally, the differential area also increases and is a function of r. The shear stress can be

estimated as

τ ∼= µ
U

δ
= µ

ωr

δ
(1.8.a)

This torque can be integrated for the entire area as

T =

∫R
0
r τ dA =

∫R
0

ℓ︷︸︸︷
r

τ︷ ︸︸ ︷
µ
ωr

δ

dA︷ ︸︸ ︷
2 π r dr

(1.8.b)

The results of the integration is

T =
πµωR4

2 δ
(1.8.c)
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1.6 Fluid Properties
The fluids have many properties which are similar to solid. A discussion of viscosity and

surface tension should be part of this section but because special importance these topics

have separate sections. The rest of the properties lumped into this section.

1.6.1 Fluid Density
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Fig. 1.15 –Water density as a function of temperature for various pressure. This figure illustrates the
typical situations like the one that appeared in Ex. 1.9

The density is a property that is simple to analyzed and understand. The density is

related to the other state properties such temperature and pressure through the equation of

state or similar. Examples to describe the usage of property are provided.

Example 1.9: Temperature Density Bulk Modulus Level: Advance
A steel tank filled with water undergoes heating from 10◦C to 50◦C. The initial pres-
sure can be assumed to atmospheric. Due to the change temperature the tank, (strong

steel structure) undergoes linear expansion of 8× 10−6 per ◦
C. Calculate the pres-

sure at the end of the process. E denotes the Young’smodulus
4
Assume that the Young

modulus of the water is 2.15× 109(N/m2)a. State your assumptions.

a
This value is actually of Bulk modulus.

Solution
The expansion of the steel tank will be due to two contributions: one due to the thermal ex-

pansion and one due to the pressure increase in the tank. For this example, it is assumed that
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continue Ex. 1.9
the expansion due to pressure change is negligible. The tank volume change under the as-

sumptions state here but in the same time the tank walls remain straight. The new density

is

ρ2 = ρ1 (1+α∆T)3︸ ︷︷ ︸
thermal expansion

(1.9.a)

The more accurate calculations require looking into the steam tables. As estimated value of

the density using Young’s modulus and V2 ∝ (L2)
3a
.

ρ2 ∝ 1

(L2)
3
=⇒ ρ2 ∼=

m
(
L1

(
1−

∆P

E

))3
(1.9.b)

It can be noticed that ρ1 ∼= m/L1
3
and thus

ρ1

(1+α∆T)3
=

ρ1(
1−

∆P

E

)3
(1.9.c)

The change is then

1+α∆T = 1−
∆P

E
(1.9.d)

Thus the final pressure is

P2 = P1 − Eα∆T (1.9.e)

In this case, what happen when the value of P1−Eα∆T becomes negative or very very small?

The basic assumption falls and the water evaporates.

If the expansion of the water is taken into account then the change (increase) of water volume

has to be taken into account. The tank volume was calculated earlier and since the claim of

“strong” steel the volume of the tank is only effected by the temperature.

V2
V1

∣∣∣∣
tank

= (1+α∆T)3 (1.9.f)

The volume of the water undergoes also a change and is a function of the temperature and

pressure. The water pressure at the end of the process is unknown but the volume is known.

Thus, the density at end is also known

ρ2 =
mw

T2|tank
(1.9.g)

The pressure is a function volume and the temperature P = P(v, T) thus

dP =

∼βv︷ ︸︸ ︷(
∂P

∂v

)
dv+

∼E︷ ︸︸ ︷(
∂P

∂T

)
dT

(1.9.h)

As approximation it can written as

∆P = βv ∆v+ E∆T (1.9.i)
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End of Ex. 1.9

Substituting the values results for

∆P =
0.0002
∆ρ

+ 2.15× 109 ∆T (1.9.j)

Notice that density change, ∆ρ < 0.

a
This leads E (L2−L1) = ∆PL1 . Thus, L2 = L1 (1−∆P/E)

.

Advance material can be skipped

1.6.2 Bulk Modulus
Similar to solids (hook’s law), liquids have a property that describes the volume change as

results of pressure change for constant temperature. It can be noted that this property is

not the result of the equation of state but related to it. Bulk modulus is usually obtained

from experimental or theoretical or semi theoretical (theory with experimental work) to fit

energy–volume data. Most (theoretical) studies are obtained by uniformly changing the unit

cells in global energy variations especially for isotropic systems (where the molecules has a

structure with cubic symmetries). The bulk modulus is a measure of the energy can be stored

in the liquid. This coefficient is analogous to the coefficient of spring. The reason that liquid

has different coefficient is because it is three dimensional verse one dimension that appear in

regular spring.

The bulk modulus is defined as

BT = −v

(
∂P

∂v

)

T

(1.30)

Using the identity of v = 1/ρ transfers equation (1.30) into

BT = ρ

(
∂P

∂ρ

)

T

(1.31)

The bulk modulus for several selected liquids is presented in Table 1.5.

4
The definition of Young’s Emodulusis = σ

ϵ where in this case σ can be estimated as the pressure change.

The definition of ϵ is the ratio length change to to total length∆L/L.
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Table 1.5 – The bulk modulus for selected material with the critical temperature and pressure
na −→ not available andnf −→ not found (exist but was not found in the literature).

Chemical

component

Bulk

Modulus

109 Nm

Tc Pc

Acetic Acid 2.49 593K 57.8 [Bar]

Acetone 0.80 508 K 48 [Bar]

Benzene 1.10 562 K 4.74 [MPa]

Carbon Tetrachloride 1.32 556.4 K 4.49 [MPa]

Ethyl Alcohol 1.06 514 K 6.3 [Mpa]

Gasoline 1.3 nf nf

Glycerol 4.03-4.52 850 K 7.5 [Bar]

Mercury 26.2-28.5 1750 K 172.00 [MPa]

Methyl Alcohol 0.97 Est 513 Est 78.5 [Bar]

Nitrobenzene 2.20 nf nf

Olive Oil 1.60 nf nf

Paraffin Oil 1.62 nf nf

SAE 30 Oil 1.5 na na

Seawater 2.34 na na

Toluene 1.09 591.79 K 4.109 [MPa]

Turpentine 1.28 na na

Water 2.15-2.174 647.096 K 22.064 [MPa]

In the literature, additional expansions for similar parameters are defined. The thermal

expansion is defined as

βP =
1

v

(
∂v

∂T

)

P

(1.32)

This parameter indicates the change of volume due to temperature change when the pressure

is constant. Another definition is referred as coefficient of tension and it is defined as

βv =
1

P

(
∂P

∂T

)

v

(1.33)

This parameter indicates the change of the pressure due to the change of temperature (where

v = constant). These definitions are related to each other. This relationship is obtained by

the observation that the pressure as a function of the temperature and specific volume as

P = f(T , v) (1.34)

The full pressure derivative is

dP =

(
∂P

∂T

)

v

dT +

(
∂P

∂v

)

T

dv (1.35)
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On constant pressure lines, dP = 0, and therefore equation (1.35) reduces

0 =

(
∂P

∂T

)

v

dT +

(
∂P

∂v

)

T

dv (1.36)

From equation (1.36) follows that

dv

dT

∣∣∣∣
P=const

= −

(
∂P

∂T

)

v(
∂P

∂v

)

T

(1.37)

Equation (1.37) indicates that relationship for these three coefficients is

βT = −
βv

βP
(1.38)

The last equation (1.38) sometimes is used in measurement of the bulk modulus.

The increase of the pressure increases the bulk modulus due to the molecules increase

of the rejecting forces between each other when they are closer. In contrast, the temperature

increase results in reduction of the bulk of modulus because the molecular are further away.

Example 1.10: Modulus of Elasticity Level: Simple
Calculate the modulus of liquid elasticity that reduced 0.035 per cent of its volume by

applying a pressure of 5[Bar] in a s slow process.

Solution
Using the definition for the bulk modulus

βT = −v
∂P

∂v
≃ v

∆v
∆P =

5

0.00035
≃ 14285.714[Bar]

Example 1.11: Pressure For Volume Level: Simple
Calculate the pressure needed to apply on water to reduce its volume by 1 per cent.

Assume the temperature to be 20◦C.

Solution
Using the definition for the bulk modulus

∆P ∼ βT
∆v

v
∼ 2.15 109.01 = 2.15 107[N/m2] = 215[Bar]
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Example 1.12: Pressure on Two Layers Level: Intermediate

Two layers of two different liquids are

contained in a very solid tank. Initially the

pressure in the tank is P0. The liquids are

compressed due to the pressure increases.

The new pressure is P1. The area of the

tank isA and liquid A height is h1 and liq-

uid B height is h2. Estimate the change of

the heights of the liquids depicted in the

Figure 1.16. State your assumptions.

h1

h2

Oil (liquid 1)

Water (liquid 2)

air (or gas)

Fig. 1.16 – Two liquid layers under pres-
sure.

Solution
The volume change in a liquid is

BT ∼=
∆P

∆V/V
(1.12.a)

Hence the change for the any liquid is

∆h =
∆P

ABT /V
=
h∆P

BT
(1.12.b)

The total change when the hydrostatic pressure is ignored.

∆h1+2 = ∆P

(
h1
BT 1

+
h2
BT 2

)
(1.12.c)

Example 1.13: Pushka Equation Level: Intermediate
In the Internet the following problem ( here with LATEX modification) was posted

which related to Pushka equation.

A cylindrical steel pressure vessel with volume 1.31 m3 is to be tested. The vessel is

entirely filled with water, then a piston at one end of the cylinder is pushed in until

the pressure inside the vessel has increased by 1000 kPa. Suddenly, a safety plug on

the top bursts. How many liters of water come out?

Relevant equations and data suggested by the user were: BT = 0.2× 1010N/m2,
P1 = P0 + ρgh, P1 = −BT∆V/V with the suggested solution of

“I am assuming that I have to look for ∆V as that would be the water that comes out

causing the change in volume.”

∆V =
−V ∆P

BT
= −1.31(1000)/(0.2× 1010)∆V = 6.55 ∗ 10−7
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End of Ex. 1.13

Another user suggest that:

We are supposed to use the bulk modulus from our textbook, and that one is 0.2×
1010. Anything else would give a wrong answer in the system. So with this bulk

modulus, is 0.655L right?

In this post several assumptions were made. What is a better way to solve this prob-

lem.

Solution
It is assumed that this process can be between two extremes: one isothermal and one isentropic.

The assumption of isentropic process is applicable after a shock wave that travel in the tank.

If the shock wave is ignored (too advance material for this book
5
). the process is isentropic.

The process involve some thermodynamics identities to be connected. Since the pressure is

related or a function of density and temperature it follows that

P = P (ρ, T) (1.13.a)

Hence the full differential is

dP =
∂P

∂ρ

∣∣∣∣
T

dρ+
∂P

∂T

∣∣∣∣
ρ

dT (1.13.b)

Equation (1.13.b) can be multiplied by ρ/P to be

ρdP

P
=
1

P




BT︷ ︸︸ ︷
ρ
∂P

∂ρ

∣∣∣∣
T

dρ


+ ρ



︷ ︸︸ ︷
1

P

∂P

∂T

∣∣∣∣
ρ

βvdT


 (1.13.c)

The definitions that were provided before can be used to write

ρdP

P
=
1

P
BT dρ+ ρβv dT (1.13.d)

The infinitesimal change of density will be then

1

P
BT dρ =

ρdP

P
− ρβv dT (1.13.e)

or

dρ =
ρdP

BT
−
ρP βv dT

BT
(1.13.f)

Thus, the calculation that were provide on line need to have corrections by subtracting the

second terms.

5
The shock wave velocity is related to square of elasticity of the water. Thus, the characteristic time for the shock

is S/c when S is a typical dimension of the tank and c is speed of sound of the water in the tank.
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1.6.2.1 Bulk Modulus of Mixtures

In the discussion above it was assumed that the liquid is pure. In this short section a discussion

about the bulk modulus averaged is presented. When more than one liquid are exposed to

pressure the value of these two (or more liquids) can have to be added in special way. The

definition of the bulk modulus is given by equation (1.30) or (1.31) and can be written (where

the partial derivative can looks as delta ∆ as

∂V =
V ∂P

BT
∼=
V ∆P

BT
(1.39)

The total change is compromised by the change of individual liquids or phases if twomaterials

are present. Even in some cases of emulsion (a suspension of small globules of one liquid in

a second liquid with which the first will not mix) the total change is the summation of the

individuals change. In case the total change isn’t, in special mixture, another approach with

taking into account the energy-volume is needed. Thus, the total change is

∂V = ∂V1 + ∂V2 + · · ·∂Vi ∼= ∆V1 +∆V2 + · · ·∆Vi (1.40)

Substituting equation (1.39) into equation (1.40) results in

∂V =
V1 ∂P

BT 1
+
V2 ∂P

BT 2
+ · · ·+ Vi ∂P

BT i
∼=
V1 ∆P

BT 1
+
V2 ∆P

BT 2
+ · · ·+ Vi ∆P

BT i
(1.41)

Under the main assumption in this model the total volume is comprised of the individ-

ual volume hence,

V = x1 V + x1 V + · · ·+ xi V (1.42)

Where x1, x2 and xi are the fraction volume such as xi = Vi/V . Hence, using this identity and

the fact that the pressure is change for all the phase uniformly equation (1.42) can be written

as

∂V = V ∂P

(
x1
BT 1

+
x2
BT 2

+ · · ·+ xi
BT i

)
∼=

V ∆P

(
x1
BT 1

+
x2
BT 2

+ · · ·+ xi
BT i

)
(1.43)

Rearranging equation (1.43) yields

v
∂P

∂v
∼= v

∆P

∆v
=

1(
x1
BT 1

+
x2
BT 2

+ · · ·+ xi
BT i

) (1.44)

Equation (1.44) suggests an averaged new bulk modulus

BTmix =
1(

x1
BT 1

+
x2
BT 2

+ · · ·+ xi
BT i

) (1.45)
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In that case the equation for mixture can be written as

v
∂P

∂v
= BTmix (1.46)

6

End Advance material

1.6.2.2 When the Bulk Modulus is Important? and Hydraulics System

There are only several situations in which the bulk modulus is important. These situations

include hydraulic systems, deep ocean (on several occasions), geology system like the Earth,

Cosmology. The Pushka equation normally can address the situations in deep ocean and ge-

ological system. This author is not aware of any special issues that involve in Cosmology as

opposed to geological system. The only issue that was not addressed is the effect on hydraulic

systems. The hydraulic system normally refers to systems in which a liquid is used to transmit

forces (pressure) for surface of moving object (normally piston) to another object. In theoret-

ical or hypothetical liquids the moving one object (surface) results in movement of the other

object under the condition that liquid volume is fix. The movement of the responsive object

is unpredictable when the liquid volume or density is a function of the pressure (and temper-

ature due to the friction). In very rapid systems the temperature and pressure varies during

the operation significantly. In practical situations, the commercial hydraulic fluid can change

due to friction by 50◦C. The bulk modulus or the volume for the hydraulic oil changes by

more 60%. The change of the bulk modulus by this amount can change the response time

significantly. Hence the analysis has to take into account the above effects.

1.7 Surface Tension

2 d β22 dβ22 d β2

2 d β12 dβ12 d β1

d ℓ1d ℓ1d ℓ1
R2R2R2

d ℓ2d ℓ2d ℓ2

R2R2R2

xxx

yyy

Fig. 1.17 – Surface tension control volume
analysis describing principles radii.

The surface tension manifested itself

by a rise or depression of the liq-

uid at the free surface edge. Sur-

face tension is also responsible for

the creation of the drops and bub-

bles. It also responsible for the break-

age of a liquid jet into other medi-

um/phase to many drops (atomiza-

tion). The surface tension is force

per length and is measured by [N/m]

and is acting to stretch the surface.

Surface tension results from a

sharp change in the density between

two adjoined phases or materials. There is a common misconception for the source of the

6
To be added in the future the effect of change of chemical composition on bulk modulus.
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surface tension. In many (physics, surface tension, and fluid mechanics) books explained that

the surface tension is a result from unbalanced molecular cohesive forces. This explanation

is wrong since it is in conflict with Newton’s second law (see Example 1.14). This erroneous

explanation can be traced to Adam’s book but earlier source may be found
7
.

Example 1.14: Surface Tension Misconception Level: Intermediate

In several books the following expla-

nation is offered for surface tension.

“The cohesive forces betweenmolecules

down into a liquid are shared with all

neighboring atoms. Those on the sur-

face have no neighboring atoms above,

and exhibit stronger attractive forces

upon their nearest neighbors on the

surface. This enhancement of the inter-

molecular attractive forces at the sur-

face is called
8
.” Explain the fundamen-

tal error of this explanation (see Figure

1.18).

c.v.

Fig. 1.18 – Surface tension erroneous expla-
nation.

Solution
It amazing that this erroneous explanation is so prevalent in physics and chemistry (check the

standard books for general chemistry in any college). No one today will believe that mountain

were crated by a cooling of lava yet this was the material in the author elementary school

class. On personal note, die casting and ship stability disciplines and others are plagued such

nonsense (for example, in die casting it was believed that for the critical plunger velocity that

physics can be ignored. It was done by over 300 research teams still in 2021.). In fact, even

in Wikipedia contains this erroneous explanation. The explanation based on the unbalance

of the top layer of molecules. Consider the control volume shown in Figure 1.18. The control

volume is made from a molecule thickness and larger width. If this explanation was to be

believed it must obey Newton’s Laws. However, as it will be shown, this explanation violates

Newton’s Laws and hence it is not valid. The entire liquid domain is in a static equilibrium

and hence every element is static equilibrium including the control volume. The pulling on the

left of control volume is balanced with forcing that pulling to the right. However, the control

volume is pulled by the molecules below while there counter force to balance it. There are no

molecules about to balance it. If this explanationwas correct the top layer (control volume)was

supposed to be balanced. According to Newton second Law this layer should move down and

the liquid cannot be at rest ever. Obviously, the liquid is at rest and this explanation violates

Newton second law. In the Dimensional Analysis Chapter, provide another reason why this

explanation violate all what is known experimentally about the surface tension.

7
Finding the source of this error was a class project early 1990 in Chemical Engineering University of Minnesota.
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The relationship between the surface tension and the pressure on the two sides of the

surface is based on geometry. Consider a small element of surface. The pressure on one

side is Pi and the pressure on the other side is Po. When the surface tension is constant, the

horizontal forces cancel each other because symmetry. In the vertical direction, the surface

tension forces are puling the surface upward. Thus, the pressure difference has to balance the

surface tension. The forces in the vertical direction reads

(Pi − Po)dℓ1 dℓ2 = ∆Pdℓ1 dℓ2 = 2 σdℓ1 sinβ1 + 2 σdℓ2 sinβ2 (1.47)

For a very small area, the angles are very small and thus (sinβ ∼ β). Furthermore, it

can be noticed that dℓi ∼ 2 Ri dβi. Thus, the equation (1.47) can be simplified as

∆P = σ

(
1

R1
+
1

R2

)
(1.48)

Equation (1.48) predicts that pressure difference increase with inverse of the radius. There are

two extreme cases: one) radius of infinite and radius of finite size. The second with two equal

radii. The first case is for an infinite long cylinder for which the equation (1.48) is reduced to

∆P = σ

(
1

R

)
(1.49)

Other extreme is for a sphere for which the main radii are the same and equation (1.48) is

reduced to

∆P =
2 σ

R
(1.50)

Where R is the radius of the sphere. A soap bubble is made of two layers, inner and outer,

thus the pressure inside the bubble is

∆P =
4 σ

R
=
8 σ

D
(1.51)

8
This text and picture are taken from the web at the address of hyperphysics.phy-astr.gsu.edu/hbase/surten.html.
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Example 1.15: Tube Depression Level: Intermediate
A glass tube is inserted into bath

of mercury. It was observed that

contact angle between the glass

and mercury is 55◦. The inner di-
ameter is 0.02[m] and the outer di-

ameter is 0.021[m]. Estimate the

force due to the surface tension

(tube is depicted in Figure 1.19). It

can be assume that the contact an-

gle is the same for the inside and

outside part of the tube.

55◦

55◦

0.025[m]

0.02[m]
h

σ

P = ρ h g

Fig. 1.19 – Glass tube inserted into mercury.

Estimate the depression size. Assume that the surface tension for this combination

of material is 0.5 [N/m]

Solution
The mercury as free body that several forces act on it.

F = σ2π cos 55◦ (Di +Do) (1.15.a)

This force is upward and the horizontal force almost canceled. However, if the inside and the

outside diameters are considerable different the results is

F = σ2π sin 55 ◦ (Do −Do) (1.15.b)

The balance of the forces on the meniscus show under the magnified glass are

P

A︷︸︸︷
π r2 = σ 2π r+��>

∼ 0
W

(1.15.c)

or

gρhπ r2 = σ 2π r+��>
∼ 0

W (1.15.d)

Or after simplification

h =
2 σ

g ρ r
(1.15.e)

Example 1.16: Bubbles work Level: Intermediate
A Tank filled with liquid, which contains n bubbles with equal radii, r. Calculate the

minimum work required to increase the pressure in tank by ∆P. Assume that the

liquid bulk modulus is infinity.

Solution
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End of Ex. 1.16

The work is due to the change of the bubbles volume. The work is

w =

∫rf
r0

∆P(v)dv (1.16.a)

The minimum work will be for a reversible process. The reversible process requires very

slow compression. It is worth noting that for very slow process, the temperature must remain

constant due to heat transfer. The relationship between pressure difference and the radius is

described by equation (1.50) for reversible process. Hence the work is

w =

∫rf
r0

∆P︷︸︸︷
2 σ

r

dv︷ ︸︸ ︷
4 π r2 dr = 8 πσ

∫rf
r0

rdr = 4 πσ
(
rf
2 − r0

2
)

(1.16.b)

Where, r0 is the radius at the initial stage and rf is the radius at the final stage.

Thework forn bubbles is then 4 πσn
(
rf
2 − r0

2
)
. It can be noticed that thework is negative,

that is the work is done on the system.

Example 1.17: 2 dimensional rise Level: Simple

Calculate the rise of liquid between two

dimensional parallel plates shown in Fig-

ure 1.20. Notice that previously a rise for

circular tube was developed which dif-

ferent from simple one dimensional case.

The distance between the two plates is

ℓ and the and surface tension is σ. As-

sume that the contact angle is 0◦ (the max-

imum possible force). Compute the value

for surface tension of 0.05[N/m], the den-

sity 1000[kg/m3] and distance between

the plates of 0.001[m].

ℓ

h

Fig. 1.20 – Capillary rise between two
plates.

Solution
In Figure 1.20 exhibits the liquid under the current study. The vertical forces acting on the

body are the gravity, the pressure above and below and surface tension. It can be noted that the

pressure and above are the same with the exception of the curvature on the upper part. Thus,

the control volume is taken just above the liquid and the air part is neglected. The question

when the curvature should be answered in the Dimensional analysis and for simplification this

effect is neglected. The net forces in the vertical direction (positive upwards) per unit length

are

2σ cos 0◦ = gh ℓ ρ =⇒ h =
2 σ

ℓ ρ g
(1.17.a)
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End of Ex. 1.17
Inserting the values into equation (1.17.a) results in

h =
2× 0.05

0.001× 9.8××1000 = (1.17.b)

Example 1.18: Concentric Tube Rise Level: Simple
Develop expression for rise of the liquid due to surface tension in concentric cylin-

ders.

Solution
The difference lie in the fact that “missing”cylinder add additional force and reduce the amount

of liquid that has to raise. The balance between gravity and surface tension is

σ 2π (ri cos θi + ro cos θo) = ρgh
(
π(ro)

2 − π(ri)
2
)

(1.18.a)

Which can be simplified as

h =
2 σ (ri cos θi + ro cos θo)
ρg

(
(ro)2 − (ri)2

) (1.18.b)

The maximum is obtained when cos θi = cos θo = 1. Thus, equation (1.18.b) can be simplified

h =
2 σ

ρg (ro − ri)
(1.18.c)

1.7.1 Wetting of Surfaces
To explain the source of the contact angle, consider the point where three phases became in

contact. This contact point occurs due to free surface reaching a solid boundary.

The surface tension occurs between gas phase (G) to

liquid phase (L) and also occurs between the solid (S)

and the liquid phases as well as between the gas phase

and the solid phase. In Figure 1.21, forces diagram

is shown when control volume is chosen so that the

masses of the solid, liquid, and gas can be ignored. Re-

gardless to the magnitude of the surface tensions (ex-

cept to zero) the forces cannot be balanced for the de-

scription of straight lines. For example, forces balanced

along the line of solid boundary is

GGG (air/gas)(air/gas)(air/gas)

LLL

SSS

(Liquid)(Liquid)(Liquid)

(Solid)(Solid)(Solid)

Fig. 1.21 – Forces in Contact angle.

σgs − σls − σlg cosβ = 0 (1.52)

and in the tangent direction to the solid line the forces balance is

Fsolid = σlg sinβ (1.53)
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substituting equation (1.53) into equation (1.52) yields

σgs − σls =
Fsolid
tanβ

(1.54)

Wetting

fluid

NonWetting

fluid

Fig. 1.22 – Description of wetting and non–
wetting fluids.

For β = π/2 =⇒ tanβ = ∞. Thus, the solid

reaction force must be zero. The gas solid surface

tension is different from the liquid solid surface

tension and hence violating equation (1.52).

The surface tension forces must be bal-

anced, thus, a contact angle is created to balance

it. The contact angle is determined bywhether the

surface tension between the gas solid (gs) is larger

or smaller then the surface tension of liquid solid

(ls) and the local geometry. It must be noted that the solid boundary isn’t straight. The surface

tension is a molecular phenomenon, thus depend on the locale structure of the surface and it

provides the balance for these local structures.

The connection of the three phases–materials–mediums creates two situations which

are categorized as wetting or non–wetting. There is a common definition of wetting the

surface. If the angle of the contact between three materials is larger than 90◦ then it is non–

wetting. On the other hand, if the angle is below than 90◦ the material is wetting the surface

(see Figure 1.22). The angle is determined by properties of the liquid, gas medium and the

solid surface. And a small change on the solid surface can change the wetting condition to

non–wetting. In fact there are commercial sprays that are intent to change the surface from

wetting to non wetting. This fact is the reason that no reliable data can be provided with the

exception to pure substances and perfect geometries. For example, water is described inmany

books as a wetting fluid. This statement is correct in most cases, however, when solid surface

is made or coated with certain materials, the water is changed to be wetting (for example 3M

selling product to “change” water to non–wetting). So, the wetness of fluids is a function of

the solid as well.

Table 1.6 – The contact angle for air, distilled water with selected materials to demonstrate the in-
consistency.

Chemical

component

Contact

Angle

Source

Steel π/3.7 (Siegel and Keshock 1964)

Steel, Nickel π/4.74 (Bergles and Rohsenow 1964)

Nickel π/4.74 to π/3.83 (Siegel and Keshock 1964)

Nickel π/4.76 to π/3.83 (Tolubinsky and Ostrovsky 1966)

Chrome-Nickel Steel π/3.7 (Arefeva and Aladev 1958)

Continued on next page
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Table 1.6 – The contact angle for air, distilled water with selected materials to demonstrate the in-
consistency. (continue)

Chemical

component

Contact

Angle
mN
m

Source

Silver π/6 to π/4.5 (Labuntsov 1963)

Zinc π/3.4 (Arefeva and Aladev 1958)

Bronze π/3.2 (Arefeva and Aladev 1958)

Copper π/4 (Arefeva and Aladev 1958)

Copper π/3 (Gaertner 1959)

Copper 9.6[deg] (Bernardin and etc 1997)

Copper π/2 (Wang and Dhir 1993)

In addition to the complications mentioned

before the temperature play a significant role

in the

In addition to the complication men-

tioned earlier the temperature play a signifi-

cant part (as it expect since it effect the sur-

face tension). The change is order of magni-

tude (Boyes and Ponter 1973).

To explain the contour of the sur-

face, and the contact angle consider
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Fig. 1.23 –Contact angle forwater and copper
as a function of the temperature.

simple “wetting” liquid contacting a solid ma-

terial in two–dimensional shape as depicted

in Fig. 1.24. To solve the shape of the liq-

uid surface, the pressure difference between

the two sides of free surface has to be bal-

anced by the surface tension. Fig. 1.24 de-

scribes the raising of the liquid as results of

the surface tension. The surface tension re-

duces the pressure in the liquid above the liq-

uid line (the dotted line in the Fig. 1.24). The

P0P0P0

P0P0P0

h(x)h(x)h(x)

P0P0P0

Fig. 1.24 – Description of the liquid surface.

pressure just below the surface is −gh(x) ρ (this pressure difference will be explained in

more details in Chapter 4). The pressure, on the gas side, is the atmospheric pressure. This

problem is a two dimensional problem and equation (1.49) is applicable to it. Appalling

equation (1.49) and using the pressure difference yields
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gh(x) ρ =
σ

R(x)
(1.55)

The radius of any continuous function, h = h(x), is

R(x) =

(
1+

[
ḣ(x)

]2)3/2

ḧ(x)
(1.56)

Where

...

h is the derivative of h with respect to x.

Eq. (1.56) can be derived either by forcing a circle at three points at (x, x+dx, and x+2dx)

and thus finding the diameter or by geometrical analysis of triangles build on points x and

x+dx (perpendicular to the tangent at these points). Substituting equation (1.56) into equation

(1.55) yields

gh(x) ρ =
σ

(
1+

[...
h(x)

]2)3/2

......

h(x)

(1.57)

Equation (1.57) is non–linear differential equation for height and can be written as

ghρ

σ

(
1+

[
dh

dx

]2)3/2
−
d2h

dx2
= 0

1-D Surface Due to Surface Tension

(1.58)

With the boundary conditions that specify either the derivative

...

h(x = r) = 0 (symmetry)

and the derivative at ḣx = β or heights in two points or other combinations. An alternative

presentation of equation (1.57) is

ghρ =
σ
......

h
(
1+

...

h
2
)3/2 (1.59)

Integrating equation (1.59) transforms into

∫
gρ

σ
hdh =

∫ ......

h
(
1+

...

h
2
)3/2dh (1.60)

The constant Lp = σρg is referred to as Laplace’s capillarity constant. The units of this

constant are meter squared. The differential dh is
...

h. Using dummy variable and the identities
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...

h = ξ and hence,
......

h =
...

ξ = dξ transforms equation (1.60) into∫
1

Lp
hdh =

∫
ξdξ

(
1+ ξ2

)3/2 (1.61)

After the integration equation (1.61) becomes

h2

2 Lp
+ constant = −

1
(
1+ ḣ2

)1/2 (1.62)

At infinity, the height and the derivative of the height must by zero so constant+ 0 = −1/1

and hence, constant = −1 .

1−
h2

2 Lp
=

1
(
1+ ḣ2

)1/2 (1.63)

Equation (1.63) is a first order differential equation that can be solved by variables separation
9
.

Equation (1.63) can be rearranged to be

(
1+

...

h
2
)1/2

=
1

1− h2

2Lp

(1.64)

Squaring both sides and moving the one to the right side yields

ḣ2 =

(
1

1− h2

2Lp

)2
− 1 (1.65)

The last stage of the separation is taking the square root of both sides to be

ḣ =
dh

dx
=

√√√√
(

1

1− h2

2Lp

)2
− 1 (1.66)

or

dh√√√√
(

1

1− h2

2Lp

)2
− 1

= dx (1.67)

Equation (1.67) can be integrated to yield∫
dh√√√√

(
1

1− h2

2Lp

)2
− 1

= x + constant

(1.68)

9
This equation has an analytical solution which is x = Lp

√
4−(h/Lp)2 − Lp acosh(2Lp/h) +

constant where Lp is the Laplace constant. Shamefully, this author doesn’t know how to show it in a two

lines derivations.
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The constant is determined by the boundary condition at x = 0. For example if h(x−

0) = h0 then constant = h0. This equation is studied extensively in classes on surface

tension. Furthermore, this equation describes the dimensionless parameter that affects this

phenomenon and this parameter will be studied in Chapter 9. This book is introductory,

therefore this discussion on surface tension equation will be limited.

1.7.1.1 Capillarity

The capillary forces referred to the fact that

surface tension causes liquid to rise or pene-

trate into area (volume), otherwise it will not

be there. It can be shown that the height that

the liquid raised in a tube due to the surface

tension is

h =
2 σ cosβ
g∆ρ r

(1.69)

Where ∆ρ is the difference of liquid density to

the gas density and r is the radius of tube.

But this simplistic equation is

RRR

hhh

Theory
Theory
Theory

000
RangeRangeRange
WorkingWorkingWorking

A
ctual

A
ctual

A
ctual

Fig. 1.25 – The raising height as a function of
the radii.

unusable and useless unless the contact angle (assuming that the contact angel is constant

or a repressive average can be found or provided or can be measured) is given. However,

in reality there is no readily information for contact angle
10
and therefore this equation is

useful to show the treads. maximum that the contact angle can be obtained in equation (1.69)

when β = 0 and thus cosβ = 1. This angle is obtained when a perfect half a sphere shape

exist of the liquid surface. In that case equation (1.69) becomes

hmax =
2 σ

g∆ρ r
(1.70)

10
Actually, there are information about the contact angle. However, that information conflict each other and no

real information is available see Table Table 1.6.
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Fig. 1.26 – The raising height as a function of the radius.

Figure 1.26 exhibits the height as a function of the radius of the tube. The height based

on equation (1.70) is shown in Figure 1.25 as blue line. The actual height is shown in the red

line. Equation (1.70) provides reasonable results only in a certain range. For a small tube ra-

dius, equation (1.58) proved better results because the curve approaches hemispherical sphere

(small gravity effect). For large radii equation (1.58) approaches the strait line (the liquid line)

strong gravity effect. On the other hand, for extremely small radii equation (1.70) indicates

that the high height which indicates a negative pressure. The liquid at a certain pressure will

be vaporized and will breakdown the model upon this equation was constructed. Further-

more, the small scale indicates that the simplistic and continuous approach is not appropriate

and a different model is needed. The conclusion of this discussion are shown in Figure 1.25.

The actual dimension for many liquids (even water) is about 1-5 [mm].

The discussion above was referred to “wetting” contact angle. The depression of the

liquid occurs in a “negative” contact angle similarly to “wetting.” The depression height, h

is similar to equation (1.70) with a minus sign. However, the gravity is working against the

surface tension and reducing the range and quality of the predictions of equation (1.70). The

measurements of the height of distilled water and mercury are presented in Figure 1.26. The

experimental results of these materials are with agreement with the discussion above. The

surface tension of a selected material is given in Table 1.7.

In conclusion, the surface tension issue is important only in case where the radius is

very small and gravity is negligible. The surface tension depends on the two materials or

mediums that it separates.

Example 1.19: Water Droplet Level: Simple
Calculate the diameter of awater droplet to attain pressure difference of 1000[N/m2].

You can assume that temperature is 20◦C.
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End of Ex. 1.19

Solution
The pressure inside the droplet is given by equation (1.50).

D = 2 R =
2 2 σ

∆P
=
4× 0.0728
1000

∼ 2.912 10−4[m]

Example 1.20: Droplet Pressure Level: Simple
Calculate the pressure difference between a droplet ofwater at 20◦Cwhen the droplet

has a diameter of 0.02 cm.

Solution
using equation

∆P =
2 σ

r
∼
2× 0.0728
0.0002

∼ 728.0[N/m2]

Example 1.21: Ring Force Level: Simple
Calculate the maximum force necessary to lift a thin wire ring of 0.04[m] diameter

from a water surface at 20◦C. Neglect the weight of the ring.

Solution

F = 2(2 π r σ) cosβ

The actual force is unknown since the contact angle is unknown. However, the maximum

Force is obtained when β = 0 and thus cosβ = 1. Therefore,

F = 4 π r σ = 4× π× 0.04× 0.0728 ∼ .0366[N]

In this value the gravity is not accounted for.

Example 1.22: Surface Tension Pressure Level: Simple
A small liquid drop is surrounded with the air and has a diameter of 0.001 [m]. The

pressure difference between the inside and outside droplet is 1[kPa]. Estimate the

surface tension?

Solution
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Table 1.7 – The surface tension for selected materials at temperature 20◦Cwhen not mentioned.

Chemical

component

Surface

Tension

mN
m

T
correction

mN
mK

Acetic Acid 27.6 20◦C n/a

Acetone 25.20 - -0.1120

Aniline 43.4 22◦C -0.1085

Benzene 28.88 - -0.1291

Benzylalcohol 39.00 - -0.0920

Benzylbenzoate 45.95 - -0.1066

Bromobenzene 36.50 - -0.1160

Bromobenzene 36.50 - -0.1160

Bromoform 41.50 - -0.1308

Butyronitrile 28.10 - -0.1037

Carbon disulfid 32.30 - -0.1484

Quinoline 43.12 - -0.1063

Chloro benzene 33.60 - -0.1191

Chloroform 27.50 - -0.1295

Cyclohexane 24.95 - -0.1211

Cyclohexanol 34.40 25◦C -0.0966

Cyclopentanol 32.70 - -0.1011

Carbon Tetrachloride 26.8 - n/a

Carbon disulfid 32.30 - -0.1484

Chlorobutane 23.10 - -0.1117

Ethyl Alcohol 22.3 - n/a

Ethanol 22.10 - -0.0832

Ethylbenzene 29.20 - -0.1094

Ethylbromide 24.20 - -0.1159

Ethylene glycol 47.70 - -0.0890

Formamide 58.20 - -0.0842

Gasoline ∼ 21 - n/a

Glycerol 64.0 - -0.0598

Helium 0.12 −269◦C n/a

Mercury 425-465.0 - -0.2049

Methanol 22.70 - -0.0773

Methyl naphthalene 38.60 - -0.1118

Methyl Alcohol 22.6 - n/a

Neon 5.15 −247◦C n/a

Nitrobenzene 43.90 - -0.1177

Continued on next page
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Table 1.7 – The surface tension for selected materials (continue)

Chemical

component

Surface

Tension

mN
m

T
correction

mN
mK

Olive Oil 43.0-48.0 - -0.067

Perfluoroheptane 12.85 - -0.0972

Perfluorohexane 11.91 - -0.0935

Perfluorooctane 14.00 - -0.0902

Phenylisothiocyanate 41.50 - -0.1172

Propanol 23.70 25◦C -0.0777

Pyridine 38.00 - -0.1372

Pyrrol 36.60 - -0.1100

SAE 30 Oil n/a - n/a

Seawater 54-69 - n/a

Toluene 28.4 - -0.1189

Turpentine 27 - n/a

Water 72.80 - -0.1514

o-Xylene 30.10 - -0.1101

m-Xylene 28.90 - -0.1104

Example 1.23: What is terminal velocity? Level: GATE

A cuboid block weighing 150 [N] slides

down on inclined plane with have 25◦

with oil that is 3 [mm] thick with a den-

sity of 850[Kg/m3] and viscosity 10.5 poise.

Determine the terminal velocity of the

block if the contact area is 0.3[m2].

oiloiloil
θθθ

Fig. 1.27 – Cuboid is sliding on plane
with lubricate oil layer for Ex. 1.23

Solution
The force in downward direction is the weight isW = 150[N] with the thickness of 0.003[m]

and vesicosity of µ = 10.5 [poise] or 1.05 [Pa s] and the area is 0.003[m2]. During the terminal

velocity is moving with constant velocity and hence it is in equilibrium.

W sin θ− τA = 0 −−→ τ =
W sin θ
A

(1.23.a)

The terminal velocity is detonated as U and assuming the fluid is Newtonian thus

τ = µ
U

t
(1.23.b)
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End of Ex. 1.23
Eq. (1.23.a) has to be equal to Eq. (1.23.b)

W sin θ
A

= µ
U

t
−−→ U =

tW sin θ
Aµ

(1.23.c)

Substituting the values provides

U =
0.003× 150× sin θ

0.3× 1.05 ∼ 1.43 sin θ (1.23.d)

For specific angle let say 30◦

U = 1.43× 0.5 = 0.715[m/sec] (1.23.e)

Example 1.24: Two Parallel Plates Level: GATE 2004
An incompressible fluid (kinematic viscosity, 7.4 × 10−7 [m2/s], specific gravity,

0.88) is held between two parallel plates. If the top late is moved with a velocity of 0.5

m/s while the bottom one is held stationary, the fluid attains a linear velocity profile

in the gap of 0.5 mm between these plates; the shear stress in Pascals on the surface

of top plate is

(a) 0.651× 10−3 (b) 0.651

(c) 6.51 (d) 0.651× 103

Solution
The given data isν = 7.4×10−7m2/s s = 0.88 (density ratio)∆U = 0.5[m/s]∆y = 0.0005[m]

The actual density is

ρ = s ρwater = 880[kg/m
3] (1.24.a)

The shear strees is given by

τ = µ
dU

dy
= ρν

dU

dy
= 0.6512Pa (1.24.b)

Answer (b)

Example 1.25: Newtonian Fluid Statement Level: GATE 2006
For a Newtonian fluid,

(a) shear stress is proportional to shear strain.

(b) rate of shear stress is proportional to shear strain.

(c) shear stress is proportional to rate of shear strain.

(d) rate of shear stress is proportional to rate of shear strain.
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End of Ex. 1.25

Solution
Option (a) is refers to Young’s modulus. Option (b) does seem to refer to any physical law. Op-

tion (c) has description for special fluids. Newtonian fluids follows Newton’s law of viscosity,

according to which, rate of shear stress is proportional to the rate of shear strain. Answer (d)

correct.

Example 1.26: What is Newtonian Fluid Level: GATE mc
Newton’s law of viscosity relates

(a) velocity gradient and rate of shear strain

(b) rate of shear deformation and shear stress

(c) shear deformation and shear stress

(d) pressure and volumetric strain

Solution
As it was defined before the shear stress should be related to rate of shear stress (not to shear

stress).

The answer is (b)

Example 1.27: Air Bubble in Water Level: GATE 2014

The difference in pressure (in

[
N
m2

]
) across an air bubble of diameter 0.001 [m] im-

mersed in water (surface tension = 0.072

[
N
m

]
) is

Solution
In Eq. (1.51) the relation were determined to be

∆Pbubble =
8 σ

D
(1.27.a)

Inserting the values provides

∆Pbubble =
8 0.072
0.001

= 576

[
N

m2

]
(1.27.b)

Yet it seems that the qustion was refering to only to air bubble is immersed in water those the

quaiton will be only one layer hence liquid droplet is applicable.

∆Pbubble =
4 σ

D
== 288

[
N

m2

]
(1.27.c)

Note if the bubble was a jet it will be only half.
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Example 1.28: Units of Kenematic Viscosity Level: GATE 2001
The SI unit of kinematic viscosity (ν) is

(a)

[
m2

sec

]
(b)

[
kg

msec

]

(c)

[ m
sec2

]
(d)

[
m3

sec2

]

Solution
The check the units one has to remember what is the kinematic viscosity. This question deals

with memery there might be several approaches which suitable for different indiviudals. This

mehtod proposed here is probably can work for most people. The kinematic viscosity is the

ratio of the absolute viscosity to the density. Just this point is suffiect to extract the units. It

is assumed that one must remeber that shear tress related the velocity gradient (derivative)

τ = µdU/dx.

ν =
absolute viscosity

dentisty
=
µ

ρ
=
τdx/dU

ρ
(1.28.a)

At this stage the basic units that should be rememered

ν =

(
kgm/sec2︷︸︸︷

N

)

m2
m

m/sec

kg

m3

=
m2

sec

(1.28.b)

Example 1.29: Drop vs Bubble Level: GATE 1999
If ‘P’ is the gauge pressure within a spherical droplet, then gauge pressure within a

bubble of the same fluid and of same size will be

(a)

P

4
(b)

P

2

(c) P (d) 2 P

Solution
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End of Ex. 1.29

2π r σ2π r σ2π r σ

π r2 ∆Pπ r2 ∆Pπ r2 ∆P

Fig. a Single layer or drop

4π r σ4π r σ4π r σ

π r2 ∆Pπ r2 ∆Pπ r2 ∆P

Fig. b Two layers for the soap bubble

Fig. 1.28 – Two Different Configuraitons for drop or bubble.

This is an example of question that play a trick without any real physical meaning. In the word

bubble the question meant the soap or double layer bubble. It hard to find general way to solve

problem that they try to deceive you. Thus, you have to resort to image what they are trying

to catch you. In this case bubble and drop in the are the same. Hence they that they try say one

thing and to mean another. The real answer is (c) but you fail if you used it. They meant the

soap bubble as that has to interface with a very thin layer of liquid. In this way to catch you

and tell you are idiot.

For two layers two layers the pressure will be double. Thus, the expected answer is (d).

Example 1.30: The Absolute Viscosity Level: GATE 1999
Kinematic viscosity of air at 20

◦
C is given to be 1.6× 10−5m2/s. Its kinematic vis-

cosity at 70
◦
C will be varying approximately

(a) 2.2× 10−5m2/s (b) 1.6× 10−5m2/s
(c) 1.2× 10−5m2/s (d) 3.2× 10−5m2/s

Solution
The terminolgy used in GATE means that kinematic viscosity to absolute viscosity. The vari-

ation of viscosity with temperature is related to to square–root of absolute temperature (see

page 12).

µ ∝
√
T (1.30.a)

The density variation with temperature can be obtained from the ideal gas law as

ρ =
P

RT
−−→ ρ ∝ 1

T
(1.30.b)

The kinematic viscosity, ν, is the ratio of absolute viscosity to the density of the fluid as

ν =
µ

ρ
(1.30.c)

Thus, the these two proportionalities and the relationship between kinematic viscosity and

temperature as

ν ∝
√
T3 −−→ ν1

T1
3/2

=
ν2

T2
3/2 (1.30.d)
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End of Ex. 1.30
or in this case

ν2 = ν1

(
T2
T1

)3/2
−−→ 1.6 × 10−5 ×

(
343

293

)3/2
∼ 2.02 × 10−5 m2/s (1.30.e)

Thus, the answer is (a)

Example 1.31: Surface Tension Units Level: GATE 1997
The dimension of surface tension is

(a) [N/m2] (b) [J/m]

(c) [J/m2] (d) [W/m]

Solution
This question can solved by a simple elimination. Option (a) must be rejected as the surface

tensionmust have a force per length and not per area. Option (d)must be purched since surface

tension cannot have time in the unites. The units of work (J) are [Nm] thus the denominator

have have unites of [m2].

Another way to look at this is

surface tension =
F

L
=

F× L
L× L =

W

A
(1.31.a)

Example 1.32: What is Fluid Level: GATE 19996
A fluid is one which can be defined as a substance that

(a) has that same shear stress at all points

(b) can deform indefinitely under the action of the smallest shear force

(c) has the small shear stress in all directions

(d) is practically incompressible

Solution
This questionwas probably was copied fromDr. E. Scriven as this point was themain point he

tried to get a cross in his class in University of Minnesota. Fluid deforms continuously under

the action of shear force. Hence, the correct option is (b).
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2
Review of Thermodynamics

2.1 Introductory Remarks
In this chapter, a review of several definitions of common thermodynamics terms is pre-

sented. This introduction is provided to bring the student back to current place with the

material.

2.2 Basic Definitions
The following basic definitions are common to thermodynamics andwill be used in this book.

Work
In mechanics, the work was defined as

mechanical work =

∫
F • dℓ =

∫
P dV (2.1)

This definition can be expanded to include two issues. The first issue that must be

addressed is the sign, that is the work done on the surroundings by the system boundaries is

considered positive. Two, there is distinction between a transfer of energy so that its effect

can cause work and this that is not. For example, the electrical current is a work while pure

conductive heat transfer isn’t.

System
This term will be used in this book and it is defined as a continuous (at least partially)
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fixed quantity of matter. The dimensions of this material can be changed. In this definition, it

is assumed that the system speed is significantly lower than that of the speed of light. So, the

mass can be assumed constant even though the true conservation law applied to the combi-

nation of mass energy (see Einstein’s law). In fact for almost all engineering purposes, this law

is reduced to two separate laws of mass conservation and energy conservation. The system

can receive energy, work, etc as long the mass remain constant the definition is not broken.

2.3 Thermodynamics First Law
This law refers to conservation of energy in a non accelerating system. Since all the systems

can be calculated in a non accelerating systems, the conservation is applied to all systems. The

statement describing the law is the following.

Q12 −W12 = E2 − E1 (2.2)

The system energy is a state property. From the first law it directly implies that for

process without heat transfer (adiabatic process) the following is true

W12 = E1 − E2 (2.3)

Interesting results of equation (2.3) is that the way the work is done and/or intermediate states

are irrelevant to final results. There are several definitions/separations of the kind of works

and they include kinetic energy, potential energy (gravity), chemical potential, and electrical

energy, etc. The internal energy is the energy that depends on the other properties of the

system. For example for pure/homogeneous and simple gases it depends on two properties

like temperature and pressure. The internal energy is denoted in this book as EU and it will

be treated as a state property.

The potential energy of the system is depended on the body force. A common body

force is the gravity. For such body force, the potential energy ismgz where g is the gravity

force (acceleration),m is the mass and the z is the vertical height from a datum. The kinetic

energy is

K.E. =
mU2

2
(2.4)

Thus the energy equation can be written as

mU1
2

2
+mgz1 + EU1 +Q =

mU2
2

2
+mgz2 + EU2 +W

Total Energy Equation

(2.5)

For the unit mass of the system equation (2.5) is transformed into

U1
2

2
+ g z1 + Eu1 + q =

U2
2

2
+ g z2 + Eu2 +w

Specific Energy Equation

(2.6)
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whereq is the energy per unitmass andw is thework per unitmass. The “new” internal

energy, Eu, is the internal energy per unit mass.

Since the above equations are true between arbitrary points, choosing any point in time

will make it correct. Thus differentiating the energy equation with respect to time yields the

rate of change energy equation. The rate of change of the energy transfer is

DQ

Dt
= Q̇ (2.7)

In the same manner, the work change rate transferred through the boundaries of the system

is

DW

Dt
= Ẇ (2.8)

Since the system is with a fixed mass, the rate energy equation is

Q̇− Ẇ =
DEU
Dt

+mU
DU

Dt
+m

DBf z

Dt
(2.9)

For the case were the body force, Bf, is constant with time like in the case of gravity equation

(2.9) reduced to

Q̇− Ẇ =
DEU
Dt

+mU
DU

Dt
+mg

Dz

Dt

Time Dependent Energy Equation

(2.10)

The time derivative operator, D/Dt is used instead of the common notation because

it referred to system property derivative.

2.4 Thermodynamics Second Law
There are several definitions of the second law. Nomatter which definition is used to describe

the second law it will end in a mathematical form. The most common mathematical form is

Clausius inequality which state that ∮
δQ

T
⩾ 0 (2.11)

The integration symbol with the circle represent integral of cycle (therefor circle) in with

system return to the same condition. If there is no lost, it is referred as a reversible process

and the inequality change to equality. ∮
δQ

T
= 0 (2.12)

The last integral can go though several states. These states are independent of the path the

system goes through. Hence, the integral is independent of the path. This observation leads

to the definition of entropy and designated as S and the derivative of entropy is

ds ≡
(
δQ

T

)

rev

(2.13)
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Performing integration between two states results in

S2 − S1 =

∫2
1

(
δQ

T

)

rev

=

∫2
1
dS (2.14)

One of the conclusions that can be drawn from this analysis is for reversible and adi-

abatic process dS = 0. Thus, the process in which it is reversible and adiabatic, the entropy

remains constant and referred to as isentropic process. It can be noted that there is a possibil-

ity that a process can be irreversible and the right amount of heat transfer to have zero change

entropy change. Thus, the reverse conclusion that zero change of entropy leads to reversible

process, isn’t correct.

For reversible process equation (2.12) can be written as

δQ = T dS (2.15)

and the work that the system is doing on the surroundings is

δW = P dV (2.16)

Substituting equations (2.15) (2.16) into (2.10) results in

T dS = dEU + P dV (2.17)

Even though the derivation of the above equations were done assuming that there is

no change of kinetic or potential energy, it still remain valid for all situations. Furthermore,

it can be shown that it is valid for reversible and irreversible processes.

Enthalpy
It is a common practice to define a new property, which is the combination of already

defined properties, the enthalpy of the system.

H = EU + P V (2.18)

The specific enthalpy is enthalpy per unit mass and denoted as, h.

Or in a differential form as

dH = dEU + dP V + P dV (2.19)

Combining equations (2.18) the (2.17) yields

T dS = dH− V dP

(one form of) Gibbs Equation

(2.20)

For isentropic process, equation (2.17) is reduced to dH = VdP. The equation (2.17) in mass

unit is

T ds = du+ P dv = dh−
dP

ρ
(2.21)
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when the density enters through the relationship of ρ = 1/v.

Specific Heats
The change of internal energy and enthalpy requires new definitions. The first change

of the internal energy and it is defined as the following

Cv ≡
(
∂Eu

∂T

)
Specific Volume Heat

(2.22)

And since the change of the enthalpy involve some kind of boundary work is defined as

Cp ≡
(
∂h

∂T

)
Specific Pressure Heat

(2.23)

The ratio between the specific pressure heat and the specific volume heat is called the

ratio of the specific heat and it is denoted as, k.

k ≡ Cp

Cv

Specific Heats Ratio

(2.24)

For solid, the ratio of the specific heats is almost 1 and therefore the difference between

them is almost zero. Commonly the difference for solid is ignored and both are assumed to

be the same and therefore referred as C. This approximation less strong for liquid but not by

that much and in most cases it applied to the calculations. The ratio the specific heat of gases

is larger than one.

Equation of state
Equation of state is a relation between state variables. Normally the relationship of

temperature, pressure, and specific volume define the equation of state for gases. The simplest

equation of state referred to as ideal gas. And it is defined as

P = ρR T (2.25)

Application of Avogadro’s law, that "all gases at the same pressures and temperatures have

the same number of molecules per unit of volume," allows the calculation of a “universal gas

constant.” This constant to match the standard units results in

R̄ = 8.3145
kj

kmol K
(2.26)
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Thus, the specific gas can be calculate as

R =
R̄

M
(2.27)

The specific constants for select gas at 300K is provided in table 2.1.

Table 2.1 – Properties of Various Ideal Gases [300K]

Gas
Chemical

Formula

Molecular

Weight

R

[
kj
KgK

]
CP

[
kj
KgK

]
Cv

[
kj
KgK

]
k

Air - 28.970 0.28700 1.0035 0.7165 1.400

Argon Ar 39.948 0.20813 0.5203 0.3122 1.667

Butane C4H10 58.124 0.14304 1.7164 1.5734 1.091

Carbon

Dioxide

CO2 44.01 0.18892 0.8418 0.6529 1.289

Carbon

Monoxide

CO 28.01 0.29683 1.0413 0.7445 1.400

Ethane C2H6 30.07 0.27650 1.7662 1.4897 1.186

Ethylene C2H4 28.054 0.29637 1.5482 1.2518 1.237

Helium He 4.003 2.07703 5.1926 3.1156 1.667

Hydrogen H2 2.016 4.12418 14.2091 10.0849 1.409

Methane CH4 16.04 0.51835 2.2537 1.7354 1.299

Neon Ne 20.183 0.41195 1.0299 0.6179 1.667

Nitrogen N2 28.013 0.29680 1.0416 0.7448 1.400

Octane C8H18 114.230 0.07279 1.7113 1.6385 1.044

Oxygen O2 31.999 0.25983 0.9216 0.6618 1.393

Propane C3H8 44.097 0.18855 1.6794 1.4909 1.126

Steam H2O 18.015 0.48152 1.8723 1.4108 1.327

From equation (2.25) of state for perfect gas it follows

d (P v) = RdT (2.28)

For perfect gas

dh = dEu + d(Pv) = dEu + d(R T) = f(T) (only) (2.29)

From the definition of enthalpy it follows that

d(Pv) = dh− dEu (2.30)
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Utilizing equation (2.28) and subsisting into equation (2.30) and dividing by dT yields

Cp −Cv = R (2.31)

This relationship is valid only for ideal/perfect gases.

The ratio of the specific heats can be expressed in several forms as

Cv =
R

k− 1

Cv to Specific Heats Ratio

(2.32)

Cp =
kR

k− 1

Cp to Specific Heats Ratio

(2.33)

The specific heat ratio, k value ranges from unity to about 1.667. These values depend on

the molecular degrees of freedom (more explanation can be obtained in Van Wylen “F. of

Classical thermodynamics.” The values of several gases can be approximated as ideal gas and

are provided in Table 2.1.

The entropy for ideal gas can be simplified as the following

s2 − s1 =

∫2
1

(
dh

T
−
dP

ρ T

)
(2.34)

Using the identities developed so far one can find that

s2 − s1 =

∫2
1
Cp
dT

T
−

∫2
1

RdP

P
= Cp ln

T2
T1

− R ln
P2
P1

(2.35)

Or using specific heat ratio equation (2.35) transformed into

s2 − s1
R

=
k

k− 1
ln
T2
T1

− ln
P2
P1

(2.36)

For isentropic process, ∆s = 0, the following is obtained

ln
T2
T1

= ln
(
P2
P1

)k−1
k

(2.37)

There are several famous identities that results from equation (2.37) as

T2
T1

=

(
P2
P1

) k−1
k

=

(
V1
V2

)k−1
Ideal Gas Isentropic Relationships

(2.38)
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The ideal gas model is a simplified version of the real behavior of real gas. The real gas

has a correction factor to account for the deviations from the ideal gas model. This correction

factor referred as the compressibility factor and defined as

Z =
P V

R T

Z deviation from the Ideal Gas Model

(2.39)
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Review of Mechanics

This author would like to express his gratitude to Dan Olsen (for-
mer Minneapolis city Engineer) and his friend Richard Hackbarth.

3.1 Introductory Remarks
This chapter provides a review of important definitions and concepts from Mechanics (stat-

ics and dynamics). These concepts and definitions will be used in this book and a review is

needed.

3.2 Kinematics of of Point Body
A point body is location at time, t in a location, R⃗RR. The velocity is derivative of the change of

the location and using the chain role (for the direction and one for the magnitude) results,

U⃗UU =
dR⃗RR

dt
=

change in R di-

rection︷ ︸︸ ︷
dR⃗RR

dt

∣∣∣∣∣
R

+

change in perpen-

dicular to R︷ ︸︸ ︷
ω⃗× R⃗RR (3.1)

Notice that ω⃗ can have three dimensional components. It also can be noticed that this deriva-

tive is present derivation of any victory. The acceleration is the derivative of the velocity

a⃗aa =
dU⃗UU

dt
=

“regular

acceleration”︷ ︸︸ ︷
d2R⃗RR

dt2

∣∣∣∣∣
R

+

angular

acceleration︷ ︸︸ ︷(
R⃗RR× dω⃗

dt

)
+

centrifugal

acceleration︷ ︸︸ ︷
ω⃗×

(
R⃗RR× ω⃗

)
+

Coriolis

acceleration︷ ︸︸ ︷
2

(
dR⃗RR

dt

∣∣∣∣∣
R

×ω
)

(3.2)
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Example 3.1: Remeo Jet Level: Basic
A water jet is supposed be used to extinguish the fire in a building as depicted in

Figure 3.1
1
. For given velocity, at what angle the jet has to be shot so that velocity will

be horizontal at the window. Assume that gravity is g and the distance of the nozzle

from

the building is a and height of the

window from the nozzle is b. To

simplify the calculations, it pro-

posed to calculate the velocity of

the point particle to toward the

window. Calculate what is the

velocity so that the jet reach the

window. What is the angle that jet

has to be aimed?

Usinθ

a

b
Ucosθ

θ

Fig. 3.1 – Description of the extinguish nozzle
aimed at the building window.

Solution
The initial velocity is unknown and denoted as U which two components. The velocity at

x is Ux = U cos θ and the velocity in y direction is Uy = U sin θ. There there are three
unknowns, U, θ, and time, t and three equations. The equation for the x coordinate is

a = U cos(θ t) (3.1.a)

The distance for y equation for coordinate (zero is at the window) is

0 = −
g t2

2
+U sin(θ t) − b (3.1.b)

The velocity for the y coordinate at the window is zero

u(t) = 0 = −g t+U sin(θ) (3.1.c)

These nonlinear equations (3.1.a), (3.1.b) and (3.1.c) can be solved explicitly. Isolating t from (3.1.a)

and substituting into equations (3.1.b) and (3.1.c)

b =
−ga2

2U2 cos2(θ)
+ a tan(θ) (3.1.d)

and equation (3.1.a) becomes

0 =
−ga

U cos(θ)
+U cos(θ) =⇒ U =

√
ag

cos(θ)
(3.1.e)

Substituting (3.1.e) into (3.1.d) results in

tan(θ) =
b

a
+
1

2
(3.1.f)

.

1
While the simple example does not provide exact use of the above equation, it provides experience of going over

the motions of kinematics.
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3.2.1 Forces and Moments
This section was added to sublimate researchers and engineers who not ware of several basics

concepts in mechanics. Thus, this section was added to fill some of the gaps.

3.2.1.1 Moment of a Force

Moment of a force around a point or axis is the

quantity that cause the body to rotate. Themo-

ment is the product of force and distance vec-

tor, rrr. In practically only the distance ℓ is im-

portant. The moment M O of the force about

point O is defined as the cross product of force

vector and distance vector:

M = rrr× FFF (3.3)

FFF θθθ

ooo
`̀̀

rrr

Fig. 3.2 – Moment of force at a pivot point.

The direction of moment is determined by the right hand rule. Themagnitude of themoment

is obtained by

MO = rrrFFF sin θ (3.4)

where θ is the angle between rrr and FFF.

There are several theorem such as Varignon’s theorem that deal with relationship of

vectors and representation of several vectors. Without vigorous proofs, it can be stated that a

moment of a force about any point equal to the sum of moments of its components about that

point. The principle of moments is a theorem based on the Varignon’s theorem, which states

that a system of coplanar forces is in equilibrium, then the combined sum of their moments

about any point in their plane is zero. Moment of the couple is equal to the cross product of

any vector by the distance. It indicates that moment of a couple is independent of location of

the vectors. This freedom is apposed to the force which requires a definite axis. A derivative

of these conclusion is that a force can be “moved” to a new location (line of action) with a

moment.

A necessary and sufficient conditions to body in static condition sum of forces is zero

net force in any direction

N∑
i=0

FFF = 0 (3.5)

The sum of all moment is zero in any direction as

N∑
i=0

MMM = 0 (3.6)
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The consequence of the above statements is that the force that acting anywhere on

a system of particles or a rigid body can be replaced by a force that acts on mass centroid

(see next section) and a moment. This result is not intuitive yet it proved numerously in the

literature. The fact or equation is very relevant to ship stability when supposed to be research

agree with in one part of the equation and disagree to it in another part of the equation.

3.3 Center of Mass
The center of mass is divided into two sections, first, center of the mass and two, center of

area (two–dimensional body with equal distributionmass). Additionally, the change of center

of mass due to addition or subtraction of mass plus discrete areas are presented.

3.3.1 Actual Center of Mass

In many engineering problems, the knowledge of center of mass is required to make the cal-

culations. This concept is derived from the fact that a body has a center ofmass/gravity which

interacts with other bodies and that this force acts on the center (equivalent force). It turns

out that this concept is very useful in calculating rotations, moment of inertia, etc. The center

of mass doesn’t depend on the coordinate system and on the way it is calculated. The physical

meaning of the center of mass is that if a straight line force acts on the body in away through

the center of gravity, the body will not rotate. In other words, if a body will be held by one

point it will be enough to hold the body in the direction of the center of mass.

Note, if the body isn’t be held through the cen-

ter of mass, then a moment in additional to

force is required (to prevent the body for ro-

tating). It is convenient to use the Cartesian

system to explain this concept. Suppose that

the body has a distribution of themass (density,

rho) as a function of the location. The density

“normally” defined as mass per volume. Here,

the line density is referred to density mass per

unit length in the x direction.

In x coordinate, the center will be defined as

yyy

xxx

dVdVdV

zzz

Fig. 3.3 – Description of how the center of
mass is calculated.

x =
1

m

∫
V
x

dm︷ ︸︸ ︷
ρ(x)dV (3.7)

Here, the dV element has finite dimensions in y–z plane and infinitesimal dimension in x

direction see Figure 3.3. Also, the mass,m is the total mass of the object. It can be noticed that

center of mass in the x–direction isn’t affected by the distribution in the y nor by z directions.
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In same fashion the center of mass can be defined in the other directions as following

x̄i =
1

m

∫
V
xi ρ(xi)dV

xi of Center Mass

(3.8)

where xi is the direction of either, x, y or z. The density, ρ(xi) is the line density as function

of xi. Thus, even for solid and uniform density the line density is a function of the geometry.

When finite masses are combine the total mass Eq. (3.8) converted into

x̄ =

∑
ximi∑
mi

(3.9)

where i denotes every mass in the system.

3.3.2 Approximate Center of Area

In the previous case, the body was a three

dimensional shape. There are cases where

the body can be approximated as a two-

dimensional shape because the body is with a

thinwith uniformdensity. Consider a uniform

thin body with constant thickness shown in

Figure 3.4 which has density, ρ. Thus, equation

(3.7) can be transferred into

yyy

xxx

dAdAdA

zzz

ttt

Fig. 3.4 – Thin body center of mass/area
schematic.

x̄ =
1

tA︸︷︷︸
V

ρ

∫
V
x

dm︷ ︸︸ ︷
ρ t dA (3.10)

The density, ρ and the thickness, t, are constant and can be canceled. Thus equation (3.10) can

be transferred into

x̄i =
1

A

∫
A
xidA

Approximate xi of Center Mass

(3.11)

when the integral now over only the area as oppose over the volume. Eq. (3.11) can also be

written for discrete areas as

x̄i =

∑
xiAi∑
Ai

(3.12)

It must be noted that area Ai can be positive or negative. The meaning of negative area in

this context is subtraction of area.
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3.3.3 Change of Centroid Location Due to Added/Subtracted Area

r

o n
a

Fig. 3.5 – Solid body with one area
added and one area removed.
The old centroid marked “o” the
new centroid marked “n” and
area removed “r” and area added
“a.”

This section deals with a change centroid lo-

cation when an area is add or subtracted from

a given area with a know centroid (or un-

known). This topic is important when a cen-

troid of area was found or previously calcu-

lated. Furthermore, while the location can

be recalculated for some problems the change

or its direction has more importance as it

will be discussed in greater detail in, section

on stability of floating bodies on page 165.

The centroid of body in Fig. 3.5

is

denoted at point “o” (old). The centroid of the added and removed areas are at points “a”

(added) and “r” (removed), respectively. The point “n” (new) is the centroid after modification.

A special case when the added area is equal to the subtracted area and its application will be

discussed in an example below. It has to be noted that added and subtracted areas do not have

to be continuous. Utilizing Eq. (3.12) for the identical areas reads for this case as

xn =
xoAo + xrAr − xaAa

Ao +Ar −Aa
(3.13)

In a special case where subtracted area is equal to added area (Ar = Aa) Eq. (3.13) is reduced

to

xn = xo + xr
Ar

Ao
− xa

Aa

Ao
→

x̄− xo =
Ar

Ao
(xr − xa)

(3.14)

Finding the centroid location should be done in the most convenient coordinate system since

the location is coordinate independent. There should be a sign convention to determine the

centroid direction movement so that the direction should be immediately expressed in the

result. However, faults were found in several options that were considered
2
.

2
If you have a good method/technique please consider discussing it with this author.
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Example 3.2: Sub Circle Level: Simple

A circle with a radius, r has a cut out

from a larger circle with radius, R where

R > r. The distance between the center

of the larger circle and the small circle is

x. Calculate the centroid of the circle that

a smaller circle was cut out of it. Assume

that x is small enough so that the small cir-

cle is whole.

R

r
x

Fig. 3.6 – Subtraction of circle from a
large circle for calculating the new
center.

Solution
The change in the centroid is only the direction of x. It should be noted that for x = 0, the

centroid is at x = 0 and y = 0 that is the centroid is at the center of the larger circle. For larger

distance up to the x = R− r the centroid can be calculated utilizing Eq. (3.13) reads

∆x = �π r
2

�πR
2
(x− 0) = x

( r
R

)2
(3.2.a)

Notice that x is the distance between the two centers while ∆x is the change in the centroid

location. Additionally, if the removed circle is not on the x coordinate then these calculations

can be reused. For instance, if the cut is at angle, θ, the change will be along straight line from

the center of the large circle at the distance that was obtained in Eq. (3.2.a). The conversion to

a regular coordinate system could be done by utilizing simple trigonometric functions.

3.3.4 Change of Mass Centroid Due to Addition or Subtraction of
Mass in 3D

This innovative topic (as witting it) is extension of the previous topic of two dimensions

change of centroid. All bodies are three dimensions thus when no symmetry or extrudation
3

exist the full analysis has to be done. Furthermore, it is interesting to point to the phenomenon

none symmetrical body the change and be in a third dimension. This topic to be discussed in

stability issue.

A centroid of slob is located in point “o” and additional mass depicted as “a” and the

subtracted mass “r” and again the new location of centroid is at “n.”

xn =
mo xo +ma xa −mr xr

mo −ma +mr
(3.15)

3
The word “extrudation” means same meaning it has in blender (software).
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As before the special case of equal subtracted and added material Eq. (3.15) converted into

xn =
mo xo +m (xa − xr)

mo
(3.16)

when the density is uniform, Eq. (3.16) can be written

xn =
Vo xo + V (xa − xr)

Vo
−→ xn − xo =

V

Vo
(xa − xr) (3.17)

Example 3.3: Cylinder Wedge Level: Intermediate
In Fig. 3.7 ∆y was assumed to be zero. Is this assumption is correct or/and under

what conditions it is correct. Hint: first calculate ∆y and then use the results to the

estimated results.

Solution
under construction

3.3.4.1 A Small Change in Angle of Rotation

This section is dealing with a special topic of

change of area due to rotation when the area

is constant that is important to stability. The

change of the area in Fig. 3.7 dealt with a spe-

cific geometry. This procedure can be gener-

alized or even simplified the procedure. The

process of calculating the change of the cen-

troid can be converted for small angle.

xi =

∫
xdV∫
dV

=

∫
x

h︷ ︸︸ ︷
x tan θ dA
V

=

tan θ
∫
x2 dA

V
(3.18)

θ
R

X

y
ψ

ψy = r cosψ

y

x

ξ

Fig. 3.7 –Centermass of cylinderwedgewith
added wedge and subtracted wedge.

The term in the nominator is called the Moment of Inertia and will be discussed in the

following section. The Moment of Inertia symbolized by Ixx and Eq. (3.18) by

xi =
tan θ Ixx

V
(3.19)

Notice that Ixx is a function of the cross section only and is half of the cross section. Hence

for the total moment of inertia double the half (see next section for explanation). The volume
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of the small wedge is calculated below. The total change is defined in Eq. (3.17)

∆x = �V

V0

2x1︷ ︸︸ ︷
tan θ Ixx

�V
= tan θ

Ixx

V0
(3.20)

It is remarkable that the change location of centroid can be determined from knowing/cal-

culating the moment of inertia of the cross section and by the displaced volume.

Example 3.4: Repeat Level: Basic
Repeat example with using Eq. (3.20).

Solution

As a side kick, the integral that was canceled before can be calculated as following∫
dV =

∫
x tan θdA = tan θ

∫
xdA = tan θx̄A (3.21)

The value of tan θ is constant in the integration and the value x̄ is the average height of wedge.
The value of x̄ is a function of θ but not its location and theA cross area is not function of θ.

Sometime of values x̄ are tabulated and hence the integration can be readily available.

3.3.5 Centroid of Segment

AAA

RRR

sss
bbb

Fig. 3.8 – Segment of circular for centroid calculations.

In the course of study of stability of floating bodies by this author, it was discovered

that centroid of the segment can be found in a easier way. The physics of the floating body

dictates (see Fig. 3.8) that (this equation is adapted without a proof which can be found in the

Bar-Meir’s on Stability)

yc =
Ixx/s

A
(3.22)
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This equation is reduced from a complicated equation whereA substitutes the extruded vol-

ume of cylinder (the darken portion of the cylinder). The equation is based on the argument

of neutral stable body.

Example 3.5: Segment centroid Level: Basic
Calculate the centroid of semi-circle with a radius r.

Solution
In this case b (check for the definition) in the Fig. 3.8 is 2 r. Hence, the moment of inertia (in

the next section) is s b3/12. The area of segment (it is the dark green area marked pointed by

the arrow. Yet, note that b himself refers to width of the segment) π r2/2. Utilizing equation

(3.22) reads

yc =

Cs b
3/12

Cs
π r2

2

=

(2 r)3

12
π r2

2

(3.5.a)

or after simplifications it yields

yc =
4 r

π 3
(3.23)

3.4 Moment of Inertia
As it was divided for the body center of mass, the moment of inertia is divided into moment

of inertia of mass and area.

3.4.1 Moment of Inertia for Mass
Themoment of inertia turns out to be an essential part for the calculations of rotating bodies.

Furthermore, it turns out that the moment of inertia has much wider applicability. Moment

of inertia of mass is defined as

Irrm =

∫
V
ρr2dV

Moment of Inertia

(3.24)

If the density is constant then equation (3.24) can be transformed into

Irrm = ρ

∫
V
r2 dV (3.25)

The moment of inertia is independent of the coordinate system used for the calculation, but

dependent on the location of axis of rotation relative to the body. Some people define the

radius of gyration as an equivalent concepts for the center of mass concept and which means
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if all the mass were to locate in the one point/distance and to obtain the same of moment of

inertia.

rk =

√
Im

m
(3.26)

The body has a different moment of inertia for every coordinate/axis and they are

Ixx =
∫
V rx

2dm =
∫
V (y

2 + z2)dm

Iyy =
∫
V ry

2dm =
∫
V (x

2 + z2)dm

Izz =
∫
V rz

2dm =
∫
V (x

2 + y2)dm

(3.27)

3.4.2 Moment of Inertia for Area

3.4.2.1 General Discussion

For body with thickness, t and uniform density the following can be written

Ixxm =

∫
m
r2dm = ρ t

moment of inertia

for area︷ ︸︸ ︷∫
A
r2dA (3.28)

The moment of inertia about axis is x can be defined as

Ixx =

∫
A
r2dA =

Ixxm
ρ t

Moment of Inertia

(3.29)

where r is distance of dA from the axis x and t is the thickness.
Any point distance can be calculated from axis

x as

x =
√
y2 + z2 (3.30)

Thus, equation (3.29) can be written as

Ixx =

∫
A

(
y2 + z2

)
dA (3.31)

In the same fashion for other two coordinates

as

Iyy =

∫
A

(
x2 + z2

)
dA (3.32)

yyy

xxx

zzz

C

y′y′y′

x′x′x′

z′z′z′
∆∆∆xxx

∆∆∆yyy

Fig. 3.9 – The schematic that explains the
summation of moment of inertia.

Izz =

∫
A

(
x2 + y2

)
dA (3.33)
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3.4.2.2 The Parallel Axis Theorem

Themoment of inertial can be calculated for any axis. The knowledge about one axis can help

calculating the moment of inertia for a parallel axis. Let Ixx the moment of inertia about axis

xx which is at the center of mass/area.

The moment of inertia for axis x
′
is

I
x
′
x
′ =

∫
A
r
′2
dA =

∫
A

(
y

′2
+ z

′2)
dA =

∫
A

[
(y+∆y)2 + (z+∆z)2

]
dA (3.34)

equation (3.34) can be expended as

I
x
′
x
′ =

Ixx︷ ︸︸ ︷∫
A

(
y2 + z2

)
dA+

=0︷ ︸︸ ︷
2

∫
A
(y∆y+ z∆z)dA+

∫
A

(
(∆y)2 + (∆z)2

)
dA (3.35)

The first term in equation (3.35) on the right hand side is the moment of inertia about

axis x and the second them is zero. The second therm is zero because it integral of center

about center thus is zero. The third term is a new term and can be written as

∫
A

constant︷ ︸︸ ︷(
(∆y)2 + (∆z)2

)
dA =

r2︷ ︸︸ ︷(
(∆y)2 + (∆z)

)
A︷ ︸︸ ︷∫2
A
dA = r2A (3.36)

Hence, the relationship between the moment of inertia at xx and parallel axis x
′
x
′
is

I
x
′
x
′ = Ixx + r

2 A

Parallel Axis Equation

(3.37)

The moment of inertia of several areas is the

sum of moment inertia of each area see Figure

3.10 and therefore,

Ixx =

n∑
i=1

Ixxi (3.38)

If the same areas are similar thus

Ixx =

n∑
i=1

Ixxi = n Ixxi (3.39)

yyy

xxx

zzz

1

2

Fig. 3.10 – The schematic to explain the sum-
mation of moment of inertia.
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Equation (3.39) is very useful in the calculation

of the moment of inertia utilizing the moment

of inertia of known bodies. For example, the

moment of inertial of half a circle is half of

whole circle for axis a the center of circle. The

moment of inertia can then move the center of

area. The summation can be used to the total

amount.

hhh

drdrdr
rrr

Fig. 3.11 – Cylinder with an element for cal-
culation moment of inertia.

3.4.3 Examples of Moment of Inertia

Example 3.6: Ixx Cylinder Level: Basic
Calculate the moment of inertia for the mass of the cylinder about center axis which

height of h and radius, r0, as shown in Figure 3.11. The material is with an uniform

density and homogeneous.

Solution
The element can be calculated using cylindrical coordinate. Here the convenient element is a

shell of thickness dr which shown in Figure 3.11 as

Irr = ρ

∫
V
r2dm = ρ

∫r0
0
r2

dV︷ ︸︸ ︷
h2π rdr = ρh 2π

r0
4

4
= 1
2ρhπr0

4 = 1
2mr0

2 (3.6.a)

The radius of gyration is

rk =

√
1
2 mr0

2

m
=
r0√
2

(3.6.b)

Example 3.7: caption Level: Intermediate

Calculate the moment of inertia of the rectan-

gular shape shown in Figure 3.12 around x co-

ordinate. Notice that the location of the dis-

tance from z coordinate is not given. Is it im-

portant?

yyy

xxx

zzz

dxdxdx

bbb

aaa

Fig. 3.12 – Description of rectangu-
lar in x–y plane for calculation
of moment of inertia.

Solution
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End of Ex. 3.7

The moment of inertia is calculated utilizing equation (3.31) as following

Ixx =

∫
A




0︷︸︸︷
y2 +z2


dA =

∫a
0
z2

dA︷︸︸︷
bdz =

a3 b

3
(3.40)

This value will be used in later examples. The distance to z is not relevant for the calculation.

Example 3.8: Ixx Cubic Level: Basic
To study the assumption of zero thickness, consider a simple shape to see the effects of

this assumption. Calculate themoment of inertia about the center of mass of a square

shape with a thickness, t compare the results to a square shape with zero thickness.

Solution

Themoment of inertia of transverse slice about

y
′
(see Figure 3.13) is

dIxxm = ρ

t︷︸︸︷
dy

Ixx︷ ︸︸ ︷
ba3

12

(3.8.a)

The transformation into from local axis x to

center axis, x
′
can be done as following

aaa bbb

dzdzdz

Fig. 3.13 – A square element for the
calculations of inertia of two-
dimensional to three–dimensional
deviations.

dIx′
x

′
m

= ρdy




Ixx︷ ︸︸ ︷
ba3

12
+

r2A︷ ︸︸ ︷
z2︸︷︷︸
r2

ba︸︷︷︸
A


 (3.8.b)

The total moment of inertia can be obtained by integration of equation (3.8.b) to write as

Ixxm = ρ

∫t/2
−t/2

(
ba3

12
+ z2 ba

)
dz = ρ t

ab t2 + a3 b

12
(3.8.c)

Comparison with the thin body results in

Ixx ρ t

Ixxm
=

ba3

t2 ba+ ba3
=

1

1+
t2

a2

(3.8.d)



3.4. MOMENT OF INERTIA 73

End of Ex. 3.8

It can be noticed right away that

equation (3.8.d) indicates that ratio

approaches one when thickness ratio is

approaches zero, Ixxm(t → 0) → 1.

Additionally it can be noticed that the

ratio a2/t2 is the only contributor to

the error
4
. The results are present in

Figure 3.14. I can be noticed that the

error is significant very fast even for

small values of t/a while the with of the

box, b has no effect on the error.

I x
x

I x
x
m

t
aSeptember 29, 2013

Fig. 3.14 –The ratio of themoment of inertia of
two-dimensional to three–dimensional.

Example 3.9: Rotating Rectangular Level: Simple

Calculate the rectangular moment

of Inertia for the rotation trough

center in zz axis (axis of rotation

is out of the page). Hint, construct

a small element and build longer

build out of the small one. Us-

ing thismethod calculate the entire

rectangular.

dydydy

2b2b2b

yyy rrr

xxx

2a2a2a

dxdxdx

Fig. 3.15 – Rectangular Moment of inertia.

Solution
The moment of inertia for a long element with a distance y shown in Figure 3.15 is

d Izz|dy =

∫a
−a

r2︷ ︸︸ ︷(
y2 + x2

)
dydx =

2
(
3 ay2 + a3

)

3
dy

(3.9.a)

The second integration ( no need to use (3.37), why?) is

Izz =

∫b
−b

2
(
3 ay2 + a3

)

3
dy (3.9.b)

Results in

Izz =
a
(
2 ab3 + 2 a3 b

)

3
=

4ab︷︸︸︷
A

(
(2a)2 + (2b)2

12

)
(3.9.c)

4
This ratio is a dimensionless number that commonly has no special name. This author suggests to call this ratio

as the B number.
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Example 3.10: Ixx Parabola Level: Simple

Calculate the center of area

and moment of inertia for the

parabola, y = αx2, depicted in

Figure 3.16. Hint, calculate the

area first. Use this area to calcu-

late moment of inertia. There are

several ways to approach the cal-

culation (different infinitesimal

area).

ycycyc

a = 2
√

b/αa = 2
√

b/αa = 2
√

b/α

dddξξξ

bbb

XXXXXX

dddξξξ
ξξξccc

Fig. 3.16 – Parabola for calculations ofmoment of
inertia.

Solution
For y = b the value of x =

√
b/α. First the area inside the parabola calculated as

A = 2

∫√b/α
0

dA/2︷ ︸︸ ︷
(b−αξ2)dξ =

2(3α− 1)

3

(
b

α

)3
2

The center of area can be calculated utilizing equation (3.11). The center of every element is at,(
αξ2 +

b−αξ2

2

)
the element area is used before and therefore

xc =
1

A

∫√b/α
0

xc︷ ︸︸ ︷(
αξ2 +

(b−αξ2)

2

) dA︷ ︸︸ ︷
(b−αξ2)dξ =

3αb

15α− 5

(3.10.a)

The moment of inertia of the area about the center can be found using in equation (3.10.a) can

be done in two steps first calculate the moment of inertia in this coordinate system and then

move the coordinate system to center. Utilizing equation (3.31) and doing the integration from

0 to maximum y provides

Ix′
x

′ = 4

∫b
0
ξ2

dA︷ ︸︸ ︷√
ξ

α
dξ =

2 b7/2

7
√
α

Utilizing equation (3.37)

Ixx = Ix′
x

′ −A ∆x2 =

I
x
′
x
′︷ ︸︸ ︷

4 b7/2

7
√
α

−

A︷ ︸︸ ︷
3α− 1

3

(
b

α

)3
2

(∆x=xc)
2︷ ︸︸ ︷(

3αb

15α− 5

)2

or after working the details results in

Ixx =

√
b
(
20 b3 − 14 b2

)

35
√
α
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Example 3.11: Ixx Moment of Inertia Level: Simple

Calculate the moment of inertia of strait angle tri-

angle about its y axis as shown in the Figure on

the right. Assume that base is a and the height is

h. What is the moment when a symmetrical trian-

gle is attached on left? What is the moment when a

symmetrical triangle is attached on bottom? What

is the moment inertia when a −→ 0? What is the

moment inertia when h −→ 0?

xxx
aaa

bbb

yyy

dydydy

Fig. 3.17 – Triangle for example
3.11.

Solution
The right wedge line equation can be calculated as

y

h
=
(
1−

x

a

)

or

x

a
=
(
1−

y

h

)

Now using the moment of inertia of rectangle on the side (y) coordinate (see example 3.7)

∫h
0

a
(
1−

y

h

)3
dy

3
=
a3 h

4

For two triangles attached to each other the moment of inertia will be sum as

a3 h

2
The rest is under construction.

3.4.4 Product of Inertia
In addition to the moment of inertia, the product of inertia is commonly used. Here only the

product of the area is defined and discussed. The product of inertia defined as

Ixi xj =

∫
A
xi xjdA (3.41)

For example, the product of inertia for x and y axis is

Ixy =

∫
A
xydA (3.42)

Product of inertia can be positive or negative value as oppose the moment of inertia.
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The calculation of the product of inertia isn’t differentmuch for the calculation of themoment

of inertia. The units of the product of inertia are the same as for moment of inertia.

Transfer of Axis Theorem
Same as for moment of inertia there is also similar theorem.

I
x
′
y

′ =

∫
A
x
′
y

′
dA =

∫
A
(x+∆x) (y+∆y)dA (3.43)

expanding equation (3.43) results in

I
x
′
y

′ =

Ixy︷ ︸︸ ︷∫
A
xydA+

∆y

0︷ ︸︸ ︷∫
A
xdA︷ ︸︸ ︷∫

A
x∆ydA +

∆x

0︷ ︸︸ ︷∫
A
ydA︷ ︸︸ ︷∫

A
∆xydA +

∆x∆yA︷ ︸︸ ︷∫
A
∆x∆ydA (3.44)

The final form is

I
x
′
y

′ = Ixy +∆x∆yA (3.45)

There are several relationships should be mentioned

Ixy = Iyx (3.46)

Symmetrical area has zero product of inertia because integration of odd function (asymmet-

rical function) left part cancel the right part.

Example 3.12: Ixy Triangle Level: Basic

Calculate the product of inertia of straight

wedge triangle. Assume that body is two

dimensional.

y′y′y′

xxx

aaa

bbb

yyy

x′x′x′

Fig. 3.18 – Product of inertia for triangle.

Solution
The equation of the line is

y =
a

b
x+ a
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End of Ex. 3.12
The product of inertia at the center is zero. The total product of inertia is

Ix′
y

′ = 0+

∆x︷︸︸︷
a

3

∆y︷︸︸︷
b

3

A︷ ︸︸ ︷(
ab

2

)
=
a2 b2

18

(3.12.a)

3.4.5 Principal Axes of Inertia
The inertia matrix or inertia tensor is




Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz


 (3.47)

In linear algebra it was shown that for some angle equation (3.47) can be transform into



I
x
′
x
′ 0 0

0 I
y

′
y

′ 0

0 0 I
z
′
z
′


 (3.48)

System which creates equation (3.48) referred as principle system.

3.5 Newton’s Laws of Motion
These laws can be summarized in two statements one, for every action by body A on Body B
there is opposite reaction by body B on body A. Two, which can expressed in mathematical

form as ∑
F =

D (mU)

Dt
(3.49)

It can be noted that D replaces the traditional d since the additional meaning which

be added. Yet, it can be treated as the regular derivative. This law apply to any body and

any body can “broken” into many small bodies which connected to each other. These small

“bodies” when became small enough equation (3.49) can be transformed to a continuous form

as ∑
F =

∫
V

D (ρ U)

Dt
dV (3.50)

The external forces are equal to internal forces the forces between the “small” bodies are cancel

each other. Yet this examination provides a tool to study what happened in the fluid during

operation of the forces.

Since the derivative with respect to time is independent of the volume, the derivative

can be taken out of the integral and the alternative form can be written as∑
F =

D

Dt

∫
V
ρ UdV (3.51)
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The velocity, U is a derivative of the location with respect to time, thus,∑
F =

D2

Dt2

∫
V
ρ rdV (3.52)

where r is the location of the particles from the origin.

The external forces are typically divided into two categories: body forces and surface

forces. The body forces are forces that act from a distance like magnetic field or gravity. The

surface forces are forces that act on the surface of the body (pressure, stresses). The same

as in the dynamic class, the system acceleration called the internal forces. The acceleration is

divided into three categories: Centrifugal,ω×(r ×ω), Angular, r × ω̇, Coriolis, 2 (Ur ×ω).

The radial velocity is denoted as Ur.

3.6 Angular Momentum and Torque
The angular momentum of body, dm, is defined as

L = r × Udm (3.53)

The angular momentum of the entire system is calculated by integration (summation) of all

the particles in the system as

Ls =

∫
m

r ×Udm (3.54)

The change with time of angular momentum is called torque, in analogous to the momentum

change of time which is the force.

Tτ =
DL

Dt
=
D

Dt
(r × Udm) (3.55)

where Tτ is the torque. The torque of entire system is

Tτs =

∫
m

DL

Dt
=
D

Dt

∫
m

(r × Udm) (3.56)

It can be noticed (well, it can be proved utilizing vector mechanics) that

Tτ =
D

Dt
(r × U) =

D

Dt
(r × Dr

Dt
) =

D2r
Dt2

(3.57)

To understand these equations a bit better, consider a particle moving in x–y plane. A force is

acting on the particle in the same plane (x–y) plane. The velocity can bewritten asU = uî+ vĵ

and the location from the origin can be written as r = xî+ yĵ. The force can be written, in

the same fashion, as F = Fxî+ Fy ĵ. Utilizing equation (3.53) provides

L = r × U =




î ĵ k̂

x y 0

u v 0


 = (x v− yu)k̂ (3.58)
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Utilizing equation (3.55) to calculate the torque as

Tτ = r × F =




î ĵ k̂

x y 0

Fx Fy 0


 = (x Fx − y Fy)k̂ (3.59)

Since the torque is a derivative with respect to the time of the angular momentum it is also

can be written as

xFx − yFy =
D

Dt
[(xv− yu)dm] (3.60)

The torque is a vector and the various components can be represented as

Tτx = î • D
Dt

∫
m

r × Udm (3.61)

In the same way the component in y and z can be obtained.

3.6.1 Tables of geometries
Th following tables present several moment of inertias of commonly used geometries.

Table 3.1 – Moments of Inertia for various plane surfaces about their center of gravity (full shapes)

Shape Name Picture Description xc, yc A Ixx

rectangle
b

a

b/2

XX
b

2
;
a

2
ab

ab3

12

Triangle

aaa

bbb

XXXXXX

b/3b/3b/3

a

3

ab

3

ab3

36

Continued on next page
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Table 3.1 – Moment of inertia (continue)

Shape Name Picture Description xc, yc A Ixx

Circle
b

a

b/2

XX
a = b

b

2

πb2

4

πb4

64

Ellipse
YY

a

b

XX

a

2

b

2

πab

4

ab3

64

y = αx2

Parabola
b

XX

xc

a

3αb
15α−5

6α−2
3 ×

(
b
α

) 3
2

√
b(20b3−14b2)

35
√
α

Trapezoid c

a

b

h

y

x

Xc

Yc

Xc =
a2+b2+2ac+cb+ab

3(a+b)

Yc =

h(2a−b)
3(a+b)

h(a+b)
2

h3(3a+b)
12

Quadrant
of Circle

r

r

XX

4 r

3 π

4 r

3 π

π r2

4
r4( π16−

4
9π )

Ellipsoidal
Quadrant

b

a

XX

4b

3 π

4 b

3π

πab

4
ab3( π16−

4
9π )

Continued on next page
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Table 3.1 – Moment of inertia (continue)

Shape Name Picture Description xc, yc A Ixx

Half of
Elliptic

b

a

XX

4b

3 π

4 b

3π

πab

4
ab3( π16−

4
9π )

Circular
Sector

r

XX
α
α

0 2α r2 r4

4

(
α−

1
2 sin2α

)

Circular
Sector

r

XX
α 2

3

r sinα

α

α

2
3
r sinα
α 2α r2

I
x
′
x
′ =

r4

4

(
α+

1
2 sin2α

)

3.7 Multiple Choice Questions
1. MassMMM slides in a frictionless groove in the horizontal direction and the bob of mass

mmm is hinged tomassMMM at centroid, by a rigidmassless rod. This system (the twomasses)

is released from rest with angle, θ.

(A) The energy is not conserved but the

linear momentum in x and y direc-

tions are conserved.

(B) The linear momentum in x direction

is conserved as well as the energy.

(C) The linear momentum in x and y di-

rections are conserved as well as the

energy.

(D) The linear momentum in y direction

is conserved as well as the energy.

MMMMMMMMM

mmm θθθ

yyy
xxx

Fig. 3.19 – Pendulum hanged from a ceil-
ing with an attached spring to the
wall.

2.
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Massmmm is attached by a spring to a wall and hanged from a ceiling as shown in the

Fig. 3.19. The spring is free to move in the vertical direction and the bob of massmmm is

hinged to by massless rod at centroid, by a rigid massless rod. This system (the two

masses) is released from rest with angle, θ.

(A) The energy is not conserved but the

linear momentum in x and y direc-

tions are conserved but

(B) The linear momentum in x direction

is conserved as well as the energy.

(C) The linear momentum in x and y di-

rections are conserved as well as the

energy.

(D) The linear momentum in x and y di-

rection is not conserved but the en-

ergy is conserved.

xxx
yyy

mmm
θθθ

Fig. 3.20 – Pendulum attached to a
fractional–less mass.

3.7.1 Multiple Solution

1: (B) In standard pendulum the energy is conserved because the forces do notmove (nowork).

No force in the x direction no work in the y direction no movement no work thus energy

conserved as well. The linear momentum conserved in the x direction no external force. In

the y direction, there is external force.

2: (D) There reactions in the x and y directions and only the energy conserved.

Example 3.13: Leaf in Whirlpool Level: GATE 2005
A leaf is caught in a whirlpool. At a given instant, the leaf is at a distance of 120 m

from the center of the whirlpool. The whirlpool can be described by the following

velocity distribution:

Ur = −
60× 103
2 π r

[m/sec] (3.13.a)

Ut =
300× 103
2 π r

[m/sec] (3.13.b)

where r (in meters) is the distance from the center of the whirlpool. What will be the

distance of the leaf from the center when it has moved through half a revolution?

(a) 49 [m] (b) 64 [m]

(c) 120 [m] (d) 142 [m]
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continue Ex. 3.13
Solution
The angle the leaf travel for very small radius

dθ =
Ut dt

2π r
=
300× 103 dt

(2 π r)2
(3.13.c)

The infinitesimal distance that the leaf travels into the center is

drr = Ur dt = −
60× 103 dt

2π r
(3.13.d)

The condition imposed is the angle must be θ = π. Hence

π =

∫t
0

300× 103 dt
(2 π r)2

(3.13.e)

Notice that r is function of the time.

∆r = −

∫t
0

60× 103 dt
2π r

(3.13.f)

These are two integral equations that needed to be solved. The distance to the center r is

r = r0 +∆r = r0 −

∫t
0

60× 103 dt
2π r

(3.13.g)

This set Eq. (3.13.g) and Eq. (3.13.e) need to be solved. They can be combined to be

π =

∫
t

0

300× 103 dt

2 π r0 −

∫
t

0

60× 103 dt
2π r




2

(3.13.h)

These equations are a Volterra integral equation of the first kind that does not have a typically

simple analytical solution.

Volterra equation of the first kind are equation of the form of

f(x) =

∫x
a
K(x, t)ϕ(t)dt (3.13.i)

The K is referred as the kernel and if it is polynomials or similar there is analytical solved.

However, this is not easily can transferred but can be shown that it converged by guessing

arbitrary function and repeating the process until no significant change occur.

However, this question is given in GATE and there is no sufficient time solve in this

method and a quick estimate is needed. It can be noticed that the tangential velocity is 5 times

larger than the velocity radial velocity. Yet the time for tangential lap is the same magnitude

as the radial time. Thus, for the first iteration one the fix radius is used for which is 120[m].

t ∼

s︷︸︸︷
π r

Ut
=

2 π2 r2

300× 103 =
2 π2 1202

300× 103 = 0.47[sec] (3.13.j)
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End of Ex. 3.13

Thus the distance to center for the first iteration is

sr = tUr = 0.47×
60× 103
2 π 120

∼ 80[m] (3.13.k)

Thus the averaged r (120 + (120-80)r)/2 = 80 [m] which will be used the next iteration no 1

t ∼
2× π2 × 802
300× 103 = 0.42[sec] (3.13.l)

t ∼ 0.42× 60× 103
2 π 80

∼ 119.3[m] (3.13.m)

It seems the best choice in this case is (a) but all the answers are wrong.

Example 3.14: Mohre Circle Level: GATE 2008
A two dimensional fluid element rotates like a rigid body. At a point within the el-

ement, the pressure is 1 unit. Radius of the Mohr’s circle, characterizing the state at

that point, is

(a) 0.5 unit (b) 0 unit

(c) 1 unit (d) 1997

Solution
The Mohr’s circle is a typical topic of solid mechanics (strength of materials). Yet, this topic

is tied to the definition of fluid. In strength of materials the Mohr’s circle represents between

the shear and “pressure”. The location of the centroid of the circle is at the average of two

princesses “pressure” (stresses) with radius equal equal to half the difference between the two

principal stresses.

For a 2–D fluid element rotating like a rigid body, the stress state is only made of shear stress.

Therefore, the principal stresses are equal and opposite. Since the pressure at the point is 1

unit, the shear stress is also 1 unit. Thus, the Mohr’s circle has zero radius, characterizing the

state at that point.

Hence, the anawer is (b).



4
Fluids Statics

4.1 Introduction
The simplest situation that can occur in the study of fluid is when the fluid is at rest or quasi

rest. This topic was introduced to most students in previous study of rigid body. However,

here this topic will be more vigorously examined. Furthermore, the student will be exposed

to stability analysis probably for the first time. Later, the methods discussed here will be

expanded to more complicated dynamics situations.

4.2 The Hydrostatic Equation
A fluid element with dimensions of DC, dy,

and dz is motionless in the accelerated system,

with acceleration,a as shown in Figure 4.1. The

system is in a body force field, gG(x,y, z).The
combination of an acceleration and the body

force results in effective body force which is

g
G
− a = g

eff
(4.1)

Equation (4.1) can be reduced and simplified for

the case of zero acceleration, a = 0.

(
P + ∂P

∂y dy
)
dxdz

(
P + ∂P

∂y dy
)
dxdz

(
P + ∂P

∂y dy
)
dxdz(
P + ∂P

∂z dz
)
dxdy

(
P + ∂P

∂z dz
)
dxdy

(
P + ∂P

∂z dz
)
dxdy

(
P + ∂P

∂x dx
)
dydz

(
P + ∂P

∂x dx
)
dydz

(
P + ∂P

∂x dx
)
dydz

dzdzdz

dydydy

dxdxdx

PPP

PPP

PPP

yyy

zzz

xxx

Fig. 4.1 –Description of afluid element in ac-
celerated system under body forces.

In these derivations, several assumptionsmust bemade. The first assumption is that the

85
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change in the pressure is a continuous function. There is no requirement that the pressure

has to be a monotonous function e.g. that pressure can increase and later decrease. The

changes of the second derivative pressure are not significant compared to the first derivative

(∂P/∂n× dℓ >> ∂2P/∂n2). Where n is the steepest direction of the pressure derivative and

dℓ is the infinitesimal length. This mathematical statement simply requires that the pressure

can deviate in such a way that the average on infinitesimal area can be found and expressed

as only one direction. The net pressure force on the faces in the x direction results in

dF = −

(
∂P

∂x

)
dydx î (4.2)

In the same fashion, the calculations of the three directions result in the total net pres-

sure force as ∑
surface

F = −

(
∂P

∂x
î+

∂P

∂y
ĵ+

∂P

∂y
k̂

)
(4.3)

The term in the parentheses in equation (4.3) referred to in the literature as the pressure

gradient (see for more explanation in the Mathematics Appendix). This mathematical opera-

tion has a geometrical interpretation. If the pressure, P, was a two–dimensional height (that is

only a function of x and y) then the gradient is the steepest ascent of the height (to the valley).

The second point is that the gradient is a vector (that is, it has a direction). Even though, the

pressure is treated, now, as a scalar function (there no reference to the shear stress in part of

the pressure) the gradient is a vector. For example, the dot product of the following is

î · gradP = î · ∇P =
∂P

∂x
(4.4)

In general, if the coordinates were to “rotate/transform” to a new system which has a

different orientation, the dot product results in

in · gradP = in · ∇P =
∂P

∂n
(4.5)

where in is the unit vector in the n direction and ∂/∂n is a derivative in that direction.

As before, the effective gravity force is utilized in case where the gravity is the only

body force and in an accelerated system. The body (element) is in rest and therefore the net

force is zero ∑
total

F =
∑
surface

F +
∑
body

F (4.6)

Hence, by utilizing the above derivations one can obtain

−gradPdxdydz+ ρg
eff
dxdydz = 0 (4.7)

or

gradP = ∇P = ρg
eff

Pressure Gradient

(4.8)

(4.9)
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Some refer to equation (4.8) as the Fluid Static Equation. This equation can be integrated

and therefore solved. However, there are several physical implications to this equation which

should be discussed and are presented here. First, a discussion on a simple condition and will

continue in more challenging situations.

4.3 Pressure and Density in a Gravitational Field
In this section, a discussion on the pressure and the density in various conditions is presented.

4.3.1 Constant Density in Gravitational Field

The simplest case is when the density, ρ,

pressure, P, and temperature, T (in a way

no function of the location) are constant.

Traditionally, the z coordinate is used as

the (negative) direction of the gravity
1
.

g
eff
= −g k̂ (4.10)

Constant
Pressure
Lines

Constant
Pressure
Lines

Constant
Pressure
Lines

Fig. 4.2 – Pressure lines in a static fluid with a con-
stant density.

Utilizing equation (4.10) and substituting it into equation (4.8) results into three simple

partial differential equations. These equations are

∂P

∂x
=
∂P

∂y
= 0 (4.11)

and

∂P

∂z
= −ρg

Pressure Change

(4.12)

Equations (4.11) can be integrated to yield

P(x,y) = constant (4.13)

and constant in equation (4.13) can be absorbed by the integration of equation (4.12) and there-

fore

P(x,y, z) = −ρg z+ constant (4.14)

1
This situation were the tradition is appropriated, it will be used. There are fields where x or y are designed to

the direction of the gravity and opposite direction. For this reason sometime there will be a deviation from the above

statement.
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The integration constant is determined from the initial conditions or another point. For ex-

ample, if at point z0 the pressure is P0 then the equation (4.14) becomes

P(z) − P0 = −ρg (z− z0) (4.15)

It is evident fromequation (4.14) that the pressure depends only on z and/or the constant

pressure lines are in the plane of x and y.

Figure 4.2 describes the constant pressure lines

in the container under the gravity body force.

The pressure lines are continuous even in area

where there is a discontinuous fluid. The

reason that a solid boundary doesn’t break

the continuity of the pressure lines is because

there is always a path to some of the planes.

It is convenient to reverse the direction of z to

get rid of the negative sign and to define h as

the dependent of the fluid that is h ≡ −(z−

z0) so equation (4.15) becomes

ρ g h

a

Fig. 4.3 – A schematic to explain themeasure
of the atmospheric pressure.

P(h) − P0 = ρgh

Pressure relationship

(4.16)

In the literature, the right hand side of the equation (4.16) is defined as piezometric

pressure.
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Example 4.1: Two Chambers Pressure Level: Basic
Two chambers tank depicted in Figure

4.4 are in equilibration. If the air mass

at chamber A is 1 Kg while the mass

at chamber B is unknown. The differ-

ence in the liquid heights between the

two chambers is 2[m]. The liquid in

the two chambers is water. The area of

each chamber is 1[m2]. Calculate the

air mass in chamber B. You can assume

ideal gas for the air and the water is in-

compressible substance with density of

1000[kg/m2]. The total height of the

tank is 4[m].

h1

h2
h3

Fig. 4.4 – The effective gravity is for accel-
erated cart.

Assume that the chamber are at the same temperature of 27◦C.

Solution
The equation of state for the chamber A is

mA =
R T

PA VA
(4.1.a)

The equation of state for the second chamber is

mB =
R T

PB VB
(4.1.b)

The water volume is

Vtotal = h1A+ (h1 + h2)A = (2h1 + h2)A (4.1.c)

The pressure difference between the liquid interface is estimated negligible the air density as

PA − PB = ∆P = h2 ρg (4.1.d)

combining equations (4.1.a), (4.1.b) results in

R T

mA VA
−

R T

mB VB
= h2 ρg =⇒


1−

1

mB
mA

VB
VA


 =

h2 ρgmA VA
R T

(4.1.e)

In equation the only unknown is the ratio ofmB/mA since everything else is known. Denot-

ing X = mB/mA results in

1

X
= 1−

h2 ρgmA VA
R T

=⇒ X =
1

1−
h2 ρgmA VA

R T

(4.1.f)
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The following question is a very nice qualitative question of understanding this concept.

Example 4.2: Two liquid Piezometric Level: Simple

A tank with opening at the top to the at-

mosphere contains two immiscible liq-

uids one heavy and one light as depicted

in Figure 4.5 (the light liquid is on the top

of the heavy liquid). Which piezometric

tubewill be higher? why? and howmuch

higher? What is the pressure at the bot-

tom of the tank?

hLhH

h1

h2

Fig. 4.5 – Tank and the effects different
liquids.

Solution
The common instinct is to find that the lower tube will contain the higher liquids. For the

case, the lighter liquid is on the top the heavier liquid the top tube is the same as the surface.

However, the lower tube will raise only to (notice that g is canceled)

hL =
ρ1 h1 + ρ2 h2

ρ2
(4.2.a)

Since ρ1 > ρ1 the mathematics dictate that the height of the second is lower. The difference

is

hH − hL
h2

=
hH
h2

−

(
ρ1 h1 + ρ2 h2
hr21 ρ2

)
(4.2.b)

It can be noticed that hH = h1 + h− 2 hence,

hH − hL
h2

=
h1 + h2
h2

−

(
ρ1 h1 + ρ2 h2

h2 ρ2

)
=
h1
h2

(
1−

ρ1
ρ2

)
(4.2.c)

or

hH − hL = h1

(
1−

ρ1
ρ2

)
(4.2.d)

The only way the hL to be higher of hH is if the heavy liquid is on the top if the stability allow

it. The pressure at the bottom is

P = Patmos + g (ρ1 h1 + ρ2 h2) (4.2.e)

Example 4.3: Water Care Level: Simple
The effect of the water in the car tank is more than the possibility that water freeze

in fuel lines. The water also can change measurement of fuel gage. The way the in-

terpretation of an automobile fuel gage is proportional to the pressure at the bottom

of the fuel tank. Part of the tank height is filled with the water at the bottom (due to

the larger density). Calculate the error for a give ratio between the fuel density to the

water.
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End of Ex. 4.3
Solution
The ratio of the fuel density to water density is σ = ρf/ρw and the ratio of the total height

to the water height is x = hw/htotal. Thus the pressure at the bottom when the tank is full

with only fuel

Pfull = ρf htotal g (4.3.a)

But when water is present the pressure will be the same at

Pfull = (ρw x +ϕρf)ghtotal (4.3.b)

and if the two are equal at

ρf���htotal �g = (ρw x +ϕρf)�g�
��htotal (4.3.c)

where ϕ in this case the ratio of the full height (on the fake) to the total height. Hence,

ϕ =
ρf − x ρw

ρf
(4.3.d)

4.3.2 Pressure Measurement
4.3.2.1 Measuring the Atmospheric Pressure

One of the application of this concept is the idea of measuring the atmospheric pressure.

Consider a situation described in Figure 4.3. The liquid is filling the tube and is brought into

a steady state. The pressure above the liquid on the right side is the vapor pressure. Using

liquid with a very low vapor pressure like mercury, will result in a device that can measure

the pressure without additional information (the temperature).

Example 4.4: Mercury Pressure Level: Basic
Calculate the atmospheric pressure at 20◦C. The high of the Mercury is 0.76 [m] and

the gravity acceleration is 9.82[m/sec]. Assume that the mercury vapor pressure is

0.000179264[kPa]. The description of the height is given in Figure 4.3. The mercury

density is 13545.85[kg/m3].

Solution
The pressure is uniform or constant plane perpendicular to the gravity. Hence, knowing any

point on this plane provides the pressure anywhere on the plane. The atmospheric pressure

at point a is the same as the pressure on the right hand side of the tube. Equation (4.16) can be

utilized and it can be noticed that pressure at point a is

Pa = ρgh+ Pvapor (4.17)

The density of the mercury is given along with the gravity and therefore,

Pa = 13545.85× 9.82× 0.76 ∼ 101095.39[Pa] ∼ 1.01[Bar]
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End of Ex. 4.4

The vapor pressure is about 1× 10−4 percent of the total results.

Themain reason themercury is used because of its large

density and the fact that it is in a liquid phase in most of

the measurement range. The third reason is the low va-

por (partial) pressure of the mercury. The partial pres-

sure of mercury is in the range of the 0.000001793[Bar]

which is insignificant compared to the total measure-

ment as can be observed from the above example.

Gas

valve

h

The pressure, P

1

2

Fig. 4.6 – Schematic of gas mea-
surement utilizing the “U”
tube.

Example 4.5: Liquid Interface Level: Intermediate
A liquid

2 a in amount Ha and a liquid b in amount Hb in to an U tube. The ratio of

the liquid densities is α = ρ1/ρ2. The width of the U tube is L. Locate the liquids

surfaces.

Solution
The question is to find the equilibrium point where two liquids balance each other. If thewidth

of the U tube is equal or larger than total length of the two liquids then the whole liquid will

be in bottom part. For smaller width, L, the ratio between two sides will be as

ρ1 h1 = ρ2 h2 → h2 = αh1

The mass conservation results in

Ha +Hb = L+ h1 + h2

Thus two equations and two unknowns provide the solution which is

h1 =
Ha +Hb − L

1+α

WhenHa > L and ρa (Ha − L) ⩾ ρb (or the opposite) the liquid a will be on the two sides of

the U tube. Thus, the balance is

h1 ρb + h2 ρa = h3 ρa

where h1 is the height of liquid b where h2 is the height of “extra” liquid a and same side as

liquid b and where h3 is the height of liquid b on the other side. When in this case h1 is equal

to Hb. The additional equation is the mass conservation as

Ha = h2 + L+ h3

The solution is

h2 =
(Ha − L) ρa −Hbρb

2 ρa
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4.3.2.2 Pressure Measurement

ρ1

A1 P1

ρ1

A1 P2
h1

h2A2

ρ2

ρ2

ρ2

ρ1

Fig. 4.7 – Schematic of sensitive measurement device.

The idea describes the atmospheric

measurement that can be extended

to measure the pressure of the gas

chambers. Consider a chamber filled

with gas needed to be measured (see

Figure 4.6). One technique is to at-

tached “U” tube to the chamber and

measure the pressure. This way, the

gas is prevented from escaping and

its pressure can be measured with

a minimal interference to the gas

(some gas enters to the tube).

The gas density is significantly lower than the liquid density and therefore can be ne-

glected. The pressure at point “1” is

P1 = Patmos + ρgh (4.18)

Since the atmospheric pressure was measured previously (the technique was shown in

the previous section) the pressure of the chamber can be measured.

4.3.2.3 Magnified Pressure Measurement

For situations where the pressure difference is very small, engineers invented more sensitive

measuring device. This device is build around the fact that the height is a function of the

densities difference. In the previous technique, the density of one side was neglected (the gas

side) compared to other side (liquid). This technique utilizes the opposite range. The densities

of the two sides are very close to each other, thus the height become large. Figure 4.7 shows

a typical and simple schematic of such an instrument. If the pressure differences between

P1 and P2 is small this instrument can “magnified” height, h1 and provide “better” accuracy

reading. This device is based on the following mathematical explanation.

In steady state, the pressure balance (only differences) is

P1 + gρ1(h1 + h2) = P2 + gh2 ρ2 (4.19)

It can be noticed that the “missing height” is canceled between the two sides. It can be noticed

that h1 can be positive or negative or zero and it depends on the ratio that two containers

filled with the light density liquid. Additionally, it can be observed that h1 is relatively small

becauseA1 >> A2. The densities of the liquid are chosen so that they are close to each other

but not equal. The densities of the liquids are chosen to bemuchheavier than themeasured gas

2
This example was requested by several students who found their instructor solution unsatisfactory.
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density. Thus, inwriting equation (4.19) the gas densitywas neglected. The pressure difference

can be expressed as

P1 − P2 = g [ρ2 h2 − ρ1(h1 + h2)] (4.20)

If the light liquid volume in the two containers is known, it provides the relationship between

h1 and h2. For example, if the volumes in two containers are equal then

−h1A1 = h2A2 −→ h1 = −
h2A2
A1

(4.21)

Liquid volumes do not necessarily have to be equal. Additional parameter, the volume ratio,

will be introduced when the volumes ratio isn’t equal. The calculations as results of this ad-

ditional parameter does not cause a significant complications. Here, this ratio equals to one

and it simplify the equation (4.21). But this ratio can be inserted easily into the derivations.

With the equation for height (4.21) equation (4.19) becomes

P1 − P2 = gh2

(
ρ2 − ρ1

(
1−

A2
A1

))
(4.22)

or the height is

h2 =
P1 − P2

g
[
(ρ2 − ρ1) + ρ1

A2
A1

] (4.23)

For the small value of the area ratio, A2/A1L1, then equation (4.23) becomes

h2 =
P1 − P2
g (ρ2 − ρ1)

(4.24)

Some refer to the density difference shown in equation (4.24) as “magnification factor” since

it replace the regular density, ρ2.

Inclined Manometer

P1P1P1 PoutsidePoutsidePoutside
dydydy

dℓdℓdℓ

θθθ

Fig. 4.8 – Inclined manometer.

One of the old methods of pressure

measurement is the inclined manometer. In

this method, the tube leg is inclined rela-

tively to gravity (depicted in Figure 4.8). This

method is an attempt to increase the accuracy

by “extending” length visible of the tube. The

equation (4.18) is then

P1 − Poutside = ρgdℓ (4.25)

If there is a insignificant change in volume (the area ratio between tube and inclined leg is

significant), a location can be calibrated on the inclined leg as zero
3
.

Inverted U-tube manometer
3
This author’s personal experience while working in a ship that use this manometer which is significantly inaccu-

rate (first thing to be replaced on the ship). Due to surface tension, caused air entrapment especially in rapid change

of the pressure or height.
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Z Z

h

b
a

1

2

Fig. 4.9 – Schematic of inverted manome-
ter.

The difference in the pressure of two different

liquids is measured by this manometer. This idea is

similar to “magnified”manometer but in reversed. The

pressure line are the same for both legs on line ZZ.

Thus, it can be written as the pressure on left is equal

to pressure on the right legs (see Figure 4.9).

right leg︷ ︸︸ ︷
P2 − ρ2 (b+ h) g =

left leg︷ ︸︸ ︷
P1 − ρ1 a− ρh) g (4.26)

Rearranging equation (4.26) leads to

P2 − P1 = ρ2 (b+ h)g− ρ1 ag− ρhg (4.27)

For the similar density of ρ1 = ρ2 and for a = b

equation (4.27) becomes

P2 − P1 = (ρ1 − ρ)gh (4.28)

As in the previous “magnified” manometer if the density difference is very small the height

become very sensitive to the change of pressure.

4.3.3 Varying Density in a Gravity Field
There are several cases that will be discussed here which are categorized as gases, liquids and

other. In the gas phase, the equation of state is simply the ideal gas model or the ideal gas with

the compressibility factor (sometime referred to as real gas). The equation of state for liquid

can be approximated or replaced by utilizing the bulk modulus. These relationships will be

used to find the functionality between pressure, density and location.

4.3.3.1 Gas Phase under Hydrostatic Pressure

Ideal Gas under Hydrostatic Pressure
The gas density vary gradually with the pressure. As first approximation, the ideal gas model

can be employed to describe the density. Thus equation (4.12) becomes

∂P

∂z
= −

gP

R T
(4.29)

Separating the variables and changing the partial derivatives to full derivative (just a notation

for this case) results in

dP

P
= −

gdz

R T
(4.30)
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Equation (4.30) can be integrated from point “0” to any point to yield

ln
P

P0
= −

g

R T
(z− z0) (4.31)

It is convenient to rearrange equation (4.31) to the following

P

P0
= e

−

(
g(z−zo)
RT

)

(4.32)

Here the pressure ratio is related to the height exponentially. Equation (4.32) can be expanded

to show the difference to standard assumption of constant pressure as

P

P0
= 1−

−
hρ0 g
P0︷ ︸︸ ︷

(z− z0)g

R T
+
(z− z0)

2 g

6R T
+ · · · (4.33)

Or in a simplified form where the transformation of h = (z− z0) to be

P

P0
= 1+

ρ0 g

P0


h−

correction factor︷ ︸︸ ︷
h2

6
+ · · ·


 (4.34)

Eq. (4.34) is useful in mathematical derivations but should be ignored for practical use
4
.

Real Gas Under Hydrostatic Pressure
The mathematical derivations for ideal gas can be reused as a foundation for the real

gas model (P = ZρRT ). For a large range of P/Pc and T/Tc, the value of the compressibility

factor, Z, can be assumed constant and therefore can be swallowed into equations (4.32) and

(4.33). The compressibility is defined in equation (2.39). The modified equation is

P

P0
= e

−

(
g (z−zo)
ZRT

)

(4.35)

Or in a series form which is

P

P0
= 1−

(z− z0)g

ZR T
+

(z− z0)
2 g

6ZR T
+ · · · (4.36)

Without going through the mathematics, the first approximation should be noticed that the

compressibility factor,Z enter the equation ash/Z and not justh. Another point that is worth

discussing is the relationship of Z to other gas properties. In general, the relationship is very

complicated and in some ranges Z cannot be assumed constant. In these cases, a numerical

integration must be carried out.

4
These derivations are left for a mathematical mind person. These deviations have a limited practical purpose.

However, they are presented here for students who need to answer questions on this issue.
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4.3.3.2 Liquid Phase Under Hydrostatic Pressure

The bulk modulus was defined in equation (1.31). The simplest approach is to assume that

the bulk modulus is constant (or has some representative average). For these cases, there are

two differential equations that needed to be solved. Fortunately, here, only one hydrostatic

equation depends on density equation. So, the differential equation for density should be

solved first. The governing differential density equation is

ρ = BT
∂ρ

∂P
(4.37)

The variables for equation (4.37) should be separated and then the integration can be carried

out as ∫P
P0

dP =

∫ρ
ρ0

BT
dρ

ρ
(4.38)

The integration of equation (4.38) yields

P− P0 = BT ln
ρ

ρ0
(4.39)

Equation (4.39) can be represented in a more convenient form as

ρ = ρ0e
P−P0
BT

Density variation

(4.40)

Equation (4.40) is the counterpart for the equation of state of ideal gas for the liquid phase.

Utilizing equation (4.40) in equation (4.12) transformed into

∂P

∂z
= −gρ0e

P−P0
BT (4.41)

Equation (4.41) can be integrated to yield

BT
gρ0
e
P−P0
BT = z+Constant (4.42)

It can be noted that BT has units of pressure and therefore the ratio in front of the exponent

in equation (4.42) has units of length. The integration constant, with units of length, can be

evaluated at any specific point. If at z = 0 the pressure is P0 and the density is ρ0 then the

constant is

Constant =
BT
gρ0

(4.43)
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P
−
P
0

B
T

g ρ0 z
BT

October 1, 2013

Fig. 4.10 – Hydrostatic pressure when there is com-
pressibility in the liquid phase.

This constant, BT/g ρ0, is a typical length

of the problem. Additional discussion will be

presented in the dimensionless issues chapter

(currently under construction). The solution

becomes

BT
gρ0

(
e
P−P0
BT − 1

)
= z (4.44)

Or in a dimensionless form

(
e
P−P0
BT − 1

)
=
z g ρ0
BT

Density in Liquids

(4.45)

The solution is presented in equation (4.44) and is plotted in Figure 4.10. The solution is a

reverse function (that is not P = f(z) but z = f (P)) it is a monotonous function which is easy

to solve for any numerical value (that is only one z corresponds to any Pressure). Sometimes,

the solution is presented as

P

P0
=
BT
P0

ln
(
gρ0z

BT
+ 1

)
+ 1 (4.46)

An approximation of equation (4.45) is presented for historical reasons and in order to

compare the constant density assumption. The exponent can be expanded as




piezometric pres-

sure︷ ︸︸ ︷
(P− P0) +

corrections︷ ︸︸ ︷
BT
2

(
P− P0
BT

)2
+
BT
6

(
P− P0
BT

)3
+ · · ·


 = z g ρ0 (4.47)

It can be noticed that equation (4.47) is reduced to the standard equationwhen the normalized

pressure ratio, P/BT is small (<< 1). Additionally, it can be observed that the correction is

on the left hand side and not as the “traditional” correction on the piezometric pressure side.

After the above approach was developed, new approached was developed to answer

questions raised by hydraulic engineers. In the new approach is summarized by the following

example.

Example 4.6: Deep Ocean Pressure Level: Intermediate
The hydrostatic pressure was neglected in example 1.12. In some places the ocean

depth is many kilometers (the deepest places is more than 10 kilometers). For this ex-

ample, calculate the density change in the bottomof 10 kilometers using twomethods.

In one method assume that the density is remain constant until the bottom. In the

second method assume that the density is a function of the pressure.
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continue Ex. 4.6
Solution
For the first method the density is

BT ∼=
∆P

∆V/V
=⇒ ∆V = V

∆P

BT
(4.6.a)

The density at the surface is ρ = m/V and the density at point x from the surface the density

is

ρ(x) =
m

V −∆V
=⇒ ρ(x) =

m

V − V
∆P

BT

(4.6.b)

In this Chapter it was shown (integration of equation (4.8)) that the change pressure for con-

stant gravity is

∆P = g

∫z
0
ρ(z)dz (4.6.c)

Combining equation (4.6.b) with equation (4.6.c) yields

ρ(z) =
m

V −
V g

BT

∫z
0
ρ(z)dz

(4.6.d)

Equation can be rearranged to be

ρ(z) =
m

V

(
1−

g

BT

∫z
0
ρ(z)dz

) =⇒ ρ(z) =
ρ0(

1−
g

BT

∫z
0
ρ(z)dz

)
(4.6.e)

Equation (4.6.e) is an integral equation which is discussed in the appendix
a
. It is convenient to

rearrange further equation (4.6.e) to

1−
g

BT

∫z
0
ρ(z)dz =

ρ0
ρ(z)

(4.6.f)

The integral equation (4.6.f) can be converted to a differential equation form when the two

sides are differentiated as

g

BT
ρ(z) +

ρ0
ρ(z)2

dρ(z)

dz
= 0 (4.6.g)

equation (4.6.g) is first order non–linear differential equation which can be transformed into

gρ(z)3

BT ρ0
+
dρ(z)

dz
= 0 (4.6.h)

The solution of equation (4.6.h) is

ρ0 BT
2 g ρ2

= z+ c (4.6.i)

or rearranged as

ρ =

√
ρ0 BT

2 g (z+ c)
(4.6.j)

The integration constant can be found by the fact that at z = 0 the density is ρ0 and hence

ρ0 =

√
ρ0 BT
2 g (c)

=⇒ c =
BT
2 g ρ0

(4.6.k)
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Substituting the integration constant and opening the parentheses, the solution is

ρ =

√√√√√
ρ0 BT

2 g z+��2 gBT

��2 g ρ0

(4.48)

Or

ρ =

√√√√√√√
�
��1
ρ0
ρ0
2 BT

�
��1
ρ0

(2 g ρ0 z+BT )

=⇒ ρ

ρ0
=

√
BT

(2 g ρ0 z+BT )
(4.6.l)

Equation (4.6.l) further be rearranged to a final form as

ρ

ρ0
=

√√√√√√
��>

1

BT

��BT

(
2 g ρ0 z

BT
+ 1

) =⇒ ρ

ρ0
=

√√√√√
1(

2 g ρ0 z

BT
+ 1

)
(4.6.m)

The parameter

2 g ρ0 z

BT
represents the dimensional length controlling the problem. For small

length the expression in (4.6.m) is similar to

f(x) =

√
1

x+ 1
= 1−

x

2
+
3 x2

8
−
5 x3

16
+ . . . (4.6.n)

hence it can be expressed as

ρ

ρ0
= 1−

2 g ρ0 z

2BT
+
3 g2 ρ0

2 z2

8BT
2

−
5 g3 ρ0

3 z3

16BT
3

+ . . . (4.6.o)

a
Under construction

Advance material can be skipped

Some of the material here seem to be plagiarized by Sandip Ghosal fromNorthwestern

University. He was approached and left now other alternative. No legal action will be taken

against him. His actions viewed as as complement that people plagiarizing the material from

this book.

Example 4.7: Sound Hydrostatic Pressure Level: Intermediate
Water in deep sea undergoes compression due to hydrostatic. pressure That is the

density is a function of the depth . For constant bulk modulus, it was shown in “Fun-

damentals of Compressible Flow” by this author that the speed of sound is given by

c =

√
BT
ρ

(4.7.a)

Calculate the time it take for a soundwave to propagate perpendicularly to the surface

to a depthD (perpendicular to the straight surface). Assume that no variation of the
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continue Ex. 4.7
temperature exist. For the purpose of this exercise, the salinity can be completely

ignored.

Solution
The equation for the sound speed is taken here as correct for very local point. However, the

density is different for every point since the density varies and the density is a function of the

depth. The speed of sound at any depth point, z, can be expressed utilizing equation (4.6.m) to

obtain

c =

√√√√BT
ρ0

√
2 g ρ0 z

BT
+ 1 (4.7.b)

The time the sound travel a small interval distance, dz is

dτ =
dz

c
=

dz√
BT
ρ0

√
2 g ρ0 z

BT
+ 1

(4.7.c)

The time takes for the sound the travel the whole distance is the integration of infinites-

imal time. The integration can be easily carried by changing to the dummy variable to

u = 2gρ0 z
BT

+ 1. Under this transform equation (4.7.c) changes to

dτ =

BT
2 gρ0

du

√
BT
ρ0

√
u

=

√
BT

2 g
√
ρ0

du

u1/4
(4.7.d)

Integrating equation (4.7.d) when noticing that the boundary conditions change to 1 and

2 g ρoD/BT + 1 results in

∫t
0
dτ =

∫ 2gρoD
BT

+1

1

√
BT

2 g
√
ρ0

du

u1/4
(4.7.e)

The integration results in

t =

√
BT

2 g
√
ρ0

4

3
u3/4

∣∣∣∣

2gρoD
BT

+1

1

(4.7.f)

Simplification of the equation (4.7.f) which can obtain the form of

t =
2
√
BT

3 g
√
ρ0

[(
2gρoD
BT

+ 1
)3/4

− 1

]
(4.7.g)

The time to travel according to the standard procedure is

t =
D√
BT
ρ0

=
D
√
ρ0√
BT (4.7.h)
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The ratio between the corrected estimated to the standard calculation is

correction ratio =

2
√
BT

3 g
√
ρ0

[(
2gρoD
BT

+ 1
)3/4

− 1

]

D
√
ρ0√
BT

= (4.7.i)

Or

correction ratio =
2BT

3 gDρ0

[(
2gρoD
BT

+ 1
)3/4

− 1

]
(4.7.j)

In Example 4.6 ratio of the density was expressed by equations (4.6.l) while here the

ratio is expressed by different equations. The difference between the two equations is the fact

that Example 4.6 use the integral equation without using any “equation of state.” The method

described in the Example 4.6 is more general which provided a simple solution
5
. The equation

of state suggests that ∂P = gρ0 f(P)dz while the integral equation is ∆P = g
∫
ρdz where

no assumption is made on the relationship between the pressure and density. However, the

integral equation uses the fact that the pressure is function of location.

4.3.4 The Pressure Effects Due To Temperature Variations
4.3.4.1 The Basic Analysis

There are situations when the main change of the density results from other effects. For ex-

ample, when the temperature field is not uniform, the density is affected and thus the pressure

is a location function (for example, the temperature in the atmosphere is assumed to be a lin-

ear with the height under certain conditions.). A bit more complicate case is when the gas is

a function of the pressure and another parameter. Air can be a function of the temperature

field and the pressure. For the atmosphere, it is commonly assumed that the temperature is a

linear function of the height.

Here, a simple case is examined for which the temperature is a linear function of the

height as

dT

dh
= −Cx (4.49)

where h here referred to height or distance. Hence, the temperature–distance function can

be written as

T = Constant−Cx h (4.50)

where theConstant is the integration constant which can be obtained by utilizing the initial

condition. For h = 0, the temperature is T0 and using it leads to

T = T0 −Cx h

Temp variations

(4.51)

5
This author is not aware of the “equation of state” solution or the integral solution. If you know of any of these

solutions or similar, please pass this information to this author.



4.3. PRESSURE AND DENSITY IN A GRAVITATIONAL FIELD 103

Combining equation (4.51) with (4.12) results in

∂P

∂h
= −

gP

R (T0 −Cx h)
(4.52)

Separating the variables in equation (4.52) and changing the formal ∂ to the informal d to

obtain

dP

P
= −

gdh

R (T0 −Cx h)
(4.53)

Defining a new variable
6
as ξ = (T0 − Cx h) for which ξ0 = T0 − Cx h0 and d/dξ =

−Cx d/dh. Using these definitions results in

dP

P
=

g

RCx

dξ

ξ
(4.54)

After the integration of Eq. (4.53) and reusing (the reverse definitions) the variables trans-

formed the result into

ln
P

P0
=

g

RCx
ln
T0 −Cx h

T0
(4.55)

Or in a more convenient form as

P

P0
=

(
T0 −Cx h

T0

)( g
RCx

)

Pressure in Atmosphere

(4.56)

It can be noticed that equation (4.56) is a monotonous function which decreases with height

because the term in the brackets is less than one. This situation is roughly representing the

pressure in the atmosphere and results in a temperature decrease. It can be observed that Cx
has a “double role” which can change the pressure ratio. Equation (4.56) can be approximated

by two approaches/ideas. The first approximation for a small distance, h, and the second ap-

proximation for a small temperature gradient. It can be recalled that the following expansions

are

P

P0
= lim
h−>0

(
1−

Cx

T0
h

) g
RCx

= 1−

ghρ0
P0︷︸︸︷
gh

T0 R
−

correction factor︷ ︸︸ ︷(
RgCx − g

2
)
h2

2 T0
2 R2

− · · · (4.57)

Equation (4.57) shows that the first two terms are the standard terms (negative sign is as ex-

pected i.e. negative direction). The correction factor occurs only at the third term which is

6
A colleague asked this author to insert this explanation for his students. If you feel that it is too simple, please,

just ignore it.
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important for larger heights. It is worth to point out that the above statement has a quali-

tative meaning when additional parameter is added. However, this kind of analysis will be

presented in the dimensional analysis chapter
7
.

The second approximation for small Cx is

P

P0
= lim
Cx−>0

(
1−

Cx

T0
h

) g
RCx

= e
−
gh

R T0 −
gh2 Cx

2 T0
2 R
e

−
gh
RT0 − · · · (4.58)

Equation (4.58) shows that the correction factor (lapse coefficient),Cx, influences at only large

values of height. It has to be noted that these equations (4.57) and (4.58) are not properly repre-

sentedwithout the characteristic height. It has to be inserted tomake the physical significance

clearer.

Equation (4.56) represents only the pressure ratio. For engineering purposes, it is some-

times important to obtain the density ratio. This relationship can be obtained fromcombining

equations (4.56) and (4.51). The simplest assumption to combine these equations is by assuming

the ideal gas model, equation (2.25), to yield

ρ

ρ0
=
P T0
P0 T

=

P
P0︷ ︸︸ ︷(

1−
Cx h

T0

)( g
RCx

)

T0
T︷ ︸︸ ︷(

1+
Cx h

T

)
(4.59)

Advance material can be skipped

4.3.4.2 The Stability Analysis

It is interesting to study whether this

solution (4.56) is stable and if so under

what conditions. Suppose that for some

reason, a small slab of material moves

from a layer at height, h, to layer at

height h + dh (see Fig. 4.11). What could

happen? There are two main possibil-

ities one: the slab could return to the

hhh

h+dhh+dhh+dh

Fig. 4.11 – Two adjoin layers for stability analysis.

original layer or two: stay at the new layer (or even move further, higher heights). The first

case is referred to as the stable condition and the second case referred to as the unstable

condition. The whole system falls apart and does not stay if the analysis predicts unstable

conditions. A weak wind or other disturbances can make the unstable system to move to a

new condition.

This question is determined by the net forces acting on the slab. Whether these forces

are toward the original layer or not. The two forces that act on the slab are the gravity force

and the surroundings pressure (buoyant forces). Clearly, the slab is in equilibriumwith its sur-

roundings before the movement (not necessarily stable). Under equilibrium, the body forces

7
These concepts are very essential in all the thermo–fluid science. The author is grateful to his adviser E.R.G.

Eckert who was the pioneer of the dimensional analysis in heat transfer and was kind to show me some of his ideas.
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that acting on the slab are equal to zero. That is, the surroundings “pressure” forces (buoy-

ancy forces) are equal to gravity forces. The buoyancy forces are proportional to the ratio of

the density of the slab to surrounding layer density. Thus, the stability question is whether

the slab density from layer h, ρ
′
(h) undergoing a free expansion is higher or lower than the

density of the layer h+dh. If ρ
′
(h) > ρ(h+dh) then the situation is stable. The term ρ

′
(h)

is slab from layer h that had undergone the free expansion.

The reason that the free expansion is chosen to explain the process that the slab under-

goes when it moves from layer h to layer h+ dh is because it is the simplest. In reality, the

free expansion is not far way from the actual process. The two processes that occurred here

are thermal and the change of pressure (at the speed of sound). The thermal process is in the

range of [cm/sec] while the speed of sound is about 300 [m/sec]. That is, the pressure process

is about thousands times faster than the thermal process. The second issue that occurs dur-

ing the “expansion” is the shock (in the reverse case [h+ dh] → h). However, this shock is

insignificant (check book on Fundamentals of Compressible Flow Mechanics by this author

on the French problem).

The slab density at layer h+ dh can be obtained using equation (4.59) as following

ρ(h+ dh)

ρ(h)
=
P T0
P0 T

=

(
1−

Cx dh

T0

)( g
RCx

)(
1+

Cx dh

T

)
(4.60)

The pressure and temperature change when the slab moves from layer at h to layer h+ dh.

The process, under the above discussion and simplifications, can be assumed to be adiabatic

(that is, no significant heat transfer occurs in the short period of time). The little slab under-

goes isentropic expansion as following for which (see equation (2.25))

ρ ′(h+ dh)

ρ(h)
=

(
P ′(h+ dh)

P(h)

)1/k
(4.61)

When the symbol
′
denotes the slab that moves from layer h to layer h+ dh. The pressure

ratio is given by equation (4.56) but can be approximated by equation (4.57) and thus

ρ ′(h+ dh)

ρ(h)
=

(
1−

gdh

T(h) R

)1/k
(4.62)

Again using the ideal gas model for equation (4.63) transformed into

ρ ′(h+ dh)

ρ(h)
=

(
1−

ρgdh

P

)1/k
(4.63)

Expanding equation (4.63) in Taylor series results in

(
1−

ρgdh

P

)1/k
= 1−

gρdh

P k
−

(
g2 ρ2 k− g2 ρ2

)
dh2

2 P2 k2
− ... (4.64)
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The density at layerh+dh can be obtained from (4.60) and then it is expanded in taylor

series as

ρ(h+ dh)

ρ(h)
=

(
1−

Cx dh

T0

)
(
g

RCx

)
(
1+

Cx dh

T

)
∼ 1−

(
gρ

P
−
Cx

T

)
dh+ · · · (4.65)

The comparison of the right hand terms of equations (4.65) and (4.64) provides the con-

ditions to determine the stability. From a mathematical point of view, to keep the inequality

for a small dh only the first term need to be compared as

gρ

P k
>
gρ

P
−
Cx

T
(4.66)

After rearrangement of the inequality (4.66) and using the ideal gas identity, it transformed to

Cx

T
>

(k− 1)gρ

kP

Cx <
k− 1

k

g

R
(4.67)

The analysis shows that the maximum amount depends on the gravity and gas proper-

ties. It should be noted that this value should be changed a bit since the k should be replaced

by polytrophic expansion n. When lapse rate Cx is equal to the right hand side of the in-

equality, it is said that situation is neutral. However, one has to bear in mind that this analysis

only provides a range and isn’t exact. Thus, around this value additional analysis is needed
8
.

One of the common question this author has been asked is about the forces of continu-

ation. What is the source of the force(s) that make this situation when unstable continue to be

unstable? Supposed that the situation became unstable and the layers have been exchanged,

would the situation become stable now? One has to remember that temperature gradient

forces continuous heat transfer which the source temperature change after the movement to

the new layer. Thus, the unstable situation is continuously unstable.

4.3.5 Gravity Variations Effects on Pressure and Density

rbrbrb ggg∝∝∝ r2r2r2

rrrPb,Pb,Pb, ρρρb

Fig. 4.12 – The varying gravity effects on
density and pressure.

Until now the study focus on the change of density and

pressure of the fluid. Equation (4.12) has two terms on

the right hand side, the density, ρ and the body force,

g. The body force was assumed until now to be con-

stant. This assumptionmust be deviated when the dis-

tance from the body source is significantly change. At

first glance, the body force is independent of the fluid.

The source of the gravity force in gas is another body,

while the gravity force source in liquid can be the liq-

uid itself. Thus, the discussion is separated into two

different issues. The issues of magnetohydrodynamics

are too advance for undergraduate student and there-

fore,will not be introduced here.

8
The same issue of the floating ice. See example for the floating ice in cup.
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4.3.5.1 Ideal Gas in Varying Gravity

In physics, it was explained that the gravity is a function of the distance from the center of

the plant/body. Assuming that the pressure is affected by this gravity/body force. The gravity

force is reversely proportional to r2. The gravity force can be assumed that for infinity, r→ ∞
the pressure is about zero. Again, equation (4.12) can be used (semi one directional situation)

when r is used as direction and thus

∂P

∂r
= −ρ

G

r2
(4.68)

whereG denotes the general gravity constant. The regular method of separation is employed

to obtain ∫P
Pb

dP

P
= −

G

RT

∫r
rb

dr

r2
(4.69)

where the subscript b denotes the conditions at the body surface. The integration of equation

(4.69) results in

ln
P

Pb
= −

G

RT

(
1

rb
−
1

r

)
(4.70)

Or in a simplified form as

ρ

ρb
=
P

Pb
= e

−
G
RT

(
r−rb
r rb

)

(4.71)

Equation (4.71) demonstrates that the pressure is reduced with the distance. It can be noticed

that for r→ rb the pressure is approaching P → Pb. This equation confirms that the density

in outer space is zero ρ(∞) = 0. As before, equation (4.71) can be expanded in Taylor series

as

ρ

ρb
=
P

Pb
=

standard︷ ︸︸ ︷
1−

G (r− rb)

R T
−

correction factor︷ ︸︸ ︷(
2GRT +G2 rb

)
(r− rb)

2

2 rb (R T)
2

+ · · · (4.72)

Notice thatG isn’t our beloved and familiar g and also thatGrb/RT is a dimensionless num-

ber (later in the Chapter (9) a discussion about the definition of the dimensionless number

and its meaning was added).

4.3.5.2 Real Gas in Varying Gravity

The regular assumption of constant compressibility,Z, is employed. It has to remember when

this assumption isn’t accurate enough, numerical integration is a possible solution. Thus,

equation (4.69) is transformed into∫P
Pb

dP

P
= −

G

ZRT

∫r
rb

dr

r2
(4.73)
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With the same process as before for ideal gas case, one can obtain

ρ

ρb
=
P

Pb
= e

−
G
ZRT

r−rb
r rb (4.74)

Equation (4.71) demonstrates that the pressure is reducedwith the distance. It can be observed

that for r→ rb the pressure is approaching P → Pb. This equation confirms that the density

in outer space is zero ρ(∞) = 0. As before Taylor series for equation (4.71) is

ρ

ρb
=
P

Pb
=

standard︷ ︸︸ ︷
1−

G (r− rb)

ZRT
−

correction factor︷ ︸︸ ︷(
2GZRT +G2 rb

)
(r− rb)

2

2 rb (ZRT)
2

+ · · · (4.75)

It can be noted that compressibility factor can act as increase or decrease of the ideal gas

model depending on whether it is above one or below one. This issue is related to Pushka

equation that will be discussed later.

4.3.5.3 Liquid Under Varying Gravity

For comparison reason consider the deepest location in the ocean which is about 11,000 [m].

If the liquid “equation of state” (4.40) is used with the hydrostatic fluid equation results in

∂P

∂r
= −ρ0e

P− P0
BT G

r2
(4.76)

which the solution of equation (4.76) is

e
P0−P
BT = Constant−

BT g ρ0
r

(4.77)

Since this author is not aware to which practical situation this solution should be applied, it

is left for the reader to apply according to problem, if applicable.

4.3.6 Liquid Phase
While for most practical purposes, the Cartesian coordinates provides sufficient treatment

to the problem, there are situations where the spherical coordinates must be considered and

used.

Derivations of the fluid static in spherical coordinates are

1

r2
d

dr

(
r2

ρ

dP

dr

)
+ 4 πGρ = 0

Pressure Spherical Coordinates

(4.78)

Or in a vector form as

∇•
(
1

ρ
∇P
)
+ 4 πGρ = 0 (4.79)
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4.4 Fluid in a Accelerated System
Up to this stage, body forces were considered as one-dimensional. In general, the linear ac-

celeration have three components as opposed to the previous case of only one. However, the

previous derivations can be easily extended. Equation (4.8) can be transformed into a different

coordinate systemwhere themain coordinate is in the direction of the effective gravity. Thus,

the previous method can be used and there is no need to solve new three (or two) different

equations. As before, the constant pressure plane is perpendicular to the direction of the ef-

fective gravity. Generally the acceleration is divided into two categories: linear and angular

and they will be discussed in this order.

4.4.1 Fluid in a Linearly Accelerated System

For example, in a two dimensional system, for the effective gravity

geff = a î+ g k̂ (4.80)

where the magnitude of the effective gravity is

|geff| =
√
g2 + a2 (4.81)

and the angle/direction can be obtained from

tanβ =
a

g
(4.82)

Perhaps the best way to explain the linear acceleration is by examples. Consider the

following example to illustrate the situation.

Example 4.8: Effective Gravity Level: Intermediate

A tank filled with liquid is accelerated at

a constant acceleration. When the accel-

eration is changing from the right to the

left, what happened to the liquid surface?

What is the relative angle of the liquid

surface for a container in an accelerated

system of a = 5[m/sec]?

geffgeffgeffggg

27.1◦27.1◦27.1◦

aaa 5
[ m

sec

]
5
[ m

sec

]
5
[ m

sec

]

Fig. 4.13 – The effective gravity is for ac-
celerated cart.

Solution
This question is one of the traditional question of the fluid static and is straight forward. The

solution is obtained by finding the effective angle body force. The effective angle is obtained by

adding vectors. The change of the acceleration from the right to left is like subtracting vector
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End of Ex. 4.8

(addition negative vector). This angle/direction can be found using the following

tan−1 β = tan−1 a

g
=

5

9.81
∼ 27.01◦

The magnitude of the effective acceleration is

|geff| =
√
52 + 9.812 = 11.015[m/sec2]

Example 4.9: Linear Acceleration Level: Intermediate

A cart partially filled with liquid and is sliding

on an inclined plane as shown in Figure 4.14.

Calculate the shape of the surface. If there is a

resistance, what will be the angle? What hap-

pen when the slope angle is straight (the cart is

dropping straight down)?

F(
a)

F(
a)

F(
a)

βββ

Fig. 4.14 – A cart slide on inclined
plane.

Solution

(a)
The angle can be found when the acceleration of the cart is found. If there is no resistance, the

acceleration in the cart direction is determined from

a = g sinβ (4.83)

The effective body force is acting perpendicular to the slope. Thus, the liquid surface is parallel

to the surface of the inclination surface.

(b)
In case of resistance force (either of friction due to the air or resistance in the wheels) reduces

the acceleration of the cart. In that case the effective body moves closer to the gravity forces.

The net body force depends on the mass of the liquid and the net acceleration is

a = g −
Fnet

m
(4.84)

The angle of the surface, α < β, is now

tanα =
g − Fnet

m

g cosβ
(4.85)
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End of Ex. 4.9

(c)
In the case when the angle of the in-

clination turned to be straight (di-

rect falling) the effective body force

is zero. The pressure is uniform in

the tank and no pressure difference

can be found. So, the pressure at any

point in the liquid is the same and

equal to the atmospheric pressure.

βββ

surfa
ce w

ith
 fr

ic
tio

n

aaa
βββ

ααα

geffgeffgeff

ggg

g sing sing sinβββ−Fnet

m
−Fnet

m
−Fnet

m

Fig. 4.15 – Forces diagram of cart sliding on in-
clined plane.

4.4.2 Angular Acceleration Systems: Constant Density

For simplification reasons, the first case deals with a rotation in a perpendicular to the gravity.

That effective body force can be written as

geff = −g k̂+ω2r r̂ (4.86)

ggg

center of

circulation unit

mass

geffgeffgeff

ωωω2rrrrrr
zzz

geffgeffgeff

geffgeffgeff

Fig. 4.16 – Schematic to explain the angular angle.

The lines of constant pressure are not

straight lines but lines of parabolic shape.

The angle of the line depends on the radius

as

dz

dr
= −

g

ω2 r
(4.87)

Equation (4.87) can be integrated as

z− z0 =
ω2 r2

2 g
(4.88)

Notice that the integration constant

was substituted by z0. The constant pressure

will be along

P− P0 = ρg

[
(z0 − z) +

ω2 r2

2 g

]
Angular Acceleration System

(4.89)

To illustrate this point, example 4.10 is provided.
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Example 4.10: Angular Velocity Level: simple

A “U” tube with a length of (1 +

x)L is rotating at angular veloc-

ity ofω. The center of rotation is

a distance, L from the “left” hand

side. Because the asymmetrical

nature of the problem there is dif-

ference in the heights in the U

tube arms of S as shown in Fig-

ure 4.17. Expresses the relation-

ship between the different param-

eters of the problem.

Rotation

center co
ns

ta
nt

 p
re

ss
ur

e 
lin

e

xLL

ω

S

dA

Calculation of 

the correction

factor

Fig. 4.17 – Schematic angular angle to explain ex-
ample 4.10.

Solution
It is first assumed that the height is uniform at the tube (see for the open question on this

assumption). The pressure at the interface at the two sides of the tube is same. Thus, equation

(4.88) represents the pressure line. Taking the “left” wing of U tube

change in z direction︷ ︸︸ ︷
zl − z0 =

change in r direction︷ ︸︸ ︷
ω2 L2

2 g

The same can be said for the other side

zr − z0 =
ω2 x2 L2

2 g

Thus subtracting the two equations above from each each other results in

zr − zl =
Lω2

(
1− x2

)

2 g

It can be noticed that this kind equipment can be used to find the gravity.

Example 4.11: Correction Angular Velocity Level: Intermediate
Assume that the diameter of the U tube is Rt. What will be the correction factor if

the curvature in the liquid in the tube is taken in to account. How would you suggest

to define the height in the tube?

Solution
In Figure 4.17 shows the infinitesimal area used in these calculations. The distance of the in-

finitesimal area from the rotation center is ?. The height of the infinitesimal area is ?. Notice

that the curvature in the two sides are different from each other. The volume above the lower

point is? Which is only a function of the geometry.
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Example 4.12: Large Angular Velocity Level: Intermediate
In the U tube in example 4.10 is rotating with upper part height of ℓ. At what rotating

velocity liquid start to exit theU tube? If the rotation of U tube is exactly at the center,

what happen the rotation approach very large value?

Solution

Advance material can be skipped

4.4.3 Fluid Statics in Geological System
This author would like to express his gratitude to Ralph Menikoff
for suggesting this topic.

In geological systems such as the Earth provide cases to be used for fluid static for estimating

pressure. It is common in geology to assume that the Earth is made of several layers. If

this assumption is accepted, these layers assumption will be used to do some estimates. The

assumption states that the Earth is made from the following layers: solid inner core, outer

core, and two layers in the liquid phase with a thin crust. For the purpose of this book, the

interest is the calculate the pressure at bottom of the liquid phase.

Fig. 4.18 – Earth layers not to scale.9

Earth layers not to scale. This explanation is provided to understand how to use the bulk

9
The image was drawn by Shoshana Bar-Meir, inspired from image made by user Surachit
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modulus and the effect of rotation. In reality, there might be an additional effects which af-

fecting the situation but these effects are not the concern of this discussion.

Two different extremes can recognized in fluids between the outer core to the crust. In

one extreme, the equator rotation plays the most significant role. In the other extreme, at the

north–south poles, the rotation effect is diminished since the radius of rotation is relatively

very small (see Figure 4.19). In that case, the pressure at the bottom of the liquid layer can be

estimated using the equation (4.45) or in approximation of equation (4.6.j). In this case it also

can be noticed that g is a function of r.

rnorth pole

requator

Fig. 4.19 – Illustration of the effects of the
different radii on pressure on the solid
core.

If the bulk modulus is assumed constant

(for simplicity), the governing equation can be

constructed starting with Eq. (1.31). The ap-

proximate definition of the bulk modulus is

BT =
ρ∆P

∆ρ
=⇒ ∆ρ =

ρ∆P

BT
(4.90)

Using equation to express the pressure differ-

ence (see Ex. 4.6 for details explanation) as

ρ(r) =
ρ0

1−

∫r
R0

g(r)ρ(r)

BT (r)
dr

(4.91)

In equation (4.91) it is assumed that BT
is a function of pressure and the pressure

is a function of the location. Thus, the bulk modulus can be written as a function of the

location radius, r. Again, for simplicity the bulk modulus is assumed to be constant. Hence,

ρ(r) =
ρ0

1−
1

BT

∫r
R0

g(r)ρ(r)dr

(4.92)

The governing equation (4.92) can be written using the famous relation for the gravity
10
as

ρ0
ρ(r)

= 1−
1

BT

∫r
R0

Grρ(r)dr (4.93)

Equation (4.93) is a relatively simple (Fredholm) integral equation. The solution of this equa-

tion obtained by differentiation as

ρ0
ρ2
dρ

dr
+Grρ = 0 (4.94)

10
The solution for the field with relation of 1/r2 was presented in the early version. This solution was replaced

with a function of gravity g ∝ r. The explanation of this change can be found at http://www.physicsforums.
com/showthread.php?t=203955.

http://www.physicsforums.com/showthread.php?t=203955
http://www.physicsforums.com/showthread.php?t=203955
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Under variables separation technique, the equation changes to∫ρ
ρ0

ρ0
ρ3
dρ = −

∫r
R0

Grdr (4.95)

The solution of equation (4.95) is

ρ0

�2

(
1

ρ02
−
1

ρ2

)
=
G

�2

(
R0
2 − r2

)
(4.96)

or

ρ =

√√√√√
1(

1

ρ02
−
G

ρ0

(
R0
2 − r2

)) =⇒ ρ

ρ0
=

√√√√√√

1(
1−

GR0
2

ρ0

(
1−

r2

R0
2

)) (4.97)

These equations, (4.96) and (4.97), referred to as the expanded Pushka equation.The pressure

can be calculated since the density is found and using equation (1.31) as

∆P =

∫r
R0

ρ(r)g(r)dr =

∫r
R0

ρ

g(r)︷ ︸︸ ︷
Grρ dr =

∫r
R0

ρ2Grdr (4.98)

or explicitly

∆P =

∫
r

R0

ρ0
2Grdr(

1

ρ02
−
2G

ρ0

(
1

R0
−
1

r

))
(4.99)

The integral can evaluated numerically or analytically as

∆P = ρ0
2G

(
4 ρ0

4G2 R0
3 log (r (R0 − 2 ρ0G) + 2 ρ0GR0)

R0
3 − 6 ρ0GR0

2 + 12 ρ02G2 R0 − 8 ρ03G3

r2
(
ρ0
2 R0

2 − 2 ρ0
3GR0

)
− 4 r ρ0

3GR0
2

2 R0
2 − 8 ρ0GR0 + 8 ρ02G2

)
(4.100)

The related issue to this topic is, the pressure at the equator when the rotation is taken

into account. The rotation affects the density since the pressure changes. Thus, mathematical

complications caused by the coupling creates additionally difficulty. The integral in equation

(4.93) has to include the rotation effects. It can be noticed that the rotation acts in the opposite

direction to the gravity. The pressure difference is

∆P =

∫r
R0

ρ
(
g(r) −ωr2

)
dr (4.101)
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Thus the approximated density ratio can be written as

ρ0
ρ

= 1−
1

BT

∫r
R0

ρ
(
ρG r−ωr2

)
dr (4.102)

Taking derivative of the two sides with respect to r results in

−
ρ0
ρ3
dρ

dr
= −

1

BT

(
ρG r−ωr2

)
(4.103)

Integrating Eq. (4.103)

ρ0
2 ρ2

=
1

BT

(
−G

r
−
ωr3

3

)
(4.104)

Where the pressure is obtained by integration as previously was done. The conclusion is

that the pressure at the “equator” is substantially lower than the pressure in the north or the

south “poles” of the solid core. The pressure difference is due to the large radius. In the range

between the two extreme, the effect of rotation is reduced because the radius is reduced. In

real liquid, the flow is much more complicated because it is not stationary but have cells

in which the liquid flows around. Nevertheless, this analysis gives some indication on the

pressure and density in the core.

End Advance material

4.5 Fluid Forces on Surfaces
The forces that fluids (at static conditions) extracts on surfaces are very important for engi-

neering purposes. This section deals with these calculations. These calculations are divided

into two categories, straight surfaces and curved surfaces.

4.5.1 Fluid Forces on Straight Surfaces

A motivation is needed before going through the routine of derivations. Initially, a simple

case will be examined. Later, how the calculations can be simplified will be shown.

Example 4.13: Rectangular Gate Pressure Level: Simple
Consider a rectangular shape gate as shown in Figure 4.20. Calculate the minimum

forces, F1 and F2 to maintain the gate in position. Assuming that the atmospheric

pressure can be ignored.

Solution
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End of Ex. 4.13

The forces can be calculated by looking at the

moment around point “O.” The element of mo-

ment is adξ for the width of the gate and is

dM =

dF︷ ︸︸ ︷
P adξ︸︷︷︸
dA

(ℓ+ ξ)

The pressure, P can be expressed as a function

ξ as the following

F2F2F2

A-A
A-A

"0"

F1F1F1 b[m]b[m]b[m]
ξξξ

ξξξ
a[m]a[m]a[m]

dddξξξ

ℓ =ℓ =ℓ = 5[m]5[m]5[m]

β =β =β = 50◦50◦50◦

hhh

Fig. 4.20 – Rectangular area under pres-
sure.

P = gρ (ℓ+ ξ)sinβ

The liquid total moment on the gate is

M =

∫b
0
gρ (ℓ+ ξ) sinβadξ(ℓ+ ξ)

The integral can be simplified as

M = gaρ sinβ
∫b
0
(ℓ+ ξ)2dξ

The solution of the above integral is

M = gρa sinβ
(
3 b l2 + 3 b2 l+ b3

3

)

This value provides the moment that F1 and F2 should extract. Additional equation is needed.

It is the total force, which is

Ftotal =

∫b
0
gρ (ℓ+ ξ) sinβadξ

The total force integration provides

Ftotal = gρa sinβ
∫b
0
(ℓ+ ξ)dξ = gρa sinβ

(
2 b ℓ+ b2

2

)

The forces on the gate have to provide

F1 + F2 = gρa sinβ
(
2 b ℓ+ b2

2

)

Additionally, the moment of forces around point “O” is

F1 ℓ+ F2(ℓ+ b) = gρa sinβ
(
3 b l2 + 3 b2 l+ b3

3

)

The solution of these equations is

F1 =
(3 ℓ+ b) abgρ sinβ

6

F2 =
(3 ℓ+ 2 b) abgρ sinβ

6
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The above calculations are time consuming

and engineers always try to make life simpler.

Looking at the above calculations, it can be ob-

served that there is a moment of area in equa-

tion above and also a center of area. These

concepts have been introduced in chapter 3.

Several represented areas for which moment

of inertia and center of area have been tabu-

lated in Chapter 3. These tabulated values can

be used to solve this kind of problems.

ξ
dξ

ξ

ξ
ℓ0

ℓ1

"O"

β

Fig. 4.21 – Schematic of submerged area to
explain the center forces and moments.

Symmetrical Shapes
Consider the two–dimensional symmetrical area that are under pressure as shown in

Figure 4.21. The symmetry is around any axes parallel to axis x. The total force and moment

that the liquid extracting on the area need to be calculated. First, the force is

F =

∫
A
PdA =

∫
(Patmos + ρgh)dA

= APatmos + ρg

∫ℓ1
ℓ0

h(ξ)︷ ︸︸ ︷
(ξ+ ℓ0) sinβdA (4.105)

In this case, the atmospheric pressure can include any additional liquid layer above layer

“touching” area. The “atmospheric” pressure can be set to zero.

The boundaries of the integral of equation (4.105) re-

fer to starting point and ending points not to the start area

and end area. The integral in equation (4.105) can be further

developed as

Ftotal = APatmos+

ρg sinβ


ℓ0A+

xcA︷ ︸︸ ︷∫ℓ1
ℓ0

ξdA


 (4.106)

In a final form as

bbb

βββ

yyy
"O"

F2F2F2

F1F1F1
ξ1ξ1ξ1

aaaξ0ξ0ξ0

Fig. 4.22 – The general forces
acting on submerged
area.

Ftotal = A [Patmos + ρg sinβ (ℓ0 + xc)]

Total Force in Inclined Surface

(4.107)

The moment of the liquid on the area around point “O” is

My =

∫ξ1
ξ0

P(ξ)ξdA (4.108)
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My =

∫ξ1
ξ0

(Patmos + gρ

ξ sinβ︷︸︸︷
h(ξ) )ξdA (4.109)

Or separating the parts as

My = Patmos

xcA︷ ︸︸ ︷∫ξ1
ξ0

ξdA+gρ sinβ

I
x
′
x
′︷ ︸︸ ︷∫ξ1

ξ0

ξ2dA (4.110)

The moment of inertia, I
x
′
x
′ , is about the axis through point “O” into the page. Equa-

tion (4.110) can be written in more compact form as

My = Patmos xcA+ gρ sinβI
x
′
x
′

Total Moment in Inclined Surface

(4.111)

Example 4.13 can be generalized to solve any two forces needed to balance the area/gate. Con-

sider the general symmetrical body shown in figure 4.22 which has two forces that balance the

body. Equations (4.107) and (4.111) can be combined the moment and force acting on the gen-

eral area. If the “atmospheric pressure” can be zero or include additional layer of liquid. The

forces balance reads

F1 + F2 = A [Patmos + ρg sinβ (ℓ0 + xc)] (4.112)

and moments balance reads

F1 a+ F2 b = Patmos xcA+ gρ sinβI
x
′
x
′ (4.113)

The solution of these equations is

F1 =

[(
ρ sinβ− Patmos

gb

)
xc + ℓ0 ρ sinβ+ Patmos

g

]
bA− I

x
′
x
′ ρ sinβ

g (b− a)
(4.114)

and

F2 =
I
x
′
x
′ ρ sinβ−

[(
ρ sinβ− Patmos

ga

)
xc + ℓ0 ρ sinβ+ Patmos

g

]
aA

g (b− a)
(4.115)

In the solution, the forces can be negative or positive, and the distance a or b can be

positive or negative. Additionally, the atmospheric pressure can contain either an additional

liquid layer above the “touching” area or even atmospheric pressure simply can be set up to

zero. In symmetrical area only two forces are required since the moment is one dimensional.

However, in non–symmetrical area there are two differentmoments and therefor three forces

are required. Thus, additional equation is required. This equation is for the additional mo-

ment around the x axis (see for explanation in Figure 4.23). The moment around the y axis is
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given by equation (4.111) and the total force is given by (4.107). The moment around the x axis

(which was arbitrary chosen) should be

Mx =

∫
A
yPdA (4.116)

Substituting the components for the pressure transforms equation (4.116) into

Mx =

∫
A
y (Patmos + ρg ξ sinβ)dA (4.117)

The integral in equation (4.116) can be written as

Mx = Patmos

Ayc︷ ︸︸ ︷∫
A
ydA+ρg sinβ

I
x
′
y
′︷ ︸︸ ︷∫

A
ξydA (4.118)

The compact form can be written as

Mx = PatmosAyc + ρg sinβ I
x
′
y

′

Moment in Inclined Surface

(4.119)

The product of inertia was presented in

Chapter 3. These equations (4.107), (4.111)

and (4.119) provide the base for solving any

problem for straight area under pressure

with uniform density. There are many

combinations of problems (e.g. two forces

and moment) but no general solution is

provided. Example to illustrate the use of

these equations is provided.

y

x

dA y

ξ

Fig. 4.23 – The general forces acting on non sym-
metrical straight area.

Example 4.14: Non Symmetrical Triangle Level: Intermediate
Calculate the forces which required to balance the triangular shape shown in the

Figure 4.24.

Solution
The three equations that needs to be solved are

F1 + F2 + F3 = Ftotal (4.120)
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continue Ex. 4.14
The moment around x axis is

F1 b =My (4.121)

The moment around y axis is

F1 ℓ1 + F2 (a+ ℓ0) + F3 ℓ0 =Mx (4.122)

The right hand side of these equations are given before in equations (4.107), (4.111) and (4.119).

The moment of inertia of the triangle around x is made of two triangles (as shown in the

Figure (4.24) for triangle 1 and 2). Triangle 1 can be calculated as the moment of inertia around

its center which is ℓ0 + 2 ∗ (ℓ1 − ℓ0)/3. The height of triangle 1 is (ℓ1 − ℓ0) and its width b

and thus, moment of inertia about its center is Ixx = b(ℓ1 − ℓ0)
3/36. The moment of inertia

for triangle 1 about y is

Ixx1 =
b(ℓ1−ℓ0)

3

36 +

A1︷ ︸︸ ︷
b(ℓ1−ℓ0)

3

∆x1
2︷ ︸︸ ︷(

ℓ0 +
2(ℓ1−ℓ0)

3

)2

The height of the triangle 2 is a− (ℓ1 − ℓ0) and its width b and thus, the moment of inertia

about its center is

Ixx2 =
b[a−(ℓ1−ℓ0)]

3

36 +

A2︷ ︸︸ ︷
b[a−(ℓ1−ℓ0)]

3

∆x2
2︷ ︸︸ ︷(

ℓ1 +
[a−(ℓ1−ℓ0)]

3

)2

aaa

ℓ1ℓ1ℓ1
yyy

F2F2F2

F1F1F1

F3F3F3

ℓ0ℓ0ℓ0bbb

xxx

1

2

Fig. 4.24 – The general forces acting on a non
symmetrical straight area.

and the total moment of inertia

Ixx = Ixx1 + Ixx2

The product of inertia of the triangle can be

obtain by integration. It can be noticed that

upper line of the triangle is y =
(ℓ1−ℓ0)x

b +

ℓ0. The lower line of the triangle is y =
(ℓ1−ℓ0−a)x

b + ℓ0 + a.

Ixy =

∫b
0



∫ (ℓ1−ℓ0−a)x

b +ℓ0+a

(ℓ1−ℓ0)x
b +ℓ0

xydx


dy = 2ab2 ℓ1+2ab

2 ℓ0+a
2 b2

24

The solution of this set equations is

F1 =

A︷ ︸︸ ︷[
ab

3

]
(g (6 ℓ1 + 3 a) + 6 g ℓ0) ρ sinβ+ 8 Patmos

24
,

F2[
ab
3

] = −

(
(3ℓ1−14a)−ℓ0

(
12ℓ1
a −27

)
+
12ℓ0

2

a

)
gρ sinβ

72 −

((
24ℓ1
a −24

)
+
48ℓ0
a

)
Patmos

72 ,
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F3[
ab
3

] =

((
a−
15ℓ1
a

)
+ℓ0

(
27−

12ℓ1
a

)
+
12ℓ0

2

a

)
gρ sinβ

72

+

((
24ℓ1
a +24

)
+
48ℓ0
a

)
Patmos

72

4.5.1.1 Pressure Center

In the literature, pressure centers are commonly defined. These definitions are mathematical

in nature and has physical meaning of equivalent force that will act through this center. The

definition is derived or obtained from Eq. (4.111) and Eq. (4.119). The pressure center is the dis-

tance that will create the moment with the hydrostatic force on point “O.” Thus, the pressure

center in the x direction is

xp =
1

F

∫
A
x P dA (4.123)

In the same way, the pressure center in the y direction is defined as

yp =
1

F

∫
A
yP dA (4.124)

To show relationship between the pressure center and the other properties, it can be found

by setting the atmospheric pressure and ℓ0 to zero as following

xp =
gρ sinβ I

x
′
x
′

Aρg sinβxc
(4.125)

Expanding I
x
′
x
′ according to equation (3.34) results in

xp =
Ixx

xcA
+ xc (4.126)

and in the same fashion in y direction

yp =
Ixy

ycA
+ yc (4.127)

It has to emphasis that these definitions are useful only for case where the atmospheric pres-

sure can be neglected or canceled and where ℓ0 is zero. Thus, these limitations diminish the

usefulness of pressure center definitions. In fact, the reader can find that direct calculations

can sometimes simplify the problem.

4.5.1.2 Multiply Layers

In the previous sections, the density was assumed to be constant. For non constant density

the derivations aren’t “clean” but are similar. Consider straight/flat body that is under liquid
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with a varying density
11
. If density can be represented by average density, the force that is

acting on the body is

Ftotal =

∫
A
gρhdA ∼ ρ̄

∫
A
ghdA (4.128)

In cases where average density cannot be represented reasonably
12
, the integral has be carried

out. In cases where density is non–continuous, but constant in segments, the following can

be said

Ftotal =

∫
A
gρhdA =

∫
A1

gρ1 hdA+

∫
A2

gρ2 hdA+ · · ·+
∫
An

gρn hdA (4.129)

As before for single density, the following can be written

Ftotal = g sinβ


ρ1

xc1A1︷ ︸︸ ︷∫
A1

ξdA+ρ2

xc2A2︷ ︸︸ ︷∫
A2

ξdA+ · · ·+ ρn

xcnAn︷ ︸︸ ︷∫
An

ξdA


 (4.130)

Or in a compact form and in addition considering the “atmospheric” pressure can be written

as

Ftotal = PatmosAtotal + g sinβ
n∑
i=1

ρi xciAi

Total Static Force

(4.131)

where the density, ρi is the density of the layer i and Ai and xci are geometrical properties

of the area which is in contact with that layer. The atmospheric pressure can be entered into

the calculation in the same way as before. Moreover, the atmospheric pressure can include

all the layer(s) that do(es) not with the “contact” area.

The moment around axis y,My under the same considerations as before is

My =

∫
A
gρ ξ2 sinβdA (4.132)

After similar separation of the total integral, one can find that

My = g sinβ
n∑
i=1

ρi Ix ′
x
′
i

(4.133)

If the atmospheric pressure enters into the calculations one can find that

My = Patmos xcAtotal + g sinβ
n∑
i=1

ρi Ix ′
x
′
i

Total Static Moment

(4.134)

11
This statement also means that density is a monotonous function. Why? Because of the buoyancy issue. It also

means that the density can be a non-continuous function.

12
A qualitative discussion on what is reasonably is not presented here, however, if the variation of the density is

within 10% and/or the accuracy of the calculation is minimal, the reasonable average can be used.
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In the same fashion one can obtain the moment for x axis as

Mx = Patmos ycAtotal + g sinβ
n∑
i=1

ρi Ix ′
y

′
i

Total Static Moment

(4.135)

To illustrate how to work with these equations the following example is provided.

Example 4.15: Multilayer Pressure Level: Simple
Consider the hypothetical Figure 4.25. The last layer is made of water with density of

1000[kg/m3]. The densities are ρ1 = 500[kg/m3], ρ2 =

800[kg/m3], ρ3 = 850[kg/m3],

and ρ4 = 1000[kg/m3]. Calcu-

late the forces at pointsa1 andb1.

Assume that the layers are stables

without any movement between

the liquids. Also neglect all mass

transfer phenomena that may oc-

cur. The heights are: h1 = 1[m],

h2 = 2[m], h3 = 3[m], and

h4 = 4[m]. The forces distances

are a1 = 1.5[m], a2 = 1.75[m],

and b1 = 4.5[m]. The angle of in-

clination is is β = 45◦.

ρ1

"O"

β

F1

F2

a1

b1

y

ρ2

ρ3

ρ4

h4

ρ4

h3 h2

h1

ℓ

b2

a2

Fig. 4.25 – The effects of multi layers density on
static forces.

Solution
Since there are only two unknowns, only two equations are needed, which are (4.134) and (4.131).

The solutionmethod of this example is applied for cases with less layers (for example by setting

the specific height difference to be zero). Equation (4.134) can be used by modifying it, as it

can be noticed that instead of using the regular atmospheric pressure the new “atmospheric”

pressure can be used as

Patmos
′
= Patmos + ρ1 gh1

The distance for the center for each area is at the middle of each of the “small” rectangular.

The geometries of each areas are

xc1 =
a2+

h2

sinβ
2 A1 = ℓ

(
h2

sinβ − a2

)
Ix′
x

′
1
=
ℓ
(
h2

sinβ−a2

)3

36 + (xc1)
2 A1

xc2 = h2+h3

2 sinβ A2 = ℓ
sinβ (h3 − h2) Ix′

x
′
2
=
ℓ(h3−h2)

3

36 sinβ + (xc2)
2 A2

xc3 = h3+h4

2 sinβ A3 = ℓ
sinβ (h4 − h3) Ix′

x
′
3
=
ℓ(h4−h3)

3

36 sinβ + (xc3)
2 A3

After inserting the values, the following equations are obtained
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Thus, the first equation is

F1 + F2 = Patmos
′
Atotal︷ ︸︸ ︷

ℓ(b2 − a2)+g sinβ
3∑
i=1

ρi+1 xciAi

The second equation is (4.134) to be written for the moment around the point “O” as

F1 a1 + F2 b1 = Patmos
′

xcAtotal︷ ︸︸ ︷
(b2 + a2)

2
ℓ(b2 − a2)+g sinβ

3∑
i=1

ρi+1 Ix′
x

′
i

The solution for the above equations is

F1 =

2b1 g sinβ
∑3

i=1 ρi+1 xciAi−2g sinβ
∑3

i=1 ρi+1 Ix′
x
′
i

2b1−2a1
−

(b2
2−2b1 b2+2a2 b1−a2

2)ℓPatmos

2b1−2a1

F2 =

2g sinβ
∑3

i=1 ρi+1 Ix′
x
′
i
−2a1 g sinβ

∑3
i=1 ρi+1 xciAi

2b1−2a1
+

(b2
2+2a1 b2+a2

2−2a1 a2)ℓPatmos

2b1−2a1

The solution provided isn’t in the complete long form since it will makes things messy. It is

simpler to compute the terms separately. A mini source code for the calculations is provided

in the text source. The intermediate results in SI units ([m], [m2], [m4]) are:

xc1 = 2.2892 xc2 = 3.5355 xc3 = 4.9497

A1 = 2.696 A2 = 3.535 A3 = 3.535

Ix′x′1 = 14.215 Ix′x′2 = 44.292 Ix′x′3 = 86.718

The final answer is

F1 = 304809.79[N]

and

F2 = 958923.92[N]

4.5.2 Forces on Curved Surfaces

dAdAx
dAy

dAz

z

y

x

Fig. 4.26 – The forces on curved area.

The pressure is acting on surfaces perpendi-

cular to the direction of the surface (no shear

forces assumption). At this stage, the pressure

is treated as a scalar function. The element

force is

dF = −P n̂dA (4.136)
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Here, the conventional notation is used

which is to denote the area, dA, outward as

positive. The total force on the area will be the integral of the unit force

F = −

∫
A
P n̂dA (4.137)

The result of the integral is a vector. So, if the y component of the force is needed, only a dot

product is needed as

dFy = dF • ĵ (4.138)

From this analysis (equation (4.138)) it can be observed that the force in the direction of y, for

example, is simply the integral of the area perpendicular to y as

Fy =

∫
A
P dAy (4.139)

The same can be said for the x direction.

The force in the z direction is

Fz =

∫
A
hgρdAz (4.140)

only the 

liquid above

the body

affecting

the body

Fig. 4.27 – Schematic of Net Force on floating body.

The force which acting on the z di-

rection is the weight of the liquid above the

projected area plus the atmospheric pressure.

This force component can be combined with

the other components in the other directions

to be

Ftotal =

√
Fz
2 + Fx

2 + Fy
2

(4.141)

And the angle in “x z” plane is

tan θxz =
Fz

Fx
(4.142)

and the angle in the other plane, “y z” is

tan θzy =
Fz

Fy
(4.143)

The moment due to the curved surface require integration to obtain the value. There are no

readily made expressions for these 3–dimensional geometries. However, for some geometries

there are readily calculated center of mass and when combined with two other components

provide the moment (force with direction line).
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Cut–Out Shapes Effects
There are bodies with a shape that the vertical direction (z direction) is “cut–out” aren’t

continuous. Equation (4.140) implicitly means that the net force on the body is z direction is

only the actual liquid above it. For example, Figure 4.27 shows a floating body with cut–out

slot into it. The atmospheric pressure acts on the area with continuous lines. Inside the slot,

the atmospheric pressurewith it piezometric pressure is canceled by the upper part of the slot.

Thus, only the net force is the actual liquid in the slot which is acting on the body. Additional

point that is worth mentioning is that the depth where the cut–out occur is insignificant

(neglecting the change in the density).

Example 4.16: Force Dam Level: Intermediate
Calculate the force and the moment

around point “O” that is acting on the

dam (see Figure (4.28)). The dam is made

of an arc with the angle of θ0 = 45◦

and radius of r = 2[m]. You can as-

sume that the liquid density is constant

and equal to 1000 [kg/m3]. The grav-

ity is 9.8[m/sec2] and width of the dam

is b = 4[m]. Compare the different

methods of computations, direct and in-

direct.

4[m]

θ0

x direction

δθ
θ

Y

θ

Ax
θ

Ay

A

Fig. 4.28 – Calculations of forces on a cir-
cular shape dam.

Solution
The force in the x direction is

Fx =

∫
A
P

dAx︷ ︸︸ ︷
r cos θdθ

Note that the direction of the area is taken into account (sign). The differential area that will be

used is, b rdθ where b is the width of the dam (into the page). The pressure is only a function

of θ and it is

P = Patmos + ρg r sin θ

The force that is acting on the x direction of the dam is Ax × P. When the area Ax is

b rdθ cos θ. The atmospheric pressure does cancel itself (at least if the atmospheric pressure

on both sides of the dam is the same.). The net force will be

Fx =

∫θ0

0

P︷ ︸︸ ︷
ρg r sin θ

dAx︷ ︸︸ ︷
b r cos θdθ

The integration results in

r

A△ = r2 sin θ cos θ

Aarc =
θ r2

2

Fig. 4.29 – Area above the dam arc subtract
triangle.

Fx =
ρgb r2

2

(
1− cos2 (θ0)

)
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Alternative way to do this calculation is by calcu-

lating the pressure at mid point and then multiply

it by the projected area, Ax (see Figure 4.29) as

Fx = ρg

Ax︷ ︸︸ ︷
b r sin θ0

xc︷ ︸︸ ︷
r sin θ0
2

=
ρgb r

2
sin2 θ

Notice that dAx(cos θ) and Ax (sin θ) are differ-
ent, why?

The values to evaluate the last equation are provided in the question and simplify sub-

sidize into it as

Fx =
1000× 9.8× 4× 2

2
sin(45◦) = 19600.0[N]

Since the last two equations are identical (use the sinuous theorem to prove it sin2 θ+
cos2 = 1), clearly the discussion earlier was right (not a good proof LOL13). The force in the y

direction is the area times width.

Fy = −

V︷ ︸︸ ︷


A︷ ︸︸ ︷
θ0 r

2

2
−
r2 sin θ0 cos θ0

2


 b gρ ∼ 22375.216[N]

The center area ( purple area in Figure 4.29) should be cal-

culated as

yc =
ycAarc − ycAtriangle

A

The center area above the dam requires to know the center

area of the arc and triangle shapes. Some mathematics are

required because the shift in the arc orientation. The arc

center (see Figure 4.30) is at

ycarc =
4 r sin2

(
θ
2

)

3 θ

All the other geometrical values are obtained from Tables

3.1 and ??. and substituting the proper values results in

θ

4 r sin
(
θ
2

)

3 θ

4 r sin
(
θ
2

)
cos

(
θ
2

)

3 θ

Fig. 4.30 – Area above the
dam arc calculation for
the center.

ycr =

Aarc︷︸︸︷
θr2

2

yc︷ ︸︸ ︷
4 r sin

(
θ
2

)
cos

(
θ
2

)

3 θ
−

yc︷ ︸︸ ︷
2 r cos θ

3

Atriangle︷ ︸︸ ︷
sin θ r2

2
θ r2

2︸︷︷︸
Aarc

−
r2 sin θ cos θ

2︸ ︷︷ ︸
Atriangle
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continue Ex. 4.16
This value is the reverse value and it is

ycr = 1.65174[m]

The result of the arc center from point “O” (above calculation area) is

yc = r− ycr = 2− 1.65174 ∼ 0.348[m]

The moment is

Mv = yc Fy ∼ 0.348× 22375.2 ∼ 7792.31759[N×m]

The center pressure for x area is

xp = xc +
Ixx

xcA
=
r cosθ0
2

+

Ixx︷ ︸︸ ︷
�b (r cos θ0)

3

36
r cosθ0
2︸ ︷︷ ︸
xc

�b (r cos θ0)
=
5 r cos θ0

9

The moment due to hydrostatic pressure is

Mh = xp Fx =
5 r cosθ0

9
Fx ∼ 15399.21[N×m]

The total moment is the combination of the two and it is

Mtotal = 23191.5[N×m]

O

θ θ/2

θ/2

ℓ = 2 r sin


θ

2




dF θ/2

(
π − θ

2

)

(
π

2

)

Fig. 4.31 – Moment on arc element around
Point “O.”

For direct integration of the moment it is

done as following

dF = P dA =

∫θ0

0
ρg sin θb r dθ

and element moment is

dM = dF× ℓ = dF

ℓ︷ ︸︸ ︷
2 r sin

(
θ

2

)
cos

(
θ

2

)

and the total moment is

M =

∫θ0

0
dM

or

M =

∫θ0

0
ρg sin θb r 2 r sin

(
θ

2

)
cos

(
θ

2

)
dθ

The solution of the last equation is

M =
g r ρ (2 θ0 − sin (2 θ0))

4
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The vertical force can be obtained by

Fv =

∫θ0

0
P dAv

or

Fv =

∫θ0

0

P︷ ︸︸ ︷
ρg r sin θ

dAv︷ ︸︸ ︷
r dθ cos θ

Fv =
g r2 ρ

2

(
1− cos (θ0)

2
)

Here, the traditional approach was presented first, and the direct approach second. It is

much simpler now to use the second method. In fact, there are many programs or hand held

devices that can carry numerical integration by inserting the function and the boundaries.

To demonstrate this point further, consider a more general case of a polynomial func-

tion. The reason that a polynomial function was chosen is that almost all the continuous

functions can be represented by a Taylor series, and thus, this example provides for practical

purposes of the general solution for curved surfaces.

Example 4.17: Polynomial Shape Pressure Level: Intermediate

For the liquid shown in Figure 4.32

,calculate the moment around point

“O” and the force created by the liq-

uid per unit depth. The function of

the dam shape is y =
∑n
i=1 ai x

i

and it is a monotonous function (this

restriction can be relaxed somewhat).

Also calculate the horizontal and ver-

tical forces.

y

x

y =
n∑

i=1
aix

i

o

b

dy

dx

dA

Fig. 4.32 – Polynomial shape dam description
for the moment around point “O” and
force calculations.

Solution
The calculations are done per unit depth (into the page) and do not require the actual depth of

the dam.

13
Well, it is just a demonstration!
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The element force (see Figure 4.32) in this case is

dF =

P︷ ︸︸ ︷
h︷ ︸︸ ︷

(b− y) gρ

dA︷ ︸︸ ︷√
dx2 + dy2

The size of the differential area is the square root of the dx2

and dy2 (see Figure 4.32). It can be noticed that the differential

area that is used here should be multiplied by the depth. From

mathematics, it can be shown that

√
dx2 + dy2 = dx

√
1+

(
dy

dx

)2

The right side can be evaluated for any given function. For

example, in this case describing the dam function is

O

y

x

b

dy

dx

θ

x

y

dF

ℓ

Fig. 4.33 – The difference
between the slop and
the direction angle.

√
1+

(
dy

dx

)2
=

√√√√1+
(
n∑
i=1

i a (i) x (i)i−1

)2

The value of xb is where y = b and can be obtained by finding the first and positive root of

the equation of

0 =

n∑
i=1

ai x
i − b

To evaluate the moment, expression of the distance and angle to point “O” are needed (see

Figure 4.33). The distance between the point on the dam at x to the point “O” is

ℓ(x) =
√

(b− y)2 + (xb − x)2

The angle between the force and the distance to point “O” is

θ(x) = tan−1

(
dy

dx

)
− tan−1

(
b− y

xb − x

)

The element moment in this case is

dM = ℓ(x)

dF︷ ︸︸ ︷
(b− y)gρ

√
1+

(
dy

dx

)2
cos θ(x)dx

To make this example less abstract, consider the specific case of y = 2 x6. In this case, only

one term is provided and xb can be calculated as following

xb =
6

√
b

2
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Notice that
6

√
b
2 is measured in meters. The number “2” is a dimensional number with units

of [1/m5]. The derivative at x is

dy

dx
= 12 x5

and the derivative is dimensionless (a dimensionless number). The distance is

ℓ =

√√√√(b− 2 x6
)2

+

(
6

√
b

2
− x

)2

The angle can be expressed as

θ = tan−1
(
12 x5

)
− tan−1


 b− 2 x

6

6

√
b
2 − x




The total moment is

M =

∫ 6√
b

0
ℓ(x) cos θ(x)

(
b− 2 x6

)
gρ
√
1+ 12 x5 dx

This integral doesn’t have a analytical solution. However, for a given value b this integral can

be evaluate. The horizontal force is

Fh = bρg
b

2
=
ρgb2

2

The vertical force per unit depth is the volume above the dam as

Fv =

∫ 6√
b

0

(
b− 2 x6

)
ρgdx = ρg

5b
7
6

7

In going over these calculations, the calculations of the center of the area were not carried out.

This omission saves considerable time. In fact, trying to find the center of the area will double

the work. This author find this method to be simpler for complicated geometries while the

indirect method has advantage for very simple geometries.
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4.6 Buoyancy and Stability

One of the oldest known scientific research

on fluid mechanics relates to buoyancy due to

question ofmoneywas carried by Archimedes.

Archimedes principle
14
is related to question of

density and volume. While Archimedes did

not knowmuch about integrals, yet hewas able

to capture the essence. Here, because this ma-

terial is presented in a different era, more ad-

vance mathematics will be used. While the

aaa

bbb

r0r0r0
h0h0h0

Fig. 4.34 – Schematic of Immersed Cylinder.

question of the stability was not scientifically examined in the past, the floating vessels struc-

ture (more than 300 years ago) show some understanding.

The total net forces the liquid and gravity exact on a body are considered as a buoyancy

issue while the moment these force considered as a stability issue. The buoyancy issue was

solved by Archimedes and for all practical purposes topic should be considered really solved

issue. Furthermore, as a derivative, the stability in the perpendicular direction liquid surface is

a solved problem did not give to any real question (like oscillating of body is solved problem).

While there are recent papers which deal the issue but they do solve any issue in this respect.

However, the rotation stability is issue that continue to be evolved even after this work. There

three approaches that deal with issue which are in historical order are Metacenter, potential,

and moment examination
15
.

To understand this issue, consider a cuboid and a cylindrical bodies that is im-

mersed in liquid and center in a depth of, h0 as shown (only for the cuboid shape)

in Fig. 4.35. The force to hold the cylinder at the place must be made of integration

of the pressure around the surface of the cuboidal and cylinder bodies. The forces on

cuboid geometry body are made only of vertical forces because the two sides cancel each

other. However, on the vertical direction, the pressure on the two surfaces are different.

On the upper surface the pressure is ρg (h0−a/2).

On the lower surface the pressure is ρg (h0+a/2).

The force due to the liquid pressure per unit depth

(into the page) is

F = ρg ((h0 − a/2) − (h0 + a/2)) ℓ b =

− ρgab ℓ = −ρgV (4.144)

In this case the ℓ represents a depth (into the page).

Rearranging equation (4.144) to be

h0h0h0

bbb

aaa
`̀̀

Fig. 4.35 – The forces on immersed
cuboid from the top and bottom.

14
This topic was the author’s high school class name (ship stability). It was taught by people like these, 300 years

ago and more, ship builders who knew how to calculate GM but weren’t aware of scientific principles behind it. If

the reader wonders why such a class is taught in a high school, perhaps the name can explain it: Sea Officers High

School ( or Acco Nautical College).
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F

V
= ρg (4.145)

. The force on the immersed body is equal to the weight of the displaced liquid.

This analysis can be generalized by noticing two things. All the horizontal forces are

canceled. Any body that has a projected area that has two sides, those will cancel

each other in the perpendicular to surface direc-

tion. Another way to look at this point is by ap-

proximation. Every body can be broken theoret-

ically into to infinitesimal thickness of rectangu-

lar. For any two rectangle bodies, the horizon-

tal forces are canceling each other. The forces on

the top and bottom ended up to be just the weight

of the displace liquid. The sum all these infinites-

imal small rectangles become the displaced vol-

ume of the entire body. Thus even these bodies

which are in contact with each other, the imag-

inary pressure make it so that they cancel each

other. On the other hand it also can demonstrated

direct integration. To illustration of this con-

cept, consider the cylindrical shape in Figure 4.34.

θθθ

h0h0h0

rrr

Fig. 4.36 – The forces on cylinder and
can be represented by infinitesimal
cuboid

The force per area (see Figure 4.36) is

dF =

P︷ ︸︸ ︷
ρg (h0 − r sin θ)

dAvertical︷ ︸︸ ︷
sin θ r dθ (4.146)

The total force will be the integral of the equation (4.146)

F =

∫2π
0
ρg (h0 − r sin θ) r dθ sin θ (4.147)

Rearranging equation (4.146) transforms it to

F = r g ρ

∫2π
0

(h0 − r sin θ) sin θdθ (4.148)

The solution of equation (4.148) is

F = −π r2 ρg (4.149)

The negative sign indicate that the force acting upwards. While the horizontal force is

Fv =

∫2π
0

(h0 − r sin θ) cos θdθ = 0 (4.150)

15
The first method was developed 300 years ago, the potential was developed about 30 years ago and moment

examination if present here for the first time.
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Example 4.18: Long Long Level: Basic
What depth will a long log with radius, r, a length, ℓ and density, ρw in liquid with

density, ρl will be heavier the surrounding liquid. Assume that ρl > ρw. You can

provide that the angle or the depth?

Solution
The depth does not affect the weight of log.

Typical examples to explain the buoyancy are of the vessel with thin walls put upside

down into liquid. The second example of the speed of the floating bodies. Since there are no

better examples, these examples are a must.

Example 4.19: Upside down Bucket Floating Level: Advance
A cylindrical body, shown in Figure 4.37

,is floating in liquid with density, ρl. The

body was inserted into liquid in a such

a way that the air had remained in it.

Express the maximum wall thickness, t,

as a function of the density of the wall,

ρs liquid density, ρl and the surround-

ings air temperature, T1 for the body to

float. In the case where thickness is half

the maximum, calculate the pressure in-

side the container. The container diame-

ter is w. Assume that the wall thickness

is small compared with the other dimen-

sions (t << w and t << h).

h1h1h1

hinhinhin hhh

www

ttt

Fig. 4.37 – Schematic of a thinwall float-
ing body.

Solution
The air mass in the container is

mair =

V︷ ︸︸ ︷
πw2 h

ρair︷ ︸︸ ︷
Patmos

R T

The mass of the container is

mcontainer =




A︷ ︸︸ ︷
πw2 + 2 πwh


 t ρs

The liquid amount enters into the cavity is such that the air pressure in the cavity equals to the

pressure at the interface (in the cavity). Note that for the maximum thickness, the height, h1
has to be zero. Thus, the pressure at the interface can be written as

Pin = ρl ghin
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On the other hand, the pressure at the interface from the air point of view (ideal gas model)

should be

Pin =
mair R T1

hin πw
2︸ ︷︷ ︸

V

Since the air mass didn’t change and it is known, it can be inserted into the above equation.

ρl ghin + Patmos = Pin =

(
πw2 h

)
ρ︷ ︸︸ ︷

Patmos

R T1
R T1

hin πw
2

The last equation can be simplified into

ρl ghin + Patmos =
hPatmos

hin

And the solution for hin is

hin = −
Patmos +

√
4 ghPatmos ρl + Patmos

2

2 g ρl

and

hin =

√
4 ghPatmos ρl + Patmos

2 − Patmos

2 g ρl

The solution must be positive, so that the last solution is the only physical solution.

Advance material can be skipped

Example 4.20: Equilateral Triangle Level: Advance
Calculate the minimum density an infinitely long equilateral triangle (three equal

sides) has to be so that the sharp end is in the water.

Solution
The solution demonstrates that when h −→ 0 then hin −→ 0. When the gravity approaches

zero (macro gravity) then

hin =
Patmos

ρl g
+ h−

h2 ρl g

Patmos
+
2h3 ρl

2 g2

Patmos
2

−
5h4 ρl

3 g3

Patmos
3

+ · · ·

This “strange” result shows that bodies don’t float in the normal sense. When the floating is

under vacuum condition, the following height can be expanded into

hin =

√
hPatmos

gρl
+
Patmos

2 g ρl
+ · · ·

which shows that the large quantity of liquid enters into the container as it is expected.
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Archimedes theorem states that the force balance is at displaced weight liquid (of the same

volume) should be the same as the container, the air. Thus,

net displayed

water︷ ︸︸ ︷
πw2 (h− hin)g =

container︷ ︸︸ ︷(
πw2 + 2 πwh

)
t ρs g+

air︷ ︸︸ ︷
πw2 h

(
Patmos

R T1

)
g

If air mass is neglected the maximum thickness is

tmax =
2 ghwρl + Patmosw−w

√
4 ghPatmos ρl + Patmos

2

(2 gw+ 4 gh) ρl ρs

The condition to have physical value for the maximum thickness is

2 ghρl + Patmos ⩾
√
4 ghPatmos ρl + Patmos

2

The full solution is

tmax = −

(
wR

√
4ghPatmos ρl+Patmos

2−2ghwRρl−PatmoswR
)
T1+2ghPatmoswρl

(2gw+4gh)Rρl ρs T1

In this analysis the air temperature in the container immediately after insertion in the liquid has

different value from the final temperature. It is reasonable as the first approximation to assume

that the process is adiabatic and isentropic. Thus, the temperature in the cavity immediately

after the insertion is

Ti
Tf

=

(
Pi
Pf

)

The final temperature and pressure were calculated previously. The equation of state is

Pi =
mair R Ti

Vi

The new unknown must provide additional equation which is

Vi = πw
2 hi

Thickness Below The Maximum
For the half thickness t = tmax

2 the general solution for any given thickness below maxi-

mum is presented. The thickness is known, but the liquid displacement is still unknown. The

pressure at the interface (after long time) is

ρl ghin + Patmos =
πw2 hPatmos

RT1
R T1

(hin + h1) πw2

which can be simplified to

ρl ghin + Patmos =
hPatmos

hin + h1

The second equation is Archimedes’ equation, which is

πw2 (h− hin − h1) =
(
πw2 + 2 πwh) t ρs g

)
+ πw2 h

(
Patmos

R T1

)
g
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End Advance material

Example 4.21: Acceleration of Floating Body Level: Advance
A body is pushed into the liquid to a distance, h0 and left at rest. Calculate acceler-

ation and time for a body to reach the surface. The body’s density is αρl , where α

is ratio between the body density to the liquid density and (0 < α < 1). Is the body

volume important?

Solution
The net force is

F =

liquid

weight︷ ︸︸ ︷
V gρl −

body

weight︷ ︸︸ ︷
V gαρl = V gρl (1−α)

But on the other side the internal force is

F = ma =

m︷ ︸︸ ︷
V αρl a

Thus, the acceleration is

a = g

(
1−α

α

)

If the object is left at rest (no movement) thus time will be (h = 1/2 a t2)

t =

√
2hα

g(1−α)

If the object is very light (α −→ 0) then

tmin =

√
2hα

g
+

√
2 gh α

3
2

2 g
+
3
√
2 ghα

5
2

8 g
+
5
√
2 ghα

7
2

16 g
+ · · ·

From the above equation, it can be observed that only the density ratio is important. This idea

can lead to experiment in “large gravity” because the acceleration can be magnified and it is

much more than the reverse of free falling.

Example 4.22: Equivalent Force Level: Intermediate
In some situations, it is desired to find equivalent of force of a certain shape to be

replaced by another force of a “standard” shape. Consider the force that acts on a half

sphere. Find equivalent cylinder that has the same diameter that has the same force.

Solution
The force act on the half sphere can be found by integrating the forces around the sphere. The
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element force is

dF = (ρL − ρS)g

h︷ ︸︸ ︷
r cosϕ cos θ

dAx︷ ︸︸ ︷
cos θ cosϕ

dA︷ ︸︸ ︷
r2 dθdϕ

The total force is then

Fx =

∫π
0

∫π
0
(ρL − ρS)g cos2 ϕ cos2 θ r3 dθdϕ

The result of the integration the force on sphere is

Fs =
π2 (ρL − ρS) r

3

4

The force on equivalent cylinder is

Fc = π r2 (ρL − ρS)h

These forces have to be equivalent and thus

π�2����
(ρL − ρS) r���

1

3

4
= �π��r

2
����
(ρL − ρS)h

Thus, the height is

h

r
=
π

4

Example 4.23: Two forces Body Level: Intermediate
In the introduction to this section, it was assumed that above liquid is a gas with

inconsequential density. Suppose that the above layer is another liquid which has a

bit lighter density. Body with density between the two liquids, ρl < ρs < rhoh
is floating between the two liquids. Develop the relationship between the densities

of liquids and solid and the location of the solid cubical. There are situations where

density is a function of the depth. What will be the location of solid body if the liquid

density varied parabolically.

Solution
In the discussion to this section, it was shown that net force is the body volume times the

density of the liquid. In the same vein, the body can be separated into two: one in first liquid

and one in the second liquid. In this case there are two different liquid densities. The net force

down is the weight of the body ρc hA. Where h is the height of the body and A is its cross

section. This force is balance according to above explanation by the two liquid as

ρc��hA =��Ah (αρl + (1−α)ρh)
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Where α is the fraction that is in low liquid. After rearrangement it became

α =
ρc − ρh
ρl − ρh

The second part deals with the case where the density varied parabolically. The density as a

function of x coordinate along h starting at point ρh is

ρ(x) = ρh −
( x
h

)2
(ρh − ρl)

Thus the equilibration will be achieved, A is canceled on both sides, when

ρc h =

∫x1+h
x1

[
ρh −

( x
h

)2
(ρh − ρl)

]
dx

After the integration the equation transferred into

ρc h =
(3 ρl − 3 ρh) x1

2 + (3h ρl − 3h ρh) x1+ h
2 ρl + 2h

2 ρh
3h

And the location where the lower point of the body (the physical), x1, will be at

X1 =

√
3
√
3h2 ρl

2 +
(
4 ρc − 6h2 ρh

)
ρl + 3h2 ρh2 − 12 ρc ρh + 3h ρl − 3h ρh

6 ρh − 2 ρl

For linear relationship the following results can be obtained.

x1 =
hρl + hρh − 6 ρc

2 ρl − 2 ρh

In many cases in reality the variations occur in small zone compare to the size of the body.

Thus, the calculations can be carried out under the assumption of sharp change. However, if

the body is smaller compare to the zone of variation, they have to accounted for.

Example 4.24: Hollow Sphere Level: Intermediate
A hollow sphere is made of steel (ρs/ρw ∼= 7.8) with a t wall thickness. What is the

thickness if the sphere is neutrally buoyant? Assume that the radius of the sphere is

R. For the thickness below this critical value, develop an equation for the depth of

the sphere.

Solution
The weight of displaced water has to be equal to the weight of the sphere

ρs �g
4πR3

3
= ρw �g

(
4 πR3

3
−
4 π (R− t)3

3

)
(4.24.a)
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after simplification equation (4.24.a) becomes

ρs R
3

ρw
= 3 t R2 − 3 t2 R+ t3 (4.24.b)

Equation (4.24.b) is third order polynomial equation which it’s solution (see the appendix) is

t1 =
(
−

√
3 i
2 − 1

2

) ( ρs
ρw

R
3
− R3

) 1
3

+ R

t2 =
(√

3 i
2 − 1

2

) ( ρs
ρw

R
3
− R3

) 1
3

+ R

t3 = R

(
3

√
ρs

ρw
− 1+ 1

)
(4.24.c)

The first two solutions are imaginary thus not valid for the physical world. The last solution

is the solution that was needed. The depth that sphere will be located depends on the ratio of

t/R which similar analysis to the above. For a given ratio of t/R, the weight displaced by the

sphere has to be same as the sphere weight. The volume of a sphere cap (segment) is given by

Vcap =
πh2 (3R− h)

3
(4.24.d)

Where h is the sphere height above the water. The volume in the water is

Vwater =
4 πR3

3
−
πh2 (3R− h)

3
=
4 π

(
R3 − 3 Rh2 + h3

)

3
(4.24.e)

When Vwater denotes the volume of the sphere in the water. Thus the Archimedes law is

ρw 4 π
(
R3 − 3 Rh2 + h3

)

3
=
ρs 4 π

(
3 t R2 − 3 t2 R+ t3

)

3
(4.24.f)

or (
R3 − 3 Rh2 + h3

)
=
ρw

ρs

(
3 t R2 − 3 t2 R+ t3

)
(4.24.g)

The solution of (4.24.g) is

h =




√
−fR

(
4 R3 − fR

)

2
−
fR− 2 R3

2




1

3

+
R2




√
−fR

(
4 R3 − fR

)

2
−
fR− 2 R3

2




1

3

(4.24.h)

Where −fR = R3 −
ρw

ρs
(3 t R2 − 3 t2 R+ t3) There are two more solutions which contains

the imaginary component. These solutions are rejected.
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Example 4.25: Variable Weight Level: Intermediate
One of the common questions in buoyancy is the weight with variable cross section

and fix load. For example, a woodwedge of woodwith a fix weight/load. The general

question is at what the depth of the object (i.e. wedge) will be located. For simplicity,

assume that the body is of a solid material.

Solution
It is assumed that the volume can be written as a function of the depth. As it was shown in the

previous example, the relationship between the depth and the displaced liquid volume of the

sphere. Here it is assumed that this relationship can be written as

Vw = f(d, other geometrical parameters) (4.25.a)

The Archimedes balance on the body is

ρℓVa = ρwVw (4.25.b)

d = f−1
ρℓVa

ρw
(4.25.c)

Example 4.26: Energy Harvesting/Vibrations Level: Advance

This question is a simplified version of research

work done on energy harvesting due to wave

movement. The wave raises a buoy and the low-

ering is happened due to gravity when the wave

subside. In real world the buoy is following the

liquid (water) level. To understand the process as-

sume that liquid level is fixed and buoy is moving.

In this case also assume that that there is a resis-

tance to the buoy movement and neglect other ef-

fects like added mass, stability etc. Write the gov-

erning equation.

xxx

BuoyBuoyBuoy

Fig. 4.38 –Buoy for illustration
the movement around liq-
uid surface.

Solution
The description of the buoy is given in Fig. 4.38. The internal force is the regularma pointing

up (not known at this stage). The external forces are the gravity and the damping force. The

damping force acting on buoy as oppose the movement of the buoy. The buoy is assume to

move the direction of the coordinate hence the resistance point downward. The gravity is

pointing downward. The trick here is to recognize that actual force is the change from the
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equilibrium. Thus the net gravity force is Axρ_ℓ g. The governing equation is then

m
d2x

dt2
= −D

dx

dt
− ρℓ g

∆V︷︸︸︷
Ax (4.26.a)

Wherem is the mass of the buoy,D is the damping coefficient,A is the cross area of the buoy,

and g the gravity acceleration. Eq. (4.26.a) can be written in a clean form as

d2x

dt2
+
D

m

dx

dt
+
ρℓ gA

m
x = 0 (4.26.b)

This equation can be solved analytically if the coefficients are constant. However, in reality

these coefficients are depended on the location and the velocity. The solution is left others.

Example 4.27: Wooden Cone Level: Intermediate
In example 4.25 a general solution was provided. Find the reverse function, f−1 for

cone with 30◦ when the tip is in the bottom.

Solution
First the function has to built for d (depth).

Vw =

πd

(
d√
3

)2

3
=
πd3

9

(4..a)

Thus, the depth is

d = 3

√
9 π ρw

ρℓ Va
(4..b)

Example 4.28: Block Tied Ground Level: GATE 2003

A cylindrical body of cross-sectional area

A, height H and density ρs is immersed

to a depth h in a liquid of density ρℓ, and

tied to the bottom with a string. Calculate

the tension in the string. Note state in the

original question but should be added as-

sume that air density is negligible and the

rope is tied at the center. Additionally as-

sume the surface tension is negligible.

AAA

HHH hhh

StringStringString

Fig. 4.39 –Block is tied by the rope in the
middle of the block and ground.
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Solution
The balance forces when the rope under tension is

B︷ ︸︸ ︷
gρℓAh−

W︷ ︸︸ ︷
gρsAH = T −−→ T = gρsAH

(
ρℓ h

ρsH
− 1

)
(4.28.a)

Where T is the tension in the string. When there is no stringh⋆ is at equilibrium. The difference

h− h⋆ is responsible for the tension in rope. At equilibrium the tension in the rope is zero

and buoyancy is equal to gravity.

ρsH = ρℓ h
⋆

(4.151)

Denote the extra rope as ∆h so

h = h⋆ +∆h (4.28.b)

Hence substituting Eq. (4.28.b) and Eq. (4.151) into Eq. (4.28.a) reads

T

g ρℓAh
=
ρs (∆h+ h⋆)

−
1ρℓH =

ρs ∆h

ρℓH
+
�

�
��
1

ρs h
⋆

ρℓH
− 1

(4.28.c)

T

g ρℓAh
=
ρs ∆h

ρℓH
(4.28.d)

The solution is provided in a dimensionless form.

Example 4.29: Rotating Cylinder Level: GATE 2004
A closed cylinder having a radius R and height H is filled with oil density ρ. If the

cylinder is rotated about its axis at an angular velocity ofω, the thrust at the bottom

of the cylinder is

(a) πR2 ρgH (b) πR2 ρω2 R2/4

(c) πR2
(
π2 R2 + ρgH

)
(d) πR2

(
ρω2 R2/4+ ρgH

)

Solution
This question is poorly phrased thus it has to be explained first. What they meant to find the

force the liquid applied on the bottom surface of the container when the container is rotating

vertically. The head developed due to the rotation with angular velocity, ω at any radius r

(radius is between zero to R) is

hr =
(ωr)2

2 g
(4.29.a)

The total force will the integration of this head

F =

∫R
0
ρ
(ωr)2

2 g

dA︷ ︸︸ ︷
2 π r dr =

πρω2

g

∫R
0
r3 dr =

πρω2 R4

4 g
(4.29.b)
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This pressure distribution due to the rotation is applied on the bottom and top surface. The

weight of liquid is

W = ρgHπR2 (4.29.c)

Therefore, the total force on the bottom plate is

F+W =
πρω2 R4

4 g
+ ρgHπR2 = πρR2

(
ω2 R2 + gH

)
(4.29.d)

Answer (d).

Example 4.30: caption Level: GATE 2004

The pressure gauges G1 and G2 installed

on the system show pressures of pG1 =

5.00 [bar] and pG2 = 1.00 [bar].
The value of unknown pressure p

is

G2

G1p

Fig. 4.40 – Pressure inside another con-
tainer matrushka.

(a) 1.01 [bar] (b) 2.01 [bar]

(c) 5.00 [bar] (d) 7.01 [bar]

Solution
The point that the question makes that the measurement of pressure are relative or differ-

ence between two points. Denote pa = 1.01 [bar] as the atmospheric pressure. The pressure

differences according Fig. 4.40 are:

pG1
= p− p2 (4.30.a)

pG2
= p2 − pa (4.30.b)

p2 = pG2
− pa (4.30.c)

Thus,

p = p2 + pG1
= pG1

+ pG2
+ pa = 5.00+ 1.00+ 1.01 = 7.01[bar] (4.30.d)

Answer (d).
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Example 4.31: Gate Mass Level: GATE 2013

A hinged gate of length 5 [m], inclined at

30
◦
C with the horizontal and with water

mass on its left, is shown in figure below.

Density of water is 1000 [kg/m3]. The

minimum mass of the gate in kg per unit

width (perpendicular to the plane of pa-

per), required to keep it closed is

30
Water

Gate

5 m◦

Fig. 4.41 –Gate tokeepwater forEx. 4.31.

(a) 5000 (b) 6600

(c) 7546 (d) 9623

Solution

This problem is for GATE examination which

might or might not have the formula page. In

that case a simple approach is advocated. The

pressure along x is ρg x sin θ. In this case

θ = 30◦. The avenged pressure will be at

2/3 L sin θ with value of 2/3 L sin θ ρg. The
force will be LP = 2/3 L2 sin θ ρg. The mo-

ment of inertia of the gate about its hinged

point is 2/3 L F and explicitly as

M =
2 L

2

2 L2 sin θ ρg
3

(4.31.a)

LLL

mgmgmg

L
2ρ g L sin θ

3︸ ︷︷ ︸
P

L
2ρ g L sin θ

3︸ ︷︷ ︸
P

L
2ρ g L sin θ

3︸ ︷︷ ︸
P

xxx

Fig. 4.42 – Moment to keep water bal-
anced with gravity. The drawings
are proportional.

This moment has to be balanced by the gravity as

4���
L2

L3 sin θ ρAg
9

= �L cos θ
2

mAg
(4.31.b)

It is assumed that weight act at the center of the distance. The required mass is then

m =
8 L2 tan θ ρg

9
= 9624.428kg (4.31.c)

The answer is (d).
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4.6.1 Stability
Simplistically, the stability of floating body is divided into three categories. When mo-

ments/forces are such that they returned the immerse body to its original position

state is referred to as the stable body and

vice versa. The third state is when the

couple forces do have zero moment, it

is referred to as the neutral stable. An

example of such situation is a rounded

body, like a marble, on flat surface.

Floating uniform density bodies

are, as it can be observed, are in-

herently “unstable.” Only at extreme

empty

buoyancy

center

gravity

center

full

a b c

Fig. 4.43 – Schematic of floating bodies.

case where liquid density is almost equal to the density of solid body it will be neutral stabil-

ity. Bodies with none uniform densities can be both situations, in stable and none stable. The

bodies with none uniform density can be arranged so the mass centroid in lower position.

The discussion here will be focused on uniformed bodies as they provide more complicated

situations. The none uniformed bodies are like uniform bodies but with a different center

of gravity. To understand the unstable zone consider Fig. 4.43 which shows a body made

of a hollow balloon and a heavy sphere connected by a thin and light rod in three different

configurations. The left one (a) shows the sphere just under the balloon in middle (b) there is

a slight deviation from the previous case. Case 3 depicts (right side) almost opposite to case

(a). This arrangement has a mass centroid close to the middle of the sphere. The buoyant

centroid is below the middle of the balloon. If this arrangement is inserted into liquid and

will be floating, the balloon will be on the top and sphere on the bottom Fig. 4.43a. Tilting

the body with a small angle from its resting position creates a shift in the forces direction

to return original state (examine Fig. 4.43a). These forces create a moment which wants to

return the body to the resting (original) position. When the body is at the position shown

in Fig. 4.43c, the body is unstable and any tilt from the original position creates moment

that will further continue to move the body from its original position. This analysis doesn’t

violate the second law of thermodynamics because it takes energy to move the body to the

unstable situation.

4.6.1.1 Centroid of Floating Body or Buoyancy Centroid

GGG
AAA

BBB

Fig. 4.44 – Center of mass arbitrary floating
body.

To carry this analysis a new concept has to in-

troduce, the center or centroid of floating body

or Buoyancy Centroid denoted “B.” The pressure

center discussed in Section 4.5.1.1 in this section

expanded to deals with the equivalents force that

acting on the floating bodies. To illustrate this

point consider an arbitrary shape floats on liquid shown in Fig. 4.44. It was shown, in this

book, that the force acting on floating body must be only in the vertical direction. Further-
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more, the liquid pressure must be balanced the displaced liquid. The equivalent force of the

pressure acting on the body in equilibrium can be obtained from calculating the center mass

of the displaced liquid. Note that the above statement is correct for arbitrary density (for ex-

ample, if the density, ρ = f(h)). If the body is not in equilibrium with the floating force does

not act at the center of mass. The location and direction of the force is some distance from

the center of the mass yet in the vertical direction. Before diving into the stability issues a

short history of the topic is provided.

4.6.1.2 History of the Stability Analysis

The history of the stability analysis is reflective of general physics and fluidmechanics science.

A good summary is given by (Nowacki and Ferreiro 2003) but lacking major developments

that occurred in the last 30 years. The highlights of stability analysis research show that it was

important topic for a long time. Clearly having ship that do not flipped in the sea (or other

water body) was important since the early time. The test was done by having some individuals

moving on the floating body to examine how the stable it is. The real understanding of the

stability is tied to more advance mathematics and fluid mechanics there was no ability to

examine this issue. For example, Archimedes did not know about the concept of pressure

hence he lack a major tool in his understanding.

The early work was done by Huygens (Huy-

gens 1967) by that time the concept of pressure and

some knowledge of early calculus was available.

Even the concept of “specific gravity” (specific den-

sity) was introduced by that time (density was in-

troduced 1586 by Simon Stevin). Stevin also dis-

cover that the forces (gravity and buoyancy) have

to act in the same line as prerequisite for stability.

French mathematics Paul Hoste, (1652-1700) made

attempt to tackle the stability problem but fail be-

cause did know about the calculus.

Fig. 4.45 – Bouguer Showing Metacen-
ter.

In Euler was requested by the Russian (at the time he was Russian Tzer kids tutor, what

a lucky students) to review the work of La Croix’s work (Euler 1735; Euler 1736). As usual

money was the reason pushing the science forward. That was the age of discovery and ability

to project power especially with a marine power was essential. During that era the ship’s

gunport was developed The need to find the water line and maximum turning point before

water get into the ship were important. Hence the importance of developing the science

behind the stability.

Pierre Bouguer FrenchHydrologist (fluidmechanics) got his father royal professor post

at age of 15 after his father pass away (must be very smart kid). He improved the numerical

integrationmethods (trapezoidmethod)
16
. Later he derived theMetacenter concept (Bouguer

16
This method is widely used in stability study even though there are simpler and better methods like Simpson’s

rule
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1746) see Fig. 4.45. ThisMetacentermethod is themost usedmethod today. Yet, when one tries

to use it, it is found to be complicated and graphical representation (or numerical modeling)

is commonly required. Themain drawbackmetacenter methods is that it leads people tomiss

several effects and thus write wrong stability equations or equation with hundred of percent

errors without understanding the physics.

As results, another method namely the

potential/energy principle is or could be used.

In this method the energy or the potential of

the system iswritten and utilized to find stabil-

ity points. This technique was first proposed

by Huygens and again because lack of calculus

developed at that time he failed to work it out

the technical details.

Yaw

Pitch

Roll

top view

side view

front view

Fig. 4.46 – Typical rotation of ship/floating
body.

Paul Erdös et al was the first (this author is not aware other who worked the details)

to have used this approach successfully (Erdös, Schibler, and Herndon 1992). Amazingly the

authors were not aware the centroid calculations are well established topic and used complex

integral calculations to find the centroid of trapezoid (and these calculations were done 1992!).

Additionally they have made some nonessential assumptions whichMohammad Abolhassani

was able to fix. The calculations of centroid were not explained in the last paper (Abolhassani

2004). The potential method will be explained briefly later on. This approach utilizes math-

ematics creates an abstraction to examine what cause what and why. In way, the methods

abstract the physics and convert it a pure mathematical creation. The method is seeking to

find the angle(s) for which the shortest vertical distance between buoyancy centroid and the

gravity/mass centroid. Numerousmathematical papers (dealingwith themathematics) where

published later dealing with abstract. It is the opinion of this undersign that many of these

papers are without any real meaning to the stability of floating body field. It is interesting to

point out that because lack of physical observation ability or because the underline the equi-

librium analysis it was assumed that it is a dimensional compartmental. In stability of floating

bodies, the stability is compartmental under very unique cases where the body is symmetrical

and extruded body. For example, using marine terminology, roll rotation creates yaw rota-

tions because change of Centroid location in x,y, and z directions. Recently Abolhassani made

advances in the area and show that it is equivalent to metacenter.

The newest approach is the Direct Examination approach and it is suggested by this

undersign. The Metacenter method is probably the closest to the Direct Examination.

Example 4.32: Force Line Level: Basic
In the illustration 4.44 depictGGG aboveBBB. Explain why at equilibrium stage theGGG and

BBBmust be in same vertical action line.
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Solution
On of the favorite question that this undersign bring to engineers. Assume that GGG is not the

same vertical action line as theBBB. In that case, a moment is created and the body will rotate

untilGGG andBBB will be on the same vertical action line.

4.6.1.3 Introduction to Direct Examination Method

A cubic (for example made of pine) is inserted

into a liquid. In this specific case, half the block

floats above liquid line. It implying that the

solid density is half of the density of liquid.

The cubic mass centroid (weight) is in themid-

dle of the cubic (assuming uniform density).

However, the buoyancy center is the middle

of the volume under the water (see Fig. 4.47).

This situation is similar to Fig. 4.43c. However,

AAA

A&GA&GA&G

Fig. 4.47 – Schematic of Cubic showing the
body centerGGG and lift centerBBB.

any experiment of this cubic shows that the cubic is stable only under special conditions.

Small amount of tilting of the cubic results in immediate returning away from the original

position. For example, under the conditions where wood (solid) density is half of the liquid,

the distance between GB (also AB) is exactly quarter of the side (a/4) as it can be observed

from the drawing. The location of center of gravity is constant and centroid of the immersed

part is a/4 and hence a/2− a/4 = a/4. The buoyancy force will be the weight of the cubic.

When the centroid is exactly under the center of mass of the cubic it can be in equilibrium.

What happen when the buoyancy force and gravity force are slightly deviate from the

equilibrium? This question is the question of stability.

The stability can be answered by looking in

what direction the moment created. If the mo-

ment trys to return it to “original” and trys to

keep the two forces in the same line then the

situation is stable. This topic innovative (for

now) and therefore it would be explained in

stages with some material that can be omitted

for mathematically incline individual. Fig. 4.48

describes the new location of the inclination

of the body by purple line. When the cen-

troid point appears left to the purple line

θ

b/2

b

b
2 cos θ

b/
2
ta
n
θ

Y

X

1
2

∆x

∆y

α

d

Fig. 4.48 – The Change Of Angle Due Tilting.

the body is stable and conversely (to be on the right hand side of the purple line α < θ). In

this case as it will be shown the body is unstable and the cubic will tilted away.

When the cubic is floating at 45 degree themass gravity centroid (pointGGG) is in the same

location. But as it will be shown, the angle α is large and therefore the body is stable. It has
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to emphasis that this discussion refers to a specific density ratio, in other words, that body

density is half of the liquid.

From geometrical consideration (see Table 3.1 page 79) center is 1/3 of the height.

The height is b/
√
2 and hence the GBGBGB (more importantly AAABBB) is b/3

√
2. It can

be noticed that in this case the value GBGBGB is smaller than the GBGBGB distance in the

upright situation, that is b/4 > b/3
√
2. The value of GB (or AB) in the up-

right is about 0.01429774 b larger than the tilted case but any other configuration.

Yet for both cases the forces are identical

(why? Because body has the same mass yet the

moment is smaller due to a small leverage.).

This point is actually the base for the energy

method.

In this case, all the situations are “un-

stable” (the term unstable is used because G

is above B and therefor forces are point-

ing to each other) yet the case with the

45 degree is the least “unstable” (shown in

Fig. 4.43c) because when turned the moment

turns body to the original state. Hence, the

(45 degree) location is the most stable. Also

B

G

b

b√
2

b
3
√
2

Fig. 4.49 – Cubic on the side (45◦) stability
analysis.

note body has the smallest moment (the force is the same). This topic is related to curve of

dynamical stability and Moseley’s formula (for stability not rays). Yet, this topic will not be

covered in this book.

In other geometries and/or other densities of liquid and floating body, this kind of

analysis has to done to determine the least “unstable” situation. This analysis can be done

in a conventional way which will presented first and in new innovative approach. The con-

ventional method introduces a new geometrical location which used to describe the stability

while this location is physical it requires calculations and it is not “visible.” While the conven-

tional approach is used by many, now this undersign recommends to utilize the new direct

examination method. The potential method is simpler and practical but requires some theo-

retical understanding and abstraction of the physics.
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4.6.1.4 The Direct Examination

The critical point α = θ determines where

limit point where body is stable. Hence, the

position under investigation is given small

tilting angle the analysis has to check the re-

lationship between α and θ. If α > θ then

the body in position under investigation The

quantitative test is the ratio
θ
α (it must be

noted that this ratio really does not require

finding either θ or α. The value of this ratio

indicts how much stable the body at a spe-

cific position. Most of the calculationswould

have to done numerically.

θ

α

new Coordinates
System

Old Coordinate
System

α

Fig. 4.50 – Arbitrary body rotates in θ and
the buoyancy centroid rotates in α. The
brownα shows the case of stable scenario.
The purple depicts the large α not stable
case.

This core of the ideamentioned in the introduction and it will be expanded here. There

are two possibilities one with α < θ shown in brown in Fig. 4.50 and two with α > θ shown

in purple in Fig. 4.50. The old coordinate system represents the arbitrary body before the

rotation and new coordinate system present the situation after the rotation. The center of

both coordinate is the same location that is point A which is the intersection of the liquid

surface and the vertical line from old buoyancy centroid. After the rotation, the gravity will

be in the new coordinate system pointing to negative y ordinate. In that case the buoyancy

for small α will rotate the body to restore to the original location. For large α the buoyancy

center will rotate the body further from the original state.

Example 4.33: Minimum 3 D Effects Level: Intermediate
What are the minimum conditions for 3D effects.

Solution
The cause of 3D effect is the asymmetry in two directions “opposite to the motion at question.”

That is a ship that perfectly symmetrical along the length of the ship but “front” ( bow) and

“back” (stern) are asymmetrical (for various reasons) the centroid of the ship move along back

and forth (between the bow and the stern) as result ship has yaw rotation. (that is for example,

roll creates yaw).

It was shown that Eq. (3.20) the relationship is

α = tan1

tanθ∼θ︷ ︸︸ ︷
tan θ

Ixx

V0
GB ′

∼=

θ
Ixx

V0
GB

(4.152)

Where point G is total volume centroid (uniform density bodies). Equation Eq. (4.152) is writ-

ten for a very small angle θ when the change of y is very small. And for practical application
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the stability condition is

BG ⩽
Ixx

V0
(4.153)

D

b

d

s

A

B

Fig. 4.51 – Rectangular body floating in a liquid for stability analysis.
It can be noticed that the right hand side depends only on the volume and surface at the

immersed side while the left hand side depends on the difference between the entire body

and the immersed part.

Example 4.34: Rectangular Body Stability Level: Intermediate
What are the conditions that extruded rectangular shape (cuboid) will be floating sta-

ble in a liquid (see Fig. 4.51). Assume that the dimensions of the rectangular are s >> b

long and the crosse section is b the width andD the height are same magnitude.

Solution
The governing equation Eq. (4.153) determines the stability conditions. In this case, BA is given

byD/2− d/2 the moment of inertia given in the book b3 s/12. The volume is V0 = db s.

D

2
−
d

2
⩽

��>
b2

b3 Cs
12

d ��
b

Cs

(4.34.a)

rearrange Eq. (4.34.a) reads

6 (D− d) ⩽
b2

d
(4.34.b)

The relation between the different heights (Archimedes’ law) is

ρℓ d = ρsD (4.34.c)

Substituting Eq. (4.34.c) into Eq. (4.34.a) reads

6

d︷ ︸︸ ︷
ρsD

ρℓ


D−

d︷ ︸︸ ︷
ρsD

ρℓ


 ⩽ b2 −→ 6

ρsD

ρℓ

(
D−

ρsD

ρℓ

)
⩾ b2 (4.34.d)
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End of Ex. 4.34

Eq. (4.34.e) can be rearranged to be written as

b

D
⩾

√
6
ρs

ρℓ

(
1−

ρs

ρℓ

)
(4.34.e)

The results of Eq. (4.34.e) are depicted in Fig. 4.52. It can be noticed that (as expected) for large

values of b/D the body is stable. However, when the densities ratios are very small (
ρs

ρℓ
−→ 0)

or very large (
ρs

ρℓ
−→ 1) (solid density is close to liquid density) even for small value the ratio

of geometries the body is stable (not intuitive). In the mid range of densities requires a larger

ratio of b/D. Note that edge close range ρs/ρℓ −→ 0 or ρs/ρℓ −→ 1 this analysis is not

applied.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

b D

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ρs
ρ`

Rectangle Stability Graph

Unstable

Stable Stable

Fig. 4.52 – Extruded rectangular body stability analysis.
This figure is new (for 2021 and it will be standard the word new should be removed later) and

first was published in this book.

From the dome shown the Fig. 4.52 it is expect body with density ratio of about 0.5

(closer to 0.6) to less stable than the body extremely light density. As it can be observed in

Fig. 4.53b The difference is so significant that the light body is extremely stable while heavier

body like wooden squire is unstable.

(a) Wooden block floating in a water withe density
ratio of around 0.6.

(b) Foam block floating in a water with density ra-
tio of around 0.05.
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Fig. 4.54 – Demonstration that light body (small density ratio) are more stable than the heavier bod-
ies. In fact the even smaller ratio of b/D are stable for the foam as shown the photo. For ex-
ample, the most right on the left photo is unstable (1:1) while the right phone even (1:2) is stable.
This experiment was not done before and it demonstrates the Direct Examinationmodel show-
ing the dome applicability.

Most modern ships are build like a square for example the Ever giving Ship. This kind of ship

with their displacement is unstable. Thus, it requires the gravity center to move below the

center of the body. This topic that will be discussed later.

1, 2, and 3 corners in the liquid
This topic should not be fluid mechanics book but the stability book. Nevertheless, it

is add to here as a temporary place holder.

This discussion deals with uniform density dealing with number of immersed corners.

When cuboid floating body there is two possible regimes. These two regimes are separated

by half point (ρs = 0.5ρℓ).
At this limiting case when a square turning to 45◦ there are three corners (or one if half

corner is considered to be out) immersed in the liquid. Otherwise, there are two corners in

the liquid at all time. When (ρs > 0.5ρℓ) then there are situations where two corners or three
corners inside the liquid. There are no situations with only one corner. Conversely, in the

case (ρs < 0.5ρℓ) there are only one corner or two corners immersed in the liquid.

Example 4.35: Upside Triangle Level: Intermediate

A long extruded isosceles triangle is placed

up side down in a liquid (as shown in

Fig. 4.55. Analyze the stability for this

case. This author (Bar-Meir 2021c) point

out that this arrangement is right for this

kind analysis. In other words the change

of rotation point is such that decreases

the stability. For this exercise neglect this

point. Assume that the base and the height

of the triangle are provided.

D

b

d

rd

s

A

B

Fig. 4.55 – Floating upside down trian-
gle in liquid. The Points A and B
are representation to actual loca-
tion which is at the center.

Solution
The mass centroid of the triangle is 1/3 of the height. The location of buoyancy centroid is

1/3 of the immersed part for case of the tip in the liquid. Archimedes’s law combined with the

geometrical identities hd/D = rd/b provides

ρℓ
hd rd

�2
= ρs

bD

�2
−→

√
ρs

ρℓ
=
rd
b

=
hd
D

(4.35.a)

The governing equation requires that

BA ⩽
Ixx

V0
(4.35.b)
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Substituting the value for the various parameters

2D

3
−
2hd
3

⩽

rd
3
�s

12
rd hd �s
2

(4.35.c)

Utilizing the identities in equations Eq. (4.35.a) provides

2D

3

(
1−

√
ρs

ρℓ

)
⩽ �

�>
rd

2

rd
3

6��rd hd
=
rd
2

6hd

(4.35.d)

Moving all the geometrical terms to the right and densities to left yields

4

(
1−

√
ρs

ρℓ

)
⩽

rd
2︷ ︸︸ ︷

b2
(√

ρs

ρℓ

)A2

D2@
@@

√
ρs

ρℓ

(4.35.e)

Or in a cleaner form as

2

√√
ρℓ
ρs

(
1−

√
ρs

ρℓ

)
⩽
b

D
(4.35.f)

Eq. (4.35.f) has significance which was not explored in this section. The relationship is different

from those obtained in a rectangular extrusion shape, no dome. It can be said that here heavier

the body themore stable it become. It indicate that if you are on boat that has triangle shape you

should make it heavier. And the body will “fail” if it is very light. This phenomenon is oppose

the squire shape shown before. In “regular” rectangular extrusion does not have a singular

point as in triangle extrusion. In the “regular” rectangular and cylinder the relationship was

with the densities ratio while here it is with square root and this factor was not examined yet.

The most important point is that for metacenter Oblivion to the cross section change.

Hence, the sensitivity of the Direct Method to change of the location of the rotating point is

important as it will be discussed later for floating bodies maneuverability.

Example 4.36: Stable Cylinder Level: Intermediate
A cylinder is floating on a liquidwhen z coordinate is upright. Underwhat conditions

the cylinder is stable. Is 3–D effects appears in the stability analysis of the cylinder

under the condition in this question.

Solution
There is no 3-D effects because the cylinder is symmetrical in both directions around the x axis

and the y axis. The condition for stability is

BA ⩽
Ixx

V0
(4.36.a)
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End of Ex. 4.36
Themoment of inertia of circle is given in table 3.1 Ixx = π r4/4. The volume of the submerged

part is π r2 d. The location of point A A = D/2 and the location of B = d/2. The last part is

to related between submerged volume to total volume as

dρℓ = Dρs (4.36.b)

Armed with all the components Eq. (4.36.a) can be written as

D

2
−
d

2
⩽

Aπ���
r2

r4

4

Aπ��r
2 d

which can be rearranged as

D

2

(
1−

ρs

ρℓ

)
⩽
r2

4 d
=

r2

4
Dρs

ρℓ

and finally get the form as

r

D
⩾

√
2 ρs

ρℓ

(
1−

ρs

ρℓ

)
(4.36.c)

It can be observed that the smallest possible value of the Eq. (4.36.c) when the ratio (ρs/ρℓ =

0.5) and in that case, r >
√
2D. The results are presented in Fig. 4.56 The strange fact is the

stability line appears symmetrical as the rectangular shape in regard to densities ratio.
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Cylinder Stability Graph
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Fig. 4.56 – Cylinder in upright position stability line.
There is no 3–D effect in extruded bodies.

Example of utility of the dome can be demonstrated by the following example. In

Ex. 4.26 a possible of energy harvesting from the wave energy by utilizing the liquid surface

change. The stability dome shown for the cylinder (Fig. 4.56) also determine the dimension

of the buoy. The mechanical conditions requires that the buoy must move the vertical path

only without rotation. This condition necessitates the requirements on the geometry of the

buoy. The buoy diameter must be in the same magnitude as the buoy stroke. In fact several

companies build these buoys and determine that they have to large when they did know about
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the stability dome. One can wonder if it is not cheaper to hire a good researcher instead.

4.6.1.5 Potential Energy Approach

This method was suggested by Erdös et al and was slightly improved by Abolhassani. This

method based on the idea that a derivative of potential energy can provide a location or loca-

tionswhere a systemhas aminimum (ormaximum) and thus it is potential location of stability

point
17
. The energy used in this scenario is the gravitational energy that is expressed as

Usys = (M+m)ghM+m = g (mhm +MhM) (4.154)

Where subscript sys referred to the entire system. The m is referred to floating body and

M is referred to the displaced liquid in other words to the mass if the liquid was filling the

submerged volume. The logic to the last definition is that it represents the potential of the

buoyancy force acting in the center immersed part. The change in the potential is due to the

change in the angle

dUsys

dθ
= 0 (4.155)

The condition that angle, θ is by checking the second derivative if it positive or negative. In

away doing example it will repetitive of the moment method converting it to potential and

going over the mathematics. This book is more focus on the physics and therefore it not

presented.

Fig. 4.57 – T shape floating to demonstrate the 3D effect The rolling creates yaw.
To correct the energy method, it suggested that a new stability potential energy should build

similar to velocity potential that is discussed in this book on potential flow. The following

definition should be adapted. The stability potential is defined as

∇Φf = Ffxî+ Ffy ĵ+ Ffzk̂ (4.156)

Where Φf is the stability function. Ffx and Ffy are the components in the x (yaw) y (pitch).

The main component which roll is Ffz and the difference that this main/mostly movement

17
This topic should be discussed elementary physics class and not fluid mechanics textbook. However, if there

will be a significant request it will be briefly discussed.
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that cause the movement in the other two directions. Fig. 4.57 depicts a body in a shape of

the “TTT” that is symmetrical along it length. However the body is not symmetrical in any other

direction. The top (out stretch segment) is thin enough so that it just at the liquid level. If

there any roll the material suddenly at the thin section will enter the liquid. In fact under this

configuration, the force and the moment will be the largest at thin segment. Since the force

acting on the body from non symmetrical location. That is, there are two different moments

one the roll direction and one in the yaw direction.

4.6.1.6 Metacenter Approach

dAdAdA

θθθ

δδδFFF

∆∆∆FFF

BBB B′B′B′

GGG

MMM

∆∆∆FFF

δδδFFF

Fig. 4.58 – Stability analysis of floating body.
The two methods that previously discussed are the direct (Direct Examination) and the ab-

stract (potential energy). There is another method which is older and still prevail in the field

ofmarine engineering and it is referred as themeta center. Metacentermethod is based on the

difference between the body’s local positions gravity centroid and imaginary point that is re-

ferred to as Metacenter. These points are results from the buoyant force and can be obtained

by following analysis. Assuming a general body is floating and it is at a certain configuration.

To check if the body is stable at this situation the body is tilted at a small angle, θ, and the

force (momentum) is examined. Notice the starting point is similar to the Direct Examina-

tion method. The immersed part of the body center changes to a new location,BBB’ as shown

in Figure 4.58. The center of the mass (gravity) is still in the same old location since the body

did not change.

The body, shown in Figure 4.58, when given a tilted position, move to a new buoyant

center, BBB’. This deviation of the buoyant center from the old buoyant center location, BBB, is

calculated. This analysis is based on the difference of the displaced liquid. The right brown

area (volume) in Fig. 4.58 is displaced by the same area (really the volume) on left since the

weight of the body didn’t change
18
so the total immersed area (volume) is constant. For small

angle, θ, themoment is calculated as the integration of the small force shown in the Figure 4.58

18
It is correct to state: area only when the body is extruded. However, when the body is not extruded, the analysis

is still correct because the volume and not the area should be used.
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as ∆F. The displacement of the buoyant center can be calculated by examining the moment

these forces creates. The body weight creates opposite moment to balance the moment of the

displaced liquid volume.

BBBBBB ′W =M (4.157)

WhereM is themoment created by the displaced areas (volumes),BBBBBB ′
is the distance between

pointsBBB and pointBBB’, and,W referred to the weight of the body. It can be noticed that the

distanceBBBBBB ′
is an approximation for small angles (neglecting the vertical component.). So

the perpendicular distance,BBBBBB ′
, should be

BBBBBB ′ =
MMM

W
(4.158)

The momentM can be calculated as

M =

∫
A

δF︷ ︸︸ ︷
gρℓ x θdA︸ ︷︷ ︸

dV

x = gρℓ θ

∫
A
x2dA (4.159)

The integral in the right side of equation (4.159) is referred to as the area moment of

inertia and was discussed in Chapter 3. The distance, BB ′
can be written from equation (4.159)

as

BBBBBB ′ =
gρℓ Ixx

ρsVbody
(4.160)

The point where the gravity force direction is intersecting with the center line of the

cross section is referred as metacentric point,MMM. The location of the metacentric point can

be obtained from the geometry as

BM =
BB ′

sin θ
(4.161)

And combining equations (4.160) with (4.161) yields

BM = �gρlθIxx

�gρs sin θVbody
=

ρl Ixx

ρs Vbody
(4.162)

For small angle (θ ∼ 0)

lim
θ→0

sin θ
θ

∼ 1 (4.163)

It is remarkable that the results is independent of the angle. Looking at Fig. 4.58, the geomet-

rical quantities can be related as

GMGMGM =

BMBMBM︷ ︸︸ ︷
ρl Ixx

ρsVbody
−BGBGBG (4.164)
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It can be noticed that the combination of Vbodyρs/ρℓ = V0 and additionally the notation of

GMGMGM is replaced simply byGMGMGM additionallyBGBGBG byBGBGBG, thus

GMGMGM =
Ixx

V0
−BGBGBG (4.165)

L

a

h

h1

Fig. 4.59 – Cubic body dimensions for stability analysis.
To understand these principles consider the following application.

4.6.2 Application ofGMGMGM
All the terms in Eq. (4.165) normally provided and it is simply plugging them into the Eq. (4.165)

and obtaining the results. Illustrate these points an extensive example is provided.

Example 4.37: RectangularGMGMGM Level: Intermediate
In Fig. 4.59 depicts the extruded rectangular with various dimensions. Assume that

the body is solid with density below the liquid density, calculate theGMGMGM for various

dimensions. The governing equation is

GMGMGM =
Ixx

V0
−BGBGBG (4.37.a)

As before the densities is used to related

V0 ρℓ = Vbody ρs −−−−→ dρℓ = Dρs (4.37.b)

Point GGG is located at D/2 and point BBB is located at d/2. Moment of inertia is I =

b3 s/12 and the volume is V0 = d sb Armed with these data Eq. (4.37.a) becomes

GMGMGM =

b3 As

12
dAs b

−

(
D

2
−
d

2

)
(4.37.c)
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End of Ex. 4.37

or in a dimensionless form as

GMGMGM

D
=
1

12

(
b

D

)2(
ρℓ
ρs

)
−
1

2

(
1−

ρs

ρℓ

)
(4.37.d)

Plotting the results of various density and b/D provides the following figure
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Fig. 4.60 –GMGMGM of Rectangular shape with various dimensions.
The rectangular has larger GM when floating on very heavy liquid. It is more stable

if it is lighter. The blue line differentiate between positive and to negativeGMGMGM values

The Fig. 4.60 exhibits theGMGMGM as function of the density ratio for various ratio ofb/D.

The figure demonstrates that there is a minimumwith every graph that is around the

ρs = 0.5ρℓ. For some ratios of b/D the figure demonstrates thatGMGMGM is negative. As

solid density approaches to liquid density, the body becomes more stable and even

with positiveGMGMGM for some b/D ratios. At mid range density range the body is less

stable.

Solution

Example 4.38: What to do Level: Simple
Assume that you are on a floating body (boat or ship) and it is about turn to it side.

what should you in order to save the floating body? Throw items over board or bring

more things to ship like your raft that is normally tied to your boat?

Solution
If the ship or the boat is light that throwing items will make more stable. On the other the boat

is almost full and you should addmore items andmake it as heavy as you can (even pumpwater



4.6. BUOYANCY AND STABILITY 163

End of Ex. 4.38
into the ship). It is common to have a maximum load marking on the ship or boat. Normally

this point should be design in about 30% of the ship displacement. Thus, if the convention is

applied that it better to throw as much as possible. The reason that maximum mark exist is

or should be for stability reasons. Load about that point will the ship unstable (below safety

factor).

As anecdote of this author, on his ship mechanic duty exam (on a missile boat) a common

question was what to do when ship shows signs of turning. The proper answer was to pump

and throw overboard everything as possible out. The question was originated by someone

experienced it first hand without any the theoretical understanding.

Example 4.39: Floating Cylinder Stability Level: Intermediate

Acylinderwith a radius, r and a lengthD is

floating on a liquid. Calculate theGMGMGM for

various densities ratios and ratios of r/D.

The schematic is shown in Fig. 4.61. Notice

that this example can extended to elliptical

shape as well.

D

d

r

Fig. 4.61 – Upright floating cylinder.

Solution
This example basically repeat Ex. 4.37 for cylinder. The immersed volume is πd r2 The mo-

ment of inertia of circular shape is π r4/4.

GMGMGM = Aπ r
4/4

Aπd r
2
−
D

2

(
1−

ρs

ρℓ

)
(4.39.a)

or in a clear form

GMGMGM =
r2

4 d
−
D

2

(
1−

ρs

ρℓ

)
(4.39.b)

Or in a dimensionless form as

GMGMGM

D
=
1

4

( r
D

)2 ρℓ
ρs

−
1

2

(
1−

ρs

ρℓ

)
(4.39.c)
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End of Ex. 4.39

cross section
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Fig. 4.62 –GMGMGM as a function of density ratio for various r/D.

Unstable Bodies
What happen when one increases the height ratio above the maximum height ratio?

The body will flip into the side and turn to the next stable point (angle). This is not a hypo-

thetical question, but rather practical. This happenswhen a ship is overloadedwith containers

above the maximum height. In commercial ships, the fuel is stored at the bottom of the ship

and thus themass center (pointGGG) is changing during the voyage. So, the ship that was a stable

(positiveGMGMGM) leaving the initial port might became unstable (negativeGMGMGM) before reaching

the destination port (see what happen to Vasa (Swedish flag Ship ).

In fact, most large containers ship today sails with a negativeGMGMGM if they where with

uniform density. Hence, these ships require to have a significant weight to be placed below

insure that ship be stable. Image how much can be save dragging this extra weight around.

4.6.2.1 Metacentric Height,GMGMGM, Measurement

GGG

TTT ddd

hhh

Fig. 4.63 – Measurement ofGMGMGM| of floating body.

Themetacentric height can bemeasured

by finding the change in the angle when

a weight is moved on the floating body.

Moving the weight, T a distance,

d then the moment created is

Mweight = T d (4.166)

This moment is balanced by

Mrighting =WtotalGMnew θ (4.167)
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Where, Wtotal, is the total weight of the floating body including measuring weight. The

angle, θ, is measured as the difference in the orientation of the floating body. Themetacentric

height is

GMGMGMnew =
T d

Wtotal θ
(4.168)

If the change in theGMGMGM can be neglected, equation (4.168) provides the solution. The calcula-

tion ofGMGMGM can be improved by taking into account the effect of the measuring weight. The

change in height ofGGG is

�gmtotalGGGnew = �gmshipGGGactual + �g T h (4.169)

Combining equation (4.169) with equation (4.168) results in

GMGMGMactual = GMGMGMnew
mtotal
mship

− h
T

mship
(4.170)

The weight of the ship is obtained from looking at the ship depth (displacement).

4.6.2.2 Stability of Submerged Bodies

The analysis of submerged bodied is different from the stability of surface vessels when the

body lays between two fluid layers with different density. When the body is submerged in

a single fluid layer, then none of the changes of buoyant centroid occurs. Thus, the mass

centroid must be below than buoyant centroid in order to have stable condition.

However, all fluids have density varied in some degree. In cases where the density

changes significantly, it must be taken into account. For an example of such a case is an object

floating in a solar pond where the upper layer is made of water with lower salinity than the

bottom layer(change up to 20% of the density). When the floating object is immersed into two

layers, the stability analysis must take into account the changes of the displaced liquids of the

two liquid layers. The calculations for such cases are a bit more complicated but based on the

similar principles. Generally, this density change helps to increase the stability of the floating

bodies. This analysis is out of the scope of this book (for now).

4.6.2.3 Stability of None Systematical or “Strange” Bodies

While most floating bodies are symmetrical or semi–symmetrical, there are situations

where the body has a “strange” and/or un-symmetrical body. Consider the first strange

body that has an abrupt step change as shown in Figure 4.64. The body weight
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doesn’t change during the rotation that the

brown area on the left and the brown area on

right must be the same (see Figure 4.64). To

have these requiring demand satisfied can be

satisfied with the change of the rotation. Un-

til now all the symmetrical bodies the rotation

was around the fix point AAA. However, in this

case the rotation axismoves to the right. In do-

ing so the buoyancy point moves further to the

right. This effect in turn increase the stability.

For small angle, the new axes can be assumed

to fixed. The new axes is needed to be found

and it is question of geometry.

δβδβδβ

BBB B′B′B′

GGG

GMGMGM
∆∆∆FFF

∆∆∆FFF
MMM

aaa

bbb

Fig. 4.64 – Calculations of GMGMGM for abrupt
shape body.

If the situation is opposite, that is the narrow part is immersed in liquid and wide part

is out, the axis of the rotation moves the left. And in this case, the rotation moves the regular

buoyancy center further the left and by doing so make the ship or the body less stable.

4.6.2.4 Neutral frequency of Floating Bodies

This case is similar to pendulum (or mass attached to spring). The governing equation for the

pendulum is

ℓθ̈− gθ = 0 (4.171)

Where here ℓ is length of the rode (or the line/wire) connecting the mass with the rotation

point. Thus, the frequency of pendulum is
1
2π

√
g
ℓ which measured inHz. The period of the

cycle is 2 π
√
ℓ/g. Similar situation exists in the case of floating bodies. The basic differential

equation is used to balance and is

rotation︷︸︸︷
Iθ̈ −

rotating moment︷ ︸︸ ︷
V ρsGMθ = 0 (4.172)

In the same fashion the frequency of the floating body is

1

2 π

√
V ρsGMGMGM

Ibody
(4.173)

and the period time is

2 π

√
Ibody

V ρsGMGMGM
(4.174)
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In general, the largerGMGMGM themore stable the floating body is. Increase inGMGMGM increases

the frequency of the floating body. If the floating body is used to transport humans and/or

other creatures or sensitive cargo it requires to reduce the GMGMGM so that the traveling will be

smoother.

Example 4.40: GM statement Old Level: GATE 2010
For the stability of a floating body, under the influence of gravity alone, which of the

following is TRUE?

(a) Metacentre should be below center of gravity

(b) Metacentre should be above center of gravity

(c) Metacentre and center of gravity must lie on the same horizontal line

(d) Metacentre and center of gravity must lie on the same vertical line

Solution
As it was shown this chapter GMGMGM must be positive. That means to be GGG must be below MMM

location. This is old technology and method and this book explain the new technology and

thus the geometry immediately to calculated the stability.
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4.6.3 Surface Tension

The surface tension is one of the mathematically complex topic and related tomany phenom-

ena like boiling, coating, etc. In this section, only simplified topics like constant value will be

discussed.

In one of the early studies of the surface tension/pressure was done by Torricelli
19
. In

this study he suggest construction of the early barometer. In barometer is made from a tube

sealed on one side. The tube is filled with a liquid and turned upside down into the liquid

container. The main effect is the pressure difference between the two surfaces (in the tube

and out side the tune). However, the surface tension affects the high. This effect is large for

very small diameters.

Example 4.41: Surface Tension Error Level: Intermediate
In interaction of the molecules shown in Figure ? describe the existence of surface

tension. Explain why this description is erroneous?

Solution
The upper layer of the molecules have unbalanced force towards the liquid phase. Newton’s

law states when there is unbalanced force, the body should be accelerate. However, in this case,

the liquid is not in motion. Thus, the common explanation is wrong.

rrr

Fig. 4.65 – A heavy needle is floating on a liquid.

Example 4.42: Floating Needle Level: Advance
Needle is made of steel and is heavier than water and many other liquids. However,

the surface tension between the needle and the liquid hold the needle above the liq-

uid. After certain diameter, the needle cannot be held by the liquid. Calculate the

maximum diameter needle that can be inserted into liquid without drowning.

Solution
Under Construction

19
Evangelista Torricelli October 15, 1608 – October 25, 1647 was an Italian physicist best known for his invention

of the barometer.
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4.7 Rayleigh–Taylor Instability
Rayleigh–Taylor instability (or RT instability) is named after Lord Rayleigh and G. I. Taylor.

There are situations where a heavy liquid layer is placed over a lighter fluid layer. This sit-

uation has engineering implications in several industries. For example in die casting, liquid

metal is injected in a cavity filled with air. In poor designs or other situations, some air is not

evacuated and stay in small cavity on the edges of the shape to be casted. Thus, it can create a

situation where the liquid metal is above the air but cannot penetrate into the cavity because

of instability.

This instability deals with a dense, heavy fluid that is being placed above a lighter fluid

in a gravity field perpendicular to interface. Example for such systems are dense water over

oil (liquid–liquid), or water over air(gas–liquid). The original Rayleigh’s paper deals with the

dynamics and density variations. For example, density variations according to the bulk mod-

ulus (see section 4.3.3.2) are always stable but unstable of the density is in the reversed order.

Supposed that a liquid density is arbitrary function of the height. This distortion can be

as a result of heavy fluid above the lighter liquid. This analysis asks the question of what hap-

pen when a small amount of liquid from the above layer enter into the lower layer? Whether

this liquid continue and will grow or will it return to its original conditions? The surface ten-

sion is the opposite mechanism that will returns the liquid to its original place. This analysis

is referred to the case of infinite or very large surface. The simplified case is the two differ-

ent uniform densities. For example a heavy fluid density, ρL, above lower fluid with lower

density, ρG.

For perfectly straight interface, the heavy fluid will stay above the lighter fluid. If the

surface will be disturbed, some of heavy liquid moves down. This disturbance can grow or

returned to its original situation. This condition is determined by competing forces, the sur-

face density, and the buoyancy forces. The fluid above the depression is in equilibrium with

the sounding pressure since the material is extending to infinity. Thus, the force that acting

to get the above fluid down is the buoyancy force of the fluid in the depression.

LLL

σσσσσσ

hhh

xxx

Fig. 4.66 – Description of depression to explain the
Rayleigh–Taylor instability.

The depression is returned to its

original position if the surface forces are

large enough. In that case, this situation is

considered to be stable. On the other hand,

if the surface forces (surface tension) are

not sufficient, the situation is unstable and

the heavy liquid enters into the liquid fluid

zone and vice versa. As usual there is the

neutral stable when the forces are equal. Any continues function can be expanded in series of

cosines. Thus, example of a cosine function will be examined. The conditions that required

from this function will be required from all the other functions. The disturbance is of the

following

h = −hmax cos
2 π x

L
(4.175)
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where hmax is the maximum depression and L is the characteristic length of the depression.

The depression has different radius as a function of distance from the center of the depression,

x. The weakest point is at x = 0 because symmetrical reasons the surface tension does not act

against the gravity as shown in Figure (4.66). Thus, if the center point of the depression can

“hold” the intrusive fluid then the whole system is stable.

The radius of any equation is expressed by equation (1.56). The first derivative of cos
around zero is sin which is approaching zero or equal to zero. Thus, equation (1.56) can be

approximated as

1

R
=
d2h

dx2
(4.176)

For equation (4.175) the radius is

1

R
= −

4 π2 hmax

L2
(4.177)

According to equation (1.49) the pressure difference or the pressure jump is due to the surface

tension at this point must be

PH − PL =
4hmax σπ

2

L2
(4.178)

The pressure difference due to the gravity at the edge of the disturbance is then

PH − PL = g (ρH − ρL)hmax (4.179)

Comparing equations (4.178) and (4.179) show that if the relationship is

4 σπ2

L2
> g (ρH − ρL) (4.180)

It should be noted that hmax is irrelevant for this analysis as it is canceled. The point where

the situation is neutral stable

Lc =

√
4 π2σ

g (ρH − ρL)
(4.181)

An alternative approach to analyze this instability is suggested here. Consider the sit-

uation described in Figure 4.67. If all the heavy liquid “attempts” to move straight down, the

lighter liquid will “prevent” it. The lighter liquid needs to move up at the same time but in a

different place. The heavier liquid needs to move in one side and the lighter liquid in another

location. In this process the heavier liquid “enter” the lighter liquid in one point and creates

a depression as shown in Figure 4.67.
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To analyze it, considered two control volumes

bounded by the blue lines in Fig. 4.67. The first con-

trol volume is made of a cylinder with a radius r

and the second is the depression below it. The “ex-

tra” lines of the depression should be ignored, they

are not part of the control volume. The horizon-

tal forces around the control volume are canceling

each other. At the top, the force is atmospheric

pressure times the area. At the cylinder bottom,

the force is ρgh×A. This acts against the gravity
force which make the cylinder to be in equilibrium

with its surroundings if the pressure at bottom is

indeed ρgh.

σ σ
θ

2 r

Fig. 4.67 – Description of depression to
explain the instability.

For the depression, the force at the top is the same force at the bottom of the cylinder.

At the bottom, the force is the integral around the depression. It can be approximated as a

flat cylinder that has depth of r π/4 (read the explanation in the example 4.22) This value is

exact if the shape is a perfect half sphere. In reality, the error is not significant. Additionally

when the depression occurs, the liquid level is reduced a bit and the lighter liquid is filling the

missing portion. Thus, the force at the bottom is

Fbottom ∼ π r2
[(π r

4
+ h
)
(ρL − ρG) g+ Patmos

]
(4.182)

The net force is then

Fbottom ∼ π r2
(π r
4

)
(ρL − ρG) g (4.183)

The force that hold this column is the surface tension. As shown in Figure 4.67, the total force

is then

Fσ = 2 π r σ cos θ (4.184)

The forces balance on the depression is then

2 π r σ cos θ ∼ π r2
(π r
4

)
(ρL − ρG) g (4.185)

The radius is obtained by

r ∼

√
2 πσ cos θ
(ρL − ρG) g

(4.186)

The maximum surface tension is when the angle, θ = π/2. At that case, the radius is

r ∼

√
2 πσ

(ρL − ρG) g
(4.187)
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The maximum possible radius of the depres-

sion depends on the geometry of the container.

For the cylindrical geometry, the maximum

depression radius is about half for the con-

tainer radius (see Figure 4.68). This radius is

limited because the lighter liquid has to enter

at the same time into the heavier liquid zone.

Since the “exchange” volumes of these twopro-

cess are the same, the specific radius is limited.

Thus, it can be written that the minimum ra-

dius is

rmintube = 2

√
2 πσ

g (ρL − ρG)
(4.188)

Fig. 4.68 – The cross section of the interface.
The purple color represents the max-
imum heavy liquid raising area. The
yellow color represents the maximum
lighter liquid that “goes down.”

The actual radius will be much larger. The heavier liquid can stay on top of the lighter

liquid without being turned upside down when the radius is smaller than the Eq. (4.188). This

analysis introduces a new dimensional number that will be discussed in a greater length in the

Dimensionless chapter. In equation (4.188) the angle was assumed to be 90 degrees. However,

this angle is never can be obtained. The actual value of this angle is about π/4 to π/3 and in

only extreme cases the angle exceed this value (considering dynamics). In Figure 4.68, it was

shown that the depression and the raised area are the same. The actual area of the depression

is only a fraction of the interfacial cross section and is a function. For example,the depres-

sion is larger for square area. These two scenarios should be inserting into equation 4.168 by

introducing experimental coefficient.

Example 4.43: Minimum Radios Level: Simple
Estimate the minimum radius to insert liquid aluminum into represent tube at tem-

perature of 600[K]. Assume that the surface tension is 400[mN/m]. The density of

the aluminum is 2400kg/m3.

Solution
The depression radius is assume to be significantly smaller and thus equation (4.187) can be

used. The density of air is negligible as can be seen from the temperature compare to the

aluminum density.

r ∼

√√√√ 8 π

σ︷︸︸︷
0.4

2400× 9.81
The minimum radius is r ∼ 0.02[m] which demonstrates the assumption of h >> r was

appropriate.
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Z

L1

L2

L3

Fig. 4.69 – Three liquids layers under rotation with various critical situations.

Open Question by April 15, 2010
The best solution of the following question will win 18 U.S. dollars and your name will

be associated with the solution in this book.

Example 4.44: Canister Level: Intermediate
A canister shown in Figure 4.69 has three layers of different fluids with different den-

sities. Assume that the fluids do not mix. The canister is rotate with circular velocity,

ω. Describe the interface of the fluids consider all the limiting cases. Is there any

difference if the fluids are compressible? Where is the maximum pressure points?

For the case that the fluids are compressible, the canister top center is connected to

another tank with equal pressure to the canister before the rotation (the connection

point). What happen after the canister start to be rotated? Calculated the volume

that will enter or leave, for known geometries of the fluids. Use the ideal gas model.

You can assume that the process is isothermal. Is there any difference if the process

is isentropic? If so, what is the difference?

Solution
Under Construction

4.8 Qualitative questions
These qualitative questions are for advance students and for those who would like to prepare

themselves preliminary examination (Ph. D. examinations).

1. The atmosphere has different thickness in different locations. Where will be atmo-

sphere thickness larger in the equator or the north pole? Explain your reasoning for

the difference. How would you estimate the difference between the two locations.

2. The author’s daughter (8 years old) stated that fluid mechanics make no sense. For
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example, she points out that warm air raise and therefore the warm spot in a house is

the top floor (that is correct in a 4 story home). So why when there is snow on high

mountains? It must be that the temperature is below freezing point on the top of the

mountain (see for example Mount Kilimanjaro, Kenya). How would you explain this

situation? Hint, you should explain this phenomenon using only concepts that were

developed in this chapter and dimensional analysis.

3. The surface of the ocean has spherical shape. The stability analysis that was discussed in

this chapter was based on the assumption that surface is straight. How in your opinion

the effect of the surface curvature affects the stability analysis.

4. If the gravity was changing due to the surface curvature what is the effect on the sta-

bility.

5. A car is accelerated (increase of velocity) in an include surface upwards. Draw the con-

stant pressure line. What will constant pressure lines if the car will be driven down-

wards.

6. A symmetrical cylinder filled with liquid is rotating around its center. What are the

directions of the forces that acting on cylinder. What are the direction of the force if

the cylinder is not symmetrical?

7. A body with a constant area is floating in the liquid. The body is pushed down of the

equilibrium state into the liquid by a distance ℓ. Assume that the body is not totally

immersed in the liquid. What are simple harmonic frequency of the body. Assume the

body mass is m its volume is, V . Additionally assume that the only body motion is

purely vertical and neglect the add mass and liquid resistance.
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5
The Control Volume and Mass

Conservation

5.1 Introduction
This chapter presents a discussion on the control volume and will be focused on the conser-

vation of the mass. When the fluid system moves or changes, one wants to find or predict the

velocities in the system. The main target of such analysis is to find the value of certain vari-

ables. This kind of analysis is reasonable and it referred to in the literature as the Lagrangian

Analysis. This name is in honored Joseph–Louis Lagrange (1736–1813) who formulated the

equations of motion for the moving fluid particles (Pulte 2005).
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Even though this system looks

reasonable, the Lagrangian system

turned out to be difficult to solve and

to analyze. This method applied and

used in very few cases. The main dif-

ficulty lies in the fact that every par-

ticle has to be traced to its original

state Leonard. Euler (1707–1783) sug-

gested an alternative approach. In

Euler’s approach the focus is on a

defined point or a defined volume.

This methods is referred as Eulerian

method.

iii
systemsystemsystem

iiiiii

iiiiiiiii
controlcontrolcontrol
volumevolumevolume

Fig. 5.1 – Control volume and system before and after
motion.

The Eulerian method focuses on a defined area or location to find the needed informa-

tion. The use of the Eulerian methods leads to a set differentiation equations that is referred

to as Navier–Stokes equations which are commonly used. These differential equations will

be used in the later part of this book. Additionally, the Eulerian system leads to integral equa-

tions which are the focus of this part of the book. The Eulerian method plays well with the

physical intuition of most people. This methods has its limitations and for some cases the

Lagrangian is preferred (and sometimes the only possibility). Therefore a limited discussion

on the Lagrangian system will be presented (later version).

Lagrangian equations are associated with the system while the Eulerian equation are

associated with the control volume. The difference between the system and the control vol-

ume is shown in Figure 5.1. The green lines in Figure 5.1 represent the system. The red dotted

lines are the control volume. At certain time the system and the control volume are identical

location. After a certain time, some of themass in the system exited the control volumewhich

are marked “a” in Figure 5.1. The material that remained in the control volume is marked as

“b”. At the same time, the control gains some material which is marked as “c”.

5.2 Control Volume
The Eulerian method requires to define a control volume (some time more than one). The

control volume is a defined volume that was discussed earlier. The control volume is differ-

entiated into two categories of control volumes, non–deformable and deformable.

Non–deformable control volume is a control volume which is fixed in

space relatively to an one coordinate system. This coordinate system may

be in a relative motion to another (almost absolute) coordinate system.

Deformable control volume is a volume having part of all of its boundaries

in motion during the process at hand.
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In the case where nomass crosses the boundaries,

the control volume is a system. Every control volume is

the focus of the certain interest and will be dealt with

the basic equations, mass, momentum, energy, entropy

etc.

Two examples of control volume are presented

to illustrate difference between a deformable control

volume and non–deformable control volume. Flow

in conduits can be analyzed by looking in a con-

trol volume between two locations. The coordinate

system could be fixed to the conduit. The control

volume chosen is non–deformable control volume.

outoutout

ininin

Fig. 5.2 –Control volume of amov-
ing piston with in and out
flow.

The control volume should be chosen so that the analysis should be simple and dealt with as

less as possible issues which are not in question. When a piston pushing gases a good choice

of control volume is a deformable control volume that is a head the piston inside the cylinder

as shown in Fig. 5.2.

5.3 Continuity Equation
In this chapter and the next three chapters, the conservation equations will be applied to the

control volume. In this chapter, the mass conservation will be discussed. The system mass

change is

Dmsys

Dt
=
D

Dt

∫
Vsys

ρdV = 0 (5.1)

The system mass after some time, according Fig. 5.1, is made of

msys = mc.v. +ma −mc (5.2)

The change of the system mass is by definition is zero. The change with time (time derivative

of equation (5.2)) results in

0 =
Dmsys

Dt
=
dmc.v.
dt

+
dma

dt
−
dmc

dt
(5.3)

The first term in equation (5.3) is the derivative of the mass in the control volume and at any

given time is

dmc.v.(t)

dt
=
d

dt

∫
Vc.v.

ρdV (5.4)

and is a function of the time.
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The interface of the control volume can

move. The actual velocity of the fluid leaving the

control volume is the relative velocity (see Fig. 5.3).

The relative velocity is

−→
Ur =

−→
Uf −

−→
Ub (5.5)

Where Uf is the liquid velocity and Ub is the

boundary velocity (see Figure 5.3). The velocity

component that is perpendicular to the surface is

UbUbUb

Uf − UbUf − UbUf − Ub

n̂̂n̂n UfUfUf

−Ub−Ub−UbθθθControlV olume

ControlV olume

ControlV olume

Fig. 5.3 – Schematics of velocities at the
interface.

Urn = −n̂ · −→Ur = Ur cos θ (5.6)

Where n̂ is an unit vector perpendicular to the surface. The convention of direction is taken

positive if flow out the control volume and negative if the flow is into the control volume.

The mass flow out of the control volume is the systemmass that is not included in the control

volume. Thus, the flow out is

dma

dt
=

∫
Scv

ρsUrndA (5.7)

It has to be emphasized that the density is taken at the surface thus the subscript s. In the

same manner, the flow rate in is

dmb
dt

=

∫
Sc.v.

ρsUrndA (5.8)

It can be noticed that the two equations (5.8) and (5.7) are similar and can be combined, taking

the positive or negative value of Urn with integration of the entire system as

dma

dt
−
dmb
dt

=

∫
Scv

ρsUrn dA (5.9)

applying negative value to keep the convention. Substituting equation (5.9) into equation (5.3)

results in

d

dt

∫
c.v.

ρsdV = −

∫
Scv

ρUrn dA

Continuity

(5.10)
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Equation (5.10) is essentially accounting of the

mass. Again notice the negative sign in sur-

face integral. The negative sign is because

flow out marked positive which reduces of the

mass (negative derivative) in the control vol-

ume. The change of mass change inside the

control volume is net flow in or out of the con-

trol system.

The next example is provided to illus-

trate this concept.

LLL

dxdxdx

xxx

Fig. 5.4 – Schematics of flow in in pipe with
varying density as a function time for
example 5.1.

Example 5.1: Density Temperature Relationship Level: Simple
The density changes in a pipe, due to temperature variation and other reasons, can

be approximated as

ρ(x, t)
ρ0

=
(
1−

x

L

)2
cos

t

t0
. (5.1.a)

The conduit shown in Figure 5.4 length is L and its area is A. Express the mass flow

in and/or out, and the mass in the conduit as function of time. Write the expression

for the mass change in the pipe.

Solution
Here it is very convenient to choose a non-deformable control volume that is inside the conduit

dV is chosen as πR2 dx. Using equation (5.10), the flow out (or in) is

d

dt

∫
c.v.

ρdV =
d

dt

∫
c.v.

ρ(t)︷ ︸︸ ︷
ρ0

(
1−

x

L

)2
cos

(
t

t0

) dV︷ ︸︸ ︷
πR2 dx

(5.1.b)

The density is not a function of radius, r and angle, θ and they can be taken out the integral as

d

dt

∫
c.v.

ρdV = πR2
d

dt

∫
c.v.

ρ0

(
1−

x

L

)2
cos

(
t

t0

)
dx (5.1.c)

which results in

Flow Out =

A︷︸︸︷
πR2

d

dt

∫L
0
ρ0

(
1−

x

L

)2
cos

t

t0
dx = −

πR2 L ρ0
3 t0

sin
(
t

t0

)
(5.1.d)

The flow out is a function of length, L, and time, t, and is the change of the mass in the control

volume.
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Example 5.2: Pectoral fin Exit Velocity Level: Intermediate
The fish propulsion has been investigated

for over 100 years with over 100 mil-

lions of dollars research grants. Yet, all

these research teams from MIT (Alexan-

dra Techet), Harvard (George V. Lauder) ,

and all the other fancy names produce re-

sults that violate the first and second laws

of thermodynamics. As opposed to them,

here the pectoral fin locomotion will be

analyzed utilizing based on sound phys-

ical principles. The control volume the

technique that will used here. In fact,

uselessuselessuseless
γ1γ1γ1γ3γ3γ3

γ2γ2γ2

angleangleangle
mixmixmix

jetjetjet θθθ
FFF

drdrdr

r dθr dθr dθ

Fig. 5.5 – The different of propulsion
zones to explain how the

This opportunity provides a chances use control volume for biological cases/scenar-

ios. A pectoral fin is located some where in the middle of the fish. This fin in some

fishes is used for navigation and for some used for propulsion. Different zones are

explained by different mechanisms of the propulsion. During the last zone shown

which to referred here as the jet zone see Fig. 5.5. In the last zone (jet zone) when the

creature close the fin the water (liquid) push outside. Find the relationship between

the fin angular velocity and the exit velocity. Also describe the velocity in zone.

Solution

As usual the control volume has to be drawn

forwater between the pectoral fin and the body

(see Fig. 5.6). The for simplicity assume that

fin is straight and two dimensional. The mass

conservation of the control volume shown in

Fig. 5.6 reads

d

dt

∫
c.v.

ρsdV = −

∫
Scv

ρUrn dA (5.2.a)

Control V olumeControl V olumeControl V olume

θθθ
rrr UUU

xxx

“armpit′′“armpit′′“armpit′′

RRR

Fig. 5.6 – Pectoral fin control volume
for the analysis of the velocity. The
red dashed line represents the small
mass control volume.

This control volume has only one exit, the volume varies with time, and the change is due to

the pectoral fin movement. There are two main ways to calculate the left term of Eq. (5.2.a) are

using the physical intuition or formal derivations. First the physical intuition is presented, it

can be noticed that the velocity computed as it simple rotation movement, hence, U = ωr

and total can be calculated integral of the total from zero to R as

dV

dt
= −ρ

∫R
0
ωrdr = −

ρωR2

2
(5.2.b)

It can be noticed that if the control volume is limited to r as well and the change of the “red”
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control volume is the same then

dv

dt
= −ρ

∫r
0
ωξdξ = −

ρωr2

2
(5.2.c)

in this case the dummy variable ξ is replacement of r for the integration. The formal way is to

right down the volume as function of time

V = V0 ρ−

∫R
0
t ρω rdr = V0 ρ−

t ρωR2

2
(5.2.d)

Eq. (5.2.d) is basically identical to equation Eq. (5.2.b) with some math.

The velocity at the exit is not uniform and has a small component in y direction. For

simplicity, it is assumed that the velocity is uniform. Hence, Eq. (5.2.a) is reduced to

−
ρωR2

2
= −URρ (γ1 −ωt) −−→ U =

ωR

2(γ1 −ωt)
(5.2.e)

where t, time, is measured from the fin at γ1 to t
⋆
. The t⋆ is the time that it takes the fin to

reach the body fromγ1. The heighth is canceled out in the analysis. According to Eq. (5.2.e), the

jet velocity increases as the fin approaches to body. Normally when the velocity approaches

to infinity, something breaks in the model either ω decreases or something else happening.

Additional point, the velocity as a function of r or x can be obtained from a similar concept as

the smaller control volume.

U(r) =
ωr

2(γ1 −ωt)
(5.11)

and for small angles, the velocity can be considered as U(x). The velocity close to “armpit” is

zero and increases linearlywith distance from it. These facts of zero and linearly of the velocity

is close to realty. Yet when building model one should remember the assumptions that allow

the model to exist. In this case, as far one from the “armpit” the two dimension is losing its

validity and velocity is decrease (not linear but closer to constant).

5.3.1 Non Deformable Control Volume

When the control volume is fixed with time, the derivative in equation (5.10) can enter the

integral since the boundaries are fixed in time and hence,

∫
Vc.v.

dρ

dt
dV = −

∫
Sc.v.

ρUrn dA

Continuity with Fixed b.c.

(5.12)

Equation (5.12) is simpler than equation (5.10).



184 CHAPTER 5. MASS CONSERVATION

5.3.2 Constant Density Fluids

Further simplifications of equations (5.10) can be obtained by assuming constant density and

the equation (5.10) become conservation of the volume.

5.3.2.1 Non Deformable Control Volume

For this case the volume is constant therefore themass is constant, and hence themass change

of the control volume is zero. Hence, the net flow (in and out) is zero. This condition can be

written mathematically as

=0︷︸︸︷
d
∫
dt

−→
∫
Sc.v.

VrndA = 0 (5.13)

or in a more explicit form as

∫
Sin

Vrn dA =

∫
Sout

Vrn dA = 0

Steady State Continuity

(5.14)

Notice that the density does not play a role in this equation since it is canceled out. Physically,

the meaning is that volume flow rate in and the volume flow rate out have to equal.

5.3.2.2 Deformable Control Volume

The left hand side of question (5.10) can be examined further to develop a simpler equation by

using the extend Leibniz integral rule for a constant density and result in

d

dt

∫
c.v.

ρdV =

thus, =0︷ ︸︸ ︷∫
c.v.

=0︷︸︸︷
dρ

dt
dV +ρ

∫
Sc.v.

n̂ ·Ub dA = ρ

∫
Sc.v.

Ubn dA (5.15)

where Ub is the boundary velocity and Ubn is the normal component of the boundary ve-

locity.

∫
Sc.v.

Ubn dA =

∫
Sc.v.

Urn dA

Steady State Continuity Deformable

(5.16)

The meaning of the equation (5.16) is the net growth (or decrease) of the Control volume is by

net volume flow into it. Example 5.3 illustrates this point.
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h

AUb

Up

Ap

UjAj

Fig. 5.7 – Filling of the bucket and choices of the deformable control volumes for example 5.3.

Example 5.3: Bucket Velocity Level: Simple
Liquid fills a bucket as shown in Figure 5.7. The average velocity of the liquid at the

exit of the filling pipe is Up and cross section of the pipe is Ap. The liquid fills a

bucket with cross section area of A and instantaneous height is h. Find the height

as a function of the other parameters. Assume that the density is constant and at the

boundary interface Aj = 0.7Ap. And where Aj is the area of jet when touching the

liquid boundary in bucket. The last assumption is result of the energy equation (with

some influence of momentum equation). The relationship is function of the distance

of the pipe from the boundary of the liquid. However, this effect can be neglected for

this range which this problem. In reality, the ratio is determined by height of the pipe

from the liquid surface in the bucket. Calculate the bucket liquid interface velocity.

Solution
This problem requires two deformable control volumes. The first control is around the jet

and second is around the liquid in the bucket. In this analysis, several assumptions must be

made. First, no liquid leaves the jet and enters the air. Second, the liquid in the bucket has

a straight surface. This assumption is a strong assumption for certain conditions but it will

be not discussed here since it is advance topic. Third, there are no evaporation or conden-

sation processes. Fourth, the air effects are negligible. The control volume around the jet is

deformable because the length of the jet shrinks with the time. The mass conservation of the

liquid in the bucket is

boundary change︷ ︸︸ ︷∫
c.v.

Ubn dA =

flow in︷ ︸︸ ︷∫
c.v.

Urn dA
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where Ubn is the perpendicular component of velocity of the boundary. Substituting the

known values for Urn results in

∫
c.v.

Ub dA =

∫
c.v.

Urn︷ ︸︸ ︷(
Uj +Ub

)
dA

The integration can be carried when the area of jet is assumed to be known as

UbA = Aj
(
Uj +Ub

)
(5..a)

To find the jet velocity, Uj, the second control volume around the jet is used as the following

flow

in︷ ︸︸ ︷
UpAp−

flow

out︷ ︸︸ ︷
Aj
(
Ub +Uj

)
=

boundary

change︷ ︸︸ ︷
−AjUb

(5..b)

The above two equations (5..a) and (5..b) are enough to solve for the two unknowns. Substituting

the first equation, (5..a) into (5..b) and using the ratio of Aj = 0.7Ap results

UpAp −UbA = −0.7ApUb (5..c)

The solution of equation (5..c) is

Ub =
Ap

A− 0.7Ap

It is interesting that many individuals intuitively will suggest that the solution is UbAp/A.

When examining solution there are two limits. The first limit is when Ap = A/0.7 which is

Ub =
Ap

0
= ∞

The physical meaning is that surface is filled instantly. The other limit is that andAp/A −→ 0

then

Ub =
Ap

A

which is the result for the “intuitive” solution. It also interesting to point out that if the filling

was from other surface (not the top surface), e.g the side, the velocity will be Ub = Up in the

limiting case and not infinity. The reason for this difference is that the liquid already fill the

bucket and has not to move into bucket.

Example 5.4: Moving Bucket Level: Advanced
The bucket is filled by single stream of liquid. The velocity of the stream down at

3[m/sec]. The bucket is moving up at velocity of 2[m/sec] calculate the flow rate into

bucket. If the bucket radius is -0.1[m] what is the velocity of liquid surface relative to

bucket bottom?
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Solution
Confidential to be given for exams.

Example 5.5: Balloon In Flow Level: Simple
Balloon is attached to a rigid supply in which is supplied by a constant the mass rate,

mi. Calculate the velocity of the balloon boundaries assuming constant density.

Solution
The applicable equation is ∫

c.v.
Ubn dA =

∫
c.v.

Urn dA (5.5.a)

The entrance is fixed, thus the relative velocity, Urn is

Urn =

 −Up @ the valve

0 every else

(5.5.b)

Assume equal distribution of the velocity in balloon surface and that the center of the balloon

is moving, thus the velocity has the following form

Ub = Ux x̂+Ubr r̂ (5.5.c)

Where x̂ is unit coordinate in x direction andUx is the velocity of the center andwhere r̂ is unit

coordinate in radius from the center of the balloon and Ubr is the velocity in that direction.

The right side of equation (5.16) is the net change due to the boundary is

∫
Sc.v.

(Ux x̂+Ubr r̂) · n̂ dA =

center movement︷ ︸︸ ︷∫
Sc.v.

(Ux x̂) · n̂ dA+

net boundary change︷ ︸︸ ︷∫
Sc.v.

(Ubr r̂) · n̂ dA
(5.5.d)

The first integral is zero because it is like movement of solid body and also yield this value

mathematically (excises formathematical oriented student). The second integral (notice n̂ = r̂)

yields ∫
Sc.v.

(Ubr r̂) · n̂ dA = 4 π r2Ubr (5.5.e)

Substituting into the general equation yields

ρ

A︷ ︸︸ ︷
4 π r2Ubr = ρUpAp = mi

(5.5.f)

Hence,

Ubr =
mi

ρ 4π r2
(5.5.g)

The center velocity is (also) exactly Ubr. The total velocity of boundary is

Ut =
mi

ρ 4π r2
(x̂+ r̂) (5.5.h)

It can be noticed that the velocity at the opposite to the connection to the rigid pipe which is

double of the center velocity.
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5.3.2.3 One–Dimensional Control Volume

Additional simplification of the continuity equation is of one dimensional flow. This simpli-

fication provides very useful description for many fluid flow phenomena. The main assump-

tion made in this model is that the proprieties in the across section are only function of x

coordinate . This assumptions leads

∫
A2

ρ2U2 dA−

∫
A1

ρ1U1 dA =
d

dt

∫
V(x)

ρ(x)

dV︷ ︸︸ ︷
A(x)dx (5.17)

When the density can be considered constant equation (5.17) is reduced to∫
A2

U2 dA−

∫
A1

U1 dA =
d

dt

∫
A(x)dx (5.18)

For steady state but with variations of the velocity and variation of the density reduces equa-

tion (5.17) to become ∫
A2

ρ2U2 dA =

∫
A1

ρ1U1 dA (5.19)

For steady state and uniform density and velocity equation (5.19) reduces further to

ρ1A1U1 = ρ2A2U2 (5.20)

For incompressible flow (constant density), continuity equation is at its minimum form of

U1A1 = A2U2 (5.21)

The next example is of semi one–dimensional example to illustrate equation (5.17).

Example 5.6: Flow in out Tank Level: Basic

Liquid flows into tank at a constant mass

flow rate of a. The mass flow rate out is

function of the height. First assume that

qout = bh second Assume as qout =

b
√
h. For the first case, determine the

height, h as function of the time. Is there a

critical value and then if exist find the crit-

ical value of the system parameters. As-

sume that the height at time zero is h0.

What happen if the h0 = 0?

h
min mout

Fig. 5.8 – Height of the liquid for exam-
ple 5.6.

Solution
The control volume for both cases is the same and it is around the liquid in the tank. It can
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End of Ex. 5.6
be noticed that control volume satisfy the demand of one dimensional since the flow is only

function of x coordinate. For case one the right hand side term in equation (5.17) is

ρ
d

dt

∫L
0
hdx = ρ L

dh

dt
(5.6.a)

Substituting into equation equation (5.17) is

ρ L
dh

d t
=

flow out︷︸︸︷
b1 h −

flow in︷︸︸︷
mi

(5.6.b)

solution is

h =

homogeneous solution︷ ︸︸ ︷
mi
b1
e

−
b1 t

ρL +

private solution︷ ︸︸ ︷
c1e

b1 t

ρL
(5.6.c)

The solution has the homogeneous solution (solution without themi) and the solution of the

mi part. The solution can rearranged to a new form (a discussion why this form is preferred

will be provided in dimensional chapter).

hb1
m1

=e
−

b1 t

ρL + ce
b1 t

ρL
(5.6.d)

With the initial condition that at h(t = 0) = h0 the constant coefficient can be found as

h0 b1
m1

= 1− c =⇒ c = 1−
h0 b1
mi

(5.6.e)

which the solution is

hb1
m1

=e
−
b1 t
ρL +

[
1−

h0 b1
mi

]
e
b1 t
ρL

(5.6.f)

It can be observed that if 1 = h0 b1
mi

is the critical point of this solution. If the term
h0 b1
mi

is

larger than one then the solution reduced to a negative number. However, negative number

for height is not possible and the height solution approach zero. If the reverse case appeared,

the height will increase. Essentially, the critical ratio state if the flow in is larger or lower than

the flow out determine the condition of the height.

For second case, the governing equation (5.17) is

ρ L
dh

d t
=

flow out︷ ︸︸ ︷
b
√
h −

flow in︷︸︸︷
mi

(5.6.g)

with the general solution of

ln

[(√
hb

mi
− 1

)
mi
ρ L

]
+

√
hb

mi
− 1 = (t+ c)

√
hb

2 ρ L
(5.6.h)

The constant is obtained when the initial condition that at h(t = 0) = h0 and it left as exercise

for the reader.
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5.4 Reynolds Transport Theorem
It can be noticed that the same derivations carried for the density can be carried for other

intensive properties such as specific entropy, specific enthalpy. Suppose that g is intensive

property (which can be a scalar or a vector) undergoes change with time. The change of

accumulative property will be then

D

Dt

∫
sys

f ρdV =
d

dt

∫
c.v.

f ρdV +

∫
c.v
f ρUrndA (5.22)

This theorem named after Reynolds, Osborne, (1842-1912) which is actually a three dimen-

sional generalization of Leibniz integral rule
1
. To make the previous derivation clearer, the

Reynolds Transport Theorem will be reproofed and discussed. The ideas are the similar but

extended some what.

Leibniz integral rule
2
is an one dimensional and it is defined as

d

dy

∫x2(y)
x1(y)

f(x,y)dx =
∫x2(y)
x1(y)

∂f

∂y
dx+ f(x2,y)

dx2
dy

− f(x1,y)
dx1
dy

(5.23)

Initially, a proof will be provided and the physical meaning will be explained. Assume that

there is a function that satisfy the following

G(x,y) =
∫x
f (α, y) dα (5.24)

Notice that lower boundary of the integral is missing and is only the upper limit of the func-

tion is present
3
. For its derivative of equation (5.24) is

f(x,y) =
∂G

∂x
(5.25)

differentiating (chain rule duv = udv+ v du) by part of left hand side of the Leibniz integral

rule (it can be shown which are identical) is

d [G(x2,y) −G(x1,y)]
dy

=

1︷ ︸︸ ︷
∂G

∂x2

dx2
dy

+

2︷ ︸︸ ︷
∂G

∂y
(x2,y)−

3︷ ︸︸ ︷
∂G

∂x1

dx1
dy

−

4︷ ︸︸ ︷
∂G

∂y
(x1,y) (5.26)

The terms 2 and 4 in Eq. (5.26) are actually (the x2 is treated as a different variable)∫x2(y)
x1(y)

∂ f(x,y)
∂y

dx (5.27)

1
These papers can be read on-line at http://www.archive.org/details/papersonmechanic01reynrich.
2
This material is not necessary but is added here for completeness. This author find material just given so no

questions will be asked.

3
There was a suggestion to insert arbitrary constant which will be canceled and will a provide rigorous proof.

This is engineering book and thus, the exact mathematical proof is not the concern here. Nevertheless, if there will

be a demand for such, it will be provided.

http://www.archive.org/details/papersonmechanic01reynrich
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The first term (1) in equation (5.26) is

∂G

∂x2

dx2
dy

= f(x2,y)
dx2
dy

(5.28)

The same can be said for the third term (3). Thus this explanation is a proof the Leibniz rule.

The above “proof” is mathematical in nature and physical explanation is also provided.

Suppose that a fluid is flowing in a conduit. The intensive property, f is investigated or the

accumulative property, F. The interesting information that commonly needed is the change

of the accumulative property, F, with time. The change with time is

DF

Dt
=
D

Dt

∫
sys

ρ f dV (5.29)

For one dimensional situation the change with time is

DF

Dt
=
D

Dt

∫
sys

ρ fA(x)dx (5.30)

If two limiting points (for the one dimensional) aremovingwith a different coordinate system,

themasswill be different and it will not be a system. This limiting condition is the control vol-

ume forwhich someof themasswill leave or enter. Since the change is very short (differential),

the flow in (or out) will be the velocity of fluid minus the boundary at x1, Urn = U1 −Ub.

The same can be said for the other side. The accumulative flow of the property in, F, is then

Fin =

F1︷︸︸︷
f1 ρ

dx1
dt︷︸︸︷
Urn (5.31)

The accumulative flow of the property out, F, is then

Fout =

F2︷︸︸︷
f2 ρ

dx2
dt︷︸︸︷
Urn (5.32)

The change with time of the accumulative property, F, between the boundaries is

d

dt

∫
c.v.

ρ(x) fA(x)dA (5.33)

When put together it brings back the Leibniz integral rule. Since the time variable, t, is arbi-

trary and it can be replaced by any letter. The above discussion is one of the physical meaning

the Leibniz rule.

Reynolds Transport theorem is a generalization of the Leibniz rule and thus the same

arguments are used. The only difference is that the velocity has three components and only

the perpendicular component enters into the calculations.

D

DT

∫
sys

f ρdV =
d

dt

∫
c.v
f ρ dV +

∫
Sc.v.

f ρUrn dA

Reynolds Transport

(5.34)
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5.5 Examples For Mass Conservation
Several examples are provided to illustrate the topic.

Example 5.7: Mixing Streams Pipe Level: Simple
Liquid enters a circular pipe with a linear velocity profile as a function of the radius

with maximum velocity of Umax. After magical mixing, the velocity became uni-

form. Write the equation which describes the velocity at the entrance. What is the

magical averaged velocity at the exit? Assume no–slip condition.

Solution
The velocity profile is linear with radius. Additionally, later a discussion on relationship be-

tween velocity at interface to solid also referred as the (no) slip conditionwill be provided. This

assumption is good formost caseswith very few exceptions. It will be assumed that the velocity

at the interface is zero. Thus, the boundary condition isU(r = R) = 0 andU(r = 0) = Umax
Therefore the velocity profile is

U(r) = Umax

(
1−

r

R

)

Where R is radius and r is the working radius (for the integration). The magical averaged

velocity is obtained using the equation (5.14). For which∫R
0
Umax

(
1−

r

R

)
2 π r dr = Uave πR

2
(5.7.a)

The integration of the equation (5.7.a) is

Umax π
R2

6
= Uave πR

2 (5.7.b)

The solution of equation (b) results in average velocity as

Uave =
Umax

6
(5.7.c)

(2)(1)

U0

Edge of B
oundry Layer

L

Fig. 5.9 – Boundary Layer control mass.
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Example 5.8: Boundary Layer Level: Simple
Experiments have shown that a layer of liquid that attached itself to the surface and it

is referred to as boundary layer. The assumption is that fluid attaches itself to surface.

The slowed liquid is slowing the layer above it. The boundary layer is growing with

x because the boundary effect is penetrating further into fluid. A common bound-

ary layer analysis uses the Reynolds transform theorem. In this case, calculate the

relationship of the mass transfer across the control volume. For simplicity assume

slowed fluid has a linear velocity profile. Then assume parabolic velocity profile as

Ux(y) = 2U0

[
y

δ
+
1

2

(y
δ

)2]
(5.8.a)

and calculate themass transfer across the control volume. Compare the two different

velocity profiles affecting on the mass transfer.

Solution
Assuming the velocity profile is linear thus, (to satisfy the boundary condition) it will be

Ux(y) =
U0 y

δ
(5.8.b)

The chosen control volume is rectangular of L× δ. Where δ is the height of the boundary layer

at exit point of the flow as shown in Figure 5.9. The control volume has three surfaces thatmass

can cross, the left, right, and upper. No mass can cross the lower surface (solid boundary). The

situation is steady state and thus using equation (5.14) results in

x direction︷ ︸︸ ︷
in︷ ︸︸ ︷∫δ

0
U0 dy−

out︷ ︸︸ ︷∫δ
0

U0 y

δ
dy =

y direction︷ ︸︸ ︷∫L
0
Uxdx

(5.8.c)

It can be noticed that the convention used in this chapter of “in” as negative is not “followed.”

The integral simply multiply by negative one. The above integrals on the right hand side can

be combined as ∫δ
0
U0

(
1−

y

δ

)
dy =

∫L
0
Uxdx (5.8.d)

the integration results in

U0 δ

2
=

∫L
0
Uxdx (5.8.e)

or for parabolic profile∫δ
0
U0 dy−

∫δ
0
U0

[
y

δ
+
(y
δ

)2]
dy =

∫L
0
Uxdx (5.8.f)

or ∫δ
0
U0

[
1−

y

δ
−
(y
δ

)2]
dy = U0 (5.8.g)
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the integration results in

U0 δ

2
=

∫L
0
Uxdx (5.8.h)

Example 5.9: Jet Engine Level: Simple
Air flows into a jet engine at 5 kg/sec while fuel flow into the jet is at 0.1 kg/sec.
The burned gases leaves at the exhaust which has cross area 0.1m2 with velocity of
500m/sec. What is the density of the gases at the exhaust?

Solution
The mass conservation equation (5.14) is used. Thus, the flow out is ( 5 + 0.1 ) 5.1 kg/sec The
density is

ρ =
ṁ

AU
=

5.1 kg/sec
0.01m2 500m/sec

= 1.02kg/m3 (5.9.a)

Themass (volume) flow rate is given by direct quantity like x kg/sec. However sometime, the

mass (or the volume) is given by indirect quantity such as the effect of flow. The next example

deal with such reversed mass flow rate.

Example 5.10: Tank Filling Level: simple
The tank is filled by two valves which one filled tank in 3 hours and the second by

6 hours. The tank also has three emptying valves of 5 hours, 7 hours, and 8 hours.

The tank is 3/4 fulls, calculate the time for tank reach empty or full state when all the

valves are open. Is there a combination of valves that make the tank at steady state?

Solution
Easier measurement of valve flow rate can be expressed as fraction of the tank per hour. For

example valve of 3 hours can be converted to 1/3 tank per hour. Thus, mass flow rate in is

ṁin = 1/3+ 1/6 = 1/2tank/hour (5.10.a)

The mass flow rate out is

ṁout = 1/5+ 1/7+ 1/8 =
131

280
(5.10.b)

Thus, if all the valves are open the tank will be filled. The time to completely filled the tank is

1

4

1

2
−
131

280

=
70

159
hour (5.10.c)

The rest is under construction.
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Example 5.11: Cylinder Balloon Level: Intermediate
Inflated cylinder is supplied in its center with constant mass flow. Assume that the

gas mass is supplied in uniformed way ofmi [kg/m/sec]. Assume that the cylinder

inflated uniformly and pressure inside the cylinder is uniform. The gas inside the

cylinder obeys the ideal gas law. The pressure inside the cylinder is linearly propor-

tional to the volume. For simplicity, assume that the process is isothermal. Calculate

the cylinder boundaries velocity.

Solution
The applicable equation is

increase pressure︷ ︸︸ ︷∫
Vc.v

dρ

dt
dV +

boundary velocity︷ ︸︸ ︷∫
Sc.v.

ρUbdV =

in or out flow rate︷ ︸︸ ︷∫
Sc.v.

ρUrn dA
(5.11.a)

Every term in the above equation is analyzed but first the equation of state and volume to

pressure relationship have to be provided.

ρ =
P

R T
(5.11.b)

and relationship between the volume and pressure is

P = f πRc
2

(5.11.c)

Where Rc is the instantaneous cylinder radius. Combining the above two equations results in

ρ =
f πRc

2

R T
(5.11.d)

Where f is a coefficient with the right dimension. It also can be noticed that boundary velocity

is related to the radius in the following form

Ub =
dRc

dt
(5.11.e)

The first term requires to find the derivative of density with respect to time which is

dρ

dt
=
d

dt

(
f πRc

2

R T

)
=
2 f πRc

R T

Ub︷︸︸︷
dRc

dt

(5.11.f)

Thus the first term is∫
Vc.v

dρ

dt

2πRc︷︸︸︷
dV =

∫
Vc.v

2 f πRc

R T
Ub

2πRc dRc︷︸︸︷
dV =

4 f π2 Rc
3

3 R T
Ub

(5.11.g)

The integral can be carried when Ub is independent of the Rc
a
. The second term is

∫
Sc.v.

ρUbdA =

ρ︷ ︸︸ ︷
f πRc

2

R T
Ub

A︷ ︸︸ ︷
2 πRc =

(
f π3 Rc

2

R T

)
Ub

(5.11.h)
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substituting in the governing equation obtained the form of

f π2 Rc
3

R T
Ub +

4 f π2 Rc
3

3 R T
Ub = mi (5.11.i)

The boundary velocity is then

Ub =
mi

7 f π2 Rc
3

3 R T

G =
3mi R T

7 f π2 Rc
3

(5.11.j)

a
The proof of this idea is based on the chain differentiation similar to Leibniz rule. When the derivative

of the second part is dUb/dRc = 0.

Example 5.12: Balloon Supply Level: Simple
A balloon is attached to a rigid supply and is supplied by a constantmass rate,mi. As-

sume that gas obeys the ideal gas law. Assume that balloon volume is a linear function

of the pressure inside the balloon such as P = fv V . Where fv is a coefficient describ-

ing the balloon physical characters. Calculate the velocity of the balloon boundaries

under the assumption of isothermal process.

Solution
The question is more complicated than Example 5.12. The ideal gas law is

ρ =
P

R T

The relationship between the pressure and volume is

P = fv V =
4 fv πRb

3

3

The combining of the ideal gas law with the relationship between the pressure and volume

results

ρ =
4 fv πRb

3

3 R T

The applicable equation is∫
Vc.v

dρ

dt
dV +

∫
Sc.v.

ρ (Uc x̂+Ubr̂)dA =

∫
Sc.v.

ρUrn dA

The right hand side of the above equation is∫
Sc.v.

ρUrn dA = mi

The density change is

dρ

dt
=
12 fv πRb

2

R T

Ub︷ ︸︸ ︷
dRb
dt
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The first term is

∫Rb

0

̸=f(r)︷ ︸︸ ︷
12 fv πRb

2

R T
Ub

dV︷ ︸︸ ︷
4 π r2 dr =

16 fv π
2 Rb

5

3 R T
Ub

The second term is

∫
A

4 fv πRb
3

3 R T
Ub dA =

4 fv πRb
3

3 R T
Ub

A︷ ︸︸ ︷
4 πRb

2 =
8 fv π

2 Rb
5

3 R T
Ub

Subsisting the two equations of the applicable equation results

Ub =
1

8

mi R T

fv π2 Rb
5

Notice that first term is used to increase the pressure and second the change of the boundary.

Open Question: Answer must be received by April 15, 2010

The best solution of the following question will win 18 U.S. dollars and your name will

be associated with the solution in this book.

Example 5.13: Pressure Volume Level: Intermediate
Solve example 5.12 under the assumption that the process is isentropic. Also assume

that the relationship between the pressure and the volume is P = fv V
2
. What are

the units of the coefficient fv in this problem? What are the units of the coefficient

in the previous problem?

5.6 The Details Picture – Velocity Area Relationship
The integral approach is intended to deal with

the “big” picture. Indeed the method is used in

this part of the book for this purpose. How-

ever, there is very little written about the us-

ability of this approach to provide way to cal-

culate the average quantities in the control sys-

tem. Sometimes it is desirable to find the av-

eraged velocity or velocity distribution inside

a control volume. There is no general way to

provide these quantities. Therefore an exam-

ple will be provided to demonstrate the use of

this approach.

h`h`h`

AAA

AeAeAe

UeUeUe

yyyzzz
xxx

Fig. 5.10 – Control volume usage to calculate
local averaged velocity in three coordi-
nates.

Consider a container filled with liquid on which one exit opened and the liquid flows
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out as shown in Fig. 5.10. The velocity has three components in each of the coordinates under

the assumption that flow is uniform and the surface is straight
4
. The integral approached is

used to calculate the averaged velocity of each to the components. To relate the velocity in

the z direction with the flow rate out or the exit the velocity mass balance is constructed. A

similar control volume construction to find the velocity of the boundary velocity (height) can

be carried out. The control volume is bounded by the container wall including the exit of

the flow. The upper boundary is surface parallel to upper surface but at Z distance from the

bottom. The mass balance reads∫
V

dρ

dt
dV +

∫
A
Ubn ρdA+

∫
A
Urn ρdA = 0 (5.35)

For constant density (conservation of volume) equation
5
and (h > z) reduces to∫

A
Urn ρdA = 0 (5.36)

In the container case for uniform velocity Eq. (5.36) becomes

UzA = UeAe =⇒ Uz = −
Ae

A
Ue (5.37)

It can be noticed that the boundary is not moving and the mass inside does not change this

control volume. The velocity Uz is the averaged velocity downward.

The x component of velocity is obtained by

using a different control volume. The control

volume is shown in Figure 5.11. The boundary

are the container far from the flow exit with

blue line projection into page (area) shown in

the Figure 5.11. The mass conservation for con-

stant density of this control volume is

−

∫
A
Ubn ρdA+

∫
A
Urn ρdA = 0 (5.38)

AeUe

x
y

X control Volume

into the page

Y control Volume

into the page Ax
−

Ay
−

Fig. 5.11 – Control volume and system before
and after the motion.

Usage of control volume not included in the previous analysis provides the velocity at the

upper boundary which is the same as the velocity at y direction. Substituting into (5.38)

results in ∫
Ax

−

Ae

A
Ue ρdA+

∫
Ayz

Ux ρdA = 0 (5.39)

WhereAx
−
is the area shown the Figure under this label. The areaAyz referred to area into

the page in Figure 5.11 under the blow line. Because averaged velocities and constant density

4
The liquid surface is not straight for this kind of problem. However, under certain conditions it is reasonable to

assume straight surface which have been done for this problem.

5
The point where (z = h) the boundary term is substituted the flow in term.
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are used transformed equation (5.39) into

Ae

A
Ax

−Ue +Ux

Ayz︷ ︸︸ ︷
Y(x)h = 0 (5.40)

Where Y(x) is the length of the (blue) line of the boundary. It can be notice that the velocity,

Ux is generally increasing with x because Ax
−
increase with x.

The calculations for the y directions are similar to the one done for x direction. The

only difference is that the velocity has two different directions. One zone is right to the exit

with flow to the left and one zone to left with averaged velocity to right. If the volumes on

the left and the right are symmetrical the averaged velocity will be zero.

Example 5.14: Cylinder Velocity Profile Level: Intermediate
Calculate the velocity, Ux for a cross section of circular shape (cylinder).

Solution
The relationship for this geometry needed to be ex-

pressed. The length of the line Y(x) is

Y(x) = 2 r

√
1−

(
1−

x

r

)2
(5.14.a)

This relationship also can be expressed in the term of α

as

Y(x) = 2 r sinα (5.14.b)

Since this expression is simpler it will be adapted. When

the relationship between radius angle and x are

x = r(1− sinα) (5.14.c)

AeUe

x y
Ax

−

r
(r− x)

α

Y(x)

Fig. 5.12 – Circular cross sec-
tion for finding Ux and
various cross sections.

The area Ax
−
is expressed in term of α as

Ax
− =

(
α− 1

2 , sin(2α)
)
r2 (5.14.d)

Thus the velocity, Ux is

Ae

A

(
α− 1

2 sin(2α)
)
r2Ue +Ux 2 r sinαh = 0 (5.14.e)

Ux =
Ae

A

r

h

(
α− 1

2 sin(2α)
)

sinα
Ue

(5.14.f)

Averaged velocity is defined as

Ux =
1

S

∫
S
UdS (5.14.g)

Where hereS represent some length. The sameway it can be represented for angle calculations.

The value dS is r cosα. Integrating the velocity for the entire container and dividing by the

angle, α provides the averaged velocity.

Ux =
1

2 r

∫π
0

Ae

A

r

h

(
α− 1

2 sin(2α)
)

tanα
Ue r dα

(5.14.h)
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which results in

Ux =
(π− 1)

4

Ae

A

r

h
Ue (5.14.i)

Example 5.15: Circular Shape Level: Intermediate

Calculate the velocity, Uy for a cross

section of circular shape (cylinder).

What is the averaged velocity if only

half section is used. State your as-

sumptions and how it similar to the

previous example.

AeUe

x y

Ay
−

r

(r− x)

X(y)

Fig. 5.13 – y velocity for a circular shape

Solution
The flow out in the x direction is zero because symmetrical reasons. That is the flow field is

a mirror images. Thus, every point has different velocity with the same value in the opposite

direction.

The flow in half of the cylinder either the right or the left has non zero averaged velocity. The

calculations are similar to those in the previous to example 5.14. The main concept that must

be recognized is the half of the flow must have come from one side and the other come from

the other side. Thus, equation (5.40) modified to be

Ae

A
Ax

−Ue +Ux

Ayz︷ ︸︸ ︷
Y(x)h = 0 (5.41)

The integral is the same as before but the upper limit is only to π/2

Ux =
1

2 r

∫π/2
0

Ae

A

r

h

(
α− 1

2 sin(2α)
)

tanα
Ue r dα

(5.15.a)

which results in

Ux =
(π− 2)

8

Ae

A

r

h
Ue (5.15.b)

5.7 More Examples for Mass Conservation
Typical question about the relative velocity that appeared in many fluid mechanics exams is

the following.
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Example 5.16: Boat Jet Level: Simple

A boat travels at speed of 10m/sec up-

stream in a river that flows at a speed of

5m/s. The inboard engine uses a pump

to suck in water at the front Ain =

0.2m2 and eject it through the back of

the boat with exist area of Aout =

0.05m2. The water absolute (relative

to the ground) velocity leaving the back

Us = 5[m/sec]Us = 5[m/sec]Us = 5[m/sec]

Ub = 10[m/sec]Ub = 10[m/sec]Ub = 10[m/sec]U0 = 50[m/sec]U0 = 50[m/sec]U0 = 50[m/sec]

Fig. 5.14 – Schematic of the boat for ex-
ample 5.16.

is 50[m/sec], what are the relative velocities entering and leaving the boat and the

pumping rate?

Solution
The boat is assumed (implicitly is stated) to be steady state and the density is constant. How-

ever, the calculations have to be made in the frame of reference moving with the boat. The

relative jet discharge velocity is

Urout = 50+ 10 = 60[m/sec] (5.16.a)

The volume flow rate is then

Qout = AoutUrout = 60× 0.05 = 3[m3/sec] (5.16.b)

The flow rate at entrance is the same as the exit thus,

Urin =
Aout

Ain
Urout =

0.05
0.2

60 = 15.0[m/sec] (5.16.c)

In this case (the way the question is phrased), the velocity of the river has no relevance.

Example 5.17: Boat Absolute Velocity Level: Simple
The boat from Example 5.16 travels downstream with the same relative exit jet speed

(60m/s). Calculate the boat absolute velocity (to the ground) in this case, assume that

the areas to the pump did not change. Is the relative velocity of the boat (to river) the

same as before? If not, calculate the boat relative velocity to the river. Assume that

the river velocity is the same as in the previous example.

Solution
The relative exit velocity of the jet is 15[m/sec] hence the flow rate is

Qout = AoutUrout = 60× 0.05 = 3[m3/sec] (5.17.a)
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The relative (to the boat) velocity into boat is same as before (15m/sec). The absolute velocity

of boat (relative to the ground) is

Uboat = 15+ 5 = 20[m/sec] (5.17.b)

The relative velocity of boat to the river is

U
relative to river

= 20− 5 = 15[m/sec] (5.17.c)

The relative exit jet velocity to the ground

Uin = 60− 15 = 45[m/sec] (5.17.d)

The boat relative velocities are different and depends on the directions.

Example 5.18: Mixing Chamber Streams Level: simple
Liquid A enters a mixing device depicted in at 0.1 [kg/s]. In same time liquid B en-

ter the mixing device with a different specific density at 0.05 [kg/s]. The density of

liquid A is 1000[kg/m3] and liquid B is 800[kg/m3]. The results of the mixing is

a homogeneous mixture. Assume incompressible process. Find the average leaving

velocity and density of the mixture leaving through the 2O [cm] diameter pipe. If the

mixing device volume is decreasing (as a piston pushing into the chamber) at rate of

.002 [m3/s], what is the exit velocity? State your assumptions.

Solution
In the first scenario, the flow is steady state and equation (5.12) is applicable

ṁA + ṁB = Qmix ρmix =⇒= 0.1+ 0.05 = 0.15[m] (5.18.a)

Thus in this case, since the flow is incompressible flow, the total volume flow in is equal to

volume flow out as

Q̇A + Q̇B = Q̇mix =⇒=
ṁA
ρA

+
ṁA
ρA

=
0.10
1000

+
0.05
800

Thus the mixture density is

ρmix =
ṁA + ṁB
ṁA
ρA

+
ṁB
ρB

= 923.07[kg/m3]
(5.18.b)

The averaged velocity is then

Umix =
Qmix
Aout

=

ṁA
ρA

+
ṁB
ρB

π 0.012
=
1.625
π

[m/s]
(5.18.c)

In the case that a piston is pushing the exit density could be changed and fluctuated depending

on the location of the piston. However, if the assumption of well mixed is still holding the



5.7. MORE EXAMPLES FOR MASS CONSERVATION 203

End of Ex. 5.18
exit density should not affected. The term that should be added to the governing equation the

change of the volume. So governing equation is (5.16).

−Qb ρmix︷ ︸︸ ︷
UbnAρb =

in︷ ︸︸ ︷
ṁA + ṁB−

out︷ ︸︸ ︷
ṁmix

(5.18.d)

That is the mixture device is with an uniform density

−0.002[m/sec] 923.7[kg/m3] = 0.1+ 0.05−mexit (5.18.e)

mexit = 1.9974[kg/s]

Example 5.19: Syringe Withdrawn Level: Simple
A syringe apparatus is being use to withdrawn blood

6
. . If the piston is withdrawn at

O.01 [m/s]. At that stage air leaks in around the piston at the rate 0.000001 [m3/s].

What is the average velocity of blood into syringe (at the tip)? The syringe radios is

0.005[m] and the tip radius is 0.0003 [m].

Solution
The situation is unsteady state (in the instinctive c.v. and coordinates) since the mass in the

control volume (the syringe volume is not constant). The chose of the control volume and

coordinate system determine the amount of work. This part of the solution is art. There are

several possible control volumes that can be used to solve the problem. The two “instinctive

control volumes” are the blood with the air and the whole volume between the tip and syringe

plunger (piston). The first choice seem reasonable since it provides relationship of the total

to specific material. In that case, control volume is the volume syringe tip to the edge of the

blood. The second part of the control volume is the air. For this case, the equation (5.16) is

applicable and can be written as

UtipAtip��ρb = UbAs��ρb (5.19.a)

In the air side the same equation can used. There several coordinate systems that can used,

attached to plunger, attached to the blood edge, stationary. Notice that change of the volume

do not enter into the calculations because the density of the air is assumed to be constant. In

stationary coordinates two boundaries are moving and thus

moving b.c.︷ ︸︸ ︷
UplungerAs ρa −UbAs ρb =

in/out︷ ︸︸ ︷
ρaQ̇in

(5.19.b)

In the case, the choice is coordinates moving with the plunger, the relative plunger velocity is

zero while the blood edge boundary velocity is Uplunger −Ub. The air governing equation

is

blood b. velocity︷ ︸︸ ︷(
Uplunger −Ub

)
As ρb =

in/out︷ ︸︸ ︷
ρaQ̇in

(5.19.c)

In the case of coordinates are attached to the blood edge similar equation is obtained. At this

stage, there are two unknowns, Ub and Utip, and two equations. Using equations (5.19.a) and



204 CHAPTER 5. MASS CONSERVATION
End of Ex. 5.19

(5.19.c) results in

Ub = Uplunger −
ρaQin
As ρb

Utip =
UbAs

Atip
=

(
Uplunger −

ρaQin
As ρb

)
As

Atip

(5.19.d)

Example 5.20: Apparatus Water–Jet Level: Simple
The apparatus depicted in Figure 5.15 is referred in the literature some-

time as the water–jet pump. In this device, the water (or another liq-

uid) is pumped throw the inner pipe at high velocity. The outside pipe

is lower pressure which suck the water (other liquid) into device. Later

the two stream are mixed. In this ques-

tion the what is the mixed stream aver-

aged velocity with U1 = 4.0[m/s] and
U2 = 0.5[m/s]. The cross section inside

and outside radii ratio is r1/r2 = 0.2. Cal-
culate the mixing averaged velocity.

A1A1A1

A2A2A2

Fig. 5.15 – Water jet Pump.

Solution
The situation is steady state and which density of the liquid is irrelevant (because it is the same

at the inside and outside).

U1A1 +U2A2 = U3A3 (5..d)

The velocity is A3 = A1 +A2 and thus

U3 =
U1A1 +U2A2

A3
= U1

A1
A3

+U2

(
1−

A1
A3

)
(5..e)

Example 5.21: Centrifugal Pump Level: Basic
A centrifugal pump is a device that convert external energy to increase of pres-

sure (energy). For simplicity assume that the centrifugal pump is a disk with

thickness of of dp = 0.03[m]. The liquid enter to impeller eye at rate of

6
The author still remember his elementary teacher that was so appalled by the discussion on blood piping which

students in an engineering school were doing. He gave a speech about how inhuman these engineering students are.

I hope that no one will have teachers like him. Yet, it can be observed that bioengineering is “cool” today while in 40

years ago is a disgusting field.
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0.002 [m3/sec]. For this example ig-

nore the structure (impeller volume)

inside the pump. What is the average

velocity of along the radial direction

as function of r see Fig. 5.16 at specific

time a dye is introduced at impeller

eye. Calculate the time it takes to the

dye to travel to from the edge of the

inlet of impeller eye to outlet.

Fig. 5.16 – Schematic for a centrifugal pump.
to be replaced

Solution

For the solution, it is assumed that the veloc-

ity has only component in the radial direction.

This assumption is really not required if there

is no circulation and eddy flow. The conserva-

tion of the mass requires that the flow into ev-

ery cross section must be the same. The mass

conservation can be written as

ṁ = ρAUr = ρ 2π r dp (5.21.a)

where r is any radius in pump as the velocity

will be

Ur =
ṁ

2 π r dp ρ
=

Q

2π rdp
(5.21.b)

∆r

r0

R

r

Fig. 5.17 – schematic of single stage cen-
trifugal pump.

The flow rate through pump eye is constant and hence it can be written as the following

Q = AUf = π r0
2Uf (5.21.c)

where Uf is the (average) entrance velocity to the pump at the pump eye. The velocity inside

the pump is

U =
dr

dt

Where r is the distance from the center of the pump which starts from r0. Notice that this

equation is not valid inside the pump’s eye. Rearranging the velocity definition as

dt =
dr

U
(5.21.d)
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Inside the pump, the velocity is defined as a function of the radius Eq. (5.21.b). As usual,

Eq. (5.21.d) is integrated to be

∫t
t0

dt =

∫r
r0

dr

U
=

∫
r

r0

dr

Q

2π rdp

=
πdp

Q

∫r
r0

2 r dr (5.21.e)

the results of the integration is

∆t =
πdp

Q

(
r2 − r0

2
)

(5.21.f)

The time increases parabolically with the radius. This question was originated from industrial

process where the time to create a specific color was important.

Advance material can be skipped

This discussion appears here because the size of Dimensional Analysis chapter.

This solution can be written as

∆t τ0
τ0

=
πdp r0

2

Q



r2

r0
2︸︷︷︸

R̄2

−1


 (5.21.g)

Where τ0 is characteristic time is defined as ∆r/Uf or (R− r0) /Uf. This parameter repre-

sents the time which elapsed when the liquid velocity pump eye would continue throughout

the pump. Eq. (5.21.g) can further rearranged as

∆t

τ0
=

πdp r0
2

Q︸︷︷︸
πr02Uf

τ0

(
R̄2 − 1

)
= �πdp��r0

2
��Uf

�π��r0
2 ∆r��Uf

(
R̄2 − 1

)
(5.21.h)

which can be written as

τ =
dp

∆r

(
R̄2 − 1

)
(5.21.i)

Where here τ = ∆t
τ0

is the relative time

End Advance material

Example 5.22: Eye Flow Level: Intermediate
As opposed to example (5.21.a) this question was originated from the medical field

(ophthalmology) and yet the similar idea appear. Assume that an eye can be approx-

imated as a sphere (very rough approximation yet it provide reasonable approxima-

tion). For this model, it is assumed that tears are originated at the center of the eye

and leave at the surface (not a proper assumption just for practice the concepts. It

is better assumption if medication is injected at the center). The dimension of the

eye
7
23[mm]. If the velocity of tears at the surface is 0.00001 [m/sec] what is flow rate
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supply. If medicine/or dye is injected at the center of the eye how long it will take to

reach to the eye surface.

Solution
The mass conservation of the flow rate and assuming the density is constant as

Q = AU = 4 π r2U (5.22.a)

The flow can easily can be calculated as

Q = 4 πR2U = 4× π× 0.01152 × 0.00001 = 1.662× e−8[m3/sec] (5.22.b)

Eq. (5.22.a) can be rearranged and the velocity can be expressed as

U =
dr

dt
=

Q

4π r2
(5.22.c)

?? is valid after certain range where velocity can does not have any component of the injection.

For practical purposes, it is assume to be zero because there is no clear boundary. ?? is written
as

dt =
dr

Q

4π r2

=
4 π r2 dr

Q (5.22.d)

?? is integrated to be

t =
4π r3

3Q
=
Veye

Q
(5.22.e)

The results are simply could guess from the question and no complicate analysis was required.

The analysis provide only the velocity in the eye.

Example 5.23: Reynolds Ratio Level: Basic
This question was inspired by a question from GATE (2007). Reynolds number is

defined as

Re =
ρU r

µ

where ρ is density, U is the velocity, r is radius µ is the viscosity of the fluid. Fluid

flows in two pipes with same flow rate the radius ratio is r1 = 0.5 r2 what is the

Reynolds number ratio? State your assumptions.

Solution
In order to solve the question several assumptions have to be made. The temperature and

density are same and fluid incompressible substance. For these assumptions the density ρ =

7
Inessa Bekerman, Paul Gottlieb, and Michael Vaima, "Variations in Eyeball Diameters of the Healthy Adults",

Journal of Ophthalmology Volume 2014, ID 503645.
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constnat and viscosity µ = constant. The velocity ratio from from the flow rate ratio.

A1U1 = A2U2 −−−−−→ U1
U2

=
A2
A1

(5.23.a)

The Reynolds numbers ratio can be obtained from the reverse area ratio.

Re1
Re2

=
A2
A1

=
r2
2

r1
2
= 0.25 (5.42)

The following text is related to next several examples.

The gap between a moving circular plate and

a stationary surface is being continuously re-

duced, as the circular plate comes down at a

uniform speed v towards the stationary bot-

tom surface, as shown in the figure. In the

process, the fluid contained between the two

plates flows out radially. The fluid is assumed

to be incompressible and inviscid.

v

Moving circular plate

Stationary surface

h

r

R

Fig. 5.18 – Moving plate toward a fixed sur-
face.

Example 5.24: Moving Plates Level: GATE 2008
The radial velocity vr at any radius r when the gap width is h, is

(a)

v r

2 h
(b)

v r

h

(c)

2 v r

h
(d)

vh

r

Solution
The continuity (mass conservation) of the control volume. Eq. (5.10) can be reduced due to

constant density in this case to

Aρ
dV

dt
= Aρ

∫
A
UrndA = UA (5.24.a)

The integral is replaced by the simple multiplication because the velocity is uniform. At the

case at hand the change of volume is results in the flow out.

Aπ r
2 v = 2 Aπ rh vr (5.24.b)

Hence

vr =
v r

2 h
(5.24.c)



5.7. MORE EXAMPLES FOR MASS CONSERVATION 209

End of Ex. 5.24
Answer is (a).

Example 5.25: caption Level: GATE 2008
The radial component of the fluid acceleration at r = R is

(a)

3 v2 R

4h2
(b)

v2 R

4h2

(c)

v2 R

2h2
(d)

v2 h

4R2

Solution
IfH denote the initial level the distance between the two plates, after some time t the distance

(height) the plates is height h, then

h = H− v t (5.25.a)

Thus the radial velocity can be used as Eq. (5.24.c) to read

vr =
v r

2 (H− v t)
(5.25.b)

The radial acceleration is

ar =
dvr

dt
(5.25.c)

Taking the derivative of Eq. (5.25.b)

ar =
d

dt

(
v r

2 (H− v t)

)
(5.25.d)

which is

ar =

(
v r

2 (H− v t)2

)
(−)(−)v =

v2 r

2 (H− v t)2
(5.25.e)

At r = R,

ar =
v2 R

2


H− v t︸ ︷︷ ︸

h



2

(5.25.f)

In a final form Eq. (5.25.f) becomes

ar =
v2 R

2h2
(5.25.g)

The answer is (c).
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Example 5.26: Continuity Equation Condition Level: GATE
For the continuity equation given by ∇⃗ · ~V = 0 to be valid, where is the velocity

vector, which one of the following is a necessary condition?

(a) Steady flow

(b) Irrotational flow

(c) Inviscid flow

(d) Steady and incompressible flow

Solution
The above equation required that the derivative with time zero (hence steady state) and ρ =

constant so that the density is out of the equation.

Thus, the answer is (d). The full continuity is
∂ρ
∂t + ∇⃗ ·

(
ρV⃗
)
= 0



6
Momentum Conservation for Control

Volume

6.1 Momentum Governing Equation
6.1.1 Introduction to Continuous

In the previous chapter, the Reynolds Transport Theorem (RTT) was applied to mass conser-

vation. Mass is a scalar (quantity without magnitude). This chapter deals with momentum

conservation which is a vector. The Reynolds Transport Theorem (RTT) is applicable to any

quantity and the discussion here deals with forces that acting on the control volume. New-

ton’s second law for a single body is as the following

FFF =
d(mUUU)

dt
(6.1)

It can be noticed that bold notation for the velocity is UUU (and not U) to represent that the

velocity has a direction. For several bodies (n), Newton’s law becomes

n∑
i=1

FFFi =

n∑
i=1

d(mUUU)i
dt

(6.2)

211
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The fluid can be broken into infinitesimal elements which turn the above equation (6.2) into

a continuous form of small bodies which results in

n∑
i=1

FFFi =
D

Dt

∫
sys

UUU

element mass︷︸︸︷
ρdV (6.3)

Note that the notation D/Dt is used and not the regular operator d/dt to signify that the

operator refers to a derivative of the system. The Reynold’s Transport Theorem (RTT) has to

be used on the right hand side of Eq. (6.3).

6.1.2 External Forces
First, the terms on the left hand side, or the forces, have to be discussed. The forces, excluding

the external forces, are divided to the body forces, and the surface forces as the following

FFFtotal = FFFb +FFFs (6.4)

In this book (at least in this discussion), the main body force is the gravity. The gravity acts

on all the system elements. The total gravity force is

∑
FFFb =

∫
sys

ggg

element mass︷︸︸︷
ρdV (6.5)

which acts through the mass center towards the center of earth. After infinitesimal time the

gravity force acting on the system is the same for control volume, hence,∫
sys

gggρdV =

∫
cv
gggρdV (6.6)

The integral yields a force trough the center mass which has to be found separately.

In this chapter, the surface forces are di-

vided into two categories: one perpendicular

to the surface and one with the surface direc-

tion (in the surface plane see Figure 6.1.). Thus,

it can be written as∑
FFFs =

∫
c.v.

SnSnSn dA+

∫
c.v.

τdA (6.7)

Where the surface “force”, SnSnSn, is in the

n̂̂n̂nwith the
surface

with the
surface
with the
surface perpendicular

to the surface

perpendicular
to the surface
perpendicular
to the surface

Fig. 6.1 – The explanation for the direction
relative to surface perpendicular and
with the surface.

surface direction, and τ are the shear stresses perpendicular to the surface. The surface

“force”, SnSnSn, is made out of two components, one due to the viscosity (solid body see also

discussion page number 302) and two consequence of the fluid pressure. Here for simplicity,

only the pressure component is used which is reasonable for most situations. Thus,

SSSn = −PPP n̂+

∼0︷︸︸︷
SνSνSν (6.8)
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Where SνSνSν is perpendicular stress due to viscosity. Again, n̂ is an unit vector outward of

element area and the negative sign is applied so that the resulting force acts on the body.

6.1.3 Momentum Governing Equation
The right hand side, according Reynolds Transport Theorem (RTT), is

D

Dt

∫
sys

ρUUUdV =
t

dt

∫
c.v.

ρUUUdV +

∫
c.v.

ρUUUUUUrndA (6.9)

The liquid velocity, UUU, is measured in the frame of reference and UUUrn is the liquid relative

velocity to boundary of the control volume measured in the same frame of reference.

Thus, the general form of the momentum equation without the external forces is

∫
c.v.

gggρdV −

∫
c.v.

PPP dA+

∫
c.v.

τ ·dAdAdA

=
t

dt

∫
c.v.

ρUUUdV+

∫
c.v.

ρUUUUrnUrnUrn dV

Integral Momentum Equation

(6.10)

With external forces equation (6.10) is transformed to

∑
FFFext +

∫
c.v.

gggρdV−

∫
c.v.

PPP ·dAdAdA+

∫
c.v.

τ ·dAdAdA =

t

dt

∫
c.v.

ρUUUdV +

∫
c.v.

ρUUUUrnUrnUrndV

Integral Momentum Equation & External Forces

(6.11)

The external forces, Fext, are the forces resulting from support of the control volume by non–

fluid elements. These external forces are commonly associated with pipe, ducts, supporting

solid structures, friction (non-fluid), etc.

Equation (6.11) is a vector equation which can be broken into its three components. In

Cartesian coordinate, for example in the x coordinate, the components are

∑
Fx +

∫
c.v.

(
ggg · î

)
ρdV −

∫
c.v.

PPP cos θx dA+

∫
c.v.

τx ·dAdAdA =

t

dt

∫
c.v.

ρUUUx dV +

∫
c.v.

ρUUUx ·UUUrndA (6.12)

where θx is the angle between n̂ and î or the resulting of (n̂ · î).

6.1.4 Momentum Equation in Acceleration System
For accelerate system, the right hand side has to include the following acceleration

aaaacc = ω× (rrr×ω) + 2U×ω+ rrr× ω̇−aaa0 (6.13)
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Where rrr is the distance from the center of the frame of reference and the add force is

FFFacc =

∫
Vc.v.

aaaacc ρdV (6.14)

Integral of Uniform Pressure on Body
In this kind of calculations, it common to obtain a situation where one of the

term will be an integral of the pressure over the body surface. This situation

is a similar to the idea that was shown in Section 4.6. In this case the resulting

force due to the pressure is zero to all directions.

6.1.5 Momentum Equation For Steady State and Uniform Flow

The momentum equation can be simplified for the steady state condition as it was shown in

example 6.3. The unsteady term (where the time derivative) is vanished.

∑
FFFext +

∫
c.v.

gggρdV −

∫
c.v.

PPP dA+

∫
c.v.

τdA =

∫
c.v.

ρUUUUrndA

Integral Steady State Momentum Equation

(6.15)

6.1.5.1 Momentum Equation for Constant Pressure and Frictionless Flow

Another important sub category of simplification deals with flow under approximation of

the frictionless flow and uniform pressure. These kind of situations raised when the friction

(forces) is small compared to the kinetic momentum change (high Re number). Additionally,

in these situations, the flow is exposed to the atmosphere and thus (almost) uniform pressure

surrounding the control volume. In this situation, the mass flow rate in and out are equal.

Thus, equation (6.15) is further reduced to

FFF =

∫
out

ρUUU

Urn︷ ︸︸ ︷
(UUU · n̂)dA−

∫
in
ρUUU

Urn︷ ︸︸ ︷
(UUU · n̂)dA (6.16)

In situations where the velocity is provided and known (remember that the density is con-

stant), the integral can be replaced by

FFF = ṁUUUo − ṁUUUi (6.17)

The average velocity is related to the velocity profile by the following integral

U
2
=
1

A

∫
A
[U(r)]2 dA (6.18)

Equation (6.18) is applicable to any velocity profile and any geometrical shape.
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Example 6.1: average Velocity for Parabolic Level: Basic
Calculate the average velocity for the given parabolic velocity profile for a circular

pipe.

Solution
The velocity profile is

U
( r
R

)
= Umax

[
1−

( r
R

)2]
(6.1.a)

Substituting equation (6.1.a) into equation (6.18)

U
2
=

1

2 πR2

∫R
0
[U(r)]2 2 π r dr (6.1.b)

results in

U
2
= (Umax)

2
∫1
0

(
1− r̄2

)2
r̄dr̄ =

1

6
(Umax)

2
(6.1.c)

Thus,

U =
Umax√

6
(6.1.d)

F

y
Uo

Ui

x
θ

Fig a. Schematics of area impinged by a jet for

example 6.2.
Fig b. Schematics of maximum angle for impinged

by a jet.

Fig. 6.2 – Schematics of area impinged by a jet and angle effects.

Example 6.2: Area Jet Level: Simple
A jet is impinging on a stationary surface by changing only the jet direction (see Figure

6.2). Neglect the friction, calculate the force and the angle which the support has to

apply to keep the system in equilibrium. What is the angle for which maximum force

will be created?
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Solution
Eq. (6.11) can be reduced, because it is a steady state, to

FFF =

∫
out

ρUUU

Urn︷ ︸︸ ︷
(UUU · n̂)dA−

∫
in
ρUUU

Urn︷ ︸︸ ︷
(UUU · n̂)dA = ṁUoUoUo − ṁUiUiUi

(6.2.a)

It can be noticed that even though the velocity change direction, the mass flow rate remains

constant. Eq. (6.2.a) can be explicitly written for the two coordinates. The equation for the x

coordinate is

Fx = ṁ (cos θUo −Ui) (6.2.b)

or since Ui = Uo
Fx = ṁUi (cos θ− 1) (6.2.c)

It can be observed that the maximum force, Fx occurs when cos θ = π. It can be proved by

setting dFx/dθ = 0 which yields θ = 0 a minimum and the previous solution. Hence,

Fx|max = −2 ṁUi (6.2.d)

and the force in the y direction is

Fy = ṁUi sin θ (6.2.e)

the combined forces are

Ftotal =

√
Fx
2 + Fy

2 = ṁUi

√
(cos θ− 1)2 + sin2 θ (6.2.f)

Which results in

Ftotal = ṁUi sin (θ/2) (6.2.g)

with the force angle of

tanϕ = π−
Fy

Fx
=
π

2
−
θ

2
(6.2.h)

For angle between 0 < θ < π the maximum occur at θ = π and the minimum at θ ∼ 0. For

small angle analysis is important in the calculations of flow around thin wings.
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Example 6.3: Forces On Nozzle Level: Simple

Liquid flows through a symmetrical noz-

zle as shown in the Figure 6.3 with a mass

flow rate of 0.01 [gk/sec]. The entrance

pressure is 3[Bar] and the entrance veloc-

ity is 5 [m/sec]. The exit velocity is uni-

form but unknown. The exit pressure is

1[Bar]. The entrance area is 0.0005[m2]

and the exit area is 0.0001[cm2]. What is

the exit velocity? What is the force act-

ing the nozzle? Assume that the density is

constant ρ = 1000[kg/m3] and the vol-

ume in the nozzle is 0.0015 [m3].

U2 =?U2 =?U2 =?

ZZZ

A2 = 10
[
cm2

]
A2 = 10

[
cm2

]
A2 = 10

[
cm2

]
P2 = 1 [Bar]P2 = 1 [Bar]P2 = 1 [Bar]

P1 = 3 [Bar]P1 = 3 [Bar]P1 = 3 [Bar]

A1 = 50
[
cm2

]
A1 = 50

[
cm2

]
A1 = 50

[
cm2

]

U1 = 5 [m/sec]U1 = 5 [m/sec]U1 = 5 [m/sec]

Fig. 6.3 – Nozzle schematic for the dis-
cussion on the forces and for exam-
ple 6.3.

Solution
The chosen control volume is shown in Figure 6.3. First, the velocity has to be found. This

situation is a steady state for constant density. Then the mass conservation requires that

A1U1 = A2U2

and after rearrangement, the exit velocity is

U2 =
A1
A2

U1 =
0.0005
0.0001

× 5 = 25[m/sec]

Equation (6.12) is applicable but should be transformed into the z direction which is

∑
Fz +

∫
c.v.

ggg · k̂ ρ dV +

∫
c.v.

PPP cos θz dA+

∫
c.v.

τz dA =

=0︷ ︸︸ ︷
t

dt

∫
c.v.

ρUUUz dV +

∫
c.v.

ρUUUz ·UUUrndA

The control volume does not cross any solid body (or surface) there is no external forces.

Hence,

=0︷ ︸︸ ︷∑
Fz+

∫
c.v.

ggg · k̂ ρ dV +

liquid

surface︷ ︸︸ ︷∫
c.v.

PPP cos θz dA+

forces on

the nozzle

Fnozzle︷ ︸︸ ︷
solid

surface︷ ︸︸ ︷∫
c.v.

PPP cos θz dA+

∫
c.v.

τz dA =

∫
c.v.

ρUUUz ·UUUrn dA (6.19)
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All the forces that act on the nozzle are combined as∑
Fnozzle +

∫
c.v.

ggg · k̂ ρ dV +

∫
c.v.

PPP cos θz dA =

∫
c.v.

ρUUUz ·UUUrndA (6.3.a)

The second term or the body force which acts through the center of the nozzle is

FFFb = −

∫
c.v.

ggg · n̂ ρ dV = −gρVnozzle

Notice that in the results the gravity is not bolded since only the magnitude is used. The part

of the pressure which act on the nozzle in the z direction is

−

∫
c.v.

PdA =

∫
1
PdA−

∫
2
PdA = PA|1 − PA|2

The last term in equation (6.3.a) is∫
c.v.

ρUUUz ·UUUrndA =

∫
A2

U2 (U2)dA−

∫
A1

U1 (U1)dA

which results in ∫
c.v.

ρUUUz ·UUUrndA = ρ
(
U2
2A2 −U1

2A1

)

Combining all transform Eq. (6.3.a) into

Fz = −gρVnozzle + PA|2 − PA|1 + ρ
(
U2
2A2 −U1

2A1

)
(6.3.b)

Fz = 9.8× 1000×

6.2 Momentum Equation Application

Momentum Equation Applied to Propellers

The propeller is a mechanical devise that is used to increase the fluidmomentum. Many times

it is used for propulsion purposes of airplanes, ships and other devices (thrust) as shown in

Figure 6.4. The propeller can be stationary like in cooling tours, fan etc. The other common

used of propeller is mostly to move fluids as a pump.

The propeller analysis of unsteady is complicated due to the difficulty in understand-

ing the velocity field. For a steady state the analysis is simpler and used here to provide an

example of steady state. In the Figure 6.4 the fluid flows from the left to the right. Either it

is assumed that some of the fluid enters into the container and fluid outside is not affected

by the propeller. Or there is a line (or surface) in which the fluid outside changes. only the

flow direction This surface is called slip surface. Of course it is only approximation but is

provided a crude tool. Improvements can be made to this analysis. Here, this analysis is used

for academic purposes.
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As first approximation,

the pressure around control vol-

ume is the same. Thus, pressure

drops from the calculation. The

one dimensional momentum

equation is reduced

F = ρ
(
U2
2 −U1

2
)

(6.20)

Combining the control volume

between points 1 and 3with (note

that there are no external forces)

with points 4 and 2 results in

U2
U1

Liquid

1
3 4 2

Fig. 6.4 – Propeller schematic to explain the change of mo-
mentum due to velocity.

ρ
(
U2
2 −U1

2
)
= P4 − P3 (6.21)

This analysis provide a way to calculate the work needed to move this propeller. Note that

in this analysis it was assumed that the flow is horizontal that z1 = z2 and/or the change is

insignificant.

Example 6.4: Fish Moving in Infinite Medium Level: Intermediate
Fish moves in infinite medium. To analyze the flow around the fish the researchers

assume that the momentum is conserved by arguing that “If we consider the body–

fluid system, no external forces or moments are present and therefore the linear and

angular momenta are conserved” (Paniccia, Graziani, Lugni, and Piva 2022, p. 918). Is

that appropriate assumption to ignore the external forces. The researchers utilize the

stationary control volume. Under what conditions this assumption is appropriate.

Solution

Jet Propulsion

Jet propulsion is a mechanism in which the airplanes and other devices are propelled.

Essentially, the air is sucked into engine and with an addition heating (burning fuel) the ve-

locity is increased. Further increase of the exit area with the increased of the burned gases

further increase the thrust. The analysis of such device in complicated and there is a whole

class dedicated for such topic in many universities. Here, a very limited discussion related to

the steady state is offered.

The difference between the jets propulsion and propellers is based on the energy sup-

plied. The propellers are moved by a mechanical work which is converted to thrust. In Jet

propulsion, the thermal energy is converted to thrust. Hence, this direct conversion can be,
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and is, in many case more efficient. Furthermore, as it will be shown in the Chapter on com-

pressible flow it allows to achieve velocity above speed of sound, a major obstacle in the past.

The inlet area and exit area are different for most jets and if the mass of the fuel is

neglected then

F = ρ
(
A2U2

2 −A1U1
2
)

(6.22)

An academic example to demonstrate how a steady state calculations are done for a

moving control volume.

Example 6.5: Sled Jet Level: Simple
A sled toy shown in Figure 6.5 is pushed by liquid jet. Calculate the friction force

on the toy when the toy is at steady state with velocity, U0. Assume that the jet is

horizontal and the reflecting jet is vertical. The

velocity of the jet is uniform. Neglect

the friction between the liquid (jet)

and the toy and between the air and

toy. Calculate the absolute velocity of

the jet exit. Assume that the friction

between the toy and surface (ground)

is relative to the vertical force. The dy-

namics friction is µd.

control

volume

x

y

Uj
U0

1

2

Ff

Fig. 6.5 – Toy Sled pushed by the liquid jet in
a steady state for example 6.5.

Solution
The chosen control volume is attached to the toy and thus steady state is obtained. The frame

of reference is moving with the toy velocity,UUU0. The applicable mass conservation equation

for steady state is

A1U1 = A2U2

The momentum equation in the x direction is

FFFf +

∫
c.v.

gggρdV −

∫
c.v.

PPP dA+

∫
c.v.

τdA =

∫
c.v.

ρUUUUUUrndV (6.5.a)

The relative velocity into the control volume is

UUU1j =
(
Uj −U0

)
x̂

The relative velocity out the control volume is

UUU2j =
(
Uj −U0

)
ŷ

The absolute exit velocity is

UUU2 = U0x̂+
(
Uj −U0

)
ŷ
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End of Ex. 6.5
For small volume, the gravity can be neglected also because this term is small compared to

other terms, thus ∫
c.v.

gggρdV ∼ 0

The same can be said for air friction as ∫
c.v.

τdA ∼ 0

The pressure is uniform around the control volume and thus the integral is∫
c.v.

PPP dA = 0

The control volume was chosen so that the pressure calculation is minimized.

The momentum flux is ∫
Sc.v.

ρUxUirndA = AρU1j
2

(6.5.b)

The substituting (6.5.b) into equation (6.5.a) yields

Ff = AρU1j
2

(6.5.c)

The friction can be obtained from the momentum equation in the y direction

mtoy g+AρU1j
2 = Fearth

According to the statement of question the friction force is

Ff = µd

(
mtoy g+AρU1j

2
)

The momentum in the x direction becomes

µd

(
mtoy g+AρU1j

2
)
= AρU1j

2 = Aρ
(
Uj −U0

)2

The toy velocity is then

U0 = Uj −

√
µdmtoy g

Aρ (1− µd)

Increase of the friction reduce the velocity. Additionally larger toy mass decrease the velocity.



222 CHAPTER 6. MOMENTUM CONSERVATION

6.2.1 Momentum for Unsteady State and Uniform Flow

The main problem in solving the unsteady

state situation is that the control volume

is accelerating. A possible way to solve

the problem is by expressing the terms

in an equation (6.10). This method is

cumbersome in many cases. Alternative

method of solution is done by attaching the

frameof reference to the accelerating body.

One such example of such idea is associ-

ated with the Rocket Mechanics which is

present here.

mf

mR

Ug

FR

UR

Fig. 6.6 –Arocketwith amoving control volume.

6.2.2 Momentum Application to Unsteady State

Rocket Mechanics

A rocket is a devise similar to jet propulsion. The difference is the fact that the oxidant is

on board with the fuel. The two components are burned and the gases are ejected through

a nozzle. This mechanism is useful for specific locations because it is independent of the

medium though which it travels. In contrast to other mechanisms such as jet propulsion

which obtain the oxygen from the medium which they travel the rockets carry the oxygen

with it. The rocket is accelerating and thus the frame for reference is moving the with the

rocket. The velocity of the rocket in the rocket frame of reference is zero. However, the

derivative with respect to time, dUUU/dt ̸= 0 is not zero. The resistance of the medium is

Denote as FR. The momentum equation is

FR︷ ︸︸ ︷∫
c.v.

τdA+

∫
c.v.

gggρdV +

0︷ ︸︸ ︷∫
c.v.

PPPdA−

∫
ρa0 dV =

d

dt

∫
Vc.v.

ρUydV +

∫
c.v.

ρUyUrndA (6.23)

There are no external forces in this control volume thus, the first term FR, vanishes. The

pressure term vanish because the pressure essentially is the same and the difference can be

neglected. The gravity term is an instantaneous mass times the gravity times the constant and

the same can be said for the acceleration term. Yet, the acceleration is the derivative of the

velocity and thus ∫
ρa0 dV =

dU

dt
(mR +mf) (6.24)
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The first term on the right hand side is the change of the momentum in the rocket volume.

This change is due to the change in the volume of the oxidant and the fuel.

d

dt

∫
Vc.v.

ρUydV =
d

dt
[(mR +mf) U] (6.25)

Clearly, the change of the rocket mass can be considered minimal or even neglected. The

oxidant and fuel flow outside. However, inside the rocket the change in the velocity is due to

change in the reduction of the volume of the oxidant and fuel. This change is minimal and

for this analysis, it can be neglected. The last term is∫
c.v.

ρUyUrndA = ṁ (Ug −UR) (6.26)

Combining all the above term results in

−FR − (mR +mf) g+
dU

dt
(mR +mf) = ṁ (Ug −UR) (6.27)

Denoting MT = mR +mf and thus dM/dt = ṁ and Ue = Ug −UR. As first approxi-

mation, for constant fuel consumption (and almost oxidant), gas flow out is constant as well.

Thus, for constant constant gas consumption equation (6.27) transformed to

−FR −MT g+
dU

dt
MT = ṀT Ue (6.28)

Separating the variables equation (6.28) yields

dU =

(
−ṀT Ue

MT
−
FR
MT

− g

)
dt (6.29)

Before integrating equation (6.29), it can be noticed that the friction resistance FR, is a function

of the several parameters such the duration, the speed (the Reynolds number), material that

surfacemade and themedium it flow in altitude. For simplicity here the part close to Earth (to

the atmosphere) is assumed to be small compared to the distance in space. Thus it is assume

that FR = 0. Integrating equation (6.29) with limits of U(t = 0) = 0 provides∫U
0
dU = −ṀT Ue

∫t
0

dt

MT
−

∫t
0
gdt (6.30)

the results of the integration is (noticeM = M0 − t Ṁ)

U = Ue ln
(

M0

M0 − t Ṁ

)
− g t (6.31)

The following is an elaborated example which deals with an unsteady two dimensional

problem. This problem demonstrates the used of control volume to find method of approxi-

mation for not given velocity profiles
1

1
A variation of this problem has appeared inmany books in the literature. However, in the past it was not noticed

that a slight change in configuration leads to a constant x velocity. This problem was aroused in manufacturing

industry. This author was called for consultation and to solve a related problem. For which he noticed this “constant

velocity.”
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Example 6.6: Tank with Wheels Level: Intermediate
A tank with wheels is filled with liquid is depicted in Fig. 6.7. The tank

upper part is opened to the atmosphere. At initial time the valve on

the tank is opened and the liquid flows out with an uniform velocity

profile. The tankmasswith thewheels

(the solid parts) is known, mt. Cal-

culate the tank velocity for two cases.

One the wheels have a constant resis-

tance with the ground and two the re-

sistance linear function of the weight.

Assume that the exit velocity is a lin-

ear function of the height.

FRFRFR

U0U0U0

UTUTUT

hhh
yyy

xxx

Fig. 6.7 – Schematic of a tank seating on
wheel for unsteady state discussion

Solution
This problem is similar to the rocketmechanics with a twist, the source of the propulsion is the

potential energy. Furthermore, the fluid has two velocity components verse one component

in the rocket mechanics. The control volume is shown in Figure 6.7. The frame of reference is

moving with the tank. This situation is unsteady state thus equation (6.12) for two dimensions

is used. The mass conservation equation is

d

dt

∫
Vc.v.

ρdV +

∫
Sc.v.

ρdA = 0 (6.6.a)

Equation (6.6.a) can be transferred to

dmc.v.
dt

= −ρU0A0 = −m0 (6.6.b)

Wherem0 ismass flow rate out. Equation (6.6.b) can be further reduced due to constant density

to

d (Ah)

dt
+U0A0 = 0 (6.6.c)

It can be noticed that the cross section area of

the tank is almost constant (A = constant)

thus

A
dh

dt
+U0A0 = 0 =⇒ dh

dt
=

−
U0A0
A

(6.6.d)

The relationship between the height and the

flow now can be used.

FRFRFR

UTUTUT

hhh

LLL

xxx

xxx
yyy

U0U0U0

Fig. 6.8 – A new control volume to find
the velocity in discharge tank for
example 6.6.

U0 = Bh (6.6.e)

Where B is the coefficient that has the right units to Mach equation (6.6.e) that represent the

resistance in the system and substitute the energy equation. Substituting equation (6.6.e) into
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continue Ex. 6.6
equation (6.6.c) results in

dh

dt
+

BhA0
A

= 0 (6.6.f)

Equation (6.6.f) is a first order differential equation which can be solved with the initial condi-

tion h(t = 0) = h0. The solution (see for details in the Appendix A.2.1 ) is

h(t) = h0 e
−
tA0B

A
(6.6.g)

To find the average velocity in the x direction a new control volume is used. The bound-

ary of this control volume are the tank boundary on the leftwith the straight surface as depicted

in Figure 6.8. The last boundary is variable surface in a distance x from the tank left part. The

tank depth, is not relevant. The mass conservation for this control volume is

�wx
dh

dt
= −�whUx (6.6.h)

Where herew is the depth or width of the tank. Substituting (6.6.g) into (6.6.h) results

Ux(x) =
xA0��h0B

A �h
�
����

e
−
tA0B

A =
xA0B

A
(6.6.i)

The average x component of the velocity is a linear function of x. Perhaps surprising, it also can

be noticed that Ux(x) is a not function of the time. Using this function, the average velocity

in the tank is

Ux =
1

L

∫L
0

xA0B

A
=
LA0B

2A
(6.6.j)

It can be noticed that Ux is not function of height, h. In fact, it can be shown that average

velocity is a function of cross section (what direction?).

Using a similar control volume
a
, the average velocity in the y direction is

Uy =
dh

dt
= −

h0A0B

A
e
−
tA0B

A (6.6.k)

It can be noticed that the velocity in the y is a function of time as oppose to the x direction.

The applicable momentum equation (in the tank frame of reference) is (6.11) which is

reduced to

−FFFR − (mt +mf)ggg−

acceleration︷ ︸︸ ︷
aaa (mt +mf) =

d

dt
[(mt +mf) UUUr] +U0mo

(6.6.l)

WhereUUUr is the relative fluid velocity to the tank (if there was no tank movement). mf and

mt are the mass of the fluid and the mass of tank respectively. The acceleration of the tank is

aaa = −îa0 or î ·aaa = −a. And the additional force for accelerated system is

−î ·
∫
Vc.v.

aaaρdV = mc.v. a

The mass in the control volume include the mass of the liquid with mass of the solid part

(including the wheels).

mc.v. = mf +mT



226 CHAPTER 6. MOMENTUM CONSERVATION
continue Ex. 6.6

because the density of the air is very small the change of the air mass is very small as well

(ρa << ρ).

The pressure around the control volume is uniform thus∫
Sc.v.

P cos θxdA ∼ 0

and the resistance due to air is negligible, hence∫
Sc.v.

τdA ∼ 0

The momentum flow rate out of the tank is∫
Sc.v.

ρUxUrndA = ρUo
2Ao = moUo (6.32)

In the x coordinate the momentum equation is

−Fx + (mt +mf)a =
d

dt
[(mt +mf) Ux] +U0 ṁf (6.6.m)

Where Fx is the x component of the reaction which is opposite to the movement direction.

The momentum equation in the y coordinate it is

Fy − (mt +mf)g =
d

dt

[
(mt +mf) Uy

]
(6.6.n)

There is nomass flow in they direction andUy is component of the velocity in they direction.

The tank movement cause movement of the air which cause momentum change. This

momentum is function of the tank volume times the air density times tank velocity (h0 ×
A× ρa ×U). This effect is known as the add mass/momentum and will be discussed in the

Dimensional Analysis and Ideal Flow Chapters. Here this effect is neglected.

Themain problemof integral analysis approach is that it does not provide away to anal-

ysis the time derivative since the velocity profile is not given inside the control volume. This

limitation can be partially overcome by assuming some kind of average. It can be noticed that

the velocity in the tank has two components. The first component is downward (y) direction

and the second in the exit direction (x). The velocity in the y direction does not contribute to

the momentum in the x direction. The average velocity in the tank (because constant density

and more about it later section) is

Ux =
1

Vt

∫
Vf

UxdV

Because the integral is replaced by the average it is transferred to∫
Vf

ρUxdV ∼ mc.v.Ux

Thus, if the difference between the actual and averaged momentum is neglected then

d

dt

∫
Vf

ρUx dV ∼
d

dt

(
mc.v.Ux

)
=
dmc.v.
dt

Ux +

∼0︷ ︸︸ ︷
dUx

dt
mc.v.

(6.6.o)
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End of Ex. 6.6
Noticing that the derivative with time of control volumemass is the flow out in equation (6.6.o)

becomes

dmc.v.
dt

Ux +
dUx

dt
mc.v. = −

mass

rate

out︷︸︸︷
ṁ0 Ux = −m0

LA0B

2A

(6.6.p)

Combining all the terms results in

−Fx + a (mf +mt) = −m0
LA0B

2A
−U0m0 (6.6.q)

Rearranging and noticing that a = dUT /dt transformed equation (6.6.q) into

a =
Fx

mf +mt
−m0

(
LA0B+ 2AU0 (mf +mt)

2A (mf +mt)

)
(6.6.r)

If the Fx ⩾ m0

(
LA0 B
2A +U0

)
the toy will not move. However, if it is the opposite the toy

start to move. From equation (6.6.e) the mass flow out is

m0(t) =

U0︷ ︸︸ ︷
B

h︷ ︸︸ ︷
h0 e

−
tA0 B
A A0 ρ

(6.6.s)

The mass in the control volume is

mf = ρ

V︷ ︸︸ ︷
Ah0 e

−
tA0B

A

(6.6.t)

The initial condition is that UT (t = 0) = 0. Substituting equations (6.6.s) and (6.6.t) into

equation (6.6.r) transforms it to a differential equation which is integrated if Rx is constant.

For the second case where Rx is a function of the Ry as

Rx = µRy (6.33)

The y component of the average velocity is function of the time. The change in the accumu-

lative momentum is

d

dt

[
(mf) Uy

]
=
dmf
dt

Uy +
dUy

dt
mf (6.6.u)

The reason that mf is used because the solid parts do not have velocity in the y direction.

Rearranging the momentum equation in the y direction transformed

Fy =


mt +

mf︷ ︸︸ ︷
ρAh0e

−
tA0 B
A


 g+ 2

(
ρh0A0

2B2

A

)2
e
−
tA0 B
A (6.6.v)

The actual results of the integrations are not provided since the main purpose of this exercise

to to learn how to use the integral analysis.

a
The boundaries are the upper (free surface) and tank side with a y distance from the free surface.∫

UbndA =
∫
UrndA =⇒Ubn =Urn .
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Example 6.7: Hollow Piston Level: Intermediate
A large ring (hollow piston) pushes a liq-

uid in a cylinder as depicted in Figure 6.9.

Assume that the velocity is uniform at the

exit and entrance of the ring. The hol-

low area and piston area are known and

denoted as A and Aout respectively. All

the geometrical quantities along with the

initial condition are known. Write a gov-

erning equation as a function of the height

and other parameters that affecting the

problem. State any assumption that you

made.

FFF

c.v. 1c.v. 1c.v. 1

AoutAoutAout

c.v. 2c.v. 2c.v. 2
hhh

AAA

UringUringUring

UoutUoutUout

Fb, PbFb, PbFb, Pb

Fig. 6.9 –A largeRing pushing liquid in-
side cylinder assembly.

Solution
The liquid is pushed by the ring can be divided into two zones plus the ring free body. The

first zone is the volume within the ring and second is the volume under the ring see Figure

6.9. It reasonable to separate the problem into two control volumes because the first zone is

accelerating in the Earth frame of reference while the second control volume has a constant

velocity (zero) with an accelerating upper boundary. The first control volume shown in Figure

6.9 has the same flow in and out (regardless the selection of the coordinates system).

c.v. 1
The continuity equation in coordinate system moving with the ring reads∫

Ain

ρ
(
Uin +Uring

)
dA−

∫
Aout

ρ
(
Uout +Uring

)
dA =

d

dt

∫
V
ρdV (6.7.w)

Where Uin and Uout are the absolute velocities in the Earth coordinate system. The right

hand side term vanishes because the amount of liquid in the control volume does not change.

The density is constant which leads to

Uin = Uout (6.7.x)

That is, the velocities in and out of the ring are the same but are a strong function of the time.

This fact also means that these velocities are identical in any other coordinate systems. The

momentum conservation has to account for the acceleration of the control volume (see the

first term) as∫
ρ (g− a) dV +

∫
Ain

Pin dA−

∫
out

Patmos dA+

∫
A
τdA =

d

dt

∫
V
ρUdV +

∫
A
ρUUrndA (6.7.y)

Where the velocities are taken in a coordinate system attached to the ring. In that case, ring

is accelerating in the direction of the gravity, hence, the acceleration has be subtracted from
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continue Ex. 6.7
the gravity. Notice that the gravity is reduced by the absolute value of the acceleration. The

different terms of above equation have to be examined. The acceleration according to the

definition is a = −d
2h
dt2

. Hence, the first term can be written as∫
ρ (g− a) dV = ρAout hring

(
g+

d2h

dt2

)
(6.7.z)

The second and third terms can be combined and simplified, under the assumption of uniform

pressure in the cross section. Hence, these terms can be written as∫
in
Pin dA−

∫
out

P dA = (Patmos − Pin)Aout (6.7.aa)

The shear stresses in the ring surface could be better analyzed utilizing the differential analysis.

Here for this discussion, it is assumed that the shear stresses are a function of the velocity

square Fshear = CU
2
. Where C is assumed to be constant (indirectly also assuming that the

flow does not undergoes flow region change e.g. laminar to turbulent or other complications).

The velocity refers to the relative velocity to ring surface. Some identities can be observed

from the definition of height, h.

Uring = −
dh

dt
(6.7.ab)

The negative sign is to signify that the height change direction is positive upward. The relative

liquid velocity to the ring surface is the summation of the velocity, Uout plus ring velocity,

Uring. The relative velocity (in or out) further can be combined with equation (6.7.ab) as

Urn = Uout −
dh

dt
(6.7.ac)

The assumption mentioned above, the resistance based on the absolute velocity, translates to∫
A
τdA = C

(
Uout −

dh

dt

)2
(6.7.ad)

The first term on the right hand side represents the change of the momentum in the control

volume in the coordinate system attached to the body. The change in the velocity in the equa-

tion refers to the change of relative velocity thus

d

dt

∫
V
ρUdV =

mliquid︷ ︸︸ ︷
ρVring

d

dt

(
Uout −

dh

dt

)
= ρVring

(
dUout

dt
−
d2h

dt2

)
(6.7.ae)

The last term is based on two similar velocities Urn and U. The relative liquid velocity in

the frame of reference of the ring is defined by equation (6.7.ac). The velocity, U is identi-

ties to (6.7.ac) because the control volume size is fixed. Yet, it can be noticed that the amount

momentum enter to the control volume as the leaving amount. The last term can be written

as ∫
ρUUrndA = ρ

(
Uout −

dh

dt

)2
������: 0
(Aout −Ain) = 0 (6.7.af)
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continue Ex. 6.7

Yet, the flows in and out are the same and hence the last term also vanished. Finally, the mo-

mentum equation get the form of

ρ

(
g+

d2h

dt2

)
Aout hring + (Patmos − Pin)Aout+

C

(
Uout −

dh

dt

)2
= ρVring

(
dUout

dt
−
d2h

dt2

)
(6.7.ag)

c.v. 2
The second control volume is stationary (with

respect to Earth coordinates) with the ex-

ception of the upper surface. On the sec-

ond control volume, the liquid velocity in-

side control volume is zero in the frame of

reference attached the control volume. The

mass and momentum equations can be as-

certained after the velocity at the interface

and relative velocity established. The ve-

locity of the liquid at the boundary is not

defined. On one side of the boundary

Uout = 0Uout = 0Uout = 0

εεε
Uout 6= 0Uout 6= 0Uout 6= 0

Fig. 6.10 – Jump in the velocity across
the control volume boundary.

the velocity is zero yet the velocity at the other side the velocity is finite (see Figure 6.10).

If a small control volume is constructed around this boundary (see the green line) it will

result in a mass source within the control volume. Clearly, there is no mass source in that

control volume. Thus, the alternative approach adapted here is to move the control volume

just ε in the opening of the ring. This small change allows continue the uniform velocity

and uniform pressure assumptions to be used. However, the payment is that equations such

Bernoulli equation can not be used across this jump. In that case the velocity of at the velocity

at boundary is Uout. The continuity equation reads

�
���

��*
0∫

in
ρAUdA−

∫
out

ρAUdA =
d

dt

∫
ρdV =

d

dt
(ρAh) = ρA

dh

dt

(6.7.ah)

Consequently

Uout = −
A

Aout

dh

dt
(6.7.ai)

The shear stresses zero in this control volume because the velocity field is zero. The momen-

tum balance reads

∫
gρdV − (Pin − Pb) A+

�
�
��
0∫

τdA =
d

dt

∫
V
ρUdV +

∫
A
ρUUrn dA

(6.7.aj)

Every term in equation (6.7.aj) has to be examined here. The first term can be expressively

written as ∫
gρdV = ρghA (6.7.ak)



6.2. MOMENTUM EQUATION APPLICATION 231

End of Ex. 6.7
The first term in the right hand side represents the change of momentum, since in the control

volume the velocity is always zero, the total change is zero. There is no change with respect to

time.

d

dt

∫
V
ρ��

0
UdV = 0 (6.7.al)

U is Uout − dh/dt and the relative velocity, Urn = Aout. Thus,∫
A
ρUUrn dA = ρAout

(
Uout −

dh

dt

)
(6.7.am)

Again the assembly of the components results in

ρghA− (Pin − Pb) A = ρAout

(
Uout −

dh

dt

)
(6.7.an)

Combining with equation (6.7.ai) with equation (6.7.an) results in

ρghA− (Pin − Pb) A = ρAout

(
−

A

Aout

dh

dt
−
dh

dt

)
= −ρAout

dh

dt

(
A

Aout
+ 1

)

(6.7.ao)

Ring Free Body or c.v.3 Around the Ring
The third control volume is around the ring. The forces balance reads

mg+ F−

∫
A
τdA− (Pin − Patmos) (A−Ain) = mring a = mring

dh

dt
(6.7.ap)

It was assumed that the friction force can be expressed by equation (6.7.ad) so

mg+ F+C
dh

dt

(
A

Aout
+ 1

)
− (Pin − Patmos) (A−Ain) (6.7.aq)

These four equations have four unknowns, Pb, Fb, Uout, h alongwith the initial con-
ditions can be solved. Rearranging equation (6.7.ag) and combiningwith equation (6.7.ai) yields

Pin = Patmos − ρ hring

(
g+

d2h

dt2

)
+ ρ

Vring

Aout

dh2

dt2

(
1+

A

Aout

)
(6.7.ar)

Substituting equation (6.7.ar) into equation (6.7.aq) provides second order differential equation

for h. The initial conditions can be assumed that initial velocity is zero and the initial height

is specific height.

h(0) = h0
dh

dt
(0) = 0

(6.7.as)

Averaged Velocity! Estimates

In example (6.1) relationship between momentum of maximum velocity to average ve-

locity was presented. Here, relationship between momentum for the average velocity to the

actual velocity is presented. There are situations where actual velocity profile is not known
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but is function can be approximated. For example, the velocity profile can be estimated using

the ideal fluid theory but the actual values are not known. For example, the flow profile in

example 6.6 can be estimated even by hand sketching.

For these cases a correction factor can be used. This correction factor can be calculated

by finding the relation between the two cases. The momentum for average velocity is

Ma = mc.vU = ρV

∫
c.v
UdV (6.34)

The actual momentum for control volume is

Mc =

∫
c.v.

ρUxdV (6.35)

These two have to equal thus,

C ρV

∫
c.v
UdV =

∫
c.v.

ρUxdV (6.36)

If the density is constant then the coefficient is one (C ≡ 1). However, if the density is not

constant, the coefficient is not equal to one.

6.3 Machinery Unitizing Momentum
This section is intend to transform to be a chapter when it reach to a reasonable size. Yet, this

section is usable and contains valuable information which is included Euler turbine equation

and discussion on Pelton wheel. For now, this quality of this section is in the level of a typical

popular fluid mechanics books which is not satisfactory and it hopefully will be improved in

the future. First the general (or better as template) case of what is known as Euler turbine

(equation). The analysis deals with single blade when liquid enter through a nozzle and move

back after jet impeachment on the blade (see Fig. 6.11). These blades later can be combined.

The jet hits the blade at angle

and leaves in a different angle.

The velocity in earth coordinates

and velocity relative to the blade

are related by the velocity of the

blade. The angle insert some

complexity as a one dimension

turn to a two dimensional prob-

lem. The velocity broken into

two components the tangential

and axial. The tangential veloc-

ity refers to left or the right while

the axial refers up or down (see

NozzleNozzleNozzle

InletInletInlet

OutletOutletOutlet FFF
FyFyFy

FxFxFx

β2β2β2
α2α2α2

Ua2Ua2Ua2

Ua1Ua1Ua1

β1β1β1α2α2α2

β1β1β1

uuu

U1U1U1 Ur1Ur1Ur1

Uw1Uw1Uw1

u1u1u1

Uw2Uw2Uw2 u2u2u2

Fig. 6.11 – Euler turbine equation illustration.

Fig. 6.11). The word absolute velocity refers to the earth coordinate while the relative refers to

velocity relative to the blade or in other words to the velocity in the blade coordinate system.
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There are several notations used in this problem. In the past, the velocity was denoted

by the symbol,V . Here it is advocating to use the symbolUwith a subscribe to denote velocity

as minimize to the conflict with volume (which also denoted as V ). While there is no way to

enforce or create a consensus the notation, a table for the various systems so translation is

provided here.

Table 6.1 – Table notation of the velocity

Velocity USA GATE This Book

Absolute V V U

Relative Vr Vr Ur

Blade u u u

Tangential rel-
ative

Uu Uw Uu

Tangential ab-
solute

Vu Vw Uw

Axial Vf Vf Ua

Denote r1 and r2 as the radii at inlet and exit that is the distance from the location

to the rotation point. In the control volume around the blade in absolute coordinates. The

tangential momentum in is ṁUw1 while the tangential momentum out is ṁUw2. The an-

gular momentum in is ṁUw1 r1 and The angular momentum out is ṁUw2 r2. Thus the net

angular momentum under the assumption constant mass flow rate is

τ = ṁ (Uw1 r1 −Uw2 r2) (6.37)

Normally the rotation of the turbine is given or provided in the units of rotation per minutes

thus

ω =
2 πN

60
(6.38)

Eq. (6.38) is only units adjustment equation and N is the rotation per minute of the tur-

bine/pump. The velocity of the blade depends on the radius (or the elevation "location" where

the liquid leaves or enters). The blade velocity at that point is

ui = ωr1 =
2 πN

60
ri −→ ri =

60

2 πN
ui (6.39)
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where i is 1 or 2. The power of the device is P = ωτ hence

P =
ṁXXX2 πN

60
(Uw1 r1 −Uw2 r2)

−→ P =
ṁXXX2 πN

��60


Uw1

r1︷ ︸︸ ︷
��60

XXX2 πN
u1−Uw2

r2︷ ︸︸ ︷
��60

XXX2 πN
u2


 (6.40)

After some cleaning, one get what is known as Euler Turbine equation

P = ṁ (Uw1 u1 −Uw2 u2)

Euler Turbine

(6.41)

This equation represents the kinetic energy conversion in turbine wheel or the pump

wheel which refers as the impeller. The drawing may suggest that inlet and jet in the same

elevation (radius), none intentionally, is descriptive. The equation suggests that changing the

elevation (the radius) might increase the energy production. The power can attain negative

value which indicate energy transfer to the wheel which is used to increase the pressure. This

concept is used in the centrifugal pump analysis.

At the blade entry and exit the fluid velocity can be broken into to three components in

the tangential, axial, and radial directions relative the wheel. The important component is the

tangential as it causes the energy transformation. In other words, this only component that

rotate the wheel. The two other component are trouble makers so speaking as they creates

loads in the undesired directions. In the section, the mechanical solutions to these problems

are not part of the discussion.

α1α1α1

Uw1Uw1Uw1

Ur1Ur1Ur1Ua1Ua1Ua1

u1u1u1

InletInletInlet

β1β1β1

U1U1U1

Fig. a Velocity diagram in the turbine inlet

U2U2U2
Ur2Ur2Ur2

Ua2Ua2Ua2

u2u2u2

OutletOutletOutlet

Uw2Uw2Uw2
α1α1α1 β1β1β1

Fig. b Velocity diagram in the turbine outlet

Fig. 6.12 – Velocity diagram for inlet and outlet of turbine and centrifugal pump.

The velocity inlet triangle shown in Fig. 6.12a reads

Uw1 = U1 cosα1 (6.42)

Utilizing the cosine theorem writes

Ur1
2 = V1

2 + u1
2 − 2u1

Uw1 Eq. (6.42)︷ ︸︸ ︷
U1 cosα1 (6.43)
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Rearranging Eq. (6.44) provides

u1Uw1 =
V1
2 + u1

2 −Ur1
2

2
(6.44)

On the outlet velocity diagram shows that

Uw2 = U2 cosα2 (6.45)

Using the cosine theorem for the outlet diagram read

Ur2
2 = V2

2 + u2
2 − 2u2

Uw2 Eq. (6.45)︷ ︸︸ ︷
U2 cosα2 (6.46)

Rearranging Eq. (6.46) provides

u2Uw2 =
U2
2 + u2

2 −Ur2
2

2
(6.47)

Substituting Eqs. (6.44) and (6.47) into Euler Turbine equation, Eq. (6.41)

P = ṁ

((
U1
2 −U2

2
)
+
(
u1
2 − u2

2
)
+
(
Ur2

2 −Ur1
2
)

2

)
(6.48)

The term

(
U1
2 −U2

2
)
/2 is assotiated wth the work done or component of the work. The

term

(
u1
2 − u2

2
)
is related to the centrifugal component of work and this will be present

only when the radial flow exist such as centrifugal pump. The term

(
Ur2

2 −Ur1
2
)
is asso-

ciated with the change of the velocity and characteristic of the reaction turbines. The main

difference between reaction and impulse is based the amount of potential energy conversion.

In impulse turbine the kintic energy is main componet (liquid jet like) while reaction is po-

tential and kinetic (gas like characteristic). The degree of reaction is defined by the ratio of

energy converted in the rotor and total energy converted. The official definition is as

R =

(
u1
2 − u2

2
)
+
(
Ur2

2 −Ur1
2
)

(
U1
2 −U2

2
) (
u12 − u22

)
+
(
Ur2

2 −Ur1
2
) (6.49)

The first term only will be present in Pelton or impulse turbine of tangential flow type. Pel-

ton wheel is a device which was invited and named after Lester Allan Pelton in the 187x. The

invention was motivated the need to increase the efficiently of the energy generating (con-

verting) machine/turbine. In this arrangement buckets or caps are located on the periphery of

the wheel. Water through a nozzle hits the buckets causing them to rotate. The buckets have

a splitter for receive a jet to split it into two to equal jets to neutralize to sides effects. There

is a limit on the angles and these angles are typically around 165◦ to prevent or minimize the

water hitting the following bucket. Portion of the tip of each bucket is cut to prevent the jet

striking the preceding bucket. This notch also avoids the creating a force toward the center

of the wheel.
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There are two categories of Pelton wheels: vertical and horizontal which further can be di-

vided by number of jets. The jet is created by forcing the water through nozzles. There are

several possibilities to number and arrangement. Normally, the working liquid is water. The

horizontal Pelton is typically with one or two jets. The vertical the number can be up to six

jets. Jets also can be used to stop the wheel by applying them in the opposite direction which

referred as the breaking jets.

Velocity Diagram

Fig. 6.13 illustrates the velocity diagram for Pel-

ton wheel. The liquid (water) obtained from a

reservoir has the entrance (effective) velocity

U1 = CV
√
2 gH (6.50)

where CV is velocity coefficient normally

around 0.98. Therefore, hydraulic power de-

livered to wheel is

PPP =

energy︷ ︸︸ ︷
ρU1

2

2
Q (6.51)

Water JetWater JetWater Jet

SplitterSplitterSplitter
Moving
blade
Moving
blade
Moving
blade

Uw1Uw1Uw1

uuu

UaUaUaU2U2U2 Ur2Ur2Ur2

α2α2α2

uuu Ur1Ur1Ur1

uuu

U1 = Uw1U1 = Uw1U1 = Uw1

Fig. 6.13 – Pelton’s velocity diagram.

Diameter of wheel is denoted as D and is measured from the center of bucket or cup

to the wheel center. It common to defend the jet ratio m as the ratio of wheel diameter D,

and nozzle diameter d. This Value,m, is kept between 11 and 14. The number buckets which

denoted as z, is calculated by z = 0.5m+ 15. The buckets velocity is based on angular speed

ω as

U =
ωD

2
(6.52)

Some defined the speed ratio, ψ, as

U = ψ
√
2 gH (6.53)

The velocity in a stationary coordinates are broken into two orthogonal components.

First it has to recognized that there are two set of coordinates one the absolute (with the earth)

one moving with buckets. In the light of these statements the following is defined:

U1 ,U2 are absolute velocities at inlet and outlet (note that in GATE terminologyU is

V ). Ur1, Ur2 are relative velocities at inlet and outlet. Uw1, Uw2 are the absolute tangential

velocities at inlet and outlet. The tangential velocity is also referred asWhirl Velocities. These

components are assigned subscribe (as it can be observed from the previous section) 1 to

assign to mean input and 2 to mean the outflow. The velocity u without any subscribe is the

tangential velocity of the wheel.
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The cap breaks the jet into two equal parts and

redirect the jet by about by about 165◦. The
velocity diagram for Pelton turbine is shown

in Fig. 6.14. The tangential velocity and the ab-

solute velocity are the same in the inlet because

the absolute velocity has only one on compo-

nent in the tangential direction; thus

Uw1 = U1 (6.54)

Notice that u1 = u2 in this case because it oc-

curs at the same height. The relative velocity

at point is

U1 = Uw1U1 = Uw1U1 = Uw1

Ur1Ur1Ur1

uuu uuu

Ur2Ur2Ur2

β2β2β2

uuu

U2U2U2

α2α2α2

Uu2Uu2Uu2

Fig. 6.14 – VelocityDiagram for Pelton’s Tur-
bine. Notice that u is the same for the
inlet andoutlet. Themass concentration
dictate that the relative tangential veloc-
ity in and out must be the same.

Ur1 = U1 − u1 (6.55)

In the ideal caseUr2 = Ur1 assuming the jet area to be same and constant. But due to friction

and other effects

Ur2 = kUr1 (6.56)

where k depends on the loss, and additionally for the same elevation u2 = u1.

F = ṁ (Uw1 ±Uw2) (6.57)

The power is the force time the wheel velocity as

P = Fu = ṁ (Uw1 ±Uw2) u (6.58)

The hydraulic efficiency can be defined as the power extracted divided by the potential energy.

The potential energy can be defined as by the velocity at the nozzle (or the initial energy at

the dam which is less).

η =
extracted energy

available energy

(6.59)

Notice that division of power or work will provide the same value as derivatives ratio will be

same.

η =
ZŻm (Uw1 ±Uw2) u

ZŻmU1
2/2

−→ 2 (Uw1 ±Uw2) u
U1
2

(6.60)

In Eq. (6.50) the entrance velocity, U1 is provided for a given specific reservoir. The

turbine angular velocity or the blade velocity affects the turbine efficiency. For the case where

u > Uw2 cosβ, the velocity Uw2 is the same direction of Uw1

P = (Uw1 −Uw2) u (6.61)
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Examining velocity diagram several observations (such as Eq. (6.56)) can be determined as

Uw1 = U1, (6.62a)

Uw2 = Ur2 cosβ2 − u2 (6.62b)

Uw2 = kUr1 − u2 (6.62c)

Uw2 = k (U1–u1) cosβ2 − u2 (6.62d)

∴ Uw1 +Uw2 = U1 + k (U1–u1) cosβ2 − u2 (6.62e)

For the case u1 = u2 = u

Uw1 +Uw2 = U1 (1+ k cosβ2) − u (1+ k cosβ2) −→
= (1+ k cosβ2) (U1 − u) (6.62f)

Substituting Eq. (6.62f) into Eq. (6.60) yeilds

η =
2u (1+ k cosβ2) (U1 − u)

U1
2

(6.63)

or

η = 2 (1+ k cosβ2)

[
u

U1
−

(
u

U1

)2]
(6.64)

λ denote the speed ratio which has physical significance. The ratio represent the tangential

speed of the tip of a blade and the speed of the wind or the liquid supply.

η = 2 (1+ k cosβ2)
[
λ− λ2

]
(6.65)

The maximum can be found in the regular way.

dη

dλ
= 0 −→ 2 λ = 1 −→ λ =

1

2
(6.66)

The typical value for the maxim is about u = 0.46×U1. At this point, the efficiency is

2 (1+ k cosβ2)
[
0.5− 0.52

]
=
1+ k cosβ2

2
(6.67)

Of course if k = 1 then the theoretical value of β = 180◦ then the efficiency is 100%. Notice

that value of β can not be β ̸= 180◦.
Example 6.8: Worked for Pelton Turbine Level: Intermediate

A pelton wheel is designed with the following specification in mind: Shaft power =

30000 [kW], head = 325 [m], speed =775 rpm, expected overall efficiency = 86%. The

jet diameter is not to exceed one sixth of the wheel diameter. The engineer has to

determine, wheel diameter, the required number of jets, jet diameter. The velocity

coefficient can be assumed to be 0.98 and the speed ratio is 0.45.
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End of Ex. 6.8
Solution
The data in the question are Shaft power = 10000 [KW], the head is 350 [m] the wheel speed

N =775 [rpm] with efficiency = 86%. The ratio of jet diameter to wheel diameter d/D = 1/6.

Coefficient of velocity ψ = 0.985. Speed ratio λ = 0.45.
The jet velocity

U1 = ψ
√
2 gH = 0.98×

√
2× 9.81× 325 = 78.256[m/s] (6.8.a)

The velocity of wheel (at the blade location)

u = λU1 = 0.45× 78.256 = 35.2[m/sec] (6.8.b)

This information can be used to find the rpm of the wheel. With given rotation (angular ve-

locity) the diameter can be obtained.

u =
πDN

60
−−→ D =

60u

π,N
=
60× 35.2
π 775

∼ 0.87[m] (6.8.c)

The given ratio for the diameter ratio is required to be

d

D
=
1

6
−−→ d =

D

6
=
0.87
6

∼ 0.14[m] (6.68)

This number seems to be large but this is question. Flow rate can be calculated because the

diameter and velocity are known

q = Au =
πd2

4
u =

π

4
× (0.14)2 × 35.27 = 0.54[m3/sec] (6.8.d)

The hydraulic efficiency Eq. (6.60) can be use in the definition form as

η =
power

ṁ︸︷︷︸
ρQ

U1
2/2︸ ︷︷ ︸

ψρgh

−−→ η =
power

ρQψρgh
−−→ η =

power

ρ2Qψgh
(6.8.e)

Thus, the flow rate can be written as

Q =
power

ρ2 ηψgh
=

30000× 1000
10002 × 0.98× 0.86× 9.8× 350 ∼ 1.04 (6.8.f)

which means that two jets are required.

6.4 Conservation Moment Of Momentum
The angular momentum can be derived in the same manner as the momentum equation for

control volume. The force

F =
D

Dt

∫
Vsys

ρUUUdV (6.69)
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The angular momentum then will be obtained by calculating the change of every element in

the system as

M = rrr× FFF = D

Dt

∫
Vsys

ρrrr×UUUdV (6.70)

Now the left hand side has to be transformed into the control volume as

M =
d

dt

∫
Vc.v.

ρ (rrr×UUU) dV +

∫
Sc.v

ρ (rrr×UUU)UUUrn dA (6.71)

The angular momentum equation, applying equation (6.71) to uniform and steady state flow

with neglected pressure gradient is reduced to

M = ṁ (r2 ×U2 + r2 ×U1) (6.72)

Introduction to Turbo Machinery
The analysis of many Turbomachinary such as

centrifugal pump is fundamentally based on

the angular momentum. To demonstrate this

idea, the following discussion is provided. A

pump impeller is shown in Figure 6.15 com-

monly used in industry. The impeller in-

creases the velocity of the fluid by increas-

ing the radius of the particles. The inside

particle is obtained larger velocity and due

to centrifugal forces is moving to outer ra-

dius for which additionally increase of ve-

locity occur. The pressure on the outer

U2U2U2

Um2Um2Um2

Un2Un2Un2

Ut2Ut2Ut2

Ulr2Ulr2Ulr2

Fig. 6.15 – The impeller of the centrifugal
pump and the velocities diagram at the
exit.

side is uniform thus does not create amoment. The flow is assumed to enter the impeller radi-

ally with average velocityU1. Here it is assumed that fluid is incompressible (ρ = constant).

The height of the impeller is h. The exit liquid velocity, U2 has two components, one the

tangential velocity, Ut2 and radial component, Un2. The relative exit velocity is Ulr2 and

the velocity of the impeller edge is Um2. Notice that tangential liquid velocity, Ut2 is not

equal to the impeller outer edge velocityUm2. It is assumed that required torque is function

U2, r, and h.

M = ṁ r2Ut2 (6.73)

Multiplying equation (6.73) results in

Mω = ṁ

Um2︷︸︸︷
r2ω Ut2 (6.74)

The shaft work is given by the left side and hence,

Ẇ = ṁUm2Ut2 (6.75)

The difference between Um2 to Ut2 is related to the efficiency of the pump which will be

discussed in the chapter on the Turbomachinary.
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Example 6.9: Centrifugal Pump Level: Intermediate
A centrifugal pump is pumping 600 2[m3/hour]. The thickness of the impeller, h is

2[cm] and the exit The diameter is 0.40[m]. angular velocity is 1200 r.p.m. Assume

that angle velocity is leaving the impeller is 125◦. Estimate what is the minimum

energy required by the pump.

Solution

6.5 More Examples on Momentum Conservation
Example 6.10: Water Rocket Jet Level: Intermediate

A design of a rocket is based on the idea that density increase of the leav-

ing jet increases the acceleration of the rocket see Fig. 6.16. Assume that

this idea has a good engineering logic.

Liquid fills the lower part of the rocket

tank. The upper part of the rocket tank

is filled with compressed gas. Select the

control volume in such away that provides

the ability to find the rocket acceleration.

What is the instantaneous velocity of the

rocket at time zero? Develop the expres-

sion for the pressure (assuming no fric-

tion with the walls). Develop expression

for rocket velocity. Assume that the gas is

obeying the perfect gas model. What are

the parameters that effect the problem.

Urocket

Uexit

hℓ

Gas

Liquid

hg

 hypotherical 

volume

height 

Fig. 6.16 – Nozzle schematics water
rocket for the discussion on the
forces for example 6.10

Solution

Under construction for time being only hints2

In the solution of this problem several assumptions must be made so that the integral system

can be employed.
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continue Ex. 6.10

1 The surface remained straight at the times and no liquid residue remains behind.

2 The gas obeys the ideal gas law.

3 The process is isothermal (can be isentropic process).

4 No gas leaves the rocket.

5 The mixing between the liquid and gas is negligible.

6 The gas mass is negligible in comparison to the liquid mass and/or the rocket.

7 No resistance to the rocket (can be added).

8 The cross section of the liquid is constant.

In this problem the energy source is the pressure of the gas which propels the rocket. Once

the gas pressure reduced to be equal or below the outside pressure the rocket have no power

for propulsion. Additionally, the initial take off is requires a larger pressure.

The mass conservation is similar to the rocket hence it is

dm

dt
= −UeAe (6.10.a)

The mass conservation on the gas zone is a byproduct of the mass conservation of the liquid.

Furthermore, it can be observed that the gas pressure is a direct function of the mass flow out.

The gas pressure at the initial point is

P0 = ρ0 R T (6.10.b)

Per the assumption the gas mass remain constant and is denoted as mg. Using the above

definition, equation (6.10.b) becomes

P0 =
mg R T

V0g
(6.10.c)

The relationship between the gas volume

Vg = hgA (6.10.d)

The gas geometry is replaced by a virtual constant cross section which cross section of the

liquid (probably the same as the base of the gas phase). The change of the gas volume is

dVg

dt
= A

dhg

dt
= −A

dhℓ
dt

(6.10.e)

The last identify in the above equation is based on the idea what ever height concede by the

liquid is taken by the gas. The minus sign is to account for change of “direction” of the liquid

height. The total change of the gas volume can be obtained by integration as

Vg = A
(
hg0 −∆hℓ

)
(6.10.f)

It must be point out that integral is not function of time since the height as function of time is

known at this stage.
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End of Ex. 6.10
The initial pressure now can be expressed as

P0 =
mg R T

hg0A
(6.10.g)

The pressure at any time is

P =
mg R T

hgA
(6.10.h)

Thus the pressure ratio is

P

P0
=
hg0

hg
=

hg0

hg0 −∆hℓ
= hg0

1

1−
∆hℓ
hg0

(6.10.i)

Equation (6.10.a) can be written as

mℓ(t) = mℓ0 −

∫t
0
UeAedt (6.10.j)

From equation (6.10.a) it also can be written that

dhℓ
dt

=
UeAe

ρeA
(6.10.k)

According to the assumption the flow out is linear function of the pressure inside thus,

Ue = f(P) + ghℓ rho ⋍ f(P) = ζ P (6.10.l)

Where ζ here is a constant which the right units.

The liquid momentum balance is

−g (mR +mℓ) − a (mR +mℓ) =

=0︷ ︸︸ ︷
d

dt
(mR +mℓ)U+bc+ (UR +Uℓ)mℓ

(6.10.m)

Where bc is the change of the liquid mass due the boundary movement.

Example 6.11: Compressed Gas Rocket Level: Intermediate
A rocket is filled with only compressed gas. At a specific moment the valve is opened

and the rocket is allowed to fly. What is theminimumpressurewhichmake the rocket

fly. What are the parameters that effect the rocket velocity. Develop an expression

for the rocket velocity.

Solution

2
This problem appeared in the previous version (0.2.3) without a solution. Several people ask to provide a solution

or some hints for the solution. The following is not the solution but rather the approach how to treat this problem.
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Example 6.12: Neglecting Velocity Component Level: Intermediate
In Example 6.6 it was mentioned that there are only two velocity components. What

was the assumption that the third velocity component was neglected.

Solution

6.5.1 Qualitative Questions

Example 6.13: Force Direction Level: Intermediate
For each following figures discuss and state forces direction and the momentum that

act on the control volume due to

Solution

Situations Explanations

F
Uout

Uin

U

Flow in and out of Angle

θ

β

Flow in and out at angle from a tank
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Example 6.14: Flow Out Symmetrical Tank Level: Intermediate
A similar tank as shown in Figure 6.17 is

built with a exit located in uneven distance

from the right and the left and is filledwith

liquid. The exit is located on the left hand

side at the front. What are the direction

of the forces that keep the control volume

in the same location? Hints, consider the

unsteady effects. Look at the directions

which the unsteady state momentum in

the tank change its value.

Fig. 6.17 – Flow out of un symmetrical
tank for example 6.14

Solution

Example 6.15: Large Tank Level: Intermediate
A large tank has opening with area,A. In front and against the opening there a block

with mass of 50[kg]. The friction factor between the block and surface is 0.5. As-

sume that resistance between the air and the water jet is negligible. Calculated the

minimum height of the liquid in the tank in order to start to have the block moving?

Solution
The solution of this kind problem first requires to know at what accuracy this solu-

tion is needed. For great accuracy, the effect minor loss or the loss in the tank open-

ing have taken into account. First assuming that a minimum accuracy therefore the in-

formation was given on the tank that it large. First, the velocity to move the block can

be obtained from the analysis of the block free

body diagram (the impinging jet diagram).

The control volume is attached to the

block. It is assumed that the two streams in the

vertical cancel each other. The jet stream has

only one component in the horizontal compo-

nent. Hence,

F = ρAUexit
2

(6.15.a)

τw

ρUexit
2

ρUout
2

mg

Fig. 6.18 – Jet impinging jet surface per-
pendicular and with the surface.

The minimum force the push the block is

ρAUexit
2 = mgµ −−→ Uexit =

√
mgµ

ρA
(6.15.b)

And the velocity as a function of the height is U =
√
ρgh and thus

h =
mµ

ρ2A
(6.15.c)
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End of Ex. 6.15

It is interesting to point out that the gravity is relevant. That is the gravity has no effect on

the velocity (height) required to move the block. However, if the gravity was in the opposite

direction, no matter what the height will be the block will not move (neglecting other minor

effects). So, the gravity has effect and the effect is the direction, that is the same height will be

required on the moon as the earth.

For very tall blocks, the forces that acts on the block in the vertical direction is can

be obtained from the analysis of the control volume shown in Fig. 6.18. The jet impinged on

the surface results in out flow stream going to all the directions in the block surface. Yet, the

gravity acts on all these “streams” and eventually the liquid flows downwards. In fact because

the gravity the jet impinging in downwards sled direction. At the extreme case, all liquid flows

downwards. The balance on the stream downwards (for steady state) is

ρUout
2 ∼= ρVliquid g+mg (6.15.d)

WhereVliquid is the liquid volume in the control volume (attached to the block). The pressure

is canceled because the flow is exposed to air. In cases were ρVliquid g > ρUout
2
the

required height is larger. In the opposite cases the height is smaller.

Example 6.16: Filling Tank with Water Level: GATE 2003
A water container is kept on a weighing balance. Water from the tap is falling verti-

cally into the container with a volume flow rate of Q; the velocity of the water when

it hits the water surface is U . At a particular instant of time the total mass of the con-

tainer and water is m. The force registered by the weighing balance at this instant of

time is

(a) mg+ ρQU (b) mg+ 2 ρQU

(c) mg+mg+ ρQU2

2 (d) mg+ ρQU
2

Solution
The control volume in this case should include the water plus the container. In this control

volume, there is one external force (the scale) in the upward direction and one flow in. It can

be noticed that at the specific point there two (or more) options for the control volume upper

surface: one) the upper surface moves with the liquid surface velocity or the boundary is fixed

and there is flow out. For the first option surface velocity should enter into the calculation. No

matter the choice, the results should be the same. However, to solve the problem additional

information is required. Hence, in case for ill–defined problem one has to result into to what

the poet meant (admittedly this author will try to find general expression and fail the exam).

For the case of the neglecting (for large cross section) surface velocity, simple balance

should be expressed. The weight of the container and water denotedm and wightmg. The

momentum entering to control volume is ṁU or in the given data as ρQU, therefore, net

balance reads

F = mg+ ρQU (6.16.a)
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End of Ex. 6.16
Answer is (a) not correct but the closest.

Example 6.17: Siphon Flow Out Level: GATE 2006

A siphon drawswater from a reservoir and

discharges it out at atmospheric pressure.

Assuming ideal fluid and the reservoir is

large, the velocity at point P in the siphon

tube is:

(a)

√
2 gh1

(b)

√
2 gh2

(c)

√
2 g (h2 − h1)

(d)

√
2 g (h2 + h1)

b

P

h2

h1

Fig. 6.19 – Flow Through a Siphon

Solution
The velocity atPPP is the same as though thewhole pipe. The fact that there is siphon is irrelevant

to the velocity for ideal condition. The difference between the two sides dictate the velocity

and also the flow rate. Thus, in this case

√
2 g (h2 − h1)

The answer is (c)

Example 6.18: Pelton Wheel Level: GATE 2008
Water, having a density of 1000 [kg/m3], leave from a nozzle with a velocity of 10

[m/s] and the jet strikes a bucket mounted on a Pelton wheel. The wheel rotates at

10 [rad/s]. The mean diameter of the wheel is 1 [m]. The jet is split into two equal

streams by the bucket, such that each stream is deflected by 120◦, as shown in the

figure. Friction in the bucket may be neglected. Magnitude of the torque exerted by

the water on the wheel, per unit mass flow rate of the incoming jet, is

(a) 0 [(N-m)/(kg/s)] (b) 1.25 [(N-m)/(kg/s)]

(c) 2.5 [(N-m)/(kg/s)] (d) 3.75 [(N-m)/(kg/s)]

Solution
The velocity is given by

U = ωR =
ωD

2
=
10× 1
2

=
[m
s

]
(6.18.a)

Whereω is angular velocity of the wheel, the R the wheel radius andD is wheel diameter.



248 CHAPTER 6. MOMENTUM CONSERVATION



7
Energy Conservation

7.1 The First Law of Thermodynamics
This chapter focuses on the energy conservation which is the first law of thermodynamics

1
.

The fluid, as all phases and materials, obeys this law which creates strange and wonderful

phenomena such as a shock and choked flow. Moreover, this law allows to solve problems,

which were assumed in the previous chapters. For example, the relationship between height

and flow rate was assumed previously, here it will be derived. Additionally a discussion on

various energy approximation is presented.

It was shown in Chapter 2 that the energy rate equation (2.10) for a system is

Q̇− Ẇ =
DEU
Dt

+
D
(
mU2

)

Dt
+
D (mgz)

Dt
(7.1)

This equation can be rearranged to be

Q̇− Ẇ =
D

Dt

(
EU +m

U2

2
+mgz

)
(7.2)

Equation (7.2) is similar to equation (6.3) in which the right hand side has to be interpreted

and the left hand side interpolated using the Reynold’s Transport Theorem (RTT)
2
.

1
Thermodynamics is the favorite topic of this author since it was his major in high school. Clearly this topic is

very important and will be extensively discussed here. However, during time of the constructing this book only a

simple skeleton by Potto standards will be build.

2
Some view the right hand side as external effects while the left side of the equation represents the internal effects.

This simplistic representation is correct only under extreme conditions. For example, the above view is wrong when

the heat convection, which is external force, is included on the right hand side.

249
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The right hand side is very complicated and only some of the effects will be discussed

(It is only an introductory material).

The energy transfer is carried (mostly
3
) by heat transfer to the system or the control

volume. There are three modes of heat transfer, conduction, convection
4
and radiation.

In most problems, the radiation is minimal. Hence, the discussion here will be restricted to

convection and conduction. Issues related to radiation are very complicated and considered

advancematerial and hencewill be left out. The issues of convection aremostly covered by the

terms on the left hand side. The main heat transfer mode on the left hand side is conduction.

Conduction for most simple cases is governed by Fourier’s Law which is

dq̇ = kT
dT

dn
dA (7.3)

Wheredq̇ is heat transfer to an infinitesimal small area per time and kT is the heat conduction

coefficient. The heat derivative is normalized into area direction. The total heat transfer to

the control volume is

Q̇ =

∫
Acv

k
dT

dn
dA (7.4)

dddℓℓℓ

t + dtt + dtt + dt

System at 

System at 

SnSnSnttt τττ

Fig. 7.1 – The work on the control volume is done by
two different mechanisms, Sn and τ.

The work done on the system is more

complicated to express than the heat transfer.

There are two kinds of works that the sys-

tem does on the surroundings. The first kind

work is by the friction or the shear stress and

the second by normal force. As in the pre-

vious chapter, the surface forces are divided

into two categories: one perpendicular to the

surface and one with the surface direction.

The work done by system on the surround-

ings (see Figure 7.1) is

dw =

dFFF︷ ︸︸ ︷
−SSSdAAA ·dℓ = −(SnSnSn + τ) ·

dV︷ ︸︸ ︷
dℓℓℓdA (7.5)

The change of the work for an infinitesimal time (excluding the shaft work) is

dw

dt
= −(SnSnSn + τ) ·

U︷︸︸︷
dℓℓℓ

dt
dA = −(SnSnSn + τ) ·UUUdA (7.6)

The total work for the system including the shaft work is

Ẇ = −

∫
Ac.v.

(SnSnSn + τ) UUUdA−Wshaft (7.7)

3
There are other methods such as magnetic fields (like microwave) which are not part of this book.

4
When dealing with convection, actual mass transfer must occur and thus no convection is possible to a system

by the definition of system.
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The energy equation (7.2) for system is∫
Asys

kT
dT

dn
dA+

∫
Asys

(SnSnSn + τ) dV

+Ẇshaft =
D

Dt

∫
Vsys

ρ

(
EU +m

U2

2
+ g z

)
dV

(7.8)

Equation (7.8) does not apply any restrictions on the system. The system can contain

solid parts as well several different kinds of fluids. Now Reynolds Transport Theorem can be

used to transformed the left hand side of equation (7.8) and thus yields

∫
Acv

kT
dT

dn
dA+

∫
Acv

(SnSnSn + τ) dA+ Ẇshaft =

d

dt

∫
Vcv

ρ

(
Eu +m

U2

2
+ g z

)
dV

+

∫
Acv

(
Eu +m

U2

2
+ g z

)
ρUrndA

Energy Equation

(7.9)

From now on the notation of the control volume and system will be dropped since all equa-

tions deals with the control volume. In the last term in equation (7.9) the velocity appears

twice. Note that U is the velocity in the frame of reference while Urn is the velocity relative

to the boundary. As it was discussed in the previous chapter the normal stress component

is replaced by the pressure (see equation (6.8) for more details). The work rate (excluding the

shaft work) is

Ẇ ∼=

flow work︷ ︸︸ ︷∫
S
Pn̂ ·UUUdA−

∫
S
τ ·UUU n̂dA (7.10)

The first term on the right hand side is referred to in the literature as the flow work

and is ∫
S
Pn̂ ·UUUdA =

∫
S
P

Urn︷ ︸︸ ︷
(U−Ub) n̂ dA+

∫
S
PUbndA (7.11)

Equation (7.11) can be further manipulated to become

∫
S
Pn̂ ·UUUdA =

work due to

the flow︷ ︸︸ ︷∫
S

P

ρ
ρUrn dA+

work due to

boundaries

movement︷ ︸︸ ︷∫
S
PUbndA (7.12)
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The second term is referred to as the shear work and is defined as

Ẇshear = −

∫
S
τ ·UUUdA (7.13)

Substituting all these terms into the governing equation yields

Q̇− Ẇshear− Ẇshaft =
d

dt

∫
V

(
Eu +

U2

2
+ g z

)
dV+∫

S

(
Eu +

P

ρ
+
U2

2
+ g z

)
Urn ρdA+

∫
S
PUrndA

(7.14)

The new term P/ρ combined with the internal energy, Eu is referred to as the enthalpy, h,

which was discussed on page 54. With these definitions equation (7.14) transformed

Q̇− Ẇshear+ Ẇshaft =
d

dt

∫
V

(
Eu +

U2

2
+ g z

)
ρdV+∫

S

(
h+

U2

2
+ g z

)
Urn ρdA+

∫
S
PUbndA

Simplified Energy Equation

(7.15)

Equation (7.15) describes the energy conservation for the control volume in stationary coor-

dinates. Also note that the shear work inside the control volume considered as shaft work.

The example of flow from a tank or container is presented to demonstrate how to treat

some of terms in equation (7.15).

Flow Out From A Container

hℓ

A

Ae

Ue

Fig. 7.2 – Discharge from a Large Container with a
small diameter.

In the previous chapters of this book,

the flow rate out of a tank or container was

assumed to be a linear function of the height.

The flow out is related to the height but in

a more complicate function and is the fo-

cus of this discussion. The energy equation

with mass conservation will be utilized for

this analysis. In this analysis several assump-

tions are made which includes the following:

constant density, the gas density is very small

compared to liquid density, and exit area is

relatively small, so the velocity can be as-

sumed uniform (not a function of the open-

ing height)
5
, surface tension effects are negligible and the liquid surface is straight

6
. Addi-

5
Later a discussion about the height opening effects will be discussed.

6
This assumption is appropriated only under certain conditions which include the geometry of the tank or con-

tainer and the liquid properties. A discussion about this issue will be presented in the Dimensional Chapter and is

out of the scope of this chapter. Also note that the straight surface assumption is not the same surface tension effects

zero.
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tionally, the temperature is assumed to constant. The control volume is chosen so that all the

liquid is included up to exit of the pipe. The conservation of the mass is

d

dt

∫
V
�ρdV +

∫
A
�ρUrn dA = 0 (7.16)

which also can be written (because
dρ
dt = 0) as

∫
A
Ubn dA+

∫
A
UrndA = 0 (7.17)

Equation (7.17) provides the relationship between boundary velocity to the exit velocity as

AUb = AeUe (7.18)

Note that the boundary velocity is not the averaged velocity but the actual velocity. The

averaged velocity in z direction is same as the boundary velocity

Ub = Uz =
dh

dt
=
Ae

A
Ue (7.19)

The x component of the averaged velocity is a function of the geometry and was cal-

culated in Example 5.14 to be larger than

Ux ≾
2 r

h

Ae

A
Ue =⇒ Ux ∼=

2 r

h
Ub =

2 r

h

dh

dt
(7.20)

In this analysis, for simplicity, this quantity will be used.

The averaged velocity in the y direction is zero because the flow is symmetrical
7
. How-

ever, the change of the kinetic energy due to the change in the velocity field isn’t zero. The

kinetic energy of the tank or container is based on the half part as shown in Figure 7.3. Similar

estimate that was done for x direction can be done to every side of the opening if they are

not symmetrical. Since in this case the geometry is assumed to be symmetrical one side is

sufficient as

Also notice that the surface velocity is not zero. The surface has three velocity components which non have them

vanish. However, in this discussion it is assumed that surface has only one component in z direction. Hence it

requires that velocity profile in x y to be parabolic. Second reason for this exercise the surface velocity has only one

component is to avoid dealing with Bar-Meir’s instability.

7
For the mass conservation analysis, the velocity is zero for symmetrical geometry and some other geometries.

However, for the energy analysis the averaged velocity cannot be considered zero.
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Uy ∼=
(π− 2)r

8 h

dh

dt
(7.21)

The energy balance can be expressed by equa-

tion (7.15) which is applicable to this case. The

temperature is constant
8
. In this light, the fol-

lowing approximation can be written

Q̇ =
Eu

dt
= hin − hout = 0 (7.22)

The boundary shear work is zero because the

velocity at tank boundary or walls is zero. Fur-

thermore, the shear stresses at the exit are nor-

mal to the flow direction hence the shear work

is vanished. At the free surface the velocity has

Uy1
2

Uy1
2

Ue

Uy = 0

Fig. 7.3 – How to compensate and estimate
the kinetic energywhen averagedVeloc-
ity is zero.

only normal component
9
and thus shear work vanishes there as well. Additionally, the inter-

nal shear work is assumed negligible.

Ẇshear = Ẇshaft = 0 (7.23)

Now the energy equation deals with no “external” effects. Note that the (exit) velocity on the

upper surface is zero Urn = 0.

Combining all these information results in

internal energy change︷ ︸︸ ︷
d

dt

∫
V

(
U2

2
+ g z

)
ρdV +

energy flow out︷ ︸︸ ︷
energy in and out︷ ︸︸ ︷∫

A

(
Pe

ρ
+
Ue
2

2

)
Ue ρdA−

upper surface work︷ ︸︸ ︷∫
A
PaUb dA = 0 (7.24)

WhereUb is the upper boundary velocity, Pa is the external pressure and Pe is the exit pres-

sure
10
.

The pressure terms in equation (7.24) are∫
A

Pe

ρ
Ue ρdA−

∫
A
PaUb dA = Pe

∫
A
Ue dA− Pa

∫
A
Ub dA (7.25)

It can be noticed that Pa = Pe hence

Pa

=0︷ ︸︸ ︷(∫
A
Ue dA−

∫
A
Ub dA

)
= 0 (7.26)

8
This approach is a common approximation. Yet, why this approach is correct in most cases is not explained

here. Clearly, the dissipation creates a loss that has temperature component. In this case, this change is a function

of Eckert number, Ec which is very small. The dissipation can be neglected for small Ec number. Ec number is

named after this author’s adviser, E.R.G. Eckert. A discussion about this effect will be presented in the dimensional

analysis chapter. Some examples how to calculate these losses will be resent later on.

9
It is only the same assumption discussed earlier.

10
It is assumed that the pressure in exit across section is uniform and equal surroundings pressure.
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The governing equation (7.24) is reduced to

d

dt

∫
V

(
U2

2
+ g z

)
ρdV −

∫
A

(
Ue
2

2

)
Ue ρdA = 0 (7.27)

The minus sign is because the flow is out of the control volume.

Similarly to the previous chapter which the integral momentum will be replaced by

some kind of average. The terms under the time derivative can be divided into two terms as

d

dt

∫
V

(
U2

2
+ g z

)
ρdV =

d

dt

∫
V

U2

2
dV +

d

dt

∫
V
g z ρdV (7.28)

The second integral (in the r.h.s) of equation (7.28) is

d

dt

∫
V
g z ρdV = gρ

d

dt

∫
A

∫h
0
z

dV︷ ︸︸ ︷
dzdA (7.29)

Where h is the height or the distance from the surface to exit. The inside integral can be

evaluated as ∫h
0
zdz =

h2

2
(7.30)

Substituting the results of equation (7.30) into equation (7.29) yields

gρ
d

dt

∫
A

h2

2
dA = gρ

d

dt


h
2

V︷︸︸︷
hA


 = gρAh

d h

dt
(7.31)

The kinetic energy related to the averaged velocity with a correction fac-

tor which depends on the geometry and the velocity profile. Furthermore,

Even the averaged velocity is zero the kinetic energy is not zero and another

method should be used.

A discussion on the correction factor is presented to provide a better “averaged” velocity. A

comparison between the actual kinetic energy and the kinetic energy due to the “averaged”

velocity (to be called the averaged kinetic energy) provides a correction coefficient. The first

integral can be estimated by examining the velocity profile effects. The averaged velocity is

Uave =
1

V

∫
V
UdV (7.32)

The total kinetic energy for the averaged velocity is

ρUave
2 V = ρ

(
1

V

∫
V
UdV

)2
V = ρ

(∫
V
UdV

)2
(7.33)
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The general correction factor is the ratio of the above value to the actual kinetic energy as

CF =

(∫
V
ρUdV

)2

∫
V
ρU2 dV

̸= �ρ (Uave)
2 V∫

V
�ρU

2 dV

(7.34)

Here, CF is the correction coefficient. Note, the inequality sign because the density distribu-

tion for compressible fluid. The correction factor for a constant density fluid is

CF =

(∫
V
ρUdV

)2

∫
V
ρU2 dV

=

(
�ρ

∫
V
UdV

)2

�ρ

∫
V
U2 dV

=
Uave

2 V∫
V
U2 dV

(7.35)

This integral can be evaluated for any given velocity profile. A large family of velocity profiles

is laminar or parabolic (for one directional flow)
11
. For a pipe geometry, the velocity is

U
( r
R

)
= U (r̄) = Umax

(
1− r̄2

)
= 2Uave

(
1− r̄2

)
(7.36)

It can be noticed that the velocity is presented as a function of the reduced radius
12
. The

relationship between Umax to the averaged velocity, Uave is obtained by using equation

(7.32) which yields 1/2.

Substituting equation (7.36) into equation (7.35) results

Uave
2 V∫

V
U2 dV

=
Uave

2 V∫
V

(
2Uave

(
1− r̄2

))2
dV

=
Uave

2 V

4Uave
2 πLR2

3

=
3

4
(7.37)

The correction factor for many other velocity profiles and other geometries can be smaller

or larger than this value. For circular shape, a good guess number is about 1.1. In this case, for

simplicity reason, it is assumed that the averaged velocity indeed represent the energy in the

tank or container. Calculations according to this point can improve the accurately based on

the above discussion.

The difference between the “averaged momentum” velocity and the “averaged

kinetic” velocity is also due to the fact that energy is added for different direc-

tions while in the momentum case, different directions cancel each other out.

The unsteady state term then obtains the form

d

dt

∫
V
ρ

(
U2

2
+ gy

)
dV ∼= ρ

d

dt



[
U
2

2
+
gh

2

] V︷︸︸︷
hA


 (7.38)

11
Laminar flow is not necessarily implies that the flow velocity profile is parabolic. The flow is parabolic only

when the flow is driven by pressure or gravity. More about this issue in the Differential Analysis Chapter.

12
The advantage is described in the Dimensional Analysis Chapter.
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The relationship between the boundary velocity to the height (by definition) is

Ub =
dh

dt
(7.39)

Therefore, the velocity in the z direction13 is

Uz =
dh

dt
(7.40)

Ue =
A

Ae

dh

dt
= −Ub

dh

dt
(7.41)

Combining all the three components of the velocity (Pythagorean Theorem) as

U
2 ∼= Ux

2
+Uy

2
+Uz

2
(7.42)

U
2 ∼=

(
(π− 2) r

8 h

dh

dt

)2
+

(
(π− 1) r

4 h

dh

dt

)2
+

(
dh

dt

)2
(7.43)

U ∼=
dh

dt

f(G)︷ ︸︸ ︷√(
(π− 2) r

8 h

)2
+

(
(π− 1) r

4 h

)2
+ 12 (7.44)

It can be noticed that f(G) is a weak function of the height inverse. Analytical solution of the

governing equation is possible including this effect of the height. However, the mathemati-

cal complication are enormous
14
and this effect is assumed negligible and the function to be

constant.

The last term is∫
A

Ue
2

2
Ue ρdA =

Ue
2

2
Ue ρAe =

1

2

(
dh

dt

A

Ae

)2
Ue ρAe (7.45)

Combining all the terms into equation (7.27) results in

�ρ
d

dt



[
U
2

2
+
gh

2

] V︷︸︸︷
hA


−

1

2

(
dh

dt

)2(
A

Ae

)2
Ue �ρAe = 0 (7.46)

13
A similar point was provided in mass conservation Chapter 5. However, it easy can be proved by construction

the same control volume. The reader is encouraged to do it to get acquainted with this concept.

14
The solution, not the derivation, is about one page. It must be remembered that is effect extremely important in

the later stages of the emptying of the tank. But in the same vain, some other effects have to be taken into account

which were neglected in construction of this model such as upper surface shape.
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taking the derivative of first term on l.h.s. results in

d

dt

[
U
2

2
+
gh

2

]
hA+

[
U
2

2
+
gh

2

]
A
dh

dt
−
1

2

(
dh

dt

)2(
A

Ae

)2
UeAe = 0 (7.47)

Equation (7.47) can be rearranged and simplified and combinedwithmass conservation

15
.

Advance material can be skipped

Dividing equation (7.46) by UeAe and utilizing equation (7.40)

d

dt

[
U
2

2
+
gh

2

]
hA

UeAe
+

[
U
2

2
+
gh

2

]
A
Ae

A
Ue︷ ︸︸ ︷

�
��A
dh

dt
−
1

2

(
dh

dt

)2(
A

Ae

)2
���UeAe = 0 (7.48)

Notice that U = Ub f(G) and thus

f(G)Ub︷︸︸︷
U

dU

dt

hA

UeAe
+
g

2

dh

dt

hA

UeAe
+

[
U
2

2
+
gh

2

]
−
1

2

(
dh

dt

)2(
A

Ae

)2
= 0 (7.49)

Further rearranging to eliminate the “flow rate” transforms to

f(G)h
dU

dt�
����*1(
UbA

UeAe

)
+
gh

2 �
�

�
��
1

dh

dt
A

UeAe
+

[
f(G)2

2

(
dh

dt

)2
+
gh

2

]
−
1

2

(
dh

dt

)2(
A

Ae

)2
= 0

(7.50)

f(G)2 h
d2h

dt2
+
gh

2
+

[
f(G)2

2

(
dh

dt

)2
+
gh

2

]
−
1

2

(
dh

dt

)2(
A

Ae

)2
= 0 (7.51)

End Advance material

Combining the gh terms into one yields

f(G)2 h
d2h

dt2
+ gh+ 1

2

(
dh

dt

)2 [
f(G)2 −

(
A

Ae

)2]
= 0 (7.52)

Defining a new tank emptying parameter, Te, as

Te =

(
A

f(G)Ae

)2
(7.53)

15
This part can be skipped to end of "advanced material".
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This parameter represents the characteristics of the tank which controls the emptying pro-

cess. Dividing equation (7.52) by f(G)2 and using this parameter, equation (7.52) after minor

rearrangement transformed to

h

(
d2h

dt2
+
gAe

2

TeA2

)
+ 1
2

(
dh

dt

)2
[1− Te] = 0 (7.54)

The solution can either of these equations
16

−

∫
dh√

(k1 Te − 2 k1) e
ln(h)Te + 2 gh2

h (Te− 2) f(G)
= t+ k2 (7.55)

or ∫
dh√

(k1 Te − 2 k1) e
ln(h)Te + 2 gh2

h (Te− 2) f(G)
= t+ k2 (7.56)

The solution with the positive solution has no physical meaning because the height cannot

increase with time. Thus define function of the height as

f(h) = −

∫
dh√

(k1 Te − 2 k1) e
ln(h)Te + 2 gh2

h (Te− 2) f(G)
(7.57)

The initial condition for this case are: one the height initial is

h(0) = h0 (7.58)

The initial boundary velocity is

dh

dt
= 0 (7.59)

This condition pose a physical limitation
17
which will be ignored. The first condition yields

k2 = −f(h0) (7.60)

16
A discussion about this equation appear in the mathematical appendix.

17
For the initial condition speed of sound has to be taken into account. Thus for a very short time, the information

about opening of the valve did not reached to the surface. This information travel in characteristic sound speedwhich

is over 1000m/sec. However, if this phenomenon is ignored this solution is correct.
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The second condition provides

dh

dt
= 0 =

√
(k1 Te − 2 k1) e

ln(h0)Te + 2 gh0
2

h0 (Te− 2) f(G)
(7.61)

The complication of the above solution suggest a simplification in which

d2h

dt2
<<

gAe
2

TeA2
(7.62)

which reduces equation (7.54) into

h

(
gAe

2

TeA2

)
+ 1
2

(
dh

dt

)2
[1− Te] = 0 (7.63)

While equation (7.63) is still non linear equation, the non linear element can be removed by

taking negative branch (height reduction) of the equation as

(
dh

dt

)2
=

2 gh

−1+
(
A
Ae

)2 (7.64)

It can be noticed that Te “disappeared” from the equation. And taking the “positive” branch

dh

dt
=

√
2 gh√

1−
(
A
Ae

)2 (7.65)

The nature of first order Ordinary Differential Equation that they allow only one initial con-

dition. This initial condition is the initial height of the liquid. The initial velocity field was

eliminated by the approximation (remove the acceleration term). Thus it is assumed that the

initial velocity is not relevant at the core of the process at hand. It is correct only for large

ratio of h/r and the error became very substantial for small value of h/r.

Equation (7.65) integrated to yield

(
1−

(
A

Ae

)2) ∫h
h0

dh√
2 gh

=

∫t
0
dt (7.66)

The initial condition has been inserted into the integral which its solution is

(
1−

(
A

Ae

)2)
h− h0√
2 gh

= t (7.67)

Ue =
dh

dt

A

Ae
=

√
2 gh√

1−
(
A
Ae

)2
A

Ae
=

√
2 gh√

1−
(
Ae
A

)2 (7.68)
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(a) Projecting pipe K=1. (b) Sharp edge pipe connec-
tion K=0.5.

(c) Rounded inlet pipe K=0.04.

Fig. 7.4 – Typical resistance for selected outlet configuration.

If the area ratio Ae/A << 1 then

U ∼=
√
2 gh (7.69)

Equation (7.69) is referred in the literature as Torricelli’s equation
18

This analysis has several drawbacks which limits the accuracy of the calculations. Yet,

this analysis demonstrates the usefulness of the integral analysis to provide a reasonable so-

lution. This analysis can be improved by experimental investigating the phenomenon. The

experimental coefficient can be added to account for the dissipation and other effects such

dh

dt
∼= C

√
2 gh (7.70)

The loss coefficient can be expressed as

C = Kf

(
U2

2

)
(7.71)

A few loss coefficients for different configuration is given following Figure 7.4.

7.2 Limitation of Integral Approach
Some of accuracy issues to enhance the quality and improvements of the integral method

were suggested in the analysis of the emptying tank. There are problems that the integral

methods even with these enhancements simply cannot tackle.

The improvements to the integral methods are the corrections to the estimates of the

energy or other quantities in the conservation equations. In the calculations of the exit ve-

locity of a tank, two such corrections were presented. The first type is the prediction of the

velocities profile (or the concentration profile). The second type of corrections is the under-

standing that averaged of the total field is different from the averaged of different zooms. In

the case of the tank, the averaged velocity in x direction is zero yet the averaged velocity in the

18
Evangelista Torricelli (October 15, 1608 October 25, 1647) was an Italian physicist and mathematician. He derived

this equation based on similar principle to Bernoulli equation (which later leads to Bernoulli’s equation). Today the

exact reference to his work is lost and only “sketches” of his lecture elude work. He was student (not formal) and

follower of Galileo Galilei. It seems that Torricelli was an honest man who gave to others and he died at young age

of 39 while in his prime.
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two zooms (two halves) is not zero. In fact, the averaged energy in the x direction contributes

or effects the energy equation. The accuracy issues that integral methods intrinsically suffers

from no ability to exact flow field and thus lost the accuracy as was discussed in the example.

The integral method does not handle the problems such as the free surface with reasonable

accuracy. Furthermore, the knowledge of whether the flow is laminar or turbulent (later on

this issue) has to come from different techniques. Hence the prediction can skew the actual

predictions.

equilibrioum

level

air

air

lowest level

for the liquid

HHH

HHH

DDD

Fig. 7.5 – Flow in an oscillating manometer.

In the analysis of the tank it was as-

sumed that the dissipation can be ignored.

In cases that dissipation play major role, the

integral does not provide a sufficient tool to

analyze the issue at hand. For example, the

analysis of the oscillating manometer cannot

be carried by the integral methods. A liq-

uid in manometer is disturbed from a rest

by a distance of H0. The description H(t) as

a function of time requires exact knowledge

of the velocity field. Additionally, the inte-

gral methods is too crude to handle issues of

free interface. These problemwereminor for

the emptying the tank but for the oscillating

manometer it is the core of the problem. Hence different techniques are required.

The discussion on the limitations was not provided to discard usage of this method but

rather to provide a guidance of use with caution. The integral method is a powerful and yet

simple method but has has to be used with the limitations of the method in mind.

7.3 Approximation of Energy Equation
The emptying the tank problem was complicated even with all the simplifications that were

carried. Engineers in order to reduce the work further simplify the energy equation. It turn

out that these simplifications can provide reasonable results and key understanding of the

physical phenomena and yet with less work, the problems can be solved. The following sec-

tions provides further explanation.

7.3.1 Energy Equation in Steady State
The steady state situation provides several ways to reduce the complexity. The time deriva-

tive term can be eliminated since the time derivative is zero. The acceleration term must be

eliminated for the obvious reason. Hence the energy equation is reduced to

Q̇− Ẇshear − Ẇshaft =

∫
S

(
h+

U2

2
+ g z

)
Urn ρdA+

∫
S
PUbndA

Steady State Equation

(7.72)
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If the flow is uniform or can be estimated as uniform, equation (7.72) is reduced to

Q̇− Ẇshear − Ẇshaft =

(
h+

U2

2
+ g z

)
Urn ρAout−

(
h+

U2

2
+ g z

)
Urn ρAin + PUbnAout − PUbnAin

Steady State Equation & uniform

(7.73)

It can be noticed that last term in equation (7.73) for non-deformable control volume does

not vanished. The reason is that while the velocity is constant, the pressure is different. For a

stationary fix control volume the energy equation, under this simplification transformed to

Q̇− Ẇshear − Ẇshaft =

(
h+

U2

2
+ g z

)
Urn ρAout−

(
h+

U2

2
+ g z

)
Urn ρAin (7.74)

Dividing equation the mass flow rate provides

q̇− ẇshear − ẇshaft =

(
h+

U2

2
+ g z

)∣∣∣∣
out

−

(
h+

U2

2
+ g z

)∣∣∣∣
in

Steady State Equation, Fix ṁ & uniform

(7.75)

7.3.2 Energy Equation in Frictionless Flow and Steady State
In cases where the flow can be estimated without friction or where a quick solution is needed

the friction and other losses are illuminated from the calculations. This imaginary fluid re-

duces the amount ofwork in the calculations and Ideal FlowChapter is dedicated in this book.

The second low is the core of “no losses” and can be employed when calculations of this sort

information is needed. Equation (2.21) which can be written as

dqrev = T ds = dEu + P dv (7.76)

Using the multiplication rule change equation (7.76)

dqrev = dEu + d (P v) − v dP = dEu + d

(
P

ρ

)
− v dP (7.77)

integrating equation (7.77) yields∫
dqrev =

∫
dEu +

∫
d

(
P

ρ

)
−

∫
v dP (7.78)

qrev = Eu +

(
P

ρ

)
−

∫
dP

ρ
(7.79)
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Integration over the entire system results in

Qrev =

∫
V

h︷ ︸︸ ︷(
Eu +

(
P

ρ

))
ρdV −

∫
V

(∫
dP

ρ

)
ρdV (7.80)

Taking time derivative of the equation (7.80) becomes

Q̇rev =
D

Dt

∫
V

h︷ ︸︸ ︷(
Eu +

(
P

ρ

))
ρdV −

D

Dt

∫
V

(∫
dP

ρ

)
ρdV (7.81)

Using the Reynolds Transport Theorem to transport equation to control volume results in

Q̇rev =
d

dt

∫
V
hρdV +

∫
A
hUrn ρdA+

D

Dt

∫
V

(∫
dP

ρ

)
ρdV (7.82)

As before equation (7.81) can be simplified for uniform flow as

Q̇rev = ṁ

[
(hout − hin) −

(∫
dP

ρ

∣∣∣∣
out

−

∫
dP

ρ

∣∣∣∣
in

)]
(7.83)

or

q̇rev = (hout − hin) −

(∫
dP

ρ

∣∣∣∣
out

−

∫
dP

ρ

∣∣∣∣
in

)
(7.84)

Subtracting equation (7.84) from equation (7.75) results in

0 = wshaft +

change in

pressure

energy︷ ︸︸ ︷(∫
dP

ρ

∣∣∣∣
2

−

∫
dP

ρ

∣∣∣∣
1

)
+

change in

kinetic

energy︷ ︸︸ ︷
U2
2 −U1

2

2
+

change in

potential

energy︷ ︸︸ ︷
g (z2 − z1) (7.85)

Equation (7.85) for constant density is

0 = wshaft +
P2 − P1
ρ

+
U2
2 −U1

2

2
+ g (z2 − z1) (7.86)

For no shaft work equation (7.86) reduced to

0 =
P2 − P1
ρ

+
U2
2 −U1

2

2
+ g (z2 − z1) (7.87)

7.4 Energy Equation in Accelerated System
In the discussion so far, it was assumed that the control volume is at rest. The only accep-

tation to the above statement, is the gravity that was compensated by the gravity potential.
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In building the gravity potential it was assumed that the gravity is a conservative force. It

was pointed earlier in this book that accelerated forces can be translated to potential force.

In many cases, the control volume is moving in accelerated coordinates. These accelerations

will be translated to potential energy.

The accelerations are referring to two kinds of acceleration, linear and rotational.

There is no conceptional difference between these two accelerations. However, the math-

ematical treatment is somewhat different which is the reason for the separation. General

Acceleration can be broken into a linear acceleration and a rotating acceleration.

7.4.1 Energy in Linear Acceleration Coordinate
The potential is defined as

P.E. = −

∫2
ref
FFF ·dℓdℓdℓ (7.88)

In Chapter 3 a discussion about gravitational energy potential was presented. For example,

for the gravity force is

F = −
GMm

r2
(7.89)

Where G is the gravity coefficient andM is the mass of the Earth. r andm are the distance

and mass respectively. The gravity potential is then

PEgravity = −

∫r
∞−

GMm

r2
dr (7.90)

The reference was set to infinity. The gravity force for fluid element in small distance then is

gdzdm. The work this element moving from point 1 to point 2 is∫2
1
gdzdm = g (z2 − z1)dm (7.91)

The total work or potential is the integral over the whole mass.

7.4.2 Linear Accelerated System
The acceleration can be employed in similar fashion as the gravity force. The linear accelera-

tion “creates” a conservative force of constant force and direction. The “potential” of moving

the mass in the field provides the energy. The Force due to the acceleration of the field can be

broken into three coordinates. Thus, the element of the potential is

dPEa = aaa · dℓℓℓ dm (7.92)

The total potential for element material

PEa =

∫ (1)
(0)
aaa · dℓℓℓ dm = (ax (x1 − x0)ay (y1 − y0)az (z1 − z0)) dm (7.93)
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At the origin (of the coordinates) x = 0, y = 0, and z = 0. Using this trick the notion of the

ax (x1 − x0) can be replaced by ax x. The same can be done for the other two coordinates.

The potential of unit material is

PEatotal =

∫
sys

(ax x+ ay y+ az z) ρdV (7.94)

The change of the potential with time is

D

Dt
PEatotal =

D

Dt

∫
sys

(ax x+ ay y+ az z) dm (7.95)

Equation can be added to the energy equation as

Q̇− Ẇ =
D

Dt

∫
sys

[
Eu +

U2

2
+ ax x+ ay y+ (az + g)z

]
ρdV (7.96)

The Reynolds Transport Theorem is used to transferred the calculations to control volume

as

Q̇− Ẇ =
d

dt

∫
cv

[
Eu +

U2

2
+ ax x+ ay y+ (az + g)z

]
ρdV

+

∫
cv

(
h+

U2

2
+ ax x+ ay y+ (az + g)z

)
Urn ρdA

+

∫
cv
PUbn dA

Energy Equation in Linear Accelerated Coordinate

(7.97)

7.4.3 Energy Equation in Rotating Coordinate System
The coordinate system rotating around fix axes creates a similar conservative potential as a

linear system. There are two kinds of acceleration due to this rotation; one is the centrifugal

and one the Coriolis force. To understand it better, consider a particle which moves with the

our rotating system. The forces acting on particles are

FFF =




centrifugal︷ ︸︸ ︷
ω2 r r̂ +

Coriolis︷ ︸︸ ︷
2UUU×ω


 dm (7.98)

The work or the potential then is

PE =
(
ω2 r r̂+ 2UUU×ω

)
· dℓdm (7.99)

The cylindrical coordinate are

dℓ = drr̂+ r dθ θ̂+ dz k̂ (7.100)
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where r̂, θ̂, and k̂ are units vector in the coordinates r, θ and z respectively. The potential is

then

PE =
(
ω2 r r̂+ 2UUU×ω

)
·
(
drr̂+ r dθ θ̂+ dz k̂

)
dm (7.101)

The first term results inω2 r2 (see for explanation in the appendix 765 for vector explanation).

The cross product is zero of

UUU×ω×UUU = UUU×ω×ω = 0

because the first multiplication is perpendicular to the last multiplication. The second part is

(2UUU×ω) · dℓdm (7.102)

This multiplication does not vanish with the exception of the direction of UUU. However, the

most important direction is the direction of the velocity. Thismultiplication creates lines (sur-

faces ) of constant values. From a physical point of view, the flux of this property is important

only in the direction of the velocity. Hence, this term canceled and does not contribute to the

potential.

The net change of the potential energy due to the centrifugal motion is

PEcentrifugal = −

∫2
1
ω2 r2 drdm =

ω2
(
r1
2 − r2

2
)

2
dm (7.103)

Inserting the potential energy due to the centrifugal forces into the energy equation yields

Q̇− Ẇ =
d

dt

∫
cv

[
Eu +

U2

2
+ ax x+ ay y+ (az + g)z−

ω2 r2

2

]
ρdV

+

∫
cv

(
h+

U2

2
+ ax x+ ay y+ (az + g) z− z

ω2 r2

2

)
Urn ρdA

+

∫
cv
PUbn dA

Energy Equation in Accelerated Coordinate

(7.104)

7.4.4 Simplified Energy Equation in Accelerated Coordinate
7.4.4.1 Energy Equation in Accelerated Coordinate with Uniform Flow

One of the way to simplify the general equation (7.104) is to assume uniform flow. In that case

the time derivative term vanishes and equation (7.104) can be written as

Q̇− Ẇ =

∫
cv

(
h+

U2

2
+ ax x+ ay y+ (az + g) − z

ω2 r2

2

)
Urn ρdA

+

∫
cv
PUbn dA

Energy Equation in steady state

(7.105)
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Further simplification of equation (7.105) by assuming uniform flow for which

Q̇− Ẇ =

(
h+

U
2

2
+ ax x+ ay y+ (az + g) − z

ω2 r2

2

)
Urn ρdA

+

∫
cv
PUbn dA (7.106)

Note that the acceleration also have to be averaged. The correction factors have to introduced

into the equation to account for the energy averaged verse to averaged velocity (mass aver-

aged). These factor make this equation with larger error and thus less effective tool in the

engineering calculation.

7.4.5 Energy Losses in Incompressible Flow
In the previous sections discussion, it was assumed that there are no energy loss. However,

these losses are very important for many real world application. And these losses have prac-

tical importance and have to be considered in engineering system. Hence writing equation

(7.15) when the energy and the internal energy as a separate identity as

Ẇshaft =
d

dt

∫
V

(
U2

2
+ g z

)
ρdV+

∫
A

(
P

ρ
+
U2

2
+ g z

)
Urn ρdA+

∫
A
PUbndA+

energy loss︷ ︸︸ ︷
d

dt

∫
V
Eu ρdV +

∫
A
EuUrn ρdA− Q̇− Ẇshear (7.107)

Equation (7.107) sometimes written as

Ẇshaft =
d

dt

∫
V

(
U2

2
+ g z

)
ρdV+

∫
A

(
P

ρ
+
U2

2
+ g z

)
Urn ρdA+

∫
A
PUbndA+ energy loss

(7.108)

Equation can be further simplified under assumption of uniform flow and steady state

as

ẇshaft =

(
P

ρ
+
U2

2
+ g z

)∣∣∣∣
out

−

(
P

ρ
+
U2

2
+ g z

)∣∣∣∣
in

+ energy loss (7.109)

Equation (7.109) suggests that term h+ U2

2 + g z has a special meaning (because it remained

constant under certain conditions). This term, as will be shown, has to be constant for fric-

tionless flow without any addition and loss of energy. This term represents the “potential
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energy.” The loss is the combination of the internal energy/enthalpy with heat transfer. For

example, fluid flow in a pipe has resistance and energy dissipation. The dissipation is lost

energy that is transferred to the surroundings. The loss is normally is a strong function of the

velocity square, U2/2. There are several categories of the loss which referred as minor loss

(which are not minor), and duct losses. These losses will be tabulated later on.

If the energy loss is negligible and the shaft work vanished or does not exist equation

(7.109) reduces to simple Bernoulli’s equation.

0 =

(
P

ρ
+
U2

2
+ g z

)∣∣∣∣
out

−

(
P

ρ
+
U2

2
+ g z

)∣∣∣∣
in

Simple Bernoulli

(7.110)

Equation (7.110) is only a simple form of Bernoulli’s equation which was developed by

Bernoulli’s adviser, Euler. There also unsteady state and other form of this equation that

will be discussed in differential equations Chapter.

7.5 Examples of Integral Energy Conservation
Example 7.1: Flow in Unsteady Pipe Level: Intermediate

Consider a flow in a long straight pipe. Initially the flow is at a rest. At time,

t0, a constant pressure difference is ap-

plied on the pipe. Assume that flow is in-

compressible, and the resistance or energy

loss is f. Furthermore assume that this loss

is a function of the velocity square. De-

velop equation to describe the exit velocity

as a function of time. State your assump-

tions.

LLL

Fig. 7.6 – Flow in a long pipe when ex-
posed to a jump in the pressure dif-
ference.

Solution
The mass balance on the liquid in the pipe results in

0 =

=0︷ ︸︸ ︷∫
V

∂ρ

∂t
dV +

=0︷ ︸︸ ︷∫
A
ρUbndA+

∫
A
ρUrndA =⇒ �ρ�AUin = �ρ�AUexit

(7.1.a)

There is no change in the liquid mass inside pipe and therefore the time derivative is zero (the

same mass resides in the pipe at all time). The boundaries do not move and the second term

is zero. Thus, the flow in and out are equal because the density is identical. Furthermore, the

velocity is identical because the cross area is same.

It can be noticed that for the energy balance on the pipe, the time derivative can enter the
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continue Ex. 7.1

integral because the control volume has fixed boundaries. Hence,

Q̇−

=0︷ ︸︸ ︷
Ẇshear+

=0︷ ︸︸ ︷
Ẇshaft =

∫
V

d

dt

(
Eu +

U2

2
+ g z

)
ρdV+∫

S

(
h+

U2

2
+ g z

)
Urn ρdA+

∫
S
PUbndA

(7.1.b)

The boundaries shear work vanishes because the same arguments present before (the work,

where velocity is zero, is zero. In the locations where the velocity does not vanished, such as

in and out, the work is zero because shear stress are perpendicular to the velocity).

There is no shaft work and this term vanishes as well. The first term on the right hand side

(with a constant density) is

ρ

∫
Vpipe

d

dt

(
Eu +

U2

2
+

constant︷︸︸︷
g z

)
dV = ρU

dU

dt

Lπr2︷ ︸︸ ︷
Vpipe+ρ

∫
Vpipe

d

dt
(Eu) dV

(7.1.c)

where L is the pipe length, r is the pipe radius, U averaged velocity.

In this analysis, it is assumed that the pipe is perpendicular to the gravity line and thus the

gravity is constant. The gravity in the first term and all other terms, related to the pipe, van-

ish again because the value of z is constant. Also, as can be noticed from equation (7.1.a), the

velocity is identical (in and out). Hence the second term becomes

∫
A


h+



��

��* constant
U2

2
+ g z




 ρUrndA =

∫
A

h︷ ︸︸ ︷(
Eu +

P

ρ

)
ρUrndA

(7.1.d)

Equation (7.1.d) can be further simplified (since the area and averaged velocity are constant,

additionally notice that U = Urn) as∫
A

(
Eu +

P

ρ

)
ρUrndA = ∆PUA+

∫
A
ρEuUrn dA (7.1.e)

The third term vanishes because the boundaries velocities are zero and therefore∫
A
P UbndA = 0 (7.1.f)

Combining all the terms results in

Q̇ = ρU
dU

dt

Lπr2︷ ︸︸ ︷
Vpipe+ρ

d

dt

∫
Vpipe

Eu dV +∆PUdA+

∫
A
ρEuUdA (7.1.g)

equation (7.1.g) can be rearranged as

−KU2

2︷ ︸︸ ︷
Q̇− ρ

∫
Vpipe

d (Eu)

dt
dV −

∫
A
ρEuUdA = ρ Lπ r2U

dU

dt
+ (Pin − Pout) U

(7.1.h)
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End of Ex. 7.1
The terms on the LHS (left hand side) can be combined. It common to assume (to view) that

these terms are representing the energy loss and are a strong function of velocity square
19
.

Thus, equation (7.1.h) can be written as

−K
U2

2
= ρ Lπ r2U

dU

dt
+ (Pin − Pout) U (7.1.i)

Dividing equation (7.1.i) by KU/2 transforms equation (7.1.i) to

U+
2 ρ Lπ r2

K

dU

dt
=
2 (Pin − Pout)

K
(7.1.j)

Equation (7.1.j) is a first order differential equation. The solution this equation is described in

the appendix and which is

U =e
−

(
t K

2π r2 ρ L

)


2 (Pin − Pout)e

(
t K

2π r2 ρ L

)

K
+ c



e


2 π r

2 ρ t L

K




(7.1.k)

Applying the initial condition, U(t = 0) = 0 results in

U =
2 (Pin − Pout)

K


1−e

−

(
t K

2π r2 ρ L

)
 (7.1.l)

The solution is an exponentially approaching the steady state solution. In steady state the flow

equation (7.1.j) reduced to a simple linear equation. The solution of the linear equation and the

steady state solution of the differential equation are the same.

U =
2 (Pin − Pout)

K
(7.1.m)

Another note, in reality the resistance,K, is not constant but rather a strong function of velocity

(and other parameters such as temperature
20
, velocity range, velocity regime and etc.). This

function will be discussed in a greater extent later on. Additionally, it should be noted that if

momentum balance was used a similar solution (but not the same) was obtained (why? hint

the difference of the losses accounted for).

The following example combined the above discussion in the text with the above ex-

ample (7.1).

20
The shear work inside the liquid refers to molecular work (one molecule work on the other molecule). This

shear work can be viewed also as one control volume work on the adjoined control volume.

20
Via the viscosity effects.
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Example 7.2: Evacting Large Tank Level: Intermediate
A large cylindrical tank with a diameter, D, contains liquid to height, h. A long

pipe is connected to a tank from which the liquid is emptied. To analysis this sit-

uation, consider that the tank has a constant pressure above liquid (actually a better

assumption of air with a constant mass.).

The pipe is exposed to the surroundings

and thus the pressure is Patmos at the

pipe exit. Derive approximated equations

that related the height in the large tank and

the exit velocity at the pipe to pressure dif-

ference. Assume that the liquid is incom-

pressible. Assume that the resistance or

the friction in the pipe is a strong function

to the velocity square in the tank. State

all the assumptions that were made during

the derivations.

Vair

2

Patmos

1

3

D

L

d

Fig. 7.7 – Liquid exiting a large tank
trough a long tube.

Solution

U1U1U1

111

hhh

333

ddd

DDD

Fig. 7.8 – Tank control volume for Example 7.2.

This problem can split into two con-

trol volumes; one of the liquid in the tank and

one of the liquid in pipe. Analysis of con-

trol volume in the tank was provided previ-

ously and thus needed to be sewed to Exam-

ple 7.1. Note, the energy loss is considered (as

opposed to the discussion in the text). The

control volume in tank is depicted in Figure

7.7.

Tank Control Volume
The effect of the energy change in air side was neglected. The effect is negligible in most cases

because air mass is small with exception the “spring” effect (expansion/compression effects).

The mass conservation reads

=0︷ ︸︸ ︷∫
V

∂ρ

∂t
dV +

∫
A
ρUbndA+

∫
A
ρUrndA = 0

(7.2.a)

The first term vanishes and the second and third terms remain and thus equation (7.2.a) reduces

to

�ρU1Apipe = �ρU3

Atank︷︸︸︷
πR2 = �ρ

dh

dt

Atank︷︸︸︷
πR2

(7.2.b)

It can be noticed thatU3 = dh/dt andD = 2 R and d = 2 rwhen the lower case refers to the

pipe and the upper case referred to the tank. Equation (7.2.b) simply can be written when the
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continue Ex. 7.2
area ratio is used (to be changed later if needed) as

U1Apipe =
dh

dt
Atank =⇒ U1 =

(
R

r

)2 dh
dt

(7.2.c)

The boundaries shear work and the shaft work are assumed to be vanished in the tank.

Therefore, the energy conservation in the tank reduces to

Q̇−

=0︷ ︸︸ ︷
Ẇshear+

=0︷ ︸︸ ︷
Ẇshaft =

d

dt

∫
Vt

(
Eu +

Ut
2

2
+ g z

)
ρdV+∫

A1

(
h+

Ut
2

2
+ g z

)
Urn ρdA+

∫
A3

PUbndA

(7.2.d)

WhereUt denotes the (the upper surface) liquid velocity of the tank. Moving all internal energy

terms and the energy transfer to the right hand side of equation (7.2.d) to become

d

dt

∫
Vt

(
Ut
2

2
+ g z

)
ρdV +

∫
A1

(
P

ρ
+
Ut
2

2
+ g z

) U1︷︸︸︷
Urn ρdA+

∫
A3

P

U3︷︸︸︷
Ubn dA =

K
Ut

2

2︷ ︸︸ ︷
d

dt

∫
Vt

EuρdV +

∫
A1

Eu ρUrn dA− Q̇

(7.111)

Similar arguments to those that were used in the previous discussion are applicable to this

case. Using equation (7.38), the first term changes to

d

dt

∫
V
ρ

(
U2

2
+ g z

)
dV ∼= ρ

d

dt



[
Ut
2

2
+
gh

2

] V︷︸︸︷
hA


 (7.2.e)

Where the velocity is given by equation (7.44). That is, the velocity is a derivative of the height

with a correction factor, U = dh/dt× f(G). Since the focus in this book is primarily on the

physics, f(G) ≡ 1 will be assumed. The pressure component of the second term is∫
A

P

�ρ
Urn �ρdA = ρP1U1A1 (7.2.f)

It is assumed that the exit velocity can be averaged (neglecting the velocity distribution effects).

The second term can be recognized as similar to those by equation (7.45). Hence, the second

term is∫
A

(
U2

2
+

z=0︷︸︸︷
g z

)
Urn ρdA ∼=

1

2

(
dh

dt

A3
A1

)2
U1 ρA1 =

1

2

(
dh

dt

R

r

)2
U1 ρA1 (7.2.g)

The last term on the left hand side is∫
A
PUbndA = P3A

dh

dt
(7.2.h)
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End of Ex. 7.2

The combination of all the terms for the tank results in

d

dt



[
Ut
2

2
+
gh

2

] V︷︸︸︷
hA


−

1

2

(
dh

dt

)2 (A3
A1

)2
U1 A1 +

Kt

2 ρ

(
dh

dt

)2
=

(P3 − P1)

ρ

(7.2.i)

Pipe Control Volume
The analysis of the liquid in the pipe is similar to Example 7.1. The conservation of the liquid

in the pipe is the same as in Example 7.1 and thus equation (7.1.a) is used

U1 = U2 (7.2.j)

Up +
4 ρ Lπ r2

Kp

dUp

dt
=
2 (P1 − P2)

Kp
(7.2.k)

where Kp is the resistance in the pipe and Up is the (averaged) velocity in the pipe. Using

equation (7.2.c) eliminates the Up as

dh

dt
+
4 ρ Lπ r2

K

d2 h

dt2
=

(
R

r

)2 2 (P1 − P2)
Kp

(7.2.l)

Equation (7.2.l) can be rearranged as

Kp

2 ρ

( r
R

)2 (dh
dt

+
4 ρ Lπ r2

K

d2 h

dt2

)
=

(P1 − P2)

ρ
(7.2.m)

Solution
The equations (7.2.m) and (7.2.i) provide the frame in which the liquid velocity in tank and

pipe have to be solved. In fact, it can be noticed that the liquid velocity in the tank is related

to the height and the liquid velocity in the pipe. Thus, there is only one equation with one

unknown. The relationship between the height was obtained by substituting equation (7.2.c)

in equation (7.2.m). The equations (7.2.m) and (7.2.i) have two unknowns (dh/dt and P1) which

are sufficient to solve the problem. It can be noticed that two initial conditions are required to

solve the problem.

The governing equation obtained by from adding equation (7.2.m) and (7.2.i) as

d

dt

([
Ut
2

2
+
gh

2

] V︷︸︸︷
hA


−

1

2

(
dh

dt

)2 (A3
A1

)2
U1 A1 +

Kt

2 ρ

(
dh

dt

)2

+
Kp

2 ρ

( r
R

)2 (dh
dt

+
4 ρ Lπ r2

K

d2 h

dt2

)
=

(P3 − P2)

ρ

(7.2.n)

The initial conditions are that zero initial velocity in the tank and pipe. Additionally, the height

of liquid is at prescript point as

h(0) = h0
dh

dt
(0) = 0

(7.2.o)

The solution of equation can be obtained using several different numerical techniques. The

dimensional analysis method can be used to obtain solution various situations which will be

presented later on.
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7.6 Qualitative Questions
1. A liquid flows in and out from a long pipe with uniform cross section as single phase.

Assume that the liquid is slightly compressible. That is the liquid has a constant bulk

modulus, BT . What is the direction of the heat from the pipe or in to the pipe. Explain

why the direction based on physical reasoning. What kind of internal work the liquid

performed. Would happen when the liquid velocity is very large? What it will be still

correct.

2. A different liquid flows in the same pipe. If the liquid is compressible what is the direc-

tion of the heat to keep the flow isothermal?

3. A tank is full of incompressible liquid. A certain point the tank is punctured and the

liquid flows out. To keep the tank at uniform temperature what is the direction of the

heat (from the tank or to the tank)?

Example 7.3: Cavitation in Reducer Level: GATE 2009
Consider steady, incompressible and irrotational flow through a reducer in a hori-

zontal pipe where the diameter is reduced from 20 [cm] to 10 [cm]. The pressure in

the 20 cm pipe just upstream of the reducer is 150 [kPa]. The fluid has a vapor pres-

sure of [50] kPa and a specific weight of 5 [kN/m3]. Neglecting frictional effects, the

maximum discharge (in [m3/s]) that can pass through the reducer without causing

cavitation is

(a) 0.05 (b) 0.16

(c) 0.27 (d) 0.38

Solution
The mass conservation of the two sides for incompressible flow reads

U1 AπD1
2

A4
=
U2 AπD2

2

A4
(7.3.p)

or

U1 = U2
D2
2

D1
2
−−→ U1 = U2

(
10

20

)2
−−→ U1 =

U2
4

(7.3.q)

Using Bernoulli’s equation reads

P1
ρg

+
U1
2

2 g
=
P2
ρg

+
U2
2

2 g
(7.3.r)

With given pressure values and velocity ratio (Eq. (7.3.q)) as

P1
ρ

−
P2
ρ

=
U2
2

2
−
U2
2

8
=
3U2

2

8
(7.3.s)
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Thus,

U2 =

√
8

3

(
P1
ρ

−
P2
ρ

)
∼ 20.5[m/s] (7.3.t)

The flow rate is then

Q = U2A2 ∼ 20.5×
πD2

2

4
∼ 0.16

[
m3

s

]
(7.3.u)

Example 7.4: Pitot Tube Level: GATE 2011

The following figure shows the schematic

for the measurement of velocity of

air (density = 1.2 [kg/m3] ) through a

constant–area duct using a pitot tube and

a water–tube manometer. The differential

head of water (density = 1000 [kg/m3]) in

the two columns of the manometer is 10

[mm]. Take acceleration due to gravity as

9.8 [m/s2].

The velocity of air in [m/s] is

Flow

10 mm

Fig. 7.9 – Pitot Tube for Ex. 7.4.

(a) 116.18 (b) 0.116

(c) 18.22 (d) 232.36

Solution
Since this test is for mechanical engineers that compressibility is not considered. Notice that

if this question was given in the aerospace engineering it would more complicated. Thus the

fact that fluid is air is irreverent for the GATE exam (for mechanical engineers). Utilizing the

standard Bernoulli’s equation reads

U1
2 −U2

2

2 g
=
P2 − P1
ρair g

(7.4.a)

Notice that the density of air was used. The pressure difference is

P2 − P1 = ρwater gh (7.4.b)

Again notice the water density was used in this case. The velocity, U1 can be funded when

U2 = 0 as

U1 =

√
2 ρwater gh

ρair
(7.4.c)

As

U1 =

√
2× 1000× 9.81× 0.01

1.2
=∼ 12.8[m/s] (7.4.d)
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The air speed of sound at room temperature is about 330 [m/s]. Hence the Mach number is

very small. The compressibility is not strong factor in this case.

The answer is (c).

Example 7.5: Three Layers Level: GATE 2012
A large tank with a nozzle attached con-

tains three immiscible inviscid fluids as

shown. Assuming that the changes in h1
, h2 and h3 are negligible, the instanta-

neous discharge velocity is

(a)

√
2 gh3

(
1+

ρ1 h1
ρ3 h3

+
ρ2 h2
ρ3 h3

)

(b)

√
2 g (h1 + h2 + h3)

h
1

h2

h3

ρ
1

ρ
2

ρ
3

v

Fig. 7.10 – Three Layers for Ex. 7.5.

(c)

√
2 g

(
ρ1 h1 + ρ2 h2 + ρ3 h3

ρ1 + ρ2 + ρ3

)
(d)

√
2 g

(
ρ1 h2 h3 + ρ2 h3 h1 + ρ3 h1 h2

ρ1 h1 + ρ2 h2 + ρ3 h3

)

Solution
Take a stream line that goes from somewhere at nozzle level to the exit of the nozzle. On this

line Gauge pressure at the nozzle level is

∆P = g (ρ1 h1 + ρ2 h2 + ρ3 h3) (7.5.a)

This pressure difference has be transferred into velocity which can be estimated by using

Bernoulli’s equation. It can assume the far from the valve there is no velocity or it Insignifi-

cant. On the other hand, when stream leaving the valve is exposed to the atmosphere hence

zero pressure (relatively speaking).

U2exit
2 g

=
∆P

ρ3 g
(7.5.b)

Hence

Uexit =

√
2 g∆P

ρ3 g
(7.5.c)

The pressure difference was found in Eq. (7.5.a) and it can be used in Eq. (7.5.c) to yield

Uexit =

√
2 gAg (ρ1 h1 + ρ2 h2 + ρ3 h3)

ρ3 Ag
(7.5.d)

From this point it is only small manipulation in which ρ3 h3 is pull out from the parenthesis

as

Uexit =

√
2 g

ZZρ3
ZZρ3 h3

(
ρ1 h1
ρ3 h3

+
ρ2 h2
ρ3 h3

+ 1

)
(7.5.e)
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The answer is (a).

Perhaps in this case the intuition can help. In this exam (GATE) where time is premium, hence

Option (b) has to eliminated immediately as the relationship cannot be linear (h1 and h2) due

to the density cannot have the same effect. Option (c) is similar argument has to eliminated.

The expectation that if h1 = 0 and h2 = 0 then the standard solution should appear. How-

ever, option (d) does not provide it while option (a) does provide this solution. Based on these

argument one can arrive to solution without actually solving the problem.



Part II

Differential Analysis
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8
Differential Analysis

8.1 Introduction
The integral analysis has a limited accuracy, which leads to a different approach of differ-

ential analysis. The differential analysis allows the flow field investigation in greater detail.

In differential analysis, the emphasis is on infinitesimal scale and thus the analysis provides

better accuracy
1
. This analysis leads to partial differential equations which are referred to as

the Navier–Stokes equations. These equations are named after Claude–Louis Navier–Marie

and George Gabriel Stokes. Like many equations they were independently derived by several

people. First these equations were derived by Claude–Louis–Marie Navier as it is known in

1827. As usual Simeon–Denis Poisson independently, as he done to many other equations or

conditions, derived these equations in 1831 for the same arguments asNavier. The foundations

for their arguments or motivations are based on a molecular view of how stresses are exerted

between fluid layers. Barré de Saint Venant (1843) and George Gabriel Stokes (1845) derived

these equation based on the relationship between stress and rate–of–strain (this approach is

presented in this book).

Navier–Stokes equations are non–linear and there are more than one possible solu-

tion in many cases (if not most cases) e.g. the solution is not unique. A discussion about

the “regular” solution is present and a brief discussion about limitations when the solution

is applicable. Later in the Chapters on Real Fluid and Turbulence, with a presentation of the

“non–regular” solutions will be presented with the associated issues of stability. However

even for the “regular” solution the mathematics is very complex. One of the approaches is to

1
Which can be view as complementary analysis to the integral analysis.
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reduce the equations by eliminating the viscosity effects. The equations without the viscosity

effects are referred to as the ideal flow equations (Euler Equations) which will be discussed

in the next chapter. The concepts of the Add Mass and the Add Force, which are easier to

discuss when the viscosity is ignored, and will be presented in the Ideal Flow chapter. It has

to be pointed out that the AddMass and Add Force appear regardless to the viscosity. Histor-

ically, complexity of the equations, on one hand, leads to approximations and consequently

to the ideal flow approximation (equations) and on the other hand experimental solutions

of Navier–Stokes equations. The connection between these two ideas or fields was done via

introduction of the boundary layer theory by Prandtl which will be discussed as well.

Even for simple situations, there are cases when complying with the boundary con-

ditions leads to a discontinuity (shock or choked flow). These equations cannot satisfy the

boundary conditions in other cases and in way the fluid pushes the boundary condition(s)

further downstream (choked flow). These issues are discussed in Open Channel Flow and

Compressible Flow chapters. Sometimes, the boundary conditions create instability which

alters the boundary conditions itself which is known as Interfacial instability. The choked

flow is associated with a single phase flow (even the double choked flow) while the Interfacial

instability associated with the Multi–Phase flow. This phenomenon is presented in Multi–

phase chapter and briefly discussed in this chapter.

8.2 Mass Conservation

A B

C D

E F

G
H

x

(
ρ+

dρ

dz

)(
Uz +

dUz

dz

)
dxdy

(
ρ+

dρ

dy

)(
Uy

+
dU

y

dy

)
dx

dz

(
ρ+

dρ

dx

)(
Ux +

dUx

dx

)
dydz

ρUz dxdy

ρUx dydz

ρU
y
dx

dz

Fig. 8.1 – Themass balance on the infinitesimal control volume.

Fluid flows into and from a three

dimensional infinitesimal control

volume depicted in Figure 8.1. At

a specific time this control volume

can be viewed as a system. Themass

conservation for this infinitesimal

small system is zero thus

D

Dt

∫
V
ρdV = 0 (8.1)

However for a control volume us-

ing Reynolds Transport Theorem

(RTT), the following can be written

D

Dt

∫
V
ρdV =

d

dt

∫
V
ρdV +

∫
A
Urn ρdA = 0 (8.2)

For a constant control volume, the derivative can enter into the integral (see also for the

divergence theorem in the appendix A.1.2) on the right hand side and hence

dρ
dt dV︷ ︸︸ ︷∫
V

dρ

dt
dV +

∫
A
Urn ρdA = 0 (8.3)
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The first term in equation (8.3) for the infinitesimal volume is expressed, neglecting higher

order derivatives, as

∫
V

dρ

dt
dV =

dρ

dt

dV︷ ︸︸ ︷
dxdydz+

∼0︷ ︸︸ ︷
f

(
d2ρ

dt2

)
+ · · · (8.4)

The second term in the LHS of equation (8.2) is expressed
2
as

∫
A
Urn ρdA =

dAyz︷ ︸︸ ︷
dydz

[
(ρUx)|x − (ρUx)|x+dx

]
+

dAxz︷ ︸︸ ︷
dxdz

[
(ρUy)|y − (ρUy)|y+dy

]
+

dAxz︷ ︸︸ ︷
dxdy

[
(ρUz)|z − (ρUz)|z+dz

]
(8.5)

The difference between point x and x+ dx can be obtained by developing Taylor series as

(ρUx)|x+dx = (ρUx)|x +
∂ (ρUx)

∂x

∣∣∣∣
x

dx (8.6)

The same can be said for the y and z coordinates. It also can be noticed that, for example, the

operation, in the x coordinate, produces additional dx thus a infinitesimal volume element

dV is obtained for all directions. The combination can be divided by dxdydz and simplified

by using the definition of the partial derivative in the regular process to be

∫
A
Urn ρdA = −

[
∂(ρUx)

∂x
+
∂(ρUy)

∂y
+
∂(ρUz)

∂z

]
(8.7)

Combining the first term with the second term results in the continuity equation in

Cartesian coordinates as

∂ρ

∂t
+
∂ρUx

∂x
+
∂ρUy

∂y
+
∂ρUz

∂z
= 0

Continuity in Cartesian Coordinates

(8.8)

Cylindrical Coordinates

2
Note that sometime the notation dAyz also refers to dAx .
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rdθ

ρUz r drdθ

ρUθ drdθ

ρU
r
r d

θ d
z


ρUθ +

∂ (ρUθ)

∂θ
dθ


drdz


ρUz r+

∂ (ρUr r)

∂z
dz


dθ dr


ρU

z
r+

∂ (
ρU

r
r)

∂z

dr


 dθ

dz

dr

dz

r

x

θ

yz

Fig. 8.2 – The mass conservation in cylindrical coordinates.
The same equation can be derived in cylindrical coordinates. The netmass change, as depicted

in Figure 8.2, in the control volume is

d ṁ =
∂ρ

∂t

dv︷ ︸︸ ︷
drdz r dθ (8.9)

The net mass flow out or in the r̂ direction has an additional term which is the area change

compared to the Cartesian coordinates. This change creates a different differential equation

with additional complications. The change is

(
flux in r

direction

)
= dθdz

(
r ρUr −

(
r ρUr +

∂ρUr r

∂r
dr

))
(8.10)

The net flux in the r direction is then

(
net flux in the

r direction

)
= dθdz

∂ρUr r

∂r
dr (8.11)

Note
3
that the r is still inside the derivative since it is a function of r, e.g. the change of rwith

r. In a similar fashion, the net flux in the z coordinate be written as

net flux in z direction = r dθdr
∂ (ρUz)

∂z
dz (8.12)

The net change in the θ direction is then

net flux in θ direction = drdz
∂ρUθ
∂θ

dθ (8.13)

3
The mass flow is ρUr rdθdz at r point. Expansion to Taylor serious ρUr rdθdz|r+dr is obtained by the

regular procedure. The mass flow at r+dr is ρUr rdθdz|r+d/dr (ρUr rdθdz) dr+ · · · . Hence, the r
is “trapped” in the derivative.
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Combining equations (8.11)–(8.13) and dividing by infinitesimal control volume, dr r dθdz,

results in

(
total

net flux

)
= −

(
1

r

∂ (ρUr r)

∂r
+
∂ρUz r

∂z
+
∂ρUθ
∂θ

)
(8.14)

Combining equation (8.14) with the change in the control volume (8.9) divided by in-

finitesimal control volume, dr r dθdz yields

∂ρ

∂t
+
1

r

∂ (r ρUr)

∂r
+
1

r

∂ρUθ
∂θ

+
∂ρUz

∂z
= 0

Continuity in Cylindrical Coordinates

(8.15)

Carrying similar operations for the spherical coordinates, the continuity equation be-

comes

∂ρ

∂t
+
1

r2
∂
(
r2 ρUr

)

∂r
+

1

r sin θ
∂ (ρUθ sin θ)

∂θ
+

1

r sin θ
∂ρUϕ

∂z
= 0

Continuity in Spherical Coordinates

(8.16)

The continuity equations (8.8), (8.15) and (8.16) can be expressed in different coordinates. It can

be noticed that the second part of these equations is the divergence (see the Appendix A.1.2

page 768). Hence, the continuity equation can be written in a general vector form as

∂ρ

∂t
+∇ · (ρUUU) = 0

Continuity Equation

(8.17)

Advance material can be skipped

The mass equation can be written in index notation for Cartesian coordinates. The

index notation really does not add much to the scientific understanding. However, this writ-

ing reduce the amount of writing and potentially can help the thinking about the problem

or situation in more conceptional way. The mass equation (see in the appendix for more

information on the index notation) written as

∂ρ

∂t
+
∂ (ρU)i
∂xi

= 0 (8.18)

Where i is is of the i, j, and k4. Compare to equation (8.8). Again remember that the meaning

of repeated index is summation.

End Advance material

The use of these equations is normally combined with other equations (momentum

and or energy equations). There are very few cases where this equation is used on its own

merit. For academic purposes, several examples are constructed here.

4
notice the irony the second i is the direction and first i is for any one of direction x(i), y(j), and z(k).
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8.2.1 Mass Conservation Examples

Example 8.1: Liquid Layer Level: Basic
A layer of liquid has an initial height of

H0 with an uniform temperature of T0.

At time, t0, the upper surface is exposed

to temperature T1 (see Figure 8.3). As-

sume that the actual temperature is ex-

ponentially approaches to a linear tem-

perature profile as depicted in Figure 8.3.

The density is a function of the temper-

ature according to

T − T0
T1 − T0

= α

(
ρ− ρ0
ρ1 − ρ0

)
(8.1.a)

y

T1

H0(t)

T0
ρ

0

ρ
1

T(t = ∞)T(t > 0)T(t = 0)

Fig. 8.3 – Mass flow due to temperature
difference for example 8.1

where ρ1 is the density at the surface and where ρ0 is the density at the bottom.

Assume that the velocity is only a function of the y coordinate. Calculates the

velocity of the liquid. Assume that the velocity at the lower boundary is zero at all

times. Neglect the mutual dependency of the temperature and the height.

Solution
The situation is unsteady state thus the unsteady state and one dimensional continuity equation

has to be used which is

∂ρ

∂t
+
∂ (ρUy)

∂y
= 0 (8.1.b)

with the boundary condition of zero velocity at the lower surface Uy(y = 0) = 0. The

expression that connects the temperature with the space for the final temperature as

T − T0
T1 − T0

= α
H0 − y

H0
(8.1.c)

The exponential decay is

(
1− e−βt

)
and thus the combination (with equation (8.1.a)) is

ρ− ρ0
ρ1 − ρ0

= α
H0 − y

H0

(
1− e−βt

)
(8.1.d)

Equation (8.1.d) relates the temperaturewith the time and the locationwas given in the question

(it is not the solution of any model). It can be noticed that the height H0 is a function of time.

For this question, it is treated as a constant. Substituting the density, ρ, as a function of time

into the governing equation (8.1.b) results in

∂ρ
∂t︷ ︸︸ ︷

αβ

(
H0 − y

H0

)
e−βt+

∂ρUy
∂y︷ ︸︸ ︷

∂
(
Uy α

H0−y
H0

(
1− e−βt

))

∂y
= 0

(8.1.e)



8.2. MASS CONSERVATION 287

End of Ex. 8.1
Equation (8.1.e) is first order ODE with the boundary condition Uy(y = 0) = 0 which can be

arranged as

∂
(
Uy α

H0−y
H0

(
1− e−βt

))

∂y
= −αβ

(
H0 − y

H0

)
e−βt (8.1.f)

Uy is a function of the time but not y. Equation (8.1.f) holds for any time and thus, it can be

treated for the solution of equation (8.1.f) as a constant
5
. Hence, the integration with respect to

y yields (
Uy α

H0 − y

H0

(
1− e−βt

))
= −αβ

(
2H0 − y

2H0

)
e−βty+ c (8.1.g)

Utilizing the boundary condition Uy(y = 0) = 0 yields

(
Uy α

H0 − y

H0

(
1− e−βt

))
= −αβ

(
2H0 − y

2H0

)
e−βt (y− 1) (8.1.h)

or the velocity is

Uy = β

(
2H0 − y

2 (H0 − y)

)
e−βt(

1− e−βt
) (1− y) (8.1.i)

It can be noticed that indeed the velocity is a function of the time and space y.

8.2.2 Simplified Continuity Equation

A simplified equation can be obtained for a steady state in which the transient term is elimi-

nated as (in a vector form)

∇ · (ρUUU) = 0 (8.19)

If the fluid is incompressible then the governing equation is a volume conservation as

∇ ·UUU = 0 (8.20)

Note that this equation appropriate only for a single phase case.

Example 8.2: Coating Process Level: Intermediate
In many coating processes a thin film is created by a continuous process in

which liquid injected into a moving belt which carries the material out as ex-

hibited in Figure 8.4. The temperature and mass transfer taking place which re-

duces (or increases) the thickness of the film. For this example, assume that

no mass transfer occurs or can be neglected and the main mechanism is heat

5
Since the time can be treated as a constant for y integration.



288 CHAPTER 8. DIFFERENTIAL ANALYSIS
continue Ex. 8.2

transfer. Assume that the film tempera-

ture is only a function of the distance from

the extraction point. Calculate the film

velocity field if the density is a function

of the temperature. The relationship be-

tween the density and the temperature is

linear as

ρ− ρ∞
ρ0 − ρ∞ = α

(
T − T∞
T0 − T∞

)
(8.2.a)

State your assumptions.

x

H0 T(x)

T0

T0 T∞

x

Fig. 8.4 – Mass flow in coating process
for example 8.2.

Solution
This problem is somewhat similar to Example 8.1

a
however it can be considered as steady state.

At any point the governing equation in coordinate system that moving with the belt is

∂ (ρUx)

∂x
+
∂ (ρUy)

∂y
= 0 (8.2.b)

At first, it can be assumed that the material moves with the belt in the x direction in the same

velocity. This assumption is consistent with the first solution (no stability issues). If the frame

of referencewasmovingwith the belt then there is only velocity component in they directionb.

Hence equation (8.2.b) can be written as

Ux
∂ρ

∂x
= −

∂ (ρUy)

∂y
(8.2.c)

Where Ux is the belt velocity.

See the resembles to equation (8.1.b). The solution is similar to the previous Example 8.1 for a

general function T = F(x).
∂ρ

∂x
=

α

Ux

∂F(x)

∂x
(ρ0 − ρ∞) (8.2.d)

Substituting this relationship in equation (8.2.d) into the governing equation results in

∂Uy ρ

∂y
=

α

Ux

∂F(x)

∂x
(ρ0 − ρ∞) (8.2.e)

The density is expressed by equation (8.2.a) and thus

Uy =
α

ρUx

∂F(x)

∂x
(ρ0 − ρ∞) y+ c (8.2.f)

Notice that ρ could “come” out of the derivative (why?) and move into the RHS. Applying the

boundary condition Uy(t = 0) = 0 results in

Uy =
α

ρ(x)Ux

∂F(x)

∂x
(ρ0 − ρ∞) y (8.2.g)

a
The presentation of one dimension time dependent problem to two dimensions problems can be

traced to heat andmass transfer problems. One of the early pioneers who suggest this idea is Higbie which
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End of Ex. 8.2
Higbie’s equation named after him. Higbie’s idea which was rejected by the scientific establishment. He

spend the rest of his life to proof it and ending in a suicide. On personal note, this author Master thesis is

extension Higbie’s equation.

b
In reality this assumption is correct only in a certain range. However, the discussion about this point

is beyond the scope of this section.

Example 8.3: Velocity Field Level: Simple
The velocity in a two dimensional field is assumed to be in a steady state. Assume

that the density is constant and calculate the vertical velocity (y component) for the

following x velocity component.

Ux = ax2 + by2 (8.3.a)

Next, assume the density is also a function of the location in the form of

ρ = mex+y (8.3.b)

Wherem is constant. Calculate the velocity field in this case.

Solution
The flow field must comply with the mass conservation (8.20) thus

2 a x+
∂Uy

∂y
= 0 (8.3.c)

Equation (8.3.c) is an ODE with constant coefficients. It can be noted that x should be treated

as a constant parameter for the y coordinate integration. Thus,

Uy = −

∫
2 a x+ f(x) = −2 x y+ f(x) (8.3.d)

The integration constant in this case is not really a constant but rather an arbitrary function

of x. Notice the symmetry of the situation. The velocity,Ux has also arbitrary function in the

y component.

For the second part equation (8.19) is applicable and used as

∂
(
ax2 + by2

) (
mex+y

)

∂x
+
∂Uy

(
mex+y

)

∂y
= 0 (8.3.e)

Taking the derivative of the first term while moving the second part to the other side results

in

a

(
2 x+ x2 +

b

a
y2
)
ex+y = −

(
ex+y

) (∂Uy
∂y

+Uy

)
(8.3.f)

The exponent can be canceled to further simplify the equation (8.3.f) and switching sides to be

(
∂Uy

∂y
+Uy

)
= −a

(
2 x+ x2 +

b

a
y2
)

(8.3.g)
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Equation (8.3.g) is a first order ODE that can be solved by combination of the homogeneous

solution with the private solution (see for an explanation in the Appendix). The homogeneous

equation is (
∂Uy

∂y
+Uy

)
= 0 (8.3.h)

The solution for (8.3.h) is Uy = c e−y (see for an explanation in the appendix). The private

solution is

Uy|private =
(
−b

(
y2 − 2 y+ 2

)
− ax2 − 2 a x

)
(8.3.i)

The total solution is

Uy = c e−y +
(
−b

(
y2 − 2 y+ 2

)
− ax2 − 2 a x

)
(8.3.j)

Example 8.4: Velocity Field Coexistence Level: Basic
Can the following velocities co-exist

Ux = (x t)2 z Uy = (x t) + (y t) + (z t) Uz = (x t) + (y t) + (z t)
(8.4.a)

in the flow field. Is the flow is incompressible? Is the flow in a steady state condition?

Solution
Whether the solution is in a steady state or not can be observed from whether the velocity

contains time component. Thus, this flow field is not steady state since it contains time com-

ponent. This continuity equation is checked if the flow incompressible (constant density). The

derivative of each component are

∂Ux

∂x
= t2 z

∂Uy

∂y
= t

∂Uz

∂z
= t (8.4.b)

Hence the gradient or the combination of these derivatives is

∇UUU = t2 z+ 2 t (8.4.c)

The divergence isn’t zero thus this flow, if it exist, must be compressible flow. This flow can

exist only for a limit time since over time the divergence is unbounded (a source must exist).

Example 8.5: Mass with ρ Level: Basic
Find the density as a function of the time for a given one dimensional flow with

Ux = x e5αy (cos (α t)). The initial density is ρ(t = 0) = ρ0.

Solution
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continue Ex. 8.5
This problem is one dimensional unsteady state and for a compressible substance. Hence, the

mass conservation is reduced only for one dimensional form as

∂ρ

∂t
+
∂ (Ux ρ)

∂x
= 0 (8.5.a)

Mathematically speaking, this kind of presentation is possible. However physically there are

velocity components in y and z directions. In this problem, these physical components are

ignored for academic reasons. Equation (8.5.a) is first order partial differential equation which

can be converted to an ordinary differential equations when the velocity component, Ux, is

substituted. Using,

∂Ux

∂x
= e5αy (cos (α t)) (8.5.b)

Substituting equation (8.5.b) into equation (8.5.a) and noticing that the density, ρ, is a function

of x results of
∂ρ

∂t
= −ρ x e5αy (cos (α t)) −

∂ρ

∂x
e5αy (cos (α t)) (8.5.c)

Equation (8.5.c) can be separated to yield

f(t)︷ ︸︸ ︷
1

cos (α t)
∂ρ

∂t
=

f(y)︷ ︸︸ ︷
−ρ x e5αy −

∂ρ

∂x
e5αy

(8.5.d)

A possible solution is when the left and the right hand sides are equal to a constant. In that

case the left hand side is

1

cos (α t)
∂ρ

∂t
= c1 (8.5.e)

The solution of equation (8.5.e) is reduced to ODE and its solution is

ρ =
c1 sin (α t)

α
+ c2 (8.5.f)

The same can be done for the right hand side as

ρ x e5αy +
∂ρ

∂x
e5αy = c1 (8.5.g)

The term e5αy is always positive, real value, and independent of y thus equation (8.5.g) be-

comes

ρ x+
∂ρ

∂x
=

c1
e5αy

= c3 (8.5.h)

Equation (8.5.h) is a constant coefficients first order ODE which its solution discussed exten-

sively in the appendix. The solution of (8.5.h) is given by

ρ = e−
x2

2


c−

impossible solution︷ ︸︸ ︷√
π i c3 erf

(
ix√
2

)

√
2


 (8.5.i)

which indicates that the solution is a complex number thus the constant, c3, must be zero and

thus the constant, c1 vanishes as well and the solution contain only the homogeneous part and

the private solution is dropped

ρ = c2 e
− x2

2 (8.5.j)
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End of Ex. 8.5

The solution is the multiplication of equation (8.5.j) by (8.5.f) transferred to

ρ = c2 e
− x2

2

(
c1 sin (α t)

α
+ c2

)
(8.5.k)

Where the constant, c2, is an arbitrary function of the y coordinate.

8.3 Conservation of General Quantity
8.3.1 Generalization of Mathematical Approach for Derivations
In this section a general approach for the derivations for conservation of any quantity e.g.

scalar, vector or tensor, are presented. Suppose that the property ϕ is under a study which is

a function of the time and location as ϕ(x,y, z, t). The total amount of quantity that exist in

arbitrary system is

Φ =

∫
sys

ϕρdV (8.21)

Where Φ is the total quantity of the system which has a volume V and a surface area of A

which is a function of time. A change with time is

DΦ

Dt
=
D

Dt

∫
sys

ϕρdV (8.22)

Using RTT to change the system to a control volume (see equation (5.34)) yields

D

Dt

∫
sys

ϕρdV =
d

dt

∫
cv
ϕρdV +

∫
A
ρϕUUU · dA (8.23)

The last term on the RHS can be converted using the divergence theorem (see the appendix
6

) from a surface integral into a volume integral (alternatively, the volume integral can be

changed to the surface integral) as∫
A
ρϕUUU · dA =

∫
V
∇ · (ρϕUUU)dV (8.24)

Substituting equation (8.24) into equation (8.23) yields

D

Dt

∫
sys

ϕρdV =
d

dt

∫
cv
ϕρdV +

∫
cv

∇ · (ρϕUUU)dV (8.25)

Since the volume of the control volume remains independent of the time, the derivative can

enter into the integral and thus combining the two integrals on the RHS results in

D

Dt

∫
sys

ϕρdV =

∫
cv

(
d (ϕρ)

dt
+∇ · (ρϕUUU)

)
dV (8.26)

6
These integrals are related to RTT. Basically the divergence theorem relates the flow out (or) in and the sum of

the all the changes inside the control volume.
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The definition of equation (8.21) LHS can be changed to simply the derivative ofΦ. The

integral is carried over arbitrary system. For an infinitesimal control volume the change is

DΦ

Dt
∼=

(
d (ϕρ)

dt
+∇ · (ρϕUUU)

) dV︷ ︸︸ ︷
dxdydz (8.27)

8.3.2 Examples of Several Quantities
8.3.2.1 The General Mass Time Derivative

Using ϕ = 1 is the same as dealing with the mass conservation. In that case
DΦ
Dt = Dρ

Dt

which is equal to zero as∫
(
d
( ϕ︷︸︸︷
1 ρ

)

dt
+∇ ·

(
ρ

ϕ︷︸︸︷
1 UUU

)
) dV︷ ︸︸ ︷
dxdydz = 0 (8.28)

Using equation (8.21) leads to

Dρ

Dt
= 0 −→ ∂ρ

∂t
+∇ · (ρUUU) = 0 (8.29)

Equation (8.29) can be rearranged as

∂ρ

∂t
+UUU∇ · ρ+ ρ∇ ·UUU = 0 (8.30)

Equation (8.30) can be further rearranged so derivative of the density is equal the divergence

of velocity as

1

ρ

(substantial derivative︷ ︸︸ ︷
∂ρ

∂t
+UUU∇ · ρ

)
= −∇ ·UUU (8.31)

Equation (8.31) relates the density rate of change or the volumetric change to the velocity

divergence of the flow field. The term in the bracket LHS is referred in the literature as sub-

stantial derivative. The substantial derivative represents the change rate of the density at a

point which moves with the fluid.

Acceleration Direct Derivations
One of the important points is to find the fluid particles acceleration. A fluid particle

velocity is a function of the location and time. Therefore, it can be written that

UUU(x,y, z, t) = Ux(x,y, x, t) î+Uy(x,y, z, t) ĵ+Uz(x,y, z, t) k̂ (8.32)

Therefor the acceleration will be

DUUU

Dt
=
dUx

dt
î+

dUy

dt
ĵ+

dUz

dt
k̂ (8.33)
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The velocity components are a function of four variables, (x, y, z, and t), and hence

DUx

Dt
=
∂Ux

∂t

=1︷︸︸︷
d t

d t
+
∂Ux

∂x

Ux︷︸︸︷
dx

d t
+
∂Ux

∂y

Uy︷︸︸︷
dy

d t
+
∂Ux

∂z

Uz︷︸︸︷
d z

d t
(8.34)

The acceleration in the x can be written as

DUx

Dt
=
∂Ux

∂t
+Ux

∂Ux

∂x
+Uy

∂Ux

∂y
+Uz

∂Ux

∂z
=
∂Ux

∂t
+ (UUU · ∇) Ux (8.35)

The same can be developed to the other two coordinates which can be combined (in a vector

form) as

dUUU

dt
=
∂UUU

∂t
+ (UUU · ∇) UUU (8.36)

or in a more explicit form as

dUUU

dt
=

local

acceleration︷︸︸︷
∂UUU

∂t
+

convective

acceleration︷ ︸︸ ︷
UUU
∂UUU

∂x
+UUU

∂UUU

∂y
+UUU

∂UUU

∂z
(8.37)

The time derivative referred in the literature as the local accelerationwhich vanisheswhen the

flow is in a steady state. While the flow is in a steady state there is only convective acceleration

of the flow. The flow in a nozzle is an example to flow at steady state but yet has acceleration

which flow with a very low velocity can achieve a supersonic flow.

8.4 Momentum Conservation
The relationship among the shear stress various components have to be established. The

stress is a relationship between the force and area it is acting on or force divided by the area

(division of vector by a vector). This division creates a tensor which the physical meaning will

be explained here (the mathematical explanation can be found in the mathematical appendix

of the book). The area has a direction or orientation which control the results of this division.

So it can be written that

τ = f(FFF,AAA) (8.38)

It was shown that in a static case (or in better words, when the shear stresses are absent) it

was written

τ = −P n̂ (8.39)

It also was shown that the pressure has to be continuous. However, these stresses that act

on every point and have three components on every surface and depend on the surface ori-

entation. A common approach is to collect the stress in a “standard” orientation and then
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if needed the stresses can be reorientated to a new direction. The transformation is avail-

able because the “standard” surface can be transformed using trigonometrical functions. In

Cartesian coordinates on surface in the x direction the stresses are

τ(x) = τxx τxy τxz (8.40)

where τxx is the stress acting on surface x in the x direction, and τxy is the stress acting

on surface x in the y direction, similarly for τxz. The notation τ(xi) is used to denote the

stresses on xi surface. It can be noticed that no mathematical symbols are written between

the components. The reason for this omission is that there is no physical meaning for it
7
.

Similar “vectors” exist for the y and z coordinates which can be written in a matrix form

τ =




τxx τxy τxz

τyx τyy τyz

τzx τzy τzz


 (8.41)

Suppose that a straight angle tetrahedron is

under stress as shown in Figure 8.5. The forces

balance in the x direction excluding the slanted

surface is

Fx = −τyxδAy − τxxδAx−

τzxδAz (8.42)

X

Y

Z
τnn

τnℓ
τnℵ

τyy

τyz

τxyτxx

τyx
τxz

Fig. 8.5 – Stress diagram on a tetrahedron
shape.

where δAy is the surface area of the tetrahedron in the y direction, δAx is the surface area

of the tetrahedron in the x direction and δAz is the surface area of the tetrahedron in the z

direction. The opposing forces which acting on the slanted surface in the x direction are

Fx = δAn

(
τnn n̂ · î− τnℓ ℓ̂ · î− τnℵℵ̂ · î

)
(8.43)

Where here ℵ̂, ℓ̂ and n̂ are the local unit coordinates on n surface the same can be written in

the x, and z directions. The transformation matrix is then




Fx

Fy

Fx


 =




n̂ · î ℓ̂ · î ℵ̂ · î
n̂ · ĵ ℓ̂ · ĵ ℵ̂ · ĵ
n̂ · k̂ ℓ̂ · k̂ ℵ̂ · k̂


 δAn (8.44)

7
not significant to the understanding of the subject.
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When the tetrahedron is shrunk to a point relationship of the stress on the two sides can be

expended by Taylor series and keeping the first derivative. If the first derivative is neglected

(tetrahedron is without acceleration) the two sides are related as

−τyxδAy − τxxδAx − τzxδAz = δAn

(
τnn n̂ · î− τnℓ ℓ̂ · î− τnℵℵ̂ · î

)
(8.45)

The same can be done for y and z directions. The areas are related to each other through

angles. These relationships provide the transformation for the different orientations which

depends only angles of the orientations. This matrix is referred to as stress tensor and as it

can be observed has nine terms.

The Symmetry of the Stress Tensor
A small liquid cubical has three possible rotation axes. Here only one will be discussed

the same conclusions can be drown on the other direction. The cubical rotation can involve

two parts: one distortion and one rotation
8
. A finite angular distortion of infinitesimal cube

requires an infinite shear which required for infinite moment. Hence, the rotation of the

infinitesimal fluid cube can be viewed as it is done almost as a solid body rotation. Balance of

momentum around the z direction shown in Figure 8.6 is

Mz = Izz
dθ

dt
(8.46)

WhereMz is the cubic moment around the cubic center and Izz
9
is the moment of inertia

around that center. The momentum can be asserted by the shear stresses which act on it. The

shear stress at point x is τxy. However, the shear stress at point x+ dx is

τxy|x+dx = τxy +
dτxy

dx
dx (8.47)

τxy

x

y τyx

τxy

τyx

τxx

τxx

τyy

τyy

dy

dx

Fig. 8.6 – Diagram to analysis the shear stress tensor.

The same can be said for τyx for y di-

rection. The clarity of this analysis can be

improved if additional terms are taken, yet

it turn out that the results will be the same.

The normal body force (gravity) acts through

the cubic center of gravity. The moment that

created by this action can be neglected (the

changes are insignificant). However, for cases

that body force, such as the magnetic fields,

can create torque. For simplicity and gen-

erality, it is assumed that the external body

force exerts a torque GT per unit volume at

the specific location. The body force can ex-

ert torque is due to the fact that the body

force is not uniform and hence not act through the mass center.

8
For infinitesimal change the lines can be approximated as straight.

9
See for the derivations in Example 3.9 for moment of inertia.
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Advance material can be skipped

The shear stress in the surface direction potentially can result in the torque due to the

change in the shear stress
10
.

For example, τxx at x can be expended as a linear function

τxx = τxx|y +
dτxx

dy

∣∣∣∣
y

η (8.48)

where η is the local coordinate in the y direction stat-

ing at y and “mostly used” between y <η <y + dy.

x

y

τyy

τyy

dy

dx

η

Fig. 8.7 – The shear stress creating torque.

The moment that results from this shear

force (clockwise positive) is∫y+dy
y

τxx(η)

(
η−

dy

2

)
dη (8.49)

Substituting (8.48) into (8.49) results∫y+dy
y

(
τxx|y +

dτxx

dy

∣∣∣∣
y

η

) (
η−

dy

2

)
dη

(8.50)

The integral of (8.50) isn’t zero (non symmet-

rical function around the center of integra-

tion).

The reason that this term is neglected because on the other face of the cubic contributes an

identical term but in the opposing direction (see Figure 8.7).

End Advance material

The net torque in the z-direction around the particle’s center would then be

(τyx)
dxdydz

2 −
(
τyx +

∂τxy
∂x

)
dxdydz

2 + (τxy)
dxdydz

2 −

(
τxy +

∂τxy
∂x

)
dxdydz

2 =

Izz︷ ︸︸ ︷
ρdxdydz

(
(dx)2 + (dy)2

)
dθ
dt

(8.51)

The actual components which contribute to the moment are

GT + τxy − τxy +

∼=0︷ ︸︸ ︷
∂ (τyx − τxy)

∂y
= ρ

(
(dx)2 + (dy)2

)

︸ ︷︷ ︸
=0

12

dθ

dt
(8.52)

which means since that dx −→ 0 and dy −→ 0 that

GT + τxy = τyx (8.53)

10
This point bother this author in the completeness of the proof. It can be ignored, but provided to those who

wonder why body forces can contribute to the torque while pressure, even though varied, does not. This point is for

self convincing since it deals with a “strange” and problematic “animals” of integral of infinitesimal length.
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This analysis can be done on the other two directions and hence the general conclusion is that

GT + τij = τji (8.54)

where i is one of x,y, z and the j is any of the other x,y, z11. For the case ofGT = 0 the stress

tensor becomes symmetrical. The gravity is a body force that is considered in many kind of

calculations and this force cause a change in symmetry of the stress tensor. However, this

change, for almost all practical purposes, can be neglected
12
. The magnetic body forces on the

other hand are significant and have to be included in the calculations. If the body forces effect

is neglected or do not exist in the problem then regardless the coordinate system orientation

τij = τji (i ̸= j) (8.55)

8.5 Derivations of the Momentum Equation

x

τzz +
∂τzz
∂z

dz

(
τyy

+
∂τy

y

∂y

)
dy

(
τxx +

∂τxx
∂x

dx

)

τzz

τxx

τyy

Z

y

(
τxy +

∂τxy
∂x

dx

)

τxy

(
τxz +

∂τxz
∂x

dx

)

τxz

Fig. 8.8 – The shear stress at different surfaces. All shear stress shown in surface x and x+dx.
Previously it was shown that equation (6.11) is equivalent to Newton second law for fluids.

Equation (6.11) is also applicable for the small infinitesimal cubic. One direction of the vector

equation will be derived for xCartesian coordinate (see Figure 8.8). Later Newton second law

will be used and generalized. For surface forces that acting on the cubic are surface forces,

gravitation forces (body forces), and internal forces. The body force that acting on infinitesi-

mal cubic in x direction is

î · fffB = fffBx dxdydz (8.56)

11
The index notation is not the main mode of presentation in this book. However, since Potto Project books are

used extensively and numerous people asked to include this notation it was added. It is believed that this notation

should and can be used only after the physical meaning was “digested.”

12
In the Dimensional Analysis a discussion about this effect hopefully will be presented.
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The dot product yields a force in the directing of x. The surface forces in x direction on the

x surface on are

fxx = τxx|x+dx ×
dAx︷ ︸︸ ︷
dydz− τxx|x ×

dAx︷ ︸︸ ︷
dydz (8.57)

The surface forces in x direction on the y surface on are

fxy = τyx|y+dy ×
dAy︷ ︸︸ ︷
dxdz− τyx|y ×

dAy︷ ︸︸ ︷
dxdz (8.58)

The same can be written for the z direction. The shear stresses can be expanded into Taylor

series as

τix|i+di = τix +
∂ (τix)

∂i

∣∣∣∣
i

di+ · · · (8.59)

to latex latex section where i in this case is x, y, or z. Hence, the total net surface force results

from the shear stress in the x direction is

fx =

(
∂τxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z

)
dxdydz (8.60)

after rearrangement equations such as (8.57) and (8.58) transformed into

internal forces︷ ︸︸ ︷
DUx

Dt
ρ��dx��dy��dz =

surface forces︷ ︸︸ ︷(
∂τxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z

)
��dx��dy��dz+

body forces︷ ︸︸ ︷
fGx ρ��dx��dy��dz (8.61)

equivalent equation (8.61) for y coordinate is

ρ
DUy

Dt
=

(
∂τxy

∂x
+
∂τyy

∂y
+
∂τzy

∂z

)
+ ρ fGy (8.62)

The same can be obtained for the z component

ρ
DUz

Dt
=

(
∂τxz

∂x
+
∂τyz

∂y
+
∂τzz

∂z

)
+ ρ fGz (8.63)

Advance material can be skipped

Generally the component momentum equation is as

ρ
DUi
Dt

=

(
∂τii
∂i

+
∂τji

∂j
+
∂τki
∂j

)
+ ρ fGi (8.64)

End Advance material

Where i is the balance direction and j and k are two other coordinates. Equation (8.64)

can be written in a vector formwhich combined all three components into one equation. The
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advantage of the vector from allows the usage of the different coordinates. The vector form

is

ρ
DUUU

Dt
= ∇ · τ(i) + ρfGfGfG (8.65)

where here

τ(i) = τixî+ τiy ĵ+ τizk̂

is part of the shear stress tensor and i can be any of the x,y, or z.
Or in index (Einstein) notation as

ρ
DUi
Dt

=
∂τji

∂xi
+ ρ fGi (8.66)

End Advance material

Equations (8.61) or (8.62) or (8.63) requires that the stress tensor be defined in term

of the velocity/deformation. The relationship between the stress tensor and deforma-

tion depends on the classes of materials the stresses acts on. Additionally, the deforma-

tion can be viewed as a function of the velocity field. As engineers do in general, the

simplest model is assumed which referred as the solid continuum model. In this model

the relationship between the (shear) stresses and rate of strains are assumed to be lin-

ear. In solid material, the shear stress yields a fix amount of deformation. In contrast,

when applying the shear stress in fluids, the result is a continuous deformation. Further-

more, reduction of the shear stress does not return the material to its original state as in

solids. The similarity to solids the increase shear stress in fluids yields larger deforma-

tions. Thus this “solid” model is a linear relationship with three main assumptions:

x

y


Uy +

∂Uy

∂x


dtUydt


Uy +

∂Uy

∂y


dt

Uxdt
@ t

@ t + dt

= + +

A A

B

C

D

x’y’

45◦

Fig. 8.9 – Control volume at t and t + dt under
continuous angle deformation. Notice the three
combinations of the deformation shown by pur-
ple color relative to blue color.

a. There is no preference in the orientation

(also call isentropic fluid),

b. there is no left over stresses (In other

wordswhen the “no shear stress” situation

exist the rate of deformation or strain is

zero), and

c. a linear relationship exist between the

shear stress and the rate of shear strain.

At time t, the control volume is at a

square shape and at a location as depicted in

Figure 8.9 (by the blue color). At time t+ dt

the control volume undergoes three different

changes. The control volumemoves to a new

location, rotates and changes the shape (the
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purple color in in Figure 8.9). The transla-

tional movement is referred to a movement

of body without change of the body and without rotation. The rotation is the second move-

ment that referred to a change in of the relative orientation inside the control volume. The

third change is the misconfiguration or control volume (deformation). The deformation of

the control volume has several components (see the top of Figure 8.9). The shear stress is re-

lated to the change in angle of the control volume lower left corner. The angle between x to

the new location of the control volume can be approximate for a small angle as

dγx

dt
= tan

(
Uy +

dUy
dx dx−Uy

dx

)
= tan

(
dUy

dx

)
∼=
dUy

dx
(8.67)

The total angle deformation (two sides x and y) is

Dγxy

Dt
=
dUy

dx
+
dUx

dy
(8.68)

In these derivatives, the symmetry
dUy
dx ̸= dUx

dy was not assumed and or required because

rotation of the control volume. However, under isentropic material it is assumed that all the

shear stresses contribute equally. For the assumption of a linear fluid
13
.

τxy = µ
Dγxy

Dt
= µ

(
dUy

dx
+
dUx

dy

)
(8.69)

where, µ is the “normal” or “ordinary” viscosity coefficient which relates the linear coefficient

of proportionality and shear stress. This deformation angle coefficient is assumed to be a

property of the fluid. In a similar fashion it can be written to other directions for x z as

τxz = µ
Dγxz

Dt
= µ

(
dUz

dx
+
dUx

dz

)
(8.70)

and for the directions of y z as

τyz = µ
Dγyz

Dt
= µ

(
dUz

dy
+
dUy

dz

)
(8.71)

Note that the viscosity coefficient (the linear coeffi-

cient
14
) is assumed to be the same regardless of the

direction. This assumption is referred as isotropic

viscosity. It can be noticed at this stage, the rela-

tionship for the two of stress tensor parts was estab-

lished. The only missing thing, at this stage, is the

diagonal component which to be dealt below.

x

y

τx’x’

x’y’ 45◦

τx’y’τxx

τyx

τxy

τyy
A

B

C

D

Fig. 8.10 – Shear stress at two coor-
dinates in 45◦ orientations.

13
While not marked as important equation this equation is the source of the derivation.

14
The first assumption was mentioned above.
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Advance material can be skipped

In general equation (8.69) can be written as

τij = µ
Dγij

Dt
= µ

(
dUj

di
+
dUi
dj

)
(8.72)

where i ̸= j and i = x or y or z.
End Advance material

Normal Stress
The normal stress, τii (where i is either ,x, y, z) appears in the shear matrix diagonal.

To find the main (or the diagonal) stress the coordinates are rotate by 45◦. The diagonal

lines (line BC and line AD in Figure 8.9) in the control volume move to the new locations.

In addition, the sides AB and AC rotate in unequal amount which make one diagonal line

longer and one diagonal line shorter. The normal shear stress relates to the change in the

diagonal line length change. This relationship can be obtained by changing the coordinates

orientation as depicted by Figure 8.10. The dx is constructed so it equals to dy. The forces

acting in the direction of x’ on the element are combination of several terms. For example,

on the “x” surface (lower surface) and the “y” (left) surface, the shear stresses are acting in this

direction. It can be noticed that “dx’” surface is
√
2 times larger than dx and dy surfaces. The

force balance in the x’ is

Ax︷︸︸︷
dy τxx

cosθx︷︸︸︷
1√
2

+

Ay︷︸︸︷
dx τyy

cosθy︷︸︸︷
1√
2

+

Ay︷︸︸︷
dx τyx

cosθy︷︸︸︷
1√
2

+

Ax︷︸︸︷
dy τxy

cosθy︷︸︸︷
1√
2

=

Ax
’︷ ︸︸ ︷

dx
√
2 τx’x’ (8.73)

dividing by dx and after some rearrangements utilizing the identity τxy = τyx results in

τxx + τyy
2

+ τyx = τx’x’ (8.74)

Setting the similar analysis in the y’ results in

τxx + τyy
2

− τyx = τy’y’ (8.75)

Subtracting (8.75) from (8.74) results in

2 τyx = τx’x’ − τy’y’ (8.76)

or dividing by 2 equation (8.76) becomes

τyx =
1

2
(τx’x’ − τy’y’) (8.77)

Equation (8.76) relates the difference between the normal shear stress and the normal

shear stresses in x’, y’ coordinates) and the angular strain rate in the regular (x,y coordinates).
The linear deformations in the x’ and y’ directions which is rotated 45◦ relative to the x and
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x

y x’y’

45◦
a

b

c

d

(a) Deformations of the isosceles triangular.

x

y

x’y’

45◦

b

c+b

d+aa

(b) Deformation of the straight angle triangle.

Fig. 8.11 – Different triangles deformation for the calculations of the normal stress.

y axes can be expressed in both coordinates system. The angular strain rate in the (x, y) is

frame related to the strain rates in the (x’, y’) frame. Figure 8.11a depicts the deformations of

the triangular particles between time t and t+ dt. The small deformations a , b, c, and d in

the Figure are related to the incremental linear strains. The rate of strain in the x direction is

dϵx =
c

dx
(8.78)

The rate of the strain in y direction is

dϵy =
a

dx
(8.79)

The total change in the deformation angle is related to tan θ, in both sides (d/dx + b/dy)

which in turn is related to combination of the two sides angles. The linear angular deforma-

tion in xy direction is

dγxy =
b+ d

dx
(8.80)

Here, dϵx is the linear strain (increase in length divided by length) of the particle in the

x direction, and dϵy is its linear strain in the y-direction. The linear strain in the x
′
direction

can be computed by observing Figure 8.11b. The hypotenuse of the triangle is oriented in

the x’ direction (again observe Figure 8.11b). The original length of the hypotenuse

√
2dx.

The change in the hypotenuse length is

√
(c+ b)2 + (a+ d)2. It can be approximated that

the change is about 45◦ because changes are infinitesimally small. Thus, cos 45◦ or sin 45◦

times the change contribute as first approximation to change. Hence, the ratio strain in the x’
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direction is

dϵx’ =

√
(c+ b)2 + (a+ d)2

√
2dx

≃

(c+ b)√
2

+
(c+ b)√

2
+

∼0︷ ︸︸ ︷
f (dx’)

√
2dx

(8.81)

Equation (8.81) can be interpreted as (using equations (8.78), (8.79), and (8.80)) as

dϵx’ =
1

2

(
a+ b+ c+ d

dx

)
=
1

2
(dϵy + dϵy + dγxy) (8.82)

In the same fashion, the strain in y’ coordinate can be interpreted to be

dϵy’ =
1

2
(dϵy + dϵy − dγxy) (8.83)

Notice the negative sign before dγxy. Combining equation (8.82) with equation (8.83) results

in

dϵx’ − dϵy’ = dγxy (8.84)

Equation (8.84) describing in Lagrangian coordinates a single particle. Changing it to the

Eulerian coordinates transforms equation (8.84) into

Dϵx’
Dt

−
Dϵy’
Dt

=
Dγxy

Dt
(8.85)

From (8.69) it can be observed that the right hand side of equation (8.85) can be replaced by

τxy/µ to read

Dϵx’
Dt

−
Dϵy’
Dt

=
τxy

µ
(8.86)

x’

y’

Uy’dt

Ux’ +

∂Ux ’

∂x ’
dx ’


 dt


Uy’ +

∂Uy ’

∂y ’
dy ’


 dt

Fig. 8.12 – Linear strain of the element purple denotes
t and blue is for t+dt. Dashed squares denotes
the movement without the linear change.

From equation (8.76) τxy be substi-

tuted and equation (8.86) can be continued

and replaced as

Dϵx’
Dt

−
Dϵy’
Dt

=
1

2µ
(τx’x’ − τy’y’) (8.87)

Figure 8.12 depicts the approximate linear de-

formation of the element. The linear de-

formation is the difference between the two

sides as

Dϵx’
Dt

=
∂Ux’
∂x’

(8.88)
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The same way it can written for the y’ coordinate.

Dϵy’
Dt

=
∂Uy’
∂y’

(8.89)

Equation (8.88) can be written in the y’ and is similar by substituting the coordinates. The rate

of strain relations can be substituted by the velocity and equations (8.88) and (8.89) changes

into

τx’x’ − τy’y’ = 2µ

(
∂Ux’
∂x’

−
∂Uy’
∂y’

)
(8.90)

Similar two equations can be obtained in the other two plans. For example in y’–z’ plan one

can obtained

τx’x’ − τz’z’ = 2µ

(
∂Ux’
∂x’

−
∂Uz’
∂z’

)
(8.91)

Adding equations (8.90) and (8.91) results in

2︷ ︸︸ ︷
(3− 1) τx’x’ − τy’y’ − τz’z’ =

4︷ ︸︸ ︷
(6− 2)µ

∂Ux’
∂x’

− 2µ

(
∂Uy’
∂y’

+
∂Uz’
∂z’

)
(8.92)

rearranging equation (8.92) transforms it into

3 τx’x’ = τx’x’ + τy’y’ + τz’z’ + 6µ
∂Ux’
∂x’

− 2µ

(
∂Ux’
∂x’

+
∂Uy’
∂y’

+
∂Uz’
∂z’

)
(8.93)

Dividing the results by 3 so that one can obtained the following

τx’x’ =

“mechanical” pressure︷ ︸︸ ︷
τx’x’ + τy’y’ + τz’z’

3
+2µ

∂Ux’
∂x’

−
2

3
µ

(
∂Ux’
∂x’

+
∂Uy’
∂y’

+
∂Uz’
∂z’

)
(8.94)

The “mechanical” pressure, Pm, is defined as the (negative) average value of pressure in di-

rections of x’–y’–z’. This pressure is a true scalar value of the flow field since the propriety is

averaged or almost
15
In situations where the main diagonal terms of the stress tensor are not

the same in all directions (in some viscous flows) this property can be served as a measure of

the local normal stress. The mechanical pressure can be defined as averaging of the normal

stress acting on a infinitesimal sphere. It can be shown that this two definitions are “identical”

in the limits
16
. With this definition and noticing that the coordinate system x’–y’ has no special

significance and hence equation (8.94) must be valid in any coordinate system thus equation

(8.94) can be written as

τxx = −Pm + 2µ
∂Ux

∂x
+
2

3
µ∇ ·UUU (8.95)

15
It identical only in the limits to the mechanical measurements.

16
Mechanics, Cambridge University Press, 1967, p.141.
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Again where Pm is the mechanical pressure and is defined as

Pm = −
τxx + τyy + τzz

3

Mechanical Pressure

(8.96)

It can be observed that the nonmain (diagonal) terms of the stress tensor are represented by an

equation like (8.72). Commonality engineers like to combined the two difference expressions

into one as

τxy = −

(
Pm +

2

3
µ∇ ·UUU

) =0︷︸︸︷
δxy +µ

(
∂Ux

∂y
+
∂Uy

∂x

)
(8.97)

or

τxx = −

(
Pm +

2

3
µ∇ ·UUU

) =1︷︸︸︷
δxy +µ

(
∂Ux

∂x
+
∂Uy

∂y

)
(8.98)

Advance material can be skipped

or index notation

τij = −

(
Pm +

2

3
µ∇ ·UUU

)
δij + µ

(
∂Ui
∂xj

+
∂Uj

∂xi

)
(8.99)

End Advance material

where δij is the Kronecker delta what is δij = 1when i = j and δij = 0 otherwise. While this

expression has the advantage of compact writing, it does not add any additional information.

This expression suggests a new definition of the thermodynamical pressure is

P = Pm +
2

3
µ∇ ·UUU

Thermodynamic Pressure

(8.100)

Summary of The Stress Tensor

The above derivations were provided as a longmathematical explanation
17
. To reduced

one unknown (the shear stress) equation (8.61) the relationship between the stress tensor and

the velocity were to be established. First, connection between τxy and the deformation was

built. Then the association between normal stress and perpendicular stress was constructed.

Using the coordinates transformation, this association was established. The linkage between

the stress in the rotated coordinates to the deformation was established.

17
Since the publishing the version 0.2.9.0 several people asked this author to summarize conceptually the issues.

With God help, it will be provided before version 0.3.1.
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8.5.0.1 Alternative Approach

The above explanation is complex and alternative sim-

plified version is provided. The change in the x direction

is

lim
∆t→0

ϕ1 =

1/∆x

(
x+

∂Uy

∂x
∆x− x

)
∆t

∆x
(8.101)

At the end Eq. (8.101) becomes

ϕ1 =
∂Uy

∂x
(8.102)

φ1φ1φ1

φ2φ2φ2 ∆Uy dt∆Uy dt∆Uy dt

∆Ux dt∆Ux dt∆Ux dt

xxx

yyy

∆x∆x∆x
Fig. 8.13 – Schematic to explain

shear angle.

In the same for the other angel, ϕ2

ϕ2 =
∂Ux

∂y
(8.103)

The averaged change of the small angle is then

εxy =
1

2
(ϕ1 +ϕ2) =

1

2

(
∂Uy

∂x
+
∂Ux

∂y

)
(8.104)

This term is the shear strain for a very small angle. It can established for the averaged strains

for the two other planes Under the same argument will be same (nothing unique for this

plane). For the main direction such as xx it will be the averaged of the same values. Hence the

matrix for the whole strain is

ε =




ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33




(8.105)

or in explicit form as

ε =
1

2




2∂Ux∂x

(
∂Ux
∂y +

∂Uy
∂x

) (
∂Ux
∂z + ∂Uz

∂x

)

(
∂Ux
∂y +

∂Uy
∂x

)
2
∂Uy
∂y

(
∂Uy
∂z + ∂Uz

∂y

)

(
∂Ux
∂z + ∂Uz

∂x

) (
∂Ux
∂z + ∂Uz

∂x

)
2∂Uz∂z




(8.106)

This matrix (8.106) referred in literature as the shear rate which is similar to strain in solid

mechanics. These changes in the angles and element’s geometry can be obtained from the

velocity field.
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Example 8.6: Given Velocity to Strain Level: Intermediate
Calculate the shear rate of the hypothetical flow field given as

UUU = Ay2 z3 î+Ax2 ey ĵ+Ax2 sin(x) k̂ (8.6.a)

Solution
The process is simply applying the formulas. The strain the xx direction is

εxx =
∂Ux

∂x
=
∂
(
Ay2 z3

)

∂x
= 0 (8.6.b)

in the xy or yx which are the same is

εxy =
1

2

(
∂Ux

∂y
+
∂Uy

∂x

)
=
1

2

(
A2y z3 +A2x ey

)
(8.6.c)

in the xz or zx which are the same is

εxz =
1

2

(
∂Ux

∂z
+
∂Uz

∂x

)
= 3Ay2 z2 + 2Ax sin(x) +Ax2 cos(x) (8.6.d)

The next main strains is

εyy =
∂Uy

∂y
= Ax2 ey (8.6.e)

The last main strain is

εzz =
∂Uz

∂z
= 0 (8.6.f)

The last mix strain is yz

εyz =
1

2

(
∂Uy

∂z
+
∂Uz

∂y

)
= 0 (8.6.g)

There is no special significance for these results. In certain direction the strain can be zero

while it can have value in others.

Second Viscosity Coefficient
The coefficient 2/3µ is experimental and relates to viscosity. However, if the deriva-

tions before were to include additional terms, an additional correction will be needed. This

correction results in

P = Pm + λ∇ ·UUU (8.107)

The value of λ is obtained experimentally. This coefficient is referred in the literature by

several terms such as the “expansion viscosity “second” coefficient of viscosity” and “bulk vis-

cosity. Here the term bulk viscosity will be adapted. The dimension of the bulk viscosity, λ, is

similar to the viscosity µ.According to second law of thermodynamic derivations (not shown

here and are under construction) demonstrate that λ must be positive. The thermodynamic

pressure always tends to follow the mechanical pressure during a change. The expansion rate

of change and the fluid molecular structure through λ control the difference. Equation (8.107)
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can be written in terms of the thermodynamic pressure P, as

τij = −

[
P+

(
2

3
µ− λ

)
∇ ·UUU

]
δij + µ

(
∂Ui
∂xj

+
∂Uj

∂xi

)
(8.108)

The significance of the difference between the thermodynamic pressure and the me-

chanical pressure associatedwith fluid dilationwhich connected by∇·UUU. The physicalmean-

ing of∇ ·UUU represents the relative volume rate of change. For simple gas (dilute monatomic

gases) it can be shown that λ vanishes. In material such as water, λ is large (3 times µ) but the

net effect is small because in that cases ∇ ·UUU −→ 0. For complex liquids this coefficient, λ,

can be over 100 times larger than µ. Clearly for incompressible flow, this coefficient or the

whole effect is vanished
18
. In most cases, the total effect of the dilation on the flow is very

small. Only in micro fluids and small and molecular scale such as in shock waves this effect

has some significance. In fact this effect is so insignificant that there is difficulty in to construct

experiments so this effect can be measured. Thus, neglecting this effect results in

τij = −Pδij + µ

(
∂Ui
∂xj

+
∂Uj

∂xi

)
(8.109)

To explain equation (8.109), it can be written for specific coordinates. For example, for the τxx
it can be written that

τxx = −P+ 2
∂Ux

∂x
(8.110)

and the y coordinate the equation is

τyy = −P+ 2
∂Uy

∂y
(8.111)

however the mix stress, τxy, is

τxy = τyx =

(
∂Uy

∂x
+
∂Ux

∂y

)
(8.112)

For the total effect, substitute equation (8.108) into equation (8.61) which results in

ρ

(
DUx

Dt

)
= −

∂
(
P+

(
2
3µ− λ

)
∇ ·UUU

)

∂x
+

µ

(
∂2Ux

∂x2
+
∂2Ux

∂y2
+
∂2Ux

∂z2

)
+ fffBx (8.113)

or in a vector form as

ρ
DUUU

Dt
= −∇P+

(
1

3
µ+ λ

)
∇ (∇ ·UUU) + µ∇2UUU+ fffB

N-S in stationary Coordinates

(8.114)

18
vanish is because∇·UUU = 0.
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For in index form as

ρ
DUi
Dt

= −
∂

∂xi

(
P+

(
2

3
µ− λ

)
∇ ·UUU

)
+

∂

∂xj

(
µ

(
∂Ui
∂xj

+
∂Uj

∂xi

))
+ fffBi (8.115)

For incompressible flow the term∇ ·UUU vanishes, thus equation (8.114) is reduced to

ρ
DUUU

Dt
= −∇P+ µ∇2UUU+ fffB

Momentum for Incompressible Flow

(8.116)

or in the index notation it is written

ρ
DUi
Dt

= −
∂P

∂xi
+ µ

∂2UUU

∂xi∂xj
+ fffBi (8.117)

The momentum equation in Cartesian coordinate can be written explicitly for x coordinate

as

ρ
(∂Ux
∂t

+Ux
∂Ux

∂x
+Uy

∂Ux

∂y
+Uz

∂Ux

∂z

)
=

−
∂P

∂x
+ µ

(
∂2Ux

∂x2
+
∂2Ux

∂y2
+
∂2Ux

∂z2

)
+ ρgx (8.118)

Where gx is the body force in the x direction (̂i · ggg). In the y coordinate the momentum

equation is

ρ
(∂Uy
∂t

+Ux
∂Uy

∂x
+Uy

∂Uy

∂y
+Uz

∂Uy

∂z

)
=

−
∂P

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
+ ρgy (8.119)

in z coordinate the momentum equation is

ρ
(∂Uz
∂t

+Ux
∂Uz

∂x
+Uy

∂Uz

∂y
+Uz

∂Uz

∂z

)
=

−
∂P

∂z
+ µ

(
∂2Uz

∂x2
+
∂2Uz

∂y2
+
∂2Uz

∂z2

)
+ ρgz (8.120)

8.6 Boundary Conditions and Driving Forces
8.6.1 Boundary Conditions Categories
The governing equations that were developed earlier requires some boundary conditions and

initial conditions. These conditions described physical situations that are believed or should

exist or approximated. These conditions can be categorized by the velocity, pressure, or in
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more general terms as the shear stress conditions (mostly at the interface). For this discussion,

the shear tensor will be separated into two categories, pressure (at the interface direction) and

shear stress (perpendicular to the area). A common velocity condition is that the liquid has

the same value as the solid interface velocity. In the literature, this condition is referred as

the “no slip” condition. The solid surface is rough thus the liquid participles (or molecules)

are slowed to be at the solid surface velocity. This boundary condition was experimentally

observed under many conditions yet it is not universal true. The slip condition (as oppose to

“no slip” condition) exist in situationswhere the scale is very small and the velocity is relatively

very small. The slip condition is dealing with a difference in the velocity between the solid

(or other material) and the fluid media. The difference between the small scale and the large

scale is that the slip can be neglected in the large scale while the slip cannot be neglected in

the small scale. In another view, the difference in the velocities vanishes as the scale increases.

Another condition which affects whether the slip condition exist is how rapidly of the

velocity change. The slip condition cannot be

ignored in some regions, when the flow is with

a strong velocity fluctuations. Mathematically

the “no slip” condition is written as

t̂ ·
(
UUUfluid −UUUboundary

)
= 0 (8.121)

y

n̂

f(x)

t̂

flow 

direction

x

Fig. 8.14 – 1–Dimensional free surface de-
scribing n̂nn and t̂tt.

where n̂ is referred to the area direction (perpendicular to the area see Figure 8.14). While

this condition (8.121) is given in a vector form, it is more common to write this condition as a

given velocity at a certain point such as

U(ℓ) = Uℓ (8.122)

Note, the “no slip” condition is applicable to the ideal fluid (“inviscid flows”) because this kind

of flow normally deals with large scales. The "slip" condition is written in similar fashion to

equation (8.121) as

t̂ ·
(
UUUfluid −UUUboundary

)
= f(Q, scale, etc) (8.123)

As oppose to a given velocity at particular point, a requirement on the acceleration

(velocity) can be given in unknown position. The condition (8.121) can be mathematically rep-

resented in another way for free surface conditions. To make sure that all the material is

accounted for in the control volume (does not cross the free surface), the relative perpendicu-

lar velocity at the interface must be zero. The location of the (free) moving boundary can be

given as f(̂rrr, t) = 0 as the equation which describes the bounding surface. The perpendicular
relative velocity at the surface must be zero and therefore

Df

Dt
= 0 on the surface f(̂rrr, t) = 0 (8.124)
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This condition is called the kinematic boundary condition. For example, the free surface in

the two dimensional case is represented as f(t, x,y). The condition becomes as

0 =
∂f

∂t
+Ux

∂f

∂x
+Uy

∂f

∂y
(8.125)

The solution of this condition, sometime, is extremely hard to handle because the location

isn’t given but the derivative given on unknown location. In this book, this condition will not

be discussed (at least not plane to be written).

The free surface is a special case of moving surfaces where the surface between two

distinct fluids. In reality the interface between these two fluids is not a sharp transition but

only approximation (see for the surface theory). There are situations where the transition

should be analyzed as a continuous transition between two phases. In other cases, the transi-

tion is idealized an almost jump (a fewmolecules thickness). Furthermore, there are situations

where the fluid (above one of the sides) should be considered as weightless material. In these

cases the assumptions are that the transition occurs in a sharp line, and the density has a jump

while the shear stress are continuous (in some cases continuously approach zero value). While

a jump in density does not break any physical laws (at least those present in the solution), the

jump in a shear stress (without a jump in density) does break a physical law. A jump in the

shear stress creates infinite force on the adjoin thin layer. Off course, this condition cannot

be tolerated since infinite velocity (acceleration) is impossible. The jump in shear stress can

appear when the density has a jump in density. The jump in the density (between the two

fluids) creates a surface tension which offset the jump in the shear stress. This condition is

expressed mathematically by equating the shear stress difference to the forces results due to

the surface tension. The shear stress difference is

∆τ(n) = 0 = ∆τ(n)upper
surface

−∆τ(n)
lower

surface

(8.126)

where the index (n) indicate that shear stress are normal (in the surface area). If the surface

is straight there is no jump in the shear stress. The condition with curved surface are out the

scope of this book yet mathematically the condition is given as without explanation as

n̂nn · τ(n) = σ
(
1

R1
+
1

R2

)
(8.127)

t̂tt · τ(t) = −t̂tt · ∇σ (8.128)

where n̂nn is the unit normal and t̂tt is a unit tangent to the surface (notice that direction pointed

out of the “center” see Figure 8.14) and R1 and R2 are principal radii. One of results of the free

surface condition (or in general, the moving surface condition) is that integration constant is

unknown). In same instances, this constant is determined from the volume conservation. In

index notation equation (8.127) is written
19
as

τ
(1)
ij nj + σni

(
1

R1
+
1

R2

)
= τ

(2)
ij nj (8.129)

19
There is no additional benefit in this writing, it just for completeness and can be ignored for most purposes.
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where 1 is the upper surface and 2 is the lower surface. For example in one dimensional
20

n̂nn =
(−f′(x), 1)√
1+ (f′(x))2

t̂tt =
(1, f′(x))√
1+ (f′(x))2

(8.130)

the unit vector is given as two vectors in x and y and the radius is given by equation (1.56).

The equation is given by

∂f

∂t
+Ux

∂f

∂x
= Uy (8.131)

The Pressure Condition
The second condition that commonality prescribed at the interface is the static pressure

at a specific location. The static pressure is measured perpendicular to the flow direction. The

last condition is similar to the pressure condition of prescribed shear stress or a relationship

to it. In this category include the boundary conditions with issues of surface tension which

were discussed earlier. It can be noticed that the boundary conditions that involve the surface

tension are of the kind where the condition is given on boundary but no at a specific location.

Gravity as Driving Force
The body forces, in general and gravity in a particular, are the condition that given

on the flow beside the velocity, shear stress (including the surface tension) and the pressure.

The gravity is a common body force which is considered in many fluid mechanics problems.

The gravity can be considered as a constant force in most cases (see for dimensional analysis

for the reasons).

Shear Stress and Surface Tension as Driving Force

If the fluid was solid material, pulling the side will pull

all the material. In fluid (mostly liquid) shear stress

pulling side (surface) will have limited effect and yet

sometime is significant andmore rarely dominate. Con-

sider, for example, the case shown in Figure 8.15. The

shear stress carry the material as if part of the material

was a solid material. For example, in the kerosene lamp

the burning occurs at the surface of the lamp top and the

liquid is at the bottom. The liquid does not move up due

the gravity (actually it is against the gravity) but because

the surface tension.

Fig. 8.15 – Kerosene lamp.

20
A one example of a reference not in particularly important or significant just a random example. Jean, M. Free

surface of the steady flow of a Newtonian fluid in a finite channel. Arch. RationalMech. Anal. 74 (1980), no. 3, 197–217.
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The physical conditions in Fig. 8.15 are used to idealize the flow around an in-

ner rode to understand how to apply the surface tension to the boundary conditions.

The fluid surrounds the rode and flows upwards. In that case, the velocity at the sur-

face of the inner rode is zero. The velocity at the outer surface is unknown. The

boundary condition at outer surface given by a jump of the shear stress. The outer

diameter is depends on the surface tension (the larger surface tension the smaller the

liquid diameter). The surface tension is a function of the

temperature therefore the gradient in surface tension is

result of temperature gradient. In this book, this effect

is not discussed. However, somewhere downstream the

temperature gradient is insignificant. Even in that case,

the surface tension gradient remains. It can be noticed

that, under the assumption presented here, there are two

principal radii of the flow. One radius toward the cen-

ter of the rode while the other radius is infinite (approx-

imately). In that case, the contribution due to the curva-

ture is zero in the direction of the flow (see Figure 8.16).

The only (almost) propelling source of the flow is the

surface gradient (
∂σ
∂n ).

µ
∂U

∂r
=

∂σ

∂h

U(ri) = 0

} temperature

gradent

} mix zone

} constant 

T

Fig. 8.16 – Flow in a candle with a
surface tension gradient.

8.7 Examples for Differential Equation (Navier-Stokes)
Examples of an one-dimensional flow driven by the shear stress and pressure are presented.

For further enhance the understanding some of the derivations are repeated. First, example

dealing with one phase are present. Later, examples with two phase are presented.

Example 8.7: Flow Between Two Plates Level: Simple

Incompressible liquid flows between two

infinite plates from the left to the right

(as shown in Fig. 8.17). The distance be-

tween the plates is ℓ. The static pressure

per length is given as∆P (The difference is

measured at the bottom point of the plate.)

The upper surface is moving in velocity,

Uℓ (The right side is defined as positive).

Uℓ

flow direction

dy

z

y

x

Fig. 8.17 – Flow between two plates, top
plate ismoving at speed ofUℓ to the
right (as positive). The control vol-
ume shown in darker colors.

Solution
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continue Ex. 8.7
In this example, the mass conservation yields

=0︷ ︸︸ ︷
d

dt

∫
cv
ρdV = −

∫
cv
ρUrndA = 0

(8.7.a)

The momentum is not accumulated (steady state and constant density). Further because no

change of the momentum thus ∫
A
ρUxUrndA = 0 (8.7.b)

Thus, the flow in and the flow out are equal. It can be concluded that the velocity in and out

are the same (for constant density). The momentum conservation leads

−

∫
cv
PPPdA+

∫
cv

τxydA = 0 (8.7.c)

The reaction of the shear stress on the lower surface of control volume based on Newtonian

fluid is

τxy = −µ
dU

dy
(8.7.d)

On the upper surface is different by Taylor explanation as

τxy = µ



dU

dy
+
d2U

dy2
dy+

∼=0︷ ︸︸ ︷
d3U

dy3
dy2 + · · ·


 (8.7.e)

The net effect of these two will be difference between them

µ

(
dU

dy
+
d2U

dy2
dy

)
− µ

dU

dy
∼= µ

d2U

dy2
dy (8.7.f)

Here it is assumed that there is no pressure difference in the z direction. The only difference

in the pressure is in the x direction and thus

P−

(
P+

dP

dx
dx

)
= −

dP

dx
dx (8.7.g)

A discussion why
∂P
∂y ∼ 0 is based on the fact that there is no flow in that direction. The

momentum equation in the x direction (or from equation (8.118)) results (without gravity effects)

in

−
dP

dx
= µ

d2U

dy2
(8.7.h)
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End of Ex. 8.7

Equation (8.7.h) was constructed un-

der several assumptions which in-

clude the direction of the flow, New-

tonian fluid. No assumption was im-

posed on the pressure distribution.

Equation (8.7.h) is a partial differen-

tial equation but can be treated as

ordinary differential equation in the

z direction of the pressure differ-

ence is uniform. In that case, the

left hand side is equal to constant.

The “standard” boundary conditions

is non–vanishing pressure gradient

(that is the pressure exist) and ve-

locity of the upper or lower surface

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

U
x

U
ℓ

y
ℓ

Velocity distributions in one dimensional flow

Ψ = −1.75

Ψ = −1.25

Ψ = −0.75

Ψ = −0.25

Ψ = 0.25

Ψ = 0.75

Ψ = 1.25

Ψ = 1.75

Ψ = 2.25

Ψ = 2.75

October 4, 2010

Fig. 8.18 – One dimensional flowwith a shear be-
tween two plates when Ψ change value be-
tween -1.75 green line to 3 the blue line.

or both. It is common to assume that the “no–slip” condition on the boundaries condition.

The boundaries conditions are

Ux(y = 0) = 0

Ux(y = ℓ) = Uℓ
(8.7.i)

The solution of the “ordinary” differential equation (8.7.h) after the integration becomes

Ux = −
1

2µ

dP

dx
y2 + c2 y+ c3 (8.7.j)

Applying the boundary conditions, Eq. (8.7.i) results in c3 = and

c2 =
1

ℓ

(
Uℓ +

1

2µ

dP

dx
ℓ2
)

(8..a)

Ux(y)

Uℓ
= −

1

2µ

dP

dx
y2 +

(
Uℓ
ℓ

+
1

2µ

dP

dx
ℓ

)
y (8.7.k)

or after dividing by Uℓ the results reads

Ux(y)

Uℓ
=

1

2µUℓ

dP

dx
(ℓ− y) y+

y

ℓ
(8.7.l)

or in more universal form as

Ux(y)

Uℓ
=

Φ︷ ︸︸ ︷
ℓ2

2µUℓ

dP

dx

(
1−

y

ℓ

) y
ℓ
+
y

ℓ

(8.7.m)

For the case where the pressure gradient is zero the velocity is linear as was discussed

earlier in the chapter 1 (see Fig. 8.18). However, if the plates or the boundary conditions do not

move the solution is Eq. (8.7.m).

What happen when
∂P
∂y ∼ 0?
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Example 8.8: Flow Rate Two Plate Level: Intermediate
For the previous example calculate the flow rate into and out control volume. What

is the averged velocity? what is the ratio of the averged velocity to the maximum

velocity?

Solution
The flow is simply the integration of velocity across the section.

qin =

∫ℓ
0
U

dA︷ ︸︸ ︷
wdy (8..b)

Substituting Eq. (8.7.m) into Eq. (8..b) can be writtten as

qin
w

=

∫ℓ
0

[
Φ
(
1−

y

ℓ

) y
ℓ
+
y

ℓ

]
dy (8..c)

The definition ofΦ is given Eq. (8.7.m). Or using some mathematical substitutions that to read

qin
wℓ

=

∫ℓ
0

[
Φ
(
1−

y

ℓ

) y
ℓ
+
y

ℓ

] dy
ℓ

(8..d)

Using the substitutions of ℓ η = y and thus ℓ dη = dy. In this substitution when y = ℓ −→
η = 1 and y = 0 −→ η = 0 which turn Eq. (8..d) into

Uaveraged =
qin
wℓ

=

∫1
0
[Φ (1− η) η+ η] dη (8..e)

after the integration

Uave =
qin
wℓ

=
Φ

6
+
1

2
(8..f)

The maximum velocity is obtained by taking the derivative of velocity as

dU

dη
= 0 −−→ ηmax =

1

2Φ
+
1

2
=
1

2

(
1

Φ
+ 1

)
(8..g)

Note that when Φ = 0 or in other words no pressure gradient exist, the maximum velocity

occurs at the moving boundary. Substituting the value to the velocity formula provides

Umax = η (Φ+ 1) −Φη2
∣∣∣
η= 1

2Φ
+ 1

2

=
1

2

(
1

Φ
+ 1

)
(1+Φ) −

Φ

4

(
1

Φ
+ 1

)2
(8..h)

The veloicty ratio is then

R =
Umax

Uave
=

AA
1
2

(
1
Φ + 1

)
(1+Φ) − Φ

���
2

4

(
1
Φ + 1

)2

AA
1
2

(
Φ
3 + 1

) (8..i)

Notice that whenΦ = 0 this ratio isn’t applicable.
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When more than one liquid is following in the conduit the mathematics because more

complected but the principle is the same. The following problem was inspired by a stability

question of two fluids transition in die casting.

Example 8.9: Two layers velocity profiles Level: Intermediate
Two fluids flow as two layers one above each other in conduit is examined here.

Ignoring the stability issue at this stage,

calculate the velocity profiles of these flu-

ids. The properties of the fluids are given

in this problem. The height of fluidAAA and

BBB are given. Calculate the flow rate for

both liquid. Assume no–slip boundaries

conditions. What are the relationship be-

tween the flow rates and the the pressure

gradient?

hBhBhB

ρA, µAρA, µAρA, µA

AAA
hAhAhA

BBB
ρB, µBρB, µBρB, µB

yyy
xxx

Fig. 8.19 – Two layers of liquid.

Solution
The governing equation for both fluids is

−
dP

dx
= µ

d2U

dy2
(8.9.a)

with boundaries conditions

UAAA(y = 0) = 0 (8.9.b)

The shear stress has to match on both sides thus

µAAA
dUAAA

dy

∣∣∣∣
(y=h1)

= µBBB
dUBBB

dy

∣∣∣∣
(y=h1)

(8.9.c)

The no–slip condition between the liquid must be obey

UAAA(y = h1) = UBBB(y = h1) (8.9.d)

and the no–slip condition on the upper surface reads

UBBB(y = h2) = 0 (8.9.e)

The shear stress requirement force a jump in the abrupt change in the velocity profile. These

conditions Eqs. (8.9.b)–(8.9.e) need to be augmented with two more equation to deal with ex-

pected 4 unknowns. These four unknowns are the result of the solution of ODE Eq. (8.9.a) (two

ranges thus two times two). This combination is sufficient solve the problem. This author is

not aware of a single and ultimate solution to the problem. Thus, any method is valid. The

general solution of of the governing equation is

U(AAA,BBB) = −
1

µAAA,BBB

dP

dx
y2 +C(AAA,BBB)1

y+C(AAA,BBB)2 (8.9.f)
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End of Ex. 8.9
where C(AAA,BBB)1

and C(AAA,BBB)2
are the integration constants. Applying condition Eq. (8.9.b)

results in

0 = −
1

µAAA

dP

dx
02 +CAAA1 0+CAAA2 (8.9.g)

which dictates that CAAA2 = 0. Similarly, the upper condition can be written as

0 = −
1

µAAA

dP

dx
(hAAA + hBBB)2 +CBBB1 (hAAA + hBBB) +CBBB2 (8.9.h)

at the interface between the two fluids the velocities are the same

−
1

µAAA

dP

dx
hAAA

2 +CAAA1 hAAA = −
1

µBBB

dP

dx
hAAA

2 +CBBB1 hAAA +CBBB2 (8.9.i)

And the shear stress are the same at the interface

µAAA

(
−
1

µAAA

dP

dx
hAAA +CAAA1

)
= µBBB

(
−
1

µBBB

dP

dx
hAAA +CBBB1

)
(8.9.j)

or after rearrangement it can be written as

−
Z
Z
Z

dP

dx
hAAA + µAAA CAAA1 = −

Z
Z
Z

dP

dx
hAAA + µBBB CBBB1 (8.9.k)

which relates the two coefficients as

CAAA1 =
µBBB
µAAA

CBBB1 (8.9.l)

Combining or substituting Eq. (8.9.l) into Eq. (8.9.k) yields

−
1

µAAA

dP

dx
hAAA

2 +
µBBB
µAAA

CBBB1 hAAA = −
1

µBBB

dP

dx
hAAA

2 +CBBB1 hAAA +CBBB2 (8.9.m)

or

−

(
1

µAAA
−

1

µBBB

)
dP

dx
hAAA

2 = CBBB1

(
1−

µBBB
µAAA

)
hAAA +CBBB2 (8.9.n)

Eq. (8.9.n) and Eq. (8.9.h) provides a linear set of equation to solve forCBBB1 forCBBB2. Eq. (8.9.h)

slightly rearranged to be

1

µAAA

dP

dx
(hAAA + hBBB)2 = CBBB1 (hAAA + hBBB) +CBBB2 (8.9.o)

The solution is

CBBB1 =
dP

dx

µAAA
µBBB

[
(hAAA + hBBB)2

µBBB
µAAA

− hAAA
2

]

(hAAA µBBB + hBBB µAAA)

(8.9.p)

The value of CBBB1 can be either positive or negative which could effect of the stability of flow

(solution) which depend the viscosity ratio. Notice that Eq. (8.9.l) also dictate thatCBBB2 has the

same sign. This topic is above the scope of the example. The solution for the second coefficient

is

CBBB2 =
dP

dx

µAAA
µBBB

hAAA (hBBB + hAAA)

(
µBBB
µAAA

− 1

)
(hBBB µBBB + hAAA µBBB − hAAA µAAA)

µAAA µBBB (hAAA µBBB + hBBB µAAA)

(8.9.q)

These solutions are not fully non–dimensionalized as the heights can be pulled out and some

additional manipulations and create an universal solution to this problem.
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Cylindrical Coordinates
Similarly the problem of one dimensional flow

can be constructed for cylindrical coordinates.

The problem is still one dimensional because

the flow velocity is a function of (only) ra-

dius. This flow referred as Poiseuille flow af-

ter Jean Louis Poiseuille a French Physician

who investigated blood flow in veins. Thus,

Poiseuille studied the flow in a small diame-

ters (he was not familiar with the concept of

Reynolds numbers). Rederivation are carried

out for a short cut.

rrr

rrr zzz

dzdzdzθθθ

flowdirection

flowdirection

flowdirection

θθθ
rrr

Fig. 8.20 – The control volume of liquid ele-
ment in cylindrical coordinates.

The momentum equation for the control volume depicted in the Figure 8.20a is

−

∫
PPP dA+

∫
τdA =

∫
ρUzUrn dA (8.132)

The shear stress in the front and back surfaces do no act in the z direction. The shear stress

on the circumferential part small dark blue shown in Figure 8.20a is

∫
τdA = µ

dUz

dr

dA︷ ︸︸ ︷
2 π r dz (8.133)

The pressure integral is∫
PPP dA =

(
Pzdz − Pz

)
π r2 =

(
Pz +

∂P

∂z
dz− Pz

)
π r2 =

∂P

∂z
dzπ r2 (8.134)

The last term is∫
ρUzUrn dA = ρ

∫
UzUrn dA =

ρ

(∫
z+dz

Uz+dz
2dA −

∫
z
Uz
2dA

)
= ρ

∫
z

(
Uz+dz

2 −Uz
2
)
dA

(8.135)

The term Uz+dz
2 −Uz

2
is zero because Uz+dz = Uz because mass conservation conser-

vation for any element. Hence, the last term is∫
ρUzUrn dA = 0 (8.136)

Substituting equation (8.133) and (8.134) into equation (8.132) results in

µ
dUz

dr
2 �π�r��dz = −

∂P

∂z
��dz �π r�

2
(8.137)

Which shrinks to

2µ

r

dUz

dr
= −

∂P

∂z
(8.138)



8.7. EXAMPLES FOR DIFFERENTIAL EQUATION (NAVIER-STOKES) 321

Equation (8.138) is a first order differential equation for which only one boundary condition

is needed. The “no slip” condition is assumed

Uz(r = R) = 0 (8.139)

Where R is the outer radius of pipe or cylinder. Integrating equation (8.138) results in

Uz = −
1

µ

∂P

∂z
r2 + c1 (8.140)

It can be noticed that asymmetrical element
21
was eliminated due to the smart short cut. The

integration constant obtained via the application of the boundary condition which is

c1 = −
1

µ

∂P

∂z
R2 (8.141)

The solution is

Uz =
1

µ

∂P

∂z
R2
(
1−

( r
R

)2)
(8.142)

While the above analysis provides a solution, it has several deficiencies which include the abil-

ity to incorporate different boundary conditions such as flowbetween concentering cylinders.

Example 8.10: Flow Concentric Cylinders Level: Simple

A liquid with a constant density is

flowing between concentering cylin-

ders as shown in Figure 8.21. Assume

that the velocity at the surface of the

cylinders is zero calculate the veloc-

ity profile. Build the velocity profile

when the flow is one directional and

viscosity is Newtonian. Calculate the

flow rate for a given pressure gradi-

ent.

r

z
θr

θ

flow

Direction r o
ut

r in

Fig. 8.21 – Liquid flow between concentric
cylinders for example 8.10.

Solution
After the previous example, the appropriate version of the Navier–Stokes equation will be

used. The situation is best suitable to solved in cylindrical coordinates. One of the solution

of this problems is one dimensional solution. In fact there is no physical reason why the flow

should be only one dimensional. However, it is possible to satisfy the boundary conditions. It

turn out that the “simple” solution is the first mode that appear in reality. In this solution will

be discussing the flow first mode. For this mode, the flow is assumed to be one dimensional.

That is, the velocity isn’t a function of the angle, or z coordinate. Thus only equation in z

21
Asymmetrical element or function is−f(x) = f(−x)
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continue Ex. 8.10

coordinate is needed. It can be noticed that this case is steady state and also the acceleration

(convective acceleration) is zero

ρ




̸=f(t)︷ ︸︸ ︷
∂Uz

∂t
+

=0︷︸︸︷
Ur

∂Uz

∂r
+

=0︷︸︸︷
Uϕ

r

Uz ̸=f(ϕ)︷ ︸︸ ︷
∂Uz

∂ϕ
+Uz

=0︷ ︸︸ ︷
∂Uz

∂z


 = 0 (8.10.r)

The steady state governing equation then becomes

ρ
(
�0
)
= 0 = −

∂P

∂z
+ µ

(
1

r

∂

∂r

(
r
∂Uz

∂r

)
+

=0︷︸︸︷· · ·
)
+��ρgz (8.10.s)

The PDE above (8.10.s) required boundary conditions which are

Uz (r = ri) = 0

Uz (r = ro) = 0
(8.10.t)

Integrating equation (8.10.s) once results in

r
∂Uz

∂r
=

1

2µ

∂P

∂z
r2 + c1 (8.10.u)

Dividing equation (8.10.u) and integrating results for the second times results

∂Uz

∂r
=

1

2µ

∂P

∂z
r+

c1
r

(8.10.v)

Integration of equation (8.10.v) results in

Uz =
1

4µ

∂P

∂z
r2 + c1 ln r+ c2 (8.10.w)

Applying the first boundary condition results in

0 =
1

4µ

∂P

∂z
ri
2 + c1 ln ri + c2 (8.10.x)

applying the second boundary condition yields

0 =
1

4µ

∂P

∂z
ro
2 + c1 ln ro + c2 (8.10.y)

The solution is

c1 =
1

4µ
ln
(
ro

ri

)
∂P

dz

(
ro
2 − ri

2
)

c2 =
1

4µ
ln
(
ro

ri

)
∂P

dz

(
ln(ri) ro2 − ln(ro) ri2

)
(8.10.z)
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End of Ex. 8.10
The solution is when substituting the constants into equation (8.10.w) results in

Uz(r) =
1

4µ

∂P

∂z
r2 +

1

4µ
ln
(
ro

ri

)
∂P

dz

(
ro
2 − ri

2
)

ln r

+
1

4µ
ln
(
ro

ri

)
∂P

dz

(
ln(ri) ro2 − ln(ro) ri2

)
(8.10.aa)

The flow rate is then

Q =

∫ro
ri

Uz(r)dA (8.10.ab)

Or substituting equation (8.10.aa) into equation (8.10.ab) transformed into

Q =

∫
A

[
1

4µ

∂P

∂z
r2 +

1

4µ
ln
(
ro

ri

)
∂P

dz

(
ro
2 − ri

2
)

ln r

+
1

4µ
ln
(
ro

ri

)
∂P

dz

(
ln(ri) ro2 − ln(ro) ri2

)]
dA

(8.10.ac)

A finite integration of the last term in the integrand results in zero because it is constant. The

integration of the rest is

Q =

[
1

4µ

∂P

∂z

] ∫ro
ri

[
r2 + ln

(
ro

ri

)(
ro
2 − ri

2
)

ln r
]
2 π r dr (8.10.ad)

The first integration of the first part of the second square bracket, (r3), is 1/4
(
ro
4 − ri

4
)
. The

second part, of the second square bracket, (−a× r ln r) can be done by parts to be as

a

(
r2

4
−
r2 log (r)

2

)
(8.10.ae)

Applying all these “techniques” to equation (8.10.ad) results in

Q =

[
π

2µ

∂P

∂z

] [(
ro
4

4
−
ri
4

4

)
+

ln
(
ro

ri

) (
ro
2 − ri

2
)( ro2 ln (ro)

2
−
ro
2

4
−
ri
2 ln (ri)

2
+
ri
2

4

)] (8.10.af)

The averaged velocity is obtained by dividing flow rate by the areaQ/A.

Uave =
Q

π
(
ro2 − ri2

) (8.10.ag)

in which the identity of (a4 − b4)/(a2 − b2) is b2 + a2 and hence

Uave =

[
1

2µ

∂P

∂z

] [(
ro
2

4
+
ri
2

4

)
+

ln
(
ro

ri

) (
ro
2 ln (ro)

2
−
ro
2

4
−
ri
2 ln (ri)

2
+
ri
2

4

)] (8.10.ah)
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Example 8.11: Conc Level: Intermediate
For the concentric velocity profile, at what radius the maximum velocity obtained.

Draw the maximum velocity location as a function of the ratio ri/ro.

Solution

The next example deals with the gravity as body force in two dimensional flow. This

problem study by Nusselt
22
which developed the basics equations. This problem is related

to many industrial process and is fundamental in understanding many industrial processes.

Furthermore, this analysis is a building bloc for heat and mass transfer understanding
23
.

Example 8.12: Thin Film Level: Simple
In many situations in nature and many industrial processes liquid flows down-

stream on inclined plate at θ as shown in Figure 8.22. For this example, assume

that the gas density is zero (located

outside the liquid domain). Assume

that “scale” is large enough so that the

“no slip” condition prevail at the plate

(bottom). For simplicity, assume that

the flow is two dimensional. Assume

that the flow obtains a steady state af-

ter some length (and the acceleration

vanished). The dominate force is the

gravity. Write the governing equa-

tions for this situation. Calculate the

velocity profile. Assume that the flow

is one dimensional in the x direction.

g
co
s
θ

g
co
s
θ

g
co
s
θ

g sin θ
g sin θ
g sin θ

θθθ

ggg

hhh

Fig. 8.22 –Mass flow due to temperature dif-
ference for example 8.1

Solution
This problem is suitable to Cartesian coordinates in which x coordinate is pointed in the flow

direction and y perpendicular to flow direction (depicted in Figure 8.22). For this system, the

gravity in the x direction isg sin θwhile the direction ofy the gravity isg cos θ. The governing

22
German mechanical engineer, Ernst Kraft Wilhelm Nusselt born November 25, 1882 September 1, 1957 in

Munchen

23
Extensive discussion can be found in this author master thesis. Comprehensive discussion about this problem

can be found this author Master thesis.
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continue Ex. 8.12
in the x direction is

ρ




̸=f(t)︷ ︸︸ ︷
∂Ux

∂t
+ Ux

=0︷ ︸︸ ︷
∂Ux

∂x
+

=0︷︸︸︷
Uy

∂Ux

∂y
+

−0︷︸︸︷
Uz

∂Ux

∂z


 =

−

∼0︷︸︸︷
∂P

∂x
+µ




=0︷ ︸︸ ︷
∂2Ux

∂x2
+
∂2Ux

∂y2
+

=0︷ ︸︸ ︷
∂2Ux

∂z2


+ ρ

g sinθ︷︸︸︷
gx

(8.12.a)

The first term of the acceleration is zero because the flow is in a steady state. The first term of

the convective acceleration is zero under the assumption of this example flow is fully developed

and hence not a function of x (nothing to be “improved”). The second and the third terms in

the convective acceleration are zero because the velocity at that direction is zero (Uy = Uz =

0). The pressure is almost constant along the x coordinate. As it will be shown later, the

pressure loss in the gas phase (mostly air) is negligible. Hence the pressure at the gas phase is

almost constant hence the pressure at the interface in the liquid is constant. The surface has

no curvature and hence the pressure at liquid side similar to the gas phase and the only change

in liquid is in the y direction. Fully developed flow means that the first term of the velocity

Laplacian is zero (
∂Ux
∂x ≡ 0). The last term of the velocity Laplacian is zero because no velocity

in the z direction.

Thus, equation (8.12.a) is reduced to

0 = µ
∂2Ux

∂y2
+ ρg sin θ (8.12.b)

With boundary condition of “no slip” at the bottom because the large scale and steady state

Ux(y = 0) = 0 (8.12.c)

The boundary at the interface is simplified to be

∂Ux

∂y

∣∣∣∣
y=0

= τair (∼ 0) (8.12.d)

If there is additional requirement, such a specific velocity at the surface, the governing equation

can not be sufficient from themathematical point of view. Integration of equation (8.12.b) yields

∂Ux

∂y
=
ρ

µ
g sin θy+ c1 (8.12.e)

The integration constant can be obtain by applying the condition (8.12.d) as

τair = µ
∂Ux

∂y

∣∣∣∣
h

= −ρg sin θ
y︷︸︸︷
h +c1 µ (8.12.f)

Solving for c1 results in

c1 =
τair
µ

+
1

ν︸︷︷︸
µ
ρ

g sin θh
(8.12.g)



326 CHAPTER 8. DIFFERENTIAL ANALYSIS
End of Ex. 8.12

The second integration applying the second boundary condition yields c2 = 0 results in

Ux =
g sin θ
ν

(
2 yh− y2

)
−
τair
µ

(8.12.h)

When the shear stress caused by the air is neglected, the velocity profile is

Ux =
g sin θ
ν

(
2hy− y2

)
(8.12.i)

The flow rate per unit width is

Q

W
=

∫
A
UxdA =

∫h
0

(
g sin θ
ν

(
2hy− y2

)
−
τair
µ

)
dy (8.12.j)

WhereW here is the width into the page of the flow. Which results in

Q

W
=
g sin θ
ν

2h3

3
−
τair h

µ
(8.12.k)

The average velocity is then

Ux =

Q

W
h

=
g sin θ
ν

2h2

3
−
τair
µ

(8.12.l)

Note the shear stress at the interface can be positive or negative and hence can increase or

decrease the flow rate and the averaged velocity.

In the following following example the issue of driving force of the flow through curved

interface is examined. The flow in the kerosene lamp is depends on the surface tension. The

flow surface is curved and thus pressure is not equal on both sides of the interface.

Example 8.13: Kerosen Lump Level: Intermediate
A simplified flow version the kerosene lump is of liquid moving up on a solid core.

Assume that radius of the liquid and solid core are given and the flow is at steady state.

Calculate the minimum shear stress that required to operate the lump (alternatively,

the maximum height).

Solution
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8.7.1 Interfacial Instability

In Example 8.12 no requirement was made as

for the velocity at the interface (the upper

boundary). The vanishing shear stress at the

interface was the only requirement was ap-

plied. If the air is considered two governing

equations must be solved one for the air (gas)

phase and one for water (liquid) phase. Two

boundary conditions must be satisfied at the

interface. For the liquid, the boundary condi-

tion of “no slip” at the bottom surface of liquid

must be satisfied. Thus, there is total of three

air (gas)

water (liquid)

sam
e velocity

solutiony

x

h

a h

Fig. 8.23 – Flow of liquid in partially filled
duct.

boundary conditions
24
to be satisfied. The solution to the differential governing equations

provides only two constants. The second domain (the gas phase) provides another equation

with two constants but again three boundary conditions need to satisfied. However, two

of the boundary conditions for these equations are the identical and thus the six boundary

conditions are really only 4 boundary conditions.

The governing equation solution
25
for the gas phase (h ⩾ y ⩾ ah) is

Uxg =
g sin θ
2νg

y2 + c1 y+ c2 (8.143)

Note, the constants c1 and c2 are dimensional which mean that they have physical units

(c1 −→ [1/sec]. The governing equation in the liquid phase (0 ⩾ y ⩾ h) is

Uxℓ =
g sin θ
2νℓ

y2 + c3 y+ c4 (8.144)

The gas velocity at the upper interface is vanished thus

Uxg [(1+ a)h] = 0 (8.145)

At the interface the “no slip” condition is regularly applied and thus

Uxg(h) = Uxℓ(h) (8.146)

Also at the interface (a straight surface), the shear stress must be continuous

µg
∂Uxg

∂y
= µℓ

∂Uxℓ
∂y

(8.147)

24
The author was hired to do experiments on thin film (gravity flow). These experiments were to study the for-

mation of small and big waves at the interface. The phenomenon is explained by the fact that there is somewhere

instability which is transferred into the flow. The experiments were conducted on a solid concrete laboratory and

the flow was in a very stable system. No matter how low flow rate was small and big occurred. This explanation

bothered this author, thus current explanation was developed to explain the wavy phenomenon occurs.

25
This equation results from double integrating of equation (8.12.b) and subtitling ν = µ/ρ.
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Assuming “no slip” for the liquid at the bottom boundary as

Uxℓ(0) = 0 (8.148)

The boundary condition (8.145) results in

0 =
g sin θ
2νg

h2 (1+ a)2 + c1 h (1+ a) + c2 (8.149)

The same can be said for boundary condition (8.148) which leads

c4 = 0 (8.150)

Applying equation (8.147) yields

ρg︷︸︸︷
µg

νg
g sin θh+ c1 µg =

ρℓ︷︸︸︷
µℓ
νℓ

g sin θh+ c3 µℓ (8.151)

Combining boundary conditions equation(8.146) with (8.149) results in

g sin θ
2νg

h2 + c1 h+ c2 =
g sin θ
2νℓ

h2 + c3 h (8.152)

Advance material can be skipped

The solution of equation (8.149), (8.151) and (8.152) is obtained by computer algebra (see

in the code) to be

c1 = −
sin θ (ghρg (2 ρg νℓ ρℓ + 1) + aghνℓ)

ρg (2 aνℓ + 2 νℓ)

c2 =
sin θ

(
gh2 ρg (2 ρg νℓ ρℓ + 1) − gh

2 νℓ
)

2 ρg νℓ

c3 =
sin θ (ghρg (2 a ρg νℓ ρℓ − 1) − aghνℓ)

ρg (2 aνℓ + 2 νℓ)

(8.153)

End Advance material

When solving this kinds of mathematical problem the engineers reduce it to minimum

amount of parameters to reduce the labor involve. So equation (8.149) transformed by some

simple rearrangement to be

(1+ a)2 =

C1︷ ︸︸ ︷
2 νg c1
gh sin θ

+

C2︷ ︸︸ ︷
2 c2 νg

gh2 sin θ
(8.154)
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And equation (8.151)

1+

1
2 C1︷ ︸︸ ︷
νg c1
gh sin θ

=
ρℓ
ρg

+

1
2
µℓ
µg
C3︷ ︸︸ ︷

µℓ νg c3
µg gh sin θ

(8.155)

and equation (8.152)

1+
2 νg �h c1

h�2 g sin θ
+

2 νg c2

h2 g sin θ
=
νg

νℓ
+
2 νg �h c3

gh�2 sin θ
(8.156)

Or rearranging equation (8.156)

νg

νℓ
− 1 =

C1︷ ︸︸ ︷
2 νg c1
hg sin θ

+

C2︷ ︸︸ ︷
2 νg c2

h2 g sin θ
−

C3︷ ︸︸ ︷
2 νg c3
gh sin θ

(8.157)

This presentation provide similarity and it will be shown in the Dimensional analysis

chapter better physical understanding of the situation. Equation (8.154) can be written as

(1+ a)2 = C1 +C2 (8.158)

Further rearranging equation (8.155)

ρℓ
ρg

− 1 =
C1
2

−
µℓ
µg

C3
2

(8.159)

and equation (8.157)

νg

νℓ
− 1 = C1 +C2 −C3 (8.160)

This process that was shown here is referred as non–dimensionalization
26
. The ratio of the

dynamics viscosity can be eliminated from equation (8.160) to be

µg

µℓ

ρℓ
ρg

− 1 = C1 +C2 −C3 (8.161)

The set of equation can be solved for the any ratio of the density and dynamic viscosity. The

solution for the constant is

C1 =
ρg

ρℓ
− 2+ a2 + 2 a

µg

µℓ
+ 2

µg

µℓ
(8.162)

C2 =

−
µg

µℓ

ρℓ
ρg

+ a

(
2
µg

µℓ
− 2

)
+ 3

µg

µℓ
+ a2

(
µg

µℓ
− 1

)
− 2

µg

µℓ

(8.163)

26
Later it will be move to the Dimensional Chapter
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C3 = −
µg

µℓ

ρℓ
ρg

+ a2 + 2 a+ 2 (8.164)

The two different fluids
27
have a solution as long as the distance is a finite reasonable

similar. What happen when the lighter fluid, mostly the gas, is infinite long. This is one of the

source of the instability at the interface. The boundary conditions of flow with infinite depth

is that flow at the interface is zero, flow at infinite is zero. The requirement of the shear stress

in the infinite is zero as well. There is no way obtain one dimensional solution for such case

and there is a component in the y direction. Combining infinite size domain of one fluid with

finite size on the other one side results in unstable interface.

8.7.2 Extra Questions

Example 8.14: U–tube Mercury Level: GATE 2005

A U–tube manometer with a small quan-

tity of mercury is used to measure the

static pressure difference between two

locations A and B in a conical section

through which an incompressible fluid

flows. At a particular flow rate, the mer-

cury column appears as shown in the

Fig. 8.24. The density of mercury is 13600

[kg/m3] and g = 9.81 [m/s2]. Which of the

following is correct?

150 mm

A B

Fig. 8.24 – U-tube to measure water
pressure difference.

(a) Flow direction is A to B and pA − pB = 20 [kPa]

(b) Flow direction is B to A and pA − pB = 1.4 [kPa]

(c) Flow direction is A to B and pB − pA = 20 [kPa]

(d) Flow direction is B to A and pB − pA = 1.4 [kPa]

Solution
The pressure difference between the A and B is

pA − pB = (ρm − ρw) g∆h ∼ 21.484[kPa] (8.14.a)

As pA > pB , the flow goes from A to B. The above statement is for the GATE test only.

However, according to the drawing the area in A is much larger than the cross section in B.

According Bernoulli’s equation this pressure difference supposed to be like evenwhen the flow

goes from B to A. The real answer there is not enough sufficient information to determine

27
This topic will be covered in dimensional analysis in more extensively. The point here is to understand issue

related to boundary condition not per se the solution of the problem.
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End of Ex. 8.14
the direction of the flow. If the pressure difference was the opposed then direction of can be

determined.

See for for Eq. (8.37) for more details

Example 8.15: 2D Convective Acceleration Level: GATE 2006
In a two–dimensional velocity field with velocities u and v along the x and y direc-

tions, respectively, the convective acceleration along the x-direction is given by

(a) Ux

(
∂Ux
∂x

)
+Uy

(
∂Ux
∂y

)

(b) Ux

(
∂Ux
∂x

)
+Uy

(
∂Uy
∂y

)

(c) Ux

(
∂Uy
∂x

)
+Uy

(
∂Ux
∂y

)

(d) Uy

(
∂Ux
∂x

)
+Ux

(
∂Ux
∂y

)

Solution
Vector form of the acceleration is

a⃗ =

local︷︸︸︷
∂UUU

∂t
+

convective︷ ︸︸ ︷
UUU · ∇UUU

(8.15.a)

In 2D the velocity vector is given by

UUU = Ux î+Uy ĵ (8.15.b)

Carry the calcuation for the X direction yeild

ax = Ux

(
∂Ux

∂x

)
+Uy

(
∂Ux

∂y

)
(8.15.c)

The answer is (a)

Example 8.16: 2D Stream Lines Level: GATE 2006
A two–dimensional flow field has velocities along the x and y directions given by

u = Ux = x2 t and v = Uy = −2 x y t, respectively, where t is the time. The

equation of stream lines is:

(a) x2 y = constant (b) xy2 = constant

(c) xy = constant (d) not possible to determine
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Solution
The stream line is represented as

dx

Ux
=
dy

Uy
(8.16.a)

or in another form of

dy

dx
=
Ux

Uy
(8.16.b)

Substituting into the velocities into Eq. (8.16.b) reads

dy

dx
=

−2�xy Ct

x�2 Ct
=

−2 y

x
−−→ dy

y
= −2

dx

x
(8.16.c)

Integrating the Eq. (8.16.c) yields,

ln(y) = −2 ln(cx) −−→ ln(y) + 2 ln(x) = constant (8.16.d)

In a final form as

yx2 = constant (8.16.e)

Answer (a).

Example 8.17: Fully Developed Laminar FLow Level: Gate 2006
The velocity profile in a fully developed laminar flow in a pipe of diameterD is given

by

U = U0

(
1−

4 r2

D2

)
(8.17.a)

where r is the radial distance from the center. If the viscosity of the fluid is µ, the

pressure drop across the length L of the pipe is

(a)

µU0 L

D2
(b) 4

µU0 L

D2

(c) 8
µU0 L

D2
(d) 16

µU0 L

D2

Solution
Assuming that Newton’s law of viscosity is applicable, the shear stress at r = D/2 is

τ = −µ
dU

dr r=D/2
=
4µU0
D

(8.17.b)

The force balance is that the pressures has to overcome the shear stress as

∆PAcross section = τAperiphery −−→ ∆P = τ
Aperiphery

Across section

(8.17.c)
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End of Ex. 8.17
In explicit terms as

∆P = τ Aπ�DL

AπD���
1

2/4

=
4µU0
D

4L

D
=
16µU0 L

D2 (8.17.d)

Answer (d)

The next two examples are based on the following statement (GATE 2007).

Consider a steady incompressible flow through a channel as shown below (on the right

hand side). The velocity profile is uniformwith

a value ofU0 at the inlet section AAA. The veloc-

ity profile at section BBB down stream is

U =


Vm

y
δ , 0 ⩽ y ⩽ δ

Vm, δ ⩽ y ⩽ H− δ

Vm
H−y
δ , H− δ ⩽ y ⩽ H

δ

δ

H

x

y

u0 Vm

A B

Fig. 8.25 – Flow between two plates for next
two examples.

Example 8.18: CAPTION Level: GATE 2007
The ratio Vm/U0 is

(a)

(
1−

2 δ

H

)−1

(b)

(
1+

2 δ

H

)−1

(c)

(
1−

δ

H

)−1

(d)

(
1+

δ

H

)−1

Solution
Using the continuity equation or in different words the mass conservation utilizing the sym-

metry the following is obtained

HU0 = 2

[∫δ
0
Vm

y

δ
dy+ Vm

(
H

2
− δ

)]
(8.18.a)

and it results in

HU0 = 2

[
Vm δ

2
+ Vm

HVm

2
− δVm

]
−−→ Um

Vm
=

(
1−

δ

H

)
(8.18.b)

The answer is (c)
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Example 8.19: Pressure Two Plate Flow Level: GATE 2007
The ratio

pA−pB
ρU20/2

(where pA and pB are the pressure at sectionAAA andBBB, respectively,

and ρ is the density of the fluid) is

(a)

(
1−

δ

H

)−2

− 1 (b)

(
1−

δ

H

)−2

(c)

(
1−

2 δ

H

)−2

− 1 (d)

(
1−

δ

H

)−1

Solution
On the stream line that lays on the center line applying Bernoulli’s equation reads

pA − pB
ρg

=
VB
2 − VA

2

2 g
(8.19.a)

Inserting the velocity values into Eq. (8.19.d) provides

pA − pB
ρ

=
Vm

2 −U0
2

2
=
U0
2

2

(
V2m

U0
2
− 1

)
(8.19.b)

or moving the velocity to the left hand side

pA − pB
1

2
ρU0

2
=
Vm

2

U0
2
− 1

(8.19.c)

In Ex. 8.18 based on the mass conservation this equation
Vm
U0

= 1

1−
δ

H

, the following can be

obtained

pA − pB
1
2ρu

2
o

=

(
1

1− δ
H

)2
− 1 =

1
(
1− δ

H

)2 − 1 (8.19.d)

The answer is (a).

Example 8.20: Continuity Incompressible Flow Level: GATE 2008
For the continuity equation given by ∇v⃗ = 0 to be valid, where v⃗ is the velocity

vector, which one of the following is a necessary condition?

(a) steady flow (b) irrotational flow

(c) inviscid flow (d) incompressible flow
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End of Ex. 8.20
Solution
See Eq. (8.20) and read before the equation 287.

Answer (d)

Example 8.21: Journal Bearing Level: GATE 2010
A lightly loaded full journal bearing has a journal of 50 [mm], bush bore of 50.05 [mm]

and bush length of 20 [mm]. If rotational speed of journal is 1200 [rpm] and average

viscosity of liquid lubricant is 0.03 [Pa s], the power loss (in [W]) will be

(a) 3.7 (b) 74

(c) 118 (d) 237

Solution
Assuming linearly because the gap between inside and the out diameters is very small com-

pared to the diameter it can be done. So the gap is

h = r2 − r1 =
d2 − d1
2

== 0.00025[m] (8.21.a)

The angular velocity

ω =
2 π rpm
60

=
2× π× 1200

60
= 125.664[rad/s] (8.21.b)

The velocity is U = ωr and area is 2 π r ℓ and approximated shear stress is µU/w. The

moment or the arm of the shear force is r. Hence the torque is

torque =

A︷ ︸︸ ︷
2 π r ℓ

τ︷︸︸︷
µU

h︸ ︷︷ ︸
F

lever︷︸︸︷
r = 2 π r ℓ

µ rω

h
r =

2 π ℓ µωr3

h
(8.21.c)

And the power is

P = torqueω =
2 π ℓ µω2 r3

h
= 3.72[w] (8.21.d)

The answer is (c)
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9
Dimensional Analysis

This chapter is dedicated to my adviser, Dr. E.R.G. Eckert.
Genick Bar-Meir

9.1 Introductory Remarks
Dimensional analysis refers to techniques dealing with units or conversion to a unitless sys-

tem. The definition of dimensional analysis is not consistent in the literature which span over

various fields and times. Possible topics that dimensional analysis deals with are consistency

of the units, change order of magnitude, applying from the old and known to unknown (see

the Book of Ecclesiastes), and creation of group parameters without any dimensions (Buck-

ingham 1914). In this chapter, the focus is on the applying the old to unknown as different

scales and the creation of dimensionless groups. These techniques gave birth to dimensional

parameters which have a great scientific importance. Since the 1940s
1
, the dimensional anal-

ysis is taught and written in all fluid mechanics textbooks. The approach or the technique

used in these books is referred to as Buckingham–π–theory (Görtler 1975). The π–theory was

coined by Buckingham(Buckingham 1915b). However, there is another technique which is re-

ferred to in the literature as the Nusselt’s method. Both these methods attempt to reduce the

1
The history of dimensional analysis is complex. Several scientists used this concept before Buckingham and

Nusselt (see below history section). Their work culminated at the point of publishing the paper Buckingham’s paper

and independently constructed byNusselt. It is interesting to point out that there are several dimensionless numbers

that bear Nusselt and his students name, Nusselt number, Schmidt number, Eckert number. There is no known

dimensionless number which bears Buckingham name. Buckingham’s technique is discussed and studied in Fluid

Mechanics while almost completely ignored by Heat and Mass Transfer researchers and their classes. Furthermore,

in many advance fluid mechanics classes Nusselt’s technique is used and Buckingham’s technique is abandoned.

Perhaps this fact can be attributed to tremendous influence Nusselt and his students had on the heat transfer field.

Even, this author can be accused for being bias as the Eckert’s last student. However, this author observed that

Nusselt’s technique is much more effective as it will demonstrated later.

337
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number of parameters which affect the problem and reduce the labor in solving the problem.

The key in these techniques lays in the fact of consistency of the dimensions of any possible

governing equation(s) and the fact that some dimensions are reoccurring. The Buckingham–

π goes further and no equations are solved and even no knowledge about these equations is

required. In Buckingham’s technique only the dimensions or the properties of the problem

at hand are analyzed. This author is aware of only a single class of cases were Buckingham’s

methods is useful and or can solve the problem namely the pendulum class problem (and

similar).

The dimensional analysis was independently developed by Nusselt and improved by

his students/co–workers (Schmidt, Eckert) in which the governing equations are used as well.

Thus, more information is put into the problem and thus a better understanding on the di-

mensionless parameters is extracted. The advantage or disadvantage of these similar methods

depend on the point of view. The Buckingham–π technique is simpler while Nusselt’s tech-

nique produces a better result. Sometime, the simplicity of Buckingham’s technique yields

insufficient knowledge or simply becomes useless. When no governing equations are found,

Buckingham’s method has usefulness. It can be argued that these situations really do not exist

in the Thermo–Fluid field. Nusselt’s technique is more cumbersome but more precise and

provide more useful information. Both techniques are discussed in this book. The advantage

of the Nusselt’s technique are: a) compact presentation, b)knowledge what parameters affect

the problem, and c) easier to extent the solution to more general situations. In very complex

problems both techniques suffer from in inability to provide a significant information on the

effective parameters such multi–phase flow etc.

It has to be recognized that the dimensional analysis provides answer to what group of

parameters affecting the problem and not the answer to the problem (Langhaar 1951) In fact,

there are fields in thermo–fluid where dimensional analysis, is recognized as useless. For ex-

ample, the area of multiphase flows there is no solution based on dimensionless parameters

(with the exception of the rough solution of Martinelli). In the Buckingham’s approach it

merely suggests the number of dimensional parameters based on a guess of all parameters

affecting the problem. Nusselt’s technique provides the form of these dimensionless parame-

ters, and the relative relationship of these parameters.

9.1.1 Brief History

The idea of experimentation with a different, rather than the actual, dimension was suggested

by several individuals independently. Some attribute it to Newton (1686) who coined the

phrase of “great Principle of Similitude.” Later, Maxwell a Scottish Physicist played a ma-

jor role in establishing the basic units of mass, length, and time as building blocks of all other

units. Another example, John Smeaton (8 June 1724–28 October 1792) was an English civil and

mechanical engineer who study relation between propeller/wind mill and similar devices to

the pressure and velocity of the driving forces.

Jean B. J. Fourier (1768-1830) first attempted to formulate the dimensional analysis the-

ory. This idea was extend by William Froude (1810-1871) by relating the modeling of open
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channel flow and actual body but more importantly the relationship between drag of models

to actual ships. While the majority of the contributions were done by thermo–fluid guys the

concept of the equivalent or similar propagated to other fields. Aiméem Vaschy, a German

Mathematical Physicist (1857–1899), suggested using similarity in electrical engineering and

suggested the Norton circuit equivalence theorems. Rayleigh probably was the first one who

used dimensional analysis (1872) to obtain the relationships between the physical quantities

(see the question why the sky is blue story).

Osborne Reynolds (1842–1912) was the first to derive and use dimensionless parameters

to analyze experimental data. Riabouchunsky
2
proposed of relating temperature bymolecules

velocity and thus creating dimensionless group with the byproduct of compact solution (so-

lution presented in a compact and simple form).

Buckingham culminated the dimensional analysis and similitude and presented it in a

more systematic form. In the about the same time (1915, Wilhelm Nusselt (November 25, 1882

– September 1, 1957), a German engineer, developed the dimensional analysis (proposed the

principal parameters) of heat transfer without knowledge about previous work of Bucking-

ham.

9.1.2 Theory Behind Dimensional Analysis
In chemistry it was recognized that there are fundamental elements that all the material is

made from (the atoms). That is, all the molecules are made from a combination of different

atoms. Similarly to this concept, it was recognized that in many physical systems there are

basic fundamental units which can describe all the other dimensions or units in the system.

For example, isothermal single component systems (which does not undergo phase change,

temperature change and observed no magnetic or electrical effect) can be described by just

basic four physical units. The units or dimensions are, time, length, mass, quantity of sub-

stance (mole). For example, the dimension or the units of force can be constructed utilizing

Newton’s second law i.e. mass times acceleration −→ ma = ML/t2. Increase of degree of

freedom, allowing this system to be non–isothermal will increase only by one additional di-

mension of temperature, θ. These five fundamental units are commonly the building blocks

for most of the discussion in fluid mechanics (see Table of basic units 9.1).

Table 9.1 – Basic Units of Two Common Systems

Standard System Old System

Name Letter Units Name Letter Units

Mass M [kg] Force F [N]

Continued on next page

2
Riabouchunsky, Nature Vol 99 p. 591, 1915
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Table 9.1 – Basic Units of Two Common Systems (continue)

Standard System Old System

Name Letter Units Name Letter Units

Length L [m] Length L [m]

Time t [sec] Time t [sec]

Temperature θ [◦C] Temperature T [◦C]

Additional Basic Units for Magnetohydrodynamics

Electric
Current

A [A]mpere
Electric
Current

A [A]mpere

Luminous
Intensity cd [cd] candle

Luminous
Intensity cd [cd] candle

Chemical Reactions

Quantity of
substance

M mol
Quantity of
substance

M mol

The choice of these basic units is not unique and several books and researchers suggest

a different choice of fundamental units. One common selection is substituting the mass with

the force in the previous selection (F, t, L, mol, Temperature). This author is not aware of

any discussion on the benefits of one method over the other method. Yet, there are situations

in which first method is better than the second one while in other situations, it can be the

reverse. In this book, these two selections are presented. Other selections are possible but

not common and, at the moment, will not be discussed here.

Example 9.1: Force Basic Units Level: Basic
What are the units of force when the basic units are: mass, length, time, temperature

(M, L, t, θ)? What are the units of mass when the basic units are: force, length, time,

temperature (F, L, t, T)? Notice the different notation for the temperature in the two

systems of basic units. This notation has no significance but for historical reasons

remained in use.

Solution
These two systems are related as the questions are the reversed of each other. The connection

between themass and force can be obtained from the simplified Newton’s second law F = ma

where F is the force,m is the mass, and a is the acceleration. Thus, the units of force are

F =
ML

t2
(9.1.a)
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End of Ex. 9.1
For the second method the unit of mass are obtain from Equation (9.1.a) as

M =
F t2

L
(9.1.b)

The number of fundamental or basic dimensions determines the number of the combi-

nations which affect the physical
3
situations. The dimensions or units which affect the prob-

lem at hand can be reduced because these dimensions are repeating or reoccurring. The Buck-

inghammethod is based on the fact that all equationsmust be consistentwith their units. That

is the left hand side and the right hand side have to have the same units. Because they have

the same units the equations can be divided to create unitless equations. This idea alludes to

the fact that these unitless parameters can be found without any knowledge of the governing

equations. Thus, the arrangement of the effecting parameters in unitless groups yields the af-

fecting parameters. These unitless parameters are the dimensional parameters. The following

trivial example demonstrates the consistency of units

Example 9.2: Force Second Term Units Level: Simple
Newton’s equation has two terms that related to force F = ma + ṁU. Where F

is force, m is the mass, a is the acceleration and dot above ṁ indicating the mass

derivative with respect to time. In particular case, this equation get a form of

F = ma+ 7 (9.2.a)

where 7 represent the second term. What are the requirement on equation (9.2.a)?

Solution
Clearly, the units of [F],ma and 7 have to be same. The units of force are [N] which is defined

by first term of the right hand side. The same units force has to be applied to 7 thus it must be

in [N].

Suppose that there is a relationship between a quantity a under the question and several

others parameters which either determined from experiments or theoretical consideration

which is of the form

D = f(a1,a2, · · · ,ai, · · · ,an) (9.1)

whereD is dependent parameters and a1,a2, · · · ,ai, · · · ,an are have independent dimen-

sions. From these independent parameters a1,a2, · · · ,ai have independent dimensions

(have basic dimensions). This mean that all the dimensions of the parameters ai+1, · · · ,an
can be written as combination of the independent parameters a1,a2, · · · ,ai. In that case it

3
The dimensional analysis also applied in economics and other areas and the statement should reflect this fact.

However, this book is focused on engineering topics and other fields are not discussed.
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is possible to write that every parameter in the later set can written as dimensionless

ai+1
a1p1 ,a2p2 , · · · ,aipi

= dimensionless (9.2)

The “non–basic” parameter would be dimensionless when divided by appropriately and se-

lectively chosen set of constants p1,p2, · · · ,pi.

Example 9.3: Clamping Force Level: Simple
In a experiment, the clamping force is measured. It was found that the clamping force

depends on the length of experimental setup, velocity of the upper part, mass of the

part, height of the experimental setup, and leverage the force is applied. Chose the

basic units and dependent parameters. Show that one of the dependent parameters

can be normalized.

Solution
The example suggest that the following relationship can be written.

F = f(L,U,H, τ,m) (9.3.a)

The basic units in this case are in this case or length, mass, and time. No other basic unit is

need to represent the problem. Either L, H, or τ can represent the length. The mass will be

represented by mass while the velocity has to be represented by the velocity (or some combi-

nation of the velocity). Hence a one possible choice for the basic dimension is L, m, and U.

Any of the other Lengths can be represented by simple division by the L. For example

Normalize parameter =
H

L
(9.3.b)

Or the force also can be normalized as

Another Normalize parameter =
F

mU2 L−1
(9.3.c)

The acceleration can be any part of acceleration component such as centrifugal acceleration.

Hence, the force is mass times the acceleration.

The relationship (9.1) can be written in the light of the above explanation as

D

a1p1 ,a2p2 , · · · ,aip1
=

F

(
ai+1

a1
pi+1,1 , a2pi+1,2 , · · · , aipi+1,i

, · · · ,
an

an
pn,1 , anpn,2 , · · · , anpn,i

)
(9.3)

where the indexes of the power p on the right hand side are single digit and the double digits

on the on the right hand side. While this “proof” shows the basic of the Buckingham’s method

it actually provides merely the minimum number of the dimension parameters. In fact, this

method entrenched into the field while in most cases provides incomplete results. The funda-

mental reason for the erroneous results is because the fundamental assumption of equation

(9.1). This method provides a crude tool of understanding.
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9.1.3 Dimensional Parameters Application for Experimental Study

The solutions for any situations which are controlled by the same governing equations with

same boundary conditions regardless of the origin the equation. The solutions are similar or

identical regardless to the origin of the field no matter if the field is physical, or economi-

cal, or biological. The Buckingham’s technique implicitly suggested that since the governing

equations (in fluid mechanics) are essentially are the same, just knowing the parameters is

enough the identify the problem. This idea alludes to connections between similar parame-

ters to similar solution. The non–dimensionalization i.e. operation of reducing the number

affecting parameters, has a useful by–product, the analogy in other words, the solution by ex-

periments or other cases. The analogy or similitude refers to understanding one phenomenon

from the study of another phenomenon. This technique is employed inmany fluidmechanics

situations. For example, study of compressible flow (a flow where the density change plays

a significant part) can be achieved by study of surface of open channel flow. The compress-

ible flow is also similar to traffic on the highway. Thus for similar governing equations if the

solution exists for one case it is a solution to both cases.

The analogy can be used to conduct experiment in a cheaper way and/or a safer way.

Experiments in different scale than actual dimensions can be conducted for cases where the

actual dimensions are difficult to handle. For example, study of large air planes can done on

small models. On the other situations, larger models are used to study small or fast situations.

This author believes that at the present the Buckingham method has extremely limited use

for the real world and yet this method is presented in the classes on fluid mechanics. Thus,

many examples on the use of this method will be presented in this book. On the other hand,

Nusselt’smethod has a larger practical use in the realworld and thereforewill be presented for

those who need dimensional analysis for the real world. Dimensional analysis is useful also

for those who are dealing with the numerical research/calculation. This method supplement

knowledge when some parameters should be taken into account and why.

Fitting a rod into a circular hole (see Fig-

ure 9.1) is an example how dimensional anal-

ysis can be used. To solve this problem, it

is required to know two parameters; 1) the

rode diameter and 2) the diameter of the hole.

Actually, it is required to have only one pa-

rameter, the ratio of the rode diameter to

the hole diameter. The ratio is a dimension-

less number and with this number one can

tell that for a ratio larger than one, the rode

will not enter the hole; and a ratio smaller

than one, the rod is too small. Only when

DDD

Fig. 9.1 – Fitting rod into a hole.

the ratio is equal to one, the rode is said to be fit. This presentation allows one to draw or

present the situation by using only one coordinate, the radius ratio. Furthermore, if one

wants to deal with tolerances, the dimensional analysis can easily be extended to say that

when the ratio is equal from 0.99 to 1.0 the rode is fitting, and etc. If one were to use the
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two diameters description, further significant information will be needed. In the preceding

simplistic example, the advantages are minimal. In many real problems this approach can

remove clattered views and put the problem into focus. Throughout this book the reader

will notice that the systems/equations in many cases are converted to a dimensionless form

to augment understanding.

9.1.4 The Pendulum Class Problem

The only known problem that dimensional analysis can be solved (to some degree) is the

pendulum class problem. In this section several examples of the pendulum type problem are

presented. The first example is the classic Pendulum problem.

Example 9.4: Simple Pendulum Level: Basic
Derive the relationship for the gravity [g], fre-

quency [ω] and length of pendulum [ℓ]. Assume

that no other parameter including the mass affects

the problem. That is, the relationship can be ex-

pressed as

ω = f (ℓ,g) (9.4.a)

Notice in this problem, the real knowledge is pro-

vided, however in the real world, this knowledge

is not necessarily given or known. Here it is pro-

vided because the real solution is already known

from standard physics classes.
4

θ

mg

`

Fig. 9.2 – Figure for example
(9.4).

Solution
The solution technique is based on the assumption that the indexical form is the appropriate

form to solve the problem. The Indexical form

ω = C1 × ℓagb (9.4.b)

The solution functional complexity is limited to the basic combination which has to be in

some form of multiplication of ℓ and g in some power. In other words, the multiplication of

ℓ g have to be in the same units of the frequency units. Furthermore, assuming, for example,

that a trigonometric function relates ℓ and g and frequency. For example, if a sin function is

used, then the functionality looks like ω = sin(ℓ g). From the units point of view, the result

of operation not match i.e. (sec ̸= sin (sec)). For that reason the form in equation (9.4.b) is

selected. To satisfy equation (9.4.b) the units of every term are examined and summarized the

following table.
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End of Ex. 9.4
Table 9.2 – Units of the Pendulum Parameters

Parameter Units Parameter Units Parameter Units

ω t−1 ℓ L1 g L1t−2

Thus substituting of the Table 9.2 in equation (9.4.b) results in

t−1 = C1

(
L1
)a (

L1 t−2
)b

=⇒ La+bt−2b (9.4.c)

after further rearrangement by multiply the left hand side by L0 results in

L0t−1 = CLa+bt−2b (9.4.d)

In order to satisfy equation (9.4.d), the following must exist

0 = a+ b and −1 = −2
b

(9.4.e)

The solution of the equations (9.4.e) is a = −1/2 and b = −1/2.

5
What was found in this example is the form of the solution’s equation and frequency.

Yet, the functionality e.g. the value of the constant was not found. The constant can be ob-

tained from experiment for plottingω as the abscissa and

√
ℓ/g as ordinate.

According to some books and researchers, this part is the importance of the dimen-

sional analysis. It can be noticed that the initial guess merely and actually determine the re-

sults. If, however, themass is added to considerations, a different result will be obtained. If the

guess is relevant and correct then the functional relationship can be obtained by experiments.

9.2 Buckingham–π–Theorem
All the physical phenomena that is under the investigation have n physical effecting parame-

ters such that

F1(q1,q2,q3, · · · ,qn) = 0 (9.4)

where qi is the “i” parameter effecting the problem. For example, study of the pressure dif-

ference created due to a flow in a pipe is a function of several parameters such

∆P = f(L, D, µ, ρ, U) (9.5)

In this example, the chosen parameters are not necessarily the most important parameters.

For example, the viscosity, µ can be replaced by dynamic viscosity, ν. The choice is made

4
The reader can check if the mass is assumed to affect the problem then, the result is different.

5
The reader can check if the mass is assumed to affect the problem then, the result is different.
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normally as the result of experience and it can be observed that ν is a function of µ and ρ.

Finding the important parameters is based on “good fortune” or perhaps intuition. In that

case, a new function can be defined as

F(∆P,L,D,µ, ρ,U) = 0 (9.6)

Again as stated before, the study of every individual parameter will create incredible amount

of data. However, Buckingham’s (Buckingham 1915a)methods suggested to reduce the number

of parameters. If independent parameters of same physical situation is m thus in general it

can be written as

F2(π1,π2,π3, · · · ,πm) = 0 (9.7)

If there are n variables in a problem and these variables containm primary dimensions (for

example M, L, T), then the equation relating all the variables will have (n-m) dimensionless

groups.

There are 2 conditions on the dimensionless parameters:

1. Each of the fundamental dimensions must appear in at least one of the m variables

2. It must not be possible to form a dimensionless group from one of the variables within

a recurring set. A recurring set is a group of variables forming a dimensionless group.

In the case of the pressure difference in the pipe (Equation (9.6)) there are 6 variables or

n = 6. The number of the fundamental dimensions is 3 that ism = 3 ([M], [L], [t]) The choice

of fundamental or basic units is arbitrary in that any construction of these units is possible.

For example, another combination of the basic units is time, force, mass is a proper choice.

According to Buckingham’s theorem the number of dimensionless groups isn−m = 6− 3 =

3. It can be written that one dimensionless parameters is a function of two other parameter

such as

π1 = f (π2,π3) (9.8)

If indeed such a relationship exists, then, the number of parameters that control the problem is

reduced and the number of experiments that need to be carried is considerably smaller. Note,

theπ–theoremdoes not specify how the parameters should be selected norwhat combination

is preferred.

9.2.1 Construction of the Dimensionless Parameters
In the construction of these parameters it must be realized that every dimensionless parame-

ters has to be independent. The meaning of independent is that one dimensionless parameter

is not a multiply or a division of another dimensional parameter. In the above example there

are three dimensionless parameters which required of at least one of the physical parame-

ter per each dimensionless parameter. Additionally, to make these dimensionless parameters

independent they cannot be multiply or division of each other.
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For the pipe problem above, ℓ andD have the same dimension and therefore both can-

not be chosen as they have the same dimension. One possible combination is of D, U and

ρ are chosen as the recurring set. The dimensions of these physical variables are: D = [L1],

velocity of U = [L t−1] and density as ρ = [ML−3]. Thus, the first term D can provide the

length, [L], the second term,U, can provide the time [t], and the third term, ρ can provide the

mass [M]. The fundamental units, L, t, andM are length, time and mass respectively. The

fundamental units can be written in terms of the physical units. The first term L is the de-

scribed byDwith the units of [L]. The time, [t], can be expressed byD/U. The mass, [M], can

be expressed by ρD3. Now the dimensionless groups can be constructed by looking at the

remaining physical parameters, ∆P, D and µ. The pressure difference, ∆P, has dimensions

of [ML−1 t−2]. Therefore, ∆PM−1 L t2 is a dimensionless quantity and these values were

calculated just above this line. Thus, the first dimensionless group is

π1 =

[ML−1 t−2]︷︸︸︷
∆P

[M−1]︷ ︸︸ ︷
1

ρD3

[L]︷︸︸︷
D

[t2]︷︸︸︷
D2

U2
=

unitless︷ ︸︸ ︷
∆P

ρU2
(9.9)

The second dimensionless group (usingD) is

π2 =

[L]︷︸︸︷
D

[L−1]︷︸︸︷
ℓ−1 =

D

L
(9.10)

The third dimensionless group (using µ dimension of [ML–1 t−1]) and therefore dimension-

less is

π3 = µ

[M−1]︷ ︸︸ ︷
1

D3 ρ

[L]︷︸︸︷
D

[t]︷︸︸︷
D

U
=

µ

DUρ
(9.11)

This analysis is not unique and there can be several other possibilities for selecting

dimensionless parameters which are “legitimately” correct for this approach.

There are roughly three categories of methods for obtaining the dimensionless param-

eters. The first one solving it in one shot. This method is simple and useful for a small number

of parameters. Yet this method becomes complicated for large number of parameters. The

secondmethod, some referred to as the building blocks method, is described above. The third

method is by using dimensional matrix which is used mostly by mathematicians and is less

useful for engineering purposes.

The second and third methods require to identification of the building blocks. These

building blocks are used to construct the dimensionless parameters. There are several re-

quirements on these building blocks which were discussed on page 346. The main point that

the building block unit has to contain at least the basic or fundamental unit. This require-

ment is logical since it is a building block. The last method is mostly used by mathematicians

which leads and connects to linear algebra. The fact that this method used is the hall mark

that the material was written by mathematician. Here, this material will be introduced for

completeness sake with examples and several terms associated with this technique.
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9.2.2 Basic Units Blocks
In Thermo–Fluid science there are several basic physical quantities which summarized in

Table 9.1. In the table contains two additional physical/basic units that appear in magneto-

hydrodynamics (not commonly use in fluid mechanics). Many (almost all) of the engineering

dimensions used in fluid mechanics can be defined in terms of the four basic physical dimen-

sionsM, L ,t and θ. The actual basic units used can be S.I. such as kilograms, meters, seconds

and Kelvins/Celsius or English system or any other system. In using basic new basic physical

units,M, L, t, and θ or the old system relieves the discussion from using particular system

measurements. The density, for example, units areMass/Length3 and in the new system

the density will be expressed asM/L3 while in S.I. kg/m3 and English system it slug/ft3. A

common unit used in FluidMechanics is the Force, which expressed in SI as Newton [N]. The

Newton defined as a force which causes a certain acceleration of a specific mass. Thus, in the

new system the force it will be defined asMLt−2. There are many parameters that contains

force which is the source reason why the old (or alternative) system use the force instead the

mass.

There many physical units which are dimensionless by their original definition. Exam-

ples to “naturally” being dimensionless are the angle, strains, ratio of specific heats, k, friction

coefficient, f and ratio of lengths. The angle represented by a ratio of two sides of a triangle

and therefor has no units nor dimensions. Strain is a ratio of the change of length by the

length thus has no units.

Quantities used in engineering can be reduced to six basic dimensions which are pre-

sented in Table 9.1. The last two are not commonly used in fluid mechanics and temperature

is only used sometimes. Many common quantities are presented in the following Table 9.3.

Table 9.3 – Physical units for two common systems. Note the second (time) in large size units appear
as “s” while in small units as “sec.”

Standard System Old System

Name Letter Units Name Letter Units

Area L2 [m2] Area L2 [m2]

Volume L3 [m3] Volume L3 [m3]

Angular
velocity

1

t

[
1
sec

] Angular
velocity

1

t

[
1
sec

]

Acceleration L

t2

[
m
sec2

]
Acceleration L

t2

[
m
sec2

]

Angular
acceleration

1

t2

[
1
sec2

] Angular
acceleration

1

t2

[
1
sec2

]

Continued on next page
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Table 9.3 – Basic Units of Two Common System (continue)

Standard System Old System

Name Letter Units Name Letter Units

Force
ML

t2

[
kgm
sec2

]
Mass Ft2

L

[
Ns2

m

]

Density M

L3

[
kg
m3

]
Density F t2

L4

[
Ns2

m4

]

Momentum
ML

t

[
kgm
sec

]
Momentum F t [Nsec]

Angular
Momentum

ML2

t
[kgm

2

sec ]
Angular
Momentum

L F t [mNs]

Torque ML2

t2

[
kgm2

sec2

]
Torque L F [mN]

Absolute
Viscosity

M

L1 t1

[
kg
ms

] Absolute
Viscosity

t F

L2

[
Ns
m2

]

Kinematic
Viscosity

L2

t1

[
m2

sec

] Kinematic
Viscosity

L2

t

[
m3

sec

]

Volume
Flow Rate

L3

t1

[
m3

sec

] Volume
Flow Rate

L3

t1

[
m3

sec

]

Mass
flow rate

M

t1

[
kg
sec

] Mass
flow rate

F t

L1

[
Ns
m

]

Pressure
M

Lt2

[
kg
ms2

]
Pressure

F

L2

[
N
m2

]

Surface
Tension

M

t2

[
kg
sec2

] Surface
Tension

F

L

[
N
m

]

Work or
Energy

ML2

t2

[
kgm2

sec2

] Work or
Energy F L [Nm]

Power
ML2

t3

[
kgm2

sec3

]
Power

F L

t1

[
Nm
sec

]

Thermal
Conductivity

ML

t3 θ

[
kgm
s3K

] Thermal
Conductivity

F

t T

[
N
sK

]

Specific
Heat

L2

t2 θ

[
m2

s2K

] Specific
Heat

L2

t2 T

[
m2

s2K

]

Continued on next page
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Table 9.3 – Basic Units of Two Common System (continue)

Standard System Old System

Name Letter Units Name Letter Units

Entropy ML2

t2 θ

[
kgm2

s2K

]
Entropy F L

T

[
Nm
K

]

Specific
Entropy

L2

t2 θ

[
m2

s2K

] Specific
Entropy

L2

t2 T

[
m2

s2K

]

Molar
Specific
Entropy

ML2

t2M θ

[
kgm2

s2Kmol

] Molar
Specific
Entropy

F L

TM

[
Nm
Kmol

]

Enthalpy ML2

t2

[
kgm2

sec2

]
Enthalpy F L [Nm]

Specific
Enthalpy

L2

t2

[
m2

sec2

] Specific
Enthalpy

L2

t2

[
m2

sec2

]

Thermodynamic
Force

ML

t2M

[
kgm

sec2mol

] Thermodynamic
Force

N

M

[
m2

sec2

]

Catalytic
Activity

M

t

[
mol
sec

] Catalytic
Activity

M

t

[
mol
sec

]

Gravity
Constant

L3

Mt2

[
m3

kgs2

] Gravity
Constant

L4

t4 F

[
m4

s4N

]

Heat
Transfer
Rate

ML2

t3

[
kgm2

sec3

] Heat
Transfer
Rate

L F

t

[
mN
sec

]

9.2.3 Implementation of Construction of Dimensionless Parameters

9.2.3.1 One Shot Method: Constructing Dimensionless Parameters

In this method, the solution is obtained by assigning the powers to the affecting variables. The

results are used to compare the powers on both sides of the equation. Several examples are

presented to demonstrate this method.
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Example 9.5: Resistance of Infinite Cylinder Level: Simple

An infinite cylinder is submerged and ex-

posed to an external viscous flow. The re-

searcher intuition suggests that the resis-

tance to flow,R is a function of the radius r,

the velocityU, the density, ρ, and the abso-

lute viscosity µ. Based on this limited in-

formation construct a relationship of the

variables, that is

R

Fig. 9.3 – Resistance of infinite cylinder.

R = f(r,U, ρ,µ) (9.5.a)

Solution
The functionality should be in a form of

R = f
(
raUb ρc µd

)
(9.5.b)

The units of the parameters are provided in Table 9.3. Thus substituting the data from the table

into equation (9.5.b) results in

R︷︸︸︷
ML

t2
= Constant




r︷︸︸︷
L



a



U︷︸︸︷
L

t




b 


ρ︷︸︸︷
M

L3




c 


µ︷︸︸︷
M

Lt




d

(9.5.c)

From equation (9.5.c) the following requirements can be obtained

time, t −2 = −b− d

mass,M 1 = c+ d

length,L 1 = a+ b− 3c− d

(9.5.d)

In equations (9.5.c) there are three equations and 4 unknowns. Expressing all the three variables

in term of d to obtain

a = 2− d

b = 2− d

c = 1− d

(9.5.e)

Substituting equation (9.5.e) into equation (9.5.c) results in

R = Constant r2−dU2−d ρ1−d µd = Constant
(
ρU2 r2

)( µ

ρUr

)d
(9.5.f)

Or rearranging equation yields

R

ρU2 r2
= Constant

(
µ

ρUr

)d
(9.5.g)
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The relationship between the two sides in equation (9.5.g) is related to the two dimensionless

parameters. In dimensional analysis the functionality is not clearly defined by but rather the

function of the parameters. Hence, a simple way, equation (9.5.g) can be represented as

R

ρU2 r2
= Constant f

(
µ

ρUr

)
(9.5.h)

where the power of d can be eliminated.

Example 9.6: Large Scale Oscillation Level: Simple
Example of large scale problem of Oscillating star. Use Buckingham’s method to find

the dimensional parameters that control the oscillation of a star. Assume reasonable

relevant physical variables that the problem. Build the dimensionless parameters.

Solution
It can be assumed that the density, the radius, and gravitational constant, G control the prob-

lem. If this case, the following can be written The solution is a = c = 1/2, b = 0, so that

ω = Constant f
(√

Gρ
)

(9.6.a)

where C is a constant. This selection simply suggests that if indeed this selection affects the

question at hand then this is the functionality form. However, this example demonstrates the

short coming of the Buckingham’s method. If instead the star mass,Ms, is selected instead of

density and radius (which determine the star mass any way) then

ω = f (Ms, R, G) =⇒ t−1 = [M]b [L]b
[
L3

Mt2

]c
(9.6.b)

Equation (9.6.b) leads to a = c = 1/2 and b = −3/2. Thus, the relationship can be written

ω = Constant f

(√
MsG

R3

)
(9.6.c)

The relationship dim:eq:starOscillationSol2 and (9.6.a) are similar since ρ ∝ Ms/R
3
. Some

suggested that first equation is better (more correct) to used less parameters appear. This sug-

gestion is not correct but depend on the circumstances. Only if the governing equations were

written, this situation can be analyzed.

An example of a ship
6
is be a typical example were more than one dimensionless is to

constructed. Also introduction of dimensional matrix is presented.

6
This author who worked as ship engineer during his twenties likes to present material related to ships.
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Example 9.7: Propeller Level: Basic
The modern ship today is equipped with a propeller as the main propulsion mech-

anism. The thrust, T is known to be a function of the radius, r, the fluid density, ρ,

relative velocity of the ship to the water, U, rotation speed, rpm orN, and fluid vis-

cosity, µ. Assume that no other parameter affects the thrust, find the functionality of

these parameters and the thrust.

Solution
The general solution under these assumptions leads to solution of

T = Cra ρbUcNd µe (9.7.a)

It is convenient to arrange the dimensions and basic units in table. This table is referred in the

literature as the Dimensional matrix.
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Table 9.4 – Dimensional matrix

T r ρ U N µ

M 1 0 1 0 0 1

L 1 1 -3 1 0 -1

t -2 0 0 -1 -1 -1
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End of Ex. 9.7

Using the matrix results in

MLt−2 = La (Lt)b
(
ML−3

)c (
t−t
)d (

ML−1t−t
)e

(9.7.b)

This matrix leads to three equations.

Mass,M 1 = c+ e

Length,L 1 = a+ b+−3c− e

time, t −2 = −c− d− e

(9.7.c)

The solution of this system is

a = 2+ d− e

b = 2− d− e

c = 1− e

(9.7.d)

Substituting the solution (9.7.d) into equation (9.7.a) yields

T = Cr(2+d−e) ρ(2−d−e)U(1−e)Nd µf (9.7.e)

Rearranging equation (9.7.e) provides

T = CρU2 r2
(
ρU r

µ

)d ( rN
U

)e
(9.7.f)

From dimensional analysis point of view the units under the power d and e are dimensionless.

Hence, in general it can be written that

T

ρU2 r2
= f

(
ρU r

µ

)
g

(
rN

U

)
(9.7.g)

where f and g are arbitrary functions to be determined by experiments. Note the rpm or N

refers to the rotation in radian per second even though rpm refers to revolution per minute.

It has to be mentioned that these experiments have to constructed in such way that the initial

conditions and the boundary conditions are somehow “eliminated.” In practical purposes the

thrust is a function of Reynolds number and several other parameters. In this example, a lim-

ited information is provided on which only Reynolds number with a additional dimensionless

parameter is mentioned above.

Example 9.8: Small Disturbance Level: Intermediate
The surface wave is a small disturbance propagating in a liquid surface. Assume that

this speed for a certain geometry is a function of the surface tension, σ, density, ρ,

and the wave length of the disturbance (or frequency of the disturbance). The flow–

in to the chamber or the opening of gate is creating a disturbance. The knowledge
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when this disturbance is important and is detected by with the time it traveled. The

time control of this certain process is critical because the chemical kinetics. The

calibration of the process was done with satisfactory results. Technician by mistake

releases a chemical which reduces the surface tension by half. Estimate the new speed

of the disturbance.

Solution
In the problem the functional analysis was defined as

U = f(σ, ρ, λ) (9.8.a)

Equation (9.8.a) leads to three equations as

U︷︸︸︷
L

t
=




ρ︷︸︸︷
M

L2




a


σ︷︸︸︷
M

t2




b


λ︷︸︸︷
L



c

(9.8.b)

Mass,M a+ b = 0

Length,L −2a+ c = 1

time, t −2b = −1

(9.8.c)

The solution of equation set (9.8.c) results in

U =

√
σ

λρ
(9.8.d)

Hence reduction of the surface tension by half will reduce the disturbance velocity by 1/
√
2.

Example 9.9: Eckert Number Level: Intermediate
Eckert number represent the amount of dissipation. Alternative number represents

the dissipation, could be constructed as

Diss =

µ

(
dU

dℓ

)2

ρU2

ℓ

U

=

µ

(
dU

dℓ

)2
ℓ

ρU3 (9.9.a)

Show that this number is dimensionless. What is the physical interpretation it could

have? Flow is achieved steady state for a very long two dimensional channel where

the upper surface is moving at speed,Uup, and lower is fix. The flow is pure Couette

flow i.e. a linear velocity. Developed an expression for dissipation number using the

information provided.
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End of Ex. 9.9
Solution
The numerator and denominator have to have the same units.

µ︷︸︸︷
M

�L t

(dU
dℓ )

2︷ ︸︸ ︷
��L2

t2��L2

ℓ︷︸︸︷
�L =

ρ︷︸︸︷
M

��L3

U3︷︸︸︷
��L3

t3

; M

t3
=
M

t3

(9.9.b)

The averaged velocity could be a represented (there are better methods or choices) of the

energy flowing in the channel. The averaged velocity is U/2 and the velocity derivative is

dU/dℓ = constant = U/ℓ. With these value of the Diss number is

Diss =

µ

(
U

ℓ

)2
ℓ

ρ
U3

8

=
4µ

ρ ℓU
(9.9.c)

The results show that Dissipation number is not a function of the velocity. Yet, the energy lost

is a function of the velocity square E ∝ Diss µU.

9.2.3.2 Building Blocks Method: Constructing Dimensional Parameters

Note, as opposed to the previous method, this technique allows one to find a single or sev-

eral dimensionless parameters without going for the whole calculations of the dimensionless

parameters.

Example 9.10: Centrifugal Pump Angular Level: Intermediate
Assume that the parameters that effects the centrifugal pumps are

Q Pump Flow Rate rpm orN angular rotation speed

D rotor diameter ρ liquid density (assuming liquid

phase)

BT Liquid Bulk Modulus µ liquid viscosity

ϵ Typical Roughness of pump

surface

g gravity force (body force)

∆P Pressure created by the pump

Construct the functional relationship between the variables. Discuss the physical

meaning of these numbers. Discuss which of these dimensionless parameters can be

neglected as it is known reasonably.
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Solution
The functionality can be written as

0 = f (D, N, ρ, Q, BT , µ, ϵ, g, ∆P) (9.10.a)

The three basic parameters to be used areD [L], ρ [M], andN [t]. There are nine (9) parameters

thus the number of dimensionless parameters is 9− 3 = 6. For simplicity the RPM will be

denoted asN. The first set is to be worked on isQ, D, ρ, N as

Q︷︸︸︷
L3

t
=



D︷︸︸︷
L



a



ρ︷︸︸︷
M

L3




b


N︷︸︸︷
1

t




c

(9.10.b)

Length,L a− 3b = 3

Mass,M b = 0

time, t −c = −1

 =⇒ π1 =
Q

ND3
(9.10.c)

For the second term BT it follows

BT︷︸︸︷
M

Lt2
=



D︷︸︸︷
L



a



ρ︷︸︸︷
M

L3




b


N︷︸︸︷
1

t




c

(9.10.d)

Mass,M b = 1

Length,L a− 3b = −1

time, t −c = −2

 =⇒ π2 =
BT

ρN2D2
(9.10.e)

The next term, µ,
µ︷︸︸︷
M

Lt
=



D︷︸︸︷
L



a



ρ︷︸︸︷
M

L3




b


N︷︸︸︷
1

t




c

(9.10.f)

Mass,M b = 1

Length,L a− 3b = −1

time, t −c = −1

 =⇒ π3 =
ρN2D2

µ
(9.10.g)

The next term, ϵ,

ϵ︷︸︸︷
L =



D︷︸︸︷
L



a



ρ︷︸︸︷
M

L3




b


N︷︸︸︷
1

t




c

(9.10.h)
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continue Ex. 9.10
Mass,M b = 0

Length,L a− 3b = 1

time, t −c = 0

 =⇒ π4 =
ϵ

D
(9.10.i)

The next term, g,
g︷︸︸︷
L

t2
=



D︷︸︸︷
L



a



ρ︷︸︸︷
M

L3




b


N︷︸︸︷
1

t




c

(9.10.j)

Mass,M b = 0

Length,L a− 3b = 1

time, t −c = −2

 =⇒ π5 =
g

DN2
(9.10.k)

The next term, ∆P, (similar to BT )

∆P︷︸︸︷
L

t2
=



D︷︸︸︷
L



a



ρ︷︸︸︷
M

L3




b


N︷︸︸︷
1

t




c

(9.10.l)

Mass,M b = 1

Length,L a− 3b = −1

time, t −c = −2

 =⇒ π6 =
∆P

ρN2D2
(9.10.m)

The first dimensionless parameter π1 represents the dimensionless flow rate. The second

number represents the importance of the compressibility of the liquid in the pump. Some

argue that this parameter is similar to Mach number (speed of disturbance to speed of sound.

The third parameter is similar to Reynolds number since the combination ND can be inter-

preted as velocity. The fourth number represents the production quality (mostlymode by some

casting process
a
). The fifth dimensionless parameter is related to the ratio of the body forces

to gravity forces. The last number represent the “effectiveness” of pump or can be viewed as

dimensionless pressure obtained from the pump.

In practice, the roughness is similar to similar size pump and can be neglected. However, if

completely different size of pumps are compared then this number must be considered. In

cases where the compressibility of the liquid can be neglected or the pressure increase is rela-

tively insignificant, the second dimensionless parameter can be neglected.

A pump is a device that intends to increase the pressure. The increase of the pressure involves

energy inserted to to system. This energy is divided to a useful energy ( pressure increase) and

to overcome the losses in the system. These losses has several components which includes the

friction in the system, change order of the flow and “ideal flow” loss. The most dominate loss

in pump is loss of order, also know as turbulence (not covered yet this book.). If this physical

phenomenon is accepted than the resistance is neglected and the fourth parameter is removed.
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In that case the functional relationship can be written as

∆P

N2,D2
= f

(
Q

ND3

)
(9.10.n)

a
The modern production is made by die casting process. The reader is referred to “Fundamentals of

die casting design,” Genick Bar–Meir, Potto Project, 1999 to learn more.

9.2.3.3 Mathematical Method: Constructing Dimensional Parameters

Advance material can be skipped

under construction please ignore for time being

In the progression of the development of the technique the new evolution is the math-

ematical method. It can be noticed that in the previous technique the same matrix was con-

structed with different vector solution (the right hand side of the equation). This fact is the

source to improve the previous method. However, it has to be cautioned that this technique

is overkill in most cases. Actually, this author is not aware for any case this technique has any

advantage over the “building block” technique.

In the following hypothetical example demonstrates the reason for the reduction of

variables. Assume that water is used to transport uniform grains of gold. The total amount

grains of gold is to be determined per unit length. For this analysis it is assumed that grains

of gold grains are uniformly distributed. The following parameters and their dimensions are

considered:

Table 9.5 – Units and Parameters ofgold grains

Parameters Units Dimension Remarks

grains amount q M/L total grains per unit length

cross section area A L2 pipe cross section

grains per volume gr grains/L3 count of grain per V

grain weight e M/grain count of grain per V

Notice that grains and grain are the same units for this discussion. Accordingly, the dimen-

sional matrix can be constructed as
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Table 9.6 – gold grain dimensional matrix

q A gr e

M 1 0 0 1

L 1 2 3 0

grain 0 0 1 -1

In this case the total number variables are 4 and number basic units are 3. Thus, the total of

one dimensional parameter.

End ignore section

End Advance material

9.2.4 Similarity and Similitude

One of dimensional analysis is the key point is the concept that the solution can be obtained by

conducting experiments on similar but not identical systems. The analysis here suggests and

demonstrates
7
that the solution is based on several dimensionless numbers. Hence, construct-

ing experiments of the situation where the same dimensionless parameters obtains could, in

theory, yield a solution to problem at hand. Thus, knowing what are dimensionless parame-

ters should provide the knowledge of constructing the experiments.

In this section deals with these similarities which in the literature some refer as analogy

or similitude. It is hard to obtain complete similarity. Hence, there is discussion how similar

themodel is to the prototype. It is common to differentiate between three kinds of similarities:

geometric, kinetics, and dynamic. This characterization started because historical reasons

and it, some times, has merit especially when applying Buckingham’s method. In Nusselt’s

method this differentiation is less important.

Geometric Similarity

One of the logical part of dimensional analysis is how the experiences should be similar

to actual body they are supposed to represent. This logical conclusion is an add–on and this

author is not aware of any proof to this requirement based on Buckingham’s methods. Iron-

ically, this conclusion is based on Nusselt’s method which calls for the same dimensionless

boundary conditions. Again, Nusselt’s method, sometimes or even often, requires similarity

because the requirements to the boundary conditions. Here
8
this postulated idea is adapted.

7
This statement is too strong. It has to be recognized that the results are as good as the guessing which in most

cases is poor.

8
Because this book intend to help students to pass their exams, this book present what most instructors required.

It well established that this over–strict requirement and under Nusselt’s method it can be overcome.
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Under this idea the prototype area has to be square of the actual model or

Ap

Am
=

(
ℓ1prototype

ℓ1model

)2
=

(
ℓ2p

ℓ2m

)2
(9.12)

where ℓ1 and ℓ2 are the typical dimensions in two different directions and subscript p refers

to the prototype andm to the model. Under the same argument the volumes change with the

cubes of lengths.

In some situations, the model faces inability to match two or more dimensionless pa-

rameters. In that case, the solution is to sacrifice the geometric similarity to minimize the

undesirable effects. For example, river modeling requires to distort vertical scales to elimi-

nate the influence of surface tension or bed roughness or sedimentation.

Kinematic Similarity
The perfect kinetics similarity is obtained when there are geometrical similarity and

the motions of the fluid above the objects are the same. If this similarity is not possible, then

the desire to achieve a motion “picture” which is characterized by ratios of corresponding

velocities and accelerations is the same throughout the actual flow field. It is common in

the literature, to discuss the situations where the model and prototype are similar but the

velocities are different by a different scaling factor.

The geometrical similarity aside the shapes and counters of the object it also can re-

quires surface roughness and erosion of surfaces of mobile surfaces or sedimentation of par-

ticles surface tensions. These impose demands require a minimum on the friction velocity.

In some cases the minimum velocity can be Umin =
√
τw/ρ. For example, there is no way

achieve low Reynolds number with thin film flow.

Dynamics Similarity
The dynamic similarity hasmany confusing and conflicting definitions in the literature.

Here this term refers to similarity of the forces. It follows, based onNewton’s second law, that

this requires similarity in the accelerations and masses between the model and prototype. It

was shown that the solution is a function of several typical dimensionless parameters. One

of such dimensionless parameter is the Froude number. The solution for the model and the

prototype are the same, since both cases have the same Froude number. Hence it can be

written that

(
U2

g ℓ

)

m

=

(
U2

g ℓ

)

p

(9.13)

It can be noticed that t ∼ ℓ/U thus equation (9.13) can be written as

(
U

g t

)

m

=

(
U

g t

)

p

(9.14)

and noticing that a ∝ U/t
(
a

g

)

m

=

(
a

g

)

p

(9.15)
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and a ∝ F/m andm = ρ ℓ3 hence a = F/ρ ℓ3. Substituting into equation (9.15) yields

(
F

ρ ℓ3

)

m

=

(
F

ρ ℓ3

)

p

=⇒ Fp

Fm
=

(
ρ ℓ3

)
p(

ρ ℓ3
)
m

(9.16)

In this manipulation, it was shown that the ratio of the forces in the model and forces

in the prototype is related to ratio of the dimensions and the density of the same systems.

While in Buckingham’s methods these hand waiving are not precise, the fact remains that

there is a strong correlation between these forces. The above analysis was dealing with the

forces related to gravity. A discussion about force related the viscous forces is similar and is

presented for the completeness.

The Reynolds numbers is a common part of Navier–Stokes equations and if the solu-

tion of the prototype and for model to be same, the Reynolds numbers have to be same.

Rem = Rep =⇒
(
ρU ℓ

µ

)

m

=

(
ρU ℓ

µ

)

p

(9.17)

Utilizing the relationship U ∝ ℓ/t transforms equation (9.17) into

(
ρ ℓ2

µ t

)

m

=

(
ρ ℓ2

µ t

)

p

(9.18)

multiplying by the length on both side of the fraction by ℓUas

(
ρ ℓ3U

µ t ℓU

)

m

=

(
ρ ℓ3U

µ t ℓU

)

p

=⇒
(
ρ ℓ3U/t

)
m(

ρ ℓ3U/t
)
p

=
(µ ℓU)m
(µ ℓU)p

(9.19)

Noticing thatU/t is the acceleration and ρ ℓ is the mass thus the forces on the right hand side

are proportional if the Re number are the same. In this analysis/discussion, it is assumed that

a linear relationship exist. However, the Navier–Stokes equations are not linear and hence

this assumption is excessive and this assumption can produce another source of inaccuracy.

While this explanation is a poor practice for the real world, it common to provide ques-

tions in exams and other tests on this issue. This section is provide to this purpose.

Example 9.11: Tube Height Level: Simple
The liquid height rises in a tube due to the surface tension, σ is h. Assume that this

height is a function of the body force (gravity, g), fluid density, ρ, radius, r, and the

contact angle θ. Using Buckingham’s theorem develop the relationship of the pa-

rameters. In experimental with a diameter 0.001 [m] and surface tension of 73 milli-

Newtons/meter and contact angle of 75◦ a height is 0.01 [m] was obtained. In another

situation, the surface tension is 146milli-Newtons/meter, the diameter is 0.02 [m] and

the contact angle and density remain the same. Estimate the height.

Solution
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It was given that the height is a function of several parameters such

h = f (σ, ρ,g, θ, r) (9.11.a)

There are 6 parameters in the problem and the 3 basic parameters [L, M, t]. Thus the number

of dimensionless groups is (6-3=3). In Buckingham’s methods it is either that the angle isn’t

considered or the angle is dimensionless group by itself. Five parameters are left to form the

next two dimensionless groups.

One technique that was suggested is the possibility to use three parameters which contain

the basic parameters [M, L, t] and with them form a new group with each of the left over

parameters. In this case, density, ρ for [M] and d for [L] and gravity, g for time [t]. For the

surface tension, σ it becomes

[ ρ︷ ︸︸ ︷
ML−3

]a [ r︷︸︸︷
L
]b [︷ ︸︸ ︷

L t−2 ig
]c [ σ︷ ︸︸ ︷

Mt−2
]1

=M0 L0 t0 (9.11.b)

Equation (9.11.b) leads to three equations which are

Mass,M a+ 1 = 0

Length,L −3a+ b+ c = 0

time, t −2c− 2 = 0

(9.11.c)

the solution is a = −1 b = −2 c = −1 Thus the dimensionless group is

σ

ρ r2 g
. The third

group obtained under the same procedure to be h/r.

In the second part the calculations for the estimated of height based on the new ratios. From

the above analysis the functional dependency can be written as

h

d
= f

(
σ

ρ r5 g
, θ
)

(9.11.d)

which leads to the same angle and the same dimensional number. Hence,

h1
d1

=
h2
d2

= f

(
σ

ρ r2 g
, θ
)

(9.11.e)

Since the dimensionless parameters remain the same, the ratio of height and radius must be

remain the same. Hence,

h2 =
h1 d2
d1

=
0.01× 0.002
0.001

= 0.002 (9.11.f)

Example 9.12: Functionality of Parameters Level: Basic
Use the Buckingham’s methods and attempt to find functionality of various param-

eters that affect the stability of floating bodies. For this question assume that the

parameters that affect the solution are the density and others parameters that seem

reasonable. In Chapter 4 a discussion on floating bodies stability was presented. As-
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sume that the solution is unknown and no prior knowledge exist.

Solution
The stability is an old problem that have been around formore than 600 years. While the actual

solution was presented in this book for the first time, no dimensional analysis was carried

on this stability that the undersign is aware of it. The gravity and the typical dimension of

the geometry are reasonable to assume that affect the stability. Assume that the tilding angle

indicating the stability as the body will rotate until reach a stable point. As it was discussed

earlier, the large size of the floating body reduce role the surface tension. Additionally, the

speed of the rolling is not in question but rather the location of rest hence the viscosity does not

play a role. With the illumination of these factors, the only possible factors with Buckingham’s

logic are

θ = f(ρ,d,V ,g) (9.12.a)

In written Eq. (9.12.a) it is assumed that the area with some kind modifier (projected area, etc)

is extraneous parameter. It also can be assumed for the argument can be said for the volume.

This inability to find what should be considered is a major weakness of the π theory. Utilizing

the standard procedure yields

[ ρ︷ ︸︸ ︷
ML−3

]a [ d︷︸︸︷
L
]b [

V︷︸︸︷
L3

]c [
g︷ ︸︸ ︷

L t−2
]1

=M0 L0 t0 (9.12.b)

Equation (??) leads to three equations which are

Mass,M a = 0

Length,L −3a+ b+ 3c− 2 = 0

time, t −2 = 0

(9.12.c)

This set (9.12.c) has solution that does not make sense. It suggest that gravity does not play role

(accidentally) is true. However, it suggest that density does not play role which is not true. It

can be noticed that if the volume will be used the same results are obtained.

At the time, just before publishing version 0.4 it is habit to do last minute literature

review to check for items could be missing. A paper “Simple Computational Platform of Ship

Stability for Engineering Education” by Amin etc in 3
rd

IUGRC International Undergraduate

Research Conference, Military Technical College, Cairo, Egypt, July 30-August 2, 2018 was

discovered. Several points that made in the discussion earlier are relavent to this paper as

well. One important point of the paper while not exacly related to dimensional analysis is the

rotation point of the ship. And kudos for pointing to the possibilty that it could be around

Metacenter point. This possible view is reverse of the common preseption that the buoyancy

centroid vertically points or under to Metacenter. It is possibley important obsrvation.
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9.3 Nusselt’s Technique
The Nusselt’s method is a bit more labor intensive, in that the governing equations with the

boundary and initial conditions are used to determine the dimensionless parameters. In this

method, the boundary conditions together with the governing equations are taken into ac-

count as opposed to Buckingham’s method. A common mistake is to ignore the boundary

conditions or initial conditions. The parameters that results from this process are the dimen-

sional parameters which control the problems. An example comparing the Buckingham’s

method with Nusselt’s method is presented.

In this method, the governing equations, initial condition and boundary conditions are

normalized resulting in a creation of dimensionless parameters which govern the solution. It

is recommended, when the reader is out in the real world to simply abandon Buckingham’s

method all together. This point can be illustrated by example of flow over inclined plane. For

comparison reasons Buckingham’s method presented and later the results are compared with

the results from Nusselt’s method.

Example 9.13: Body’s Corners Level: Intermediate
Stability analysis of boating bodies is determined by geometrical parameters. On

of these parameters is number of corners in the liquid. For example, a rectangular

extruded floating body can be in either of 1, 2, and 3 corners (see Biran, Adrian, and

Ruben Lopez Pulido. Ship hydrostatics and stability. Butterworth-Heinemann, 2013.

2nd edition p. 73). Use Nusselt’s methods to find dimensionless which affecting the

problem. Assume that Archimedes’s law applied to floating bodies is known in this

analysis.

Solution
If the rectangular is floating then there three distinct cases there can be 1, 2, and 3 corner. When

the rectangular standing upright there are two corners. It can be observed that the buoyancy

centroid is determined by Archimedes equation i.e.

ρℓ2B = ρs2G (9..a)

where B is the distance from bottom (at upright position) to the center (centroid) of the dis-

placed liquid. Archimedes’ law determine that the some volume (area in 2D case) has to be

maintained. When ρs = 0.5 ρℓ then it is a special case that the gravity center is fixed to liq-

uid surface and the body rotates around this fix point. In that, the extreme case where there

is two corners at all time. At 45◦ is the controversial point there could be said that there is

one corner with two “half” corners. These two “half” corners can be said to be either 3 cor-

ners in the liquid or one. Another option is that two halves can be combine one and in that

case continuously two corners scenario. It has to be emphasized that it does not mater if the

body is square or rectangle. In any case, when solid density about or lower than the extreme

case determine the range in which point B can be. For the case where B upright is below 1/4

than the maximum corner can be only 2 (and 1 on the most cases). Thus the location of B is

determined by Archimedes’ law. Hence, the density ratio determine the number of corners

in the liquid. In fact, defining the number of corners in the liquid as the average number of
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corner as a function of the angle. This number approach to one as the ρs/ρℓ −→ 0 and when

ρs/ρℓ −→ 1 the number of corner approach to 3.

Example 9.14: 2-D Inclined Plane Level: Intermediate
Utilize the Buckingham’s method to analyze a two dimensional flow in incline plane.

Assume that the flow infinitely long and thus flow can be analyzed per width which

is a function of several parameters. The potential parameters are the angle of incli-

nation, θ, liquid viscosity, ν, gravity, g, the height of the liquid, h, the density, ρ, and

liquid velocity,U. Assume that the flow is not affected by the surface tension (liquid),

σ. You furthermore are to assume that the flow is stable. Develop the relationship

between the flow to the other parameters.

Solution
Under the assumptions in the example presentation leads to following

ṁ = f (θ,ν,g, ρ,U) (9.20)

The number of basic units is three while the number of the parameters is six thus the difference

is 6− 3 = 3. Those groups (or the work on the groups creation) further can be reduced the

because angle θ is dimensionless. The units of parameters can be obtained in Table 9.3 and

summarized in the following table.

Table 9.7 – Units of the Pendulum Parameters

Parameter Units Parameter Units Parameter Units

ν L2t−1 g L1t−2 U L1t−1

ṁ Mt−1L−1 θ none ρ ML3
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The basic units are chosen as for the time, U, for the mass, ρ, and for the length g. Utilizing

the building blocks technique provides

ṁ︷︸︸︷
M

tL
=




ρ︷︸︸︷
M

L3




a


g︷︸︸︷
L

t2




b


U︷︸︸︷
L

t




c

(9.14.a)

The equations obtained from equation (9.14.a) are

Mass,M a = 1

Length,L −3a+ b+ c = −1

time, t −2b− c = −1

 =⇒ π1 =
ṁ g

ρ U3
(9.14.b)

ν︷︸︸︷
L2

t
=




ρ︷︸︸︷
M

L3




a


g︷︸︸︷
L

t2




b


U︷︸︸︷
L

t




c

(9.14.c)

The equations obtained from equation (9.14.a) are

Mass,M a = 0

Length,L −3a+ b+ c = 2

time, t −2b− c = −1

 =⇒ π2 =
νg

U3
(9.14.d)

Thus governing equation and adding the angle can be written as

0 = f

(
ṁ g

ρ U3
,
νg

U3
, θ
)

(9.14.e)

The conclusion from this analysis are that the number of controlling parameters totaled in

three and that the initial conditions and boundaries are irrelevant.

A small note, it is well established that the combination of angle gravity or effective

body force is significant to the results. Hence, this analysis misses, at the very least, the issue of

the combination of the angle gravity. Nusselt’s analysis requires that the governing equations

along with the boundary and initial conditions to be written. While the analytical solution

for this situation exist, the parameters that effect the problem are the focus of this discussion.

In Chapter 8, theNavier–Stokes equationswere developed. These equations alongwith

the energy, mass or the chemical species of the system, and second laws governed almost all

cases in thermo–fluid mechanics. This author is not aware of a compelling reason that this
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fact
9
should be used in this chapter. The two dimensional NS equation can obtained from

equation (8.12.a) as

ρ
(∂Ux
∂t

+Ux
∂Ux

∂x
+Uy

∂Ux

∂y
+Uz

∂Ux

∂z

)
=

−
∂P

∂x
+ µ

(
∂2Ux

∂x2
+
∂2Ux

∂y2
+
∂2Ux

∂z2

)
+ ρg sin θ (9.21)

and

ρ
(∂Uy
∂t

+Ux
∂Uy

∂x
+Uy

∂Uy

∂y
+ Uz

∂Uy

∂z

)
=

−
∂P

∂x
+ µ

(
∂2Uy

∂x2
+
∂2Uy

∂y2
+
∂2Uy

∂z2

)
+ ρg sin θ (9.22)

With boundary conditions

Ux(y = 0) = U0xf(x)

∂Ux

∂x
(y = h) = τ0f(x)

(9.23)

The valueU0x and τ0 are the characteristic and maximum values of the velocity or the shear

stress, respectively. and the initial condition of

Ux(x = 0) = U0y f(y) (9.24)

where U0y is characteristic initial velocity.

These sets of equations (9.21)–(9.24) need to be converted to dimensionless equations.

It can be noticed that the boundary and initial conditions are provided in a special form were

the representative velocity multiply a function. Any function can be presented by this form.

In the process of transforming the equations into a dimensionless form associated with

some intelligent guess work. However, no assumption is made or required about whether or

not the velocity, in the y direction. The only exception is that the y component of the velocity

vanished on the boundary. No assumption is required about the acceleration or the pressure

gradient etc.

The boundary conditions have typical velocities which can be used. The velocity is

selected according to the situation or the needed velocity. For example, if the effect of the

initial condition is under investigation than the characteristic of that velocity should be used.

9
In economics and several other areas, there are no governing equations established for the field nor there is nec-

essarily concept of conservation of something. However, writing the governing equations will yield dimensionless

parameters as good as the initial guess.
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Otherwise the velocity at the bottom should be used. In that case, the boundary conditions

are

Ux(y = 0)

U0x
= f(x)

µ
∂Ux

∂x
(y = h) = τ0 g(x)

(9.25)

Now it is very convenient to define several new variables:

U =
Ux(x)

U0x

where :

x =
x

h
y =

y

h

(9.26)

The length h is chosen as the characteristic length since no other length is provided. It can

be noticed that because the units consistency, the characteristic length can be used for “nor-

malization” (see Example 9.15). Using these definitions the boundary and initial conditions

becomes

Ux(y=0)
U0x

= f
′
(x)

hµ

U0x

∂Ux

∂x
(y = 1) = τ0 g

′
(x)

(9.27)

It commonly suggested to arrange the second part of equation (9.27) as

∂Ux

∂x
(y = 1) =

τ0U0x
hµ

g
′
(x) (9.28)

Where new dimensionless parameter, the shear stress number is defined as

τ0 =
τ0U0x
hµ

(9.29)

With the new definition equation (9.28) transformed into

∂Ux

∂x
(y = 1) = τ0 g

′
(x) (9.30)

Example 9.15: Boundary Conditons Level: Intermediate
Non–dimensionalize the following boundary condition. What are the units of the

coefficient in front of the variables, x. What are relationship of the typical velocity,
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U0 to Umax?

Ux(y = h) = U0

(
ax2 + b exp(x)

)
(9.15.a)

Solution
The coefficients a and bmultiply different terms and therefore must have different units. The

results must be unitless thus a

L0 = a

x2︷︸︸︷
L2 =⇒ a =

[
1

L2

]
(9.15.b)

From equation (9.15.b) it clear the conversion of the first term is Ux = ah2x. The exponent

appears a bit more complicated as

L0 = b exp
(
h
x

h

)
= b exp (h) exp

( x
h

)
= b exp (h) exp (x) (9.15.c)

Hence defining

b =
1

exph (9.15.d)

With the new coefficients for both terms and noticing that y = h −→ y = 1 now can be

written as

Ux(y = 1)

U0
=

a︷︸︸︷
ah2 x2 +

b︷ ︸︸ ︷
b exp (h) exp (x) = ax2 + b exp x (9.15.e)

Where a and b are the transformed coefficients in the dimensionless presentation.

After the boundary conditions the initial condition can undergo the non–dimensional

process. The initial condition (9.24) utilizing the previous definitions transformed into

Ux(x = 0)

U0x
=
U0y

U0x
f(y) (9.31)

Notice the new dimensionless group of the velocity ratio as results of the boundary condition.

This dimensionless number was and cannot be obtained using the Buckingham’s technique.

The physical significance of this number is an indication to the “penetration” of the initial

(condition) velocity.

The main part of the analysis if conversion of the governing equation into a dimen-

sionless form uses previous definition with additional definitions. The dimensionless time is

defined as t = tU0x/h. This definition based on the characteristic time of h/U0x. Thus, the

derivative with respect to time is

∂Ux

∂t
=
∂

Ux
U0x︷︸︸︷
Ux U0x

∂ t︸︷︷︸
tU0x
h

h
U0x

=
U0x

2

h

∂Ux

∂t
(9.32)



372 CHAPTER 9. DIMENSIONAL ANALYSIS

Notice that the coefficient has units of acceleration. The second term

Ux
∂Ux

∂x
=

Ux
U0x︷︸︸︷
Ux U0x

∂

Ux
U0x︷︸︸︷
Ux U0x
∂ x︸︷︷︸

x
h

h
=
U0x

2

h
Ux

∂Ux

∂x
(9.33)

The pressure is normalized by the same initial pressure or the static pressure as

(P− P∞) / (P0 − P∞) and hence

∂P

∂x
=
∂

P−P∞
P0−P∞︷︸︸︷
P

∂xh
(P0 − P∞) =

(P0 − P∞)

h

∂P

∂x
(9.34)

The second derivative of velocity looks like

∂2Ux

∂x2
=

∂

∂ (xh)

∂
(
UxU0x

)

∂ (xh)
=
U0x
h2

∂2Ux

∂x2
(9.35)

The last term is the gravity gwhich is left for the later stage. Substituting all terms and divid-

ing by density, ρ result in

U0x
2

h

(∂Ux
∂t

+Ux
∂Ux

∂x
+Uy

∂Ux

∂y
+Uz

∂Ux

∂z

)
=

−
P0 − P∞
hρ

∂P

∂x
+
U0xµ

h2 ρ

(
∂2Ux

∂x2
+
∂2Ux

∂y2
+
∂2Ux

∂z2

)
+ �ρg

�ρ
sin θ (9.36)

Dividing equation (9.36) by U0x
2/h yields

(∂Ux
∂t

+Ux
∂Ux

∂x
+Uy

∂Ux

∂y
+Uz

∂Ux

i
∂z
)
=

−
P0 − P∞
U0x

2 ρ

∂P

∂x
+

µ

U0x hρ

(
∂2Ux

∂x2
+
∂2Ux

∂y2
+
∂2Ux

∂z2

)
+

gh

U0x
2

sin θ (9.37)

Defining the “initial” dimensionless parameters as

Re =
U0x hρ

µ
Fr =

U0x√
gh

Eu =
P0 − P∞
U0x

2 ρ
(9.38)

Substituting the definition of equation (9.38) into equation (9.37) yields

(∂Ux
∂t

+Ux
∂Ux

∂x
+Uy

∂Ux

∂y
+Uz

∂Ux

∂z

)
=

− Eu
∂P

∂x
+
1

Re

(
∂2Ux

∂x2
+
∂2Ux

∂y2
+
∂2Ux

∂z2

)
+

1

Fr2
sin θ (9.39)
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Equation (9.39) show one common possibility of a dimensionless presentation of governing

equation. The significance of the large and small value of the dimensionless parameters will

be discuss later in the book. Without actually solving the problem, Nusselt’s method provides

several more parameters that were not obtained by the block method. The solution of the

governing equation is a function of all the parameters present in that equation and boundaries

condition as well the initial condition. Thus, the solution is

Ux = f

(
x,y,Eu,Re, Fr, θ, τ0, fu, fτ,

U0y

U0x

)
(9.40)

The values of x, y depend on h and hence the value of h is an important parameter.

It can be noticed with Buckingham’s method, the number of parameters obtained was

only three (3) while Nusselt’s method yields 12 dimensionless parameters. This is a very signif-

icant difference between the two methods. In fact, there are numerous examples in the liter-

ature that showing people doing experiments based on Buckingham’s methods. In these ex-

periments, major parameters are ignored rendering these experiments useless in many cases

and deceiving.

Common Transformations
Fluid mechanics in particular and Thermo–Fluid field in general have several common

transformations that appear in boundary conditions, initial conditions and equations
10
. It

recognized that not all the possibilities can presented in the example shown above. Several

common boundary conditions which were not discussed in the above example are presented

below. As an initial matter, the results of the non dimensional transformation depends on the

selection of what and how is nondimensionalization carried. This section of these parame-

ters depends on what is investigated. Thus, one of the general nondimensionalization of the

Navier–Stokes and energy equations will be discussed at end of this chapter.

Boundary conditions are divided into several categories such as a given value to the

function
11
, given derivative (Neumann b.c.), mixed condition, and complex conditions. The

first and second categories were discussed to some degree earlier and will be expanded later.

The third and fourth categories were not discussed previously. The nondimensionalization

of the boundary conditions of the first category requires finding and diving the boundary

conditions by a typical or a characteristic value. The second category involves the nondi-

mensionalization of the derivative. In general, this process involve dividing the function by a

typical value and the same for length variable (e.g. x) as

∂U

∂x
=

ℓ

U0

∂
(
U
U0

)

∂
(
x
ℓ

) =
ℓ

U0

∂U

∂x
(9.41)

In the Thermo–Fluid field and others, the governing equation can be of higher order than

second order
12
. It can be noticed that the degree of the derivative boundary condition cannot

10
Many of these tricks spread in many places and fields. This author is not aware of a collection of this kind of

transforms.

11
The mathematicians like to call Dirichlet conditions

12
This author aware of fifth order partial differential governing equations in some cases. Thus, the highest deriva-

tive can be fifth order derivative.
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exceed the derivative degree of the governing equation (e.g. second order equation has at

most the second order differential boundary condition.). In general “nth” order differential

equation leads to

∂nU

∂xn
=
U0
ℓn

∂n
(
U
U0

)

∂
(
x
ℓ

)n =
U0
ℓn
∂nU

∂xn
(9.42)

The third kind of boundary condition is the mix condition. This category includes

combination of the function with its derivative. For example a typical heat balance at liquid

solid interface reads

h(T0 − T) = −k
∂T

∂x
(9.43)

This kind of boundary condition, since derivative of constant is zero, translated to

h(((((((T0 − Tmax)

(
T0 − T

T0 − Tmax

)
= −

k(((((((T0 − Tmax)

ℓ

−∂

(
T − T0

T0 − Tmax

)

∂
(x
ℓ

) (9.44)

or

(
T0 − T

T0 − Tmax

)
=
k

h ℓ

∂

(
T − T0

T0 − Tmax

)

∂
(x
ℓ

) =⇒ Θ =
1

Nu

∂Θ

∂x
(9.45)

Where Nusselt Number and the dimensionless temperature are defined as

Nu =
h ℓ

k
Θ =

T − T0
T0 − Tmax

(9.46)

and Tmax is the maximum or reference temperature of the system.

The last category is dealing with some non–linear conditions of the function with its

derivative. For example,

∆P ≈ σ
(
1

r1
+
1

r2

)
=
σ

r1

r1 + r2
r2

(9.47)

Where r1 and r2 are the typical principal radii of the free surface curvature, and, σ, is the

surface tension between the gas (or liquid) and the other phase. The surface geometry (or

the radii) is determined by several factors which include the liquid movement instabilities etc

chapters of the problem at hand. This boundary condition (9.47) can be rearranged to be

∆P r1
σ

≈ r1 + r2
r2

=⇒ Av ≈ r1 + r2
r2

(9.48)
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Where Av is Avi number . The Avi number represents the geometrical characteristics com-

bined with the material properties. The boundary condition (9.48) can be transferred into

∆P r1
σ

= Av (9.49)

Where ∆P is the pressure difference between the two phases (normally between the liquid

and gas phase).

One of advantage of Nusselt’s method is the Object–Oriented nature which allows one

to add additional dimensionless parameters for addition “degree of freedom.” It is common

assumption to initially assume that liquid is incompressible. If greater accuracy is needed

than this assumption is removed. In that case, a new dimensionless parameters is introduced

as the ratio of the density to a reference density as

ρ =
ρ

ρ0
(9.50)

In case of ideal gas model with isentropic flow this assumption becomes

ρ̄ =
ρ

ρ0
=

(
P0
P

) 1
n

(9.51)

The power n depends on the gas properties.

Characteristics Values
Normally, the characteristics values are determined by physical. values e.g The diam-

eter of cylinder as a typical length . There are several situations where the characteristic

length, velocity, for example, are determined by the physical properties of the fluid(s). The

characteristic velocity can determined fromU0 =
√
2P0/ρ. The characteristic length can be

determined from ratio of ℓ = ∆P/σ.

Example 9.16: Renewable Energy Level: Intermediate
One idea of renewable energy is to use and to utilize the high concentration of of

brine water such as in the Salt Lake and the Salt Sea (in Israel). This process requires

analysis the mass transfer process. The governing equation is non–linear and this

example provides opportunity to study nondimensionalizing of this kind of equa-

tion. The conversion of the species yields a governing nonlinear equation
13
for such

process is

U0
∂CA
∂x

=
∂

∂y

DAB
(1−XA)

∂CA
∂y

(9.16.a)

Where the concentration, CA is defended as the molar density i.e. the number of

moles per volume. The molar fraction, XA is defined as the molar fraction of species

A divide by the total amount of material (in moles). The diffusivity coefficient,DAB
is defined as penetration of species A into the material. What are the units of the

diffusivity coefficient? The boundary conditions of this partial differential equation
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are given by

∂CA
∂y

(y = ∞) = 0 (9.16.b)

CA(y = 0) = Ce (9.16.c)

Where Ce is the equilibrium concentration. The initial condition is

CA(x = 0) = C0 (9.16.d)

Select dimensionless parameters so that the governing equation and boundary and

initial condition can be presented in a dimensionless form. There is no need to discuss

the physical significance of the problem.

Solution
This governing equation requires to work with dimension associated with mass transfer and

chemical reactions, the “mole.” However, the units should not cause confusion or fear since it

appear on both sides of the governing equation. Hence, this unit will be canceled. Now the

units are compared to make sure that diffusion coefficient is kept the units on both sides the

same. From units point of view, equation (9.16.a) can be written (when the concentration is

simply ignored) as

U︷︸︸︷
L

t

∂C
∂x︷︸︸︷
�C
L

=

∂
∂y︷︸︸︷
1

L

DAB
(1−X)︷ ︸︸ ︷
DAB
1

∂C
∂y︷︸︸︷
�C
L

(9.16.e)

It can be noticed that X is unitless parameter because two same quantities are divided.

1

t
=
1

L2
DAB =⇒ DAB =

L2

t
(9.16.f)

Hence the units of diffusion coefficient are typically given by

[
m2/sec

]
(it also can be observed

that based on Fick’s laws of diffusion it has the same units).

The potential of possibilities of dimensionless parameter is large. Typically, dimensionless pa-

rameters are presented as ratio of two quantities. In addition to that, in heat and mass transfer

(also in pressure driven flow etc.) the relative or reference to certain point has to accounted

for. The boundary and initial conditions here provides the potential of the “driving force” for

the mass flow or mass transfer. Hence, the potential definition is

Φ =
CA −C0
Ce −C0

(9.16.g)

With almost “standard” transformation

x =
x

ℓ
y =

y

ℓ
(9.16.h)

Hence the derivative ofΦ with respect to time is

∂Φ

∂x
=

∂
CA −C0
Ce −C0

∂
x

ℓ

=
ℓ

Ce −C0

∂

(
CA −��>

0

C0

)

∂x
=

ℓ

Ce −C0

∂CA
∂x

(9.16.i)
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End of Ex. 9.16
In general a derivative with respect to x or y leave yields multiplication of ℓ. Hence, equation

(9.16.a) transformed into

U0�
���(Ce−C0)
ℓ

∂Φ

∂x
= 1
ℓ

∂

∂y

DAB
(1−XA)

����
(Ce −C0)

ℓ

∂Φ

∂y

;U0
ℓ

∂Φ

∂x
=
1

ℓ2
∂

∂y

DAB
(1−XA)

∂Φ

∂y

(9.16.j)

Equation (9.16.j) like non–dimensionalized and proper version. However, the term XA, while

is dimensionless, is not proper. Yet, XA is a function ofΦ because it contains CA. Hence, this

term, XA has to be converted or presented byΦ. Using the definition of XA it can be written

as

XA =
CA
C

= (Ce −C0)
CA −C0
Ce −C0

1

C
(9.16.k)

Thus the transformation in equation (9.16.k) another unexpected dimensionless parameter as

XA = Φ
Ce −C0
C

(9.16.l)

Thus number,
Ce−C0
C was not expected and it represent ratio of the driving force to the height

of the concentration which was not possible to attend by Buckingham’s method.

9.4 Summary of Dimensionless Numbers
This section summarizes all the major dimensionless parameters which are commonly used

in the fluid mechanics field.

Table 9.8 – Common Dimensionless Parameters of Thermo–Fluid in the Field

Name Symbol Equation Interpretation Application

Archimedes
Number

Ar
g ℓ3ρf(ρ− ρf)

µ2
buoyancy forces

viscous force

in nature and force

convection

Atwood
Number

A
(ρa − ρb)

ρa + ρb

buoyancy forces

“penetration” force

in stability of liq-

uid layer a over b

Rayleigh–Taylor in-

stability etc.

Bond
Number

Bo
ρg ℓ2

σ

gravity forces

surface tension force

in open channel flow,

thin film flow

Continued on next page

13
More information how this equation was derived can be found in Bar–Meir (Meyerson), Genick “Hygroscopic

absorption to falling films: The effects of the concentration level” M.S. Thesis Tel-Aviv Univ. (Israel). Dept. of Fluid

Mechanics and Heat Transfer 12/1991.
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Table 9.8 – Common Dimensionless Parameters of Fluid Mechanics (continue)

Standard System

Name Symbol Equation Interpretation Application

Brinkman
Number

Br
µU2

k∆T

heat dissipation

heat conduction

during dissipation

problems

Capillary
Number

Ca
µU

σ

viscous force

surface tension force

For small Re and

surface tension in-

volve problem

Cauchy
Number

Cau
ρU2

E

inertia force

elastic force

For large Re and

surface tension

involve problem

Cavitation
Number

σ
Pl − Pv
1
2ρU

2

pressure difference

inertia energy

pressure difference

to vapor pressure

to the potential of

phase change (mostly

to gas)

Courant
Number

Co
∆tU

∆x

wave distance

typical distance

A requirement in nu-

merical schematic to

achieve stability

Dean
Number

D
Re√
R/h

inertia forces

viscous deviation forces

related to radius of

channel with width

h stability

Deborah
Number14

De
tc

tp

stress relaxation time

observation time

the ratio of the flu-

idity of material pri-

mary used in rheol-

ogy

Drag Co-
efficient

CD
D

1
2 ρU

2A

drag force

inertia effects

Aerodynamics,

hydrodynamics, note

this coefficient has

many definitions

Eckert
Number

Ec
U2

Cp ∆T

inertia effects

thermal effects

during dissipation

processes

Ekman
Number

Ek
ν

2ℓ2ω

viscous forces

Coriolis forces

geophysical flow like

atmospheric flow

Euler
Number

Eu
P0 − P∞
1
2 ρU

2

pressure

potential
effects

inertia effects

potential of

resistance problems

Froude
Number

Fr
U√
g ℓ

inertia effects

gravitational effects

open channel flow

and two phase flow

Continued on next page
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Table 9.8 – Common Dimensionless Parameters of Fluid Mechanics (continue)

Standard System

Name Symbol Equation Interpretation Application

Galileo
Number

Ga
ρg ℓ3

µ2
gravitational effects

viscous effects

open channel flow

and Stokes flow

Grashof
Number

Gr
β∆T g ℓ3 ρ2

µ2
buoyancy effects

viscous effects

natural convection

Knudsen
Number

Kn
λ

ℓ

LMFP

characteristic length

length of mean free

path, LMFP, to char-

acteristic length

Laplace
Constant

La

√
2 σ

g(ρ1 − ρ2)

surface force

gravity effects

liquid raise, surface

tension problem,

also ref:Capillary

constant

Lift Coef-
ficient

CL
L

1
2 ρU

2A

lift force

inertia effects

Aerodynamics,

hydrodynamics, note

this coefficient has

many definitions

Mach
Number

M
U

c

velocity

sound speed

compressibility

and propagation of

disturbances

Marangoni
Number

Ma −
dσ

dT

ℓ∆T

να

“thermal” surface tension

viscous force

surface tension

caused by thermal

gradient

Morton
Number

Mo
gµ4c ∆ρ

ρ2cσ
3

viscous force

surface tension force

bubble and drop flow

Ozer
Number

Oz
CD

2 Pmax
ρ(

Qmax
A

)2
“maximum” supply

“maximum” demand

supply and demand

analysis such pump

& pipe system, econ-

omy

Prandtl
Number

Pr
ν

α

viscous diffusion rate

thermal diffusion rate

Prandtl number

is fluid property

important in flow

due to thermal forces

Reynolds
Number

Re
ρU ℓ

µ

inertia forces

viscous forces

In most fluid me-

chanics issues

Rossby
Number

Ro
U

ωℓ0

inertia forces

Coriolis forces

In rotating fluids

Continued on next page
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Table 9.8 – Common Dimensionless Parameters of Fluid Mechanics (continue)

Standard System

Name Symbol Equation Interpretation Application

Shear
Number

Sn
τc ℓc

µcUc

actual shear

“potential” shear

shear flow

Stokes
Number

Stk
tp

tK

particle

relaxation

time

Kolmogorov time

in aerosol flow deal-

ing with penetration

of particles

Strouhal
Number

St
ω ℓ

U

“unsteady” effects

inertia effect

The effects of nat-

ural or forced fre-

quency in all the field

that is how much the

“unsteadiness” of the

flow is

Taylor
Number

Ta
ρ2ωi

2 ℓ4

µ4
centrifugal forces

viscous forces

Stability of rotating

cylinders Notice ℓ

has special definition

Weber
Number

We
ρU2 ℓ

σ

inertia force

surface tension force

For large Re and

surface tension

involve problem

The dimensional parameters that were used in the construction of the dimensionless

parameters in Table 9.8 are the characteristics of the system. Therefore there are several defi-

nition of Reynolds number. In fact, in the study of the physical situations often people refers

to local Re number and the global Re number. Keeping this point in mind, there several typ-

ical dimensions which need to be mentioned. The typical body force is the gravity g which

has a direction to center of Earth. The elasticity E in case of liquid phase is BT , in case of solid

phase is Young modulus. The typical length is denoted as ℓ and in many cases it is referred to

as the diameter or the radius. The density, ρ is referred to the characteristic density or density

at infinity. The area, A in drag and lift coefficients is referred normally to projected area.

The frequency ω or f is referred to as the “unsteadiness” of the system. Generally,

the periodic effect is enforced by the boundary conditions or the initial conditions. In other

situations, the physics itself instores or forces periodic instability. For example, flow around

cylinder at first looks like symmetrical situation. And indeed in a low Reynolds number it is

a steady state. However after a certain value of Reynolds number, vortexes are created in an

infinite parade and this phenomenon is called VonKarman vortex street (see Figure 9.4) which

named after Von Karman. These vortexes are created in a non–symmetrical way and hence

14
This number is named by Reiner, M. (1964), “The Deborah Number”, Physics Today 17 (1): 62, doi:10.1063/1.3051374.

Reiner, a civil engineer who is considered the father of Rheology, named this parameter because theological reasons

perhaps since he was living in Israel.
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Fig. 9.4 – Oscillating Von Karman Vortex Street.

create an unsteady situation. When Reynolds number increases, these vortexes are mixed and

the flow becomes turbulent which, can be considered a steady state
15
.

The pressure P is the pressure at infinity or when the velocity is at rest. c is the speed

of sound of the fluid at rest or characteristic value. The value of the viscosity, µ is typically

some kind averaged value. The inability to define a fix value leads also to new dimensionless

numbers which represent the deviations of these properties.

9.4.1 The Significance of these Dimensionless Numbers

Reynolds number, named in the honor of Reynolds, represents the ratio of the momentum

forces to the viscous forces. historically, this number was one of the first numbers to be

introduced to fluid mechanics. This number determines, in many cases, the flow regime.

Example 9.17: Eckert Number Level: Intermediate
Eckert number (Bird, Stewart, and Lightfoot 1960) determines whether the role of

the momentum energy is transferred to thermal energy is significant to affect the

flow. This effect is important in situations where high speed is involved. This fact

suggests that Eckert number is related to Mach number. Determine this relationship

and under what circumstances this relationship is true.

Solution
In Table 9.8 Mach and Eckert numbers are defined as

Ec =
U2

Cp ∆T
M =

U√
P

ρ

(9.17.a)

The material which obeys the ideal flow model
a
(P/ρ = R T and P = C1 ρ

k
) can be written

that

M = U

/√
P

ρ
=

U√
kR T

(9.17.b)

15
This is an example where the more unsteady the situation becomes the situation can be analyzed as a steady

state because averages have a significant importance.
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For the comparison, the reference temperature used to be equal to zero. Thus Eckert number

can be written as

√
Ec =

U√
Cp T

=
U√√√√√

(
Rk

k− 1

)

︸ ︷︷ ︸
Cp

T

=

√
k− 1U√
kR T

=
√
k− 1M

(9.17.c)

The Eckert number and Mach number are related under ideal gas model and isentropic rela-

tionship.

a
See for more details http://www.potto.org/gasDynamics/node70.html

Brinkman number measures of the importance of the viscous heating relative the con-

ductive heat transfer. This number is important in cases when a large velocity change occurs

over short distances such as lubricant, supersonic flow in rocketmechanics creating large heat

effect in the head due to large velocity (in many place it is a combination of Eckert number

with Brinkman number. The Mach number is based on different equations depending on the

property of the medium in which pressure disturbance moves through. Cauchy number and

Mach number are related as well and see Example 9.19 for explanation.

Example 9.18: Historical Reason Level: Simple
For historical reason some fields prefer to use certain numbers and not others. For

example in Mechanical engineers prefer to use the combination Re and We num-

ber while Chemical engineers prefers to use the combination of Re and the Capillary

number. While in some instances this combination is justified, other cases it is arbi-

trary. Show what the relationship between these dimensionless numbers.

Solution
The definitions of these number in Table 9.8

We =
ρU2 ℓ

σ
Re =

ρU ℓ

µ
Ca =

µU

σ
=
U
σ

µ

(9.18.a)

Dividing Weber number by Reynolds number yields

We

Re
=

ρU2 ℓ

σ
ρU ℓ

µ

=
U
σ

µ

= Ca (9.18.b)

Euler number is named after Leonhard Euler (1707 1783), a German Physicist who pi-

oneered so many fields that it is hard to say what and where are his greatest contributions.

Euler’s number and Cavitation number are essentially the same with the exception that these

numbers represent different driving pressure differences. This difference from dimensional
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analysis is minimal. Furthermore, Euler number is referred to as the pressure coefficient, Cp.

This confusion arises in dimensional analysis because historical reasons and the main focus

area. The cavitation number is used in the study of cavitation phenomenawhile Euler number

is mainly used in calculation of resistances.

Example 9.19: Mach and Cauchy Level: Intermediate
Explained under what conditions and what are relationship between theMach num-

ber and Cauchy number?

Solution
Cauchy number is defined as

Cau =
ρUUU2

E
(9.19.a)

The square root of Cauchy number is

√
Cau =

U√
E

ρ

(9.19.b)

In the liquid phase the speed of sound is approximated as

c =
E

ρ
(9.19.c)

Using equation (9.19.b) transforms equation (9.19.a) into

√
Cau =

U

c
=M (9.52)

Thus the square root of Cau is equal to Mach number in the liquid phase. In the solid phase

equation (9.19.c) is less accurate and speed of sound depends on the direction of the grains.

However, as first approximation, this analysis can be applied also to the solid phase.

9.4.2 Relationship Between Dimensionless Numbers

The Dimensionless numbers since many of them have formulated in a certain field tend to be

duplicated. For example, the Bond number is referred in Europe as Eotvos number. In ad-

dition to the above confusion, many dimensional numbers expressed the same things under

certain conditions. For example, Mach number and Eckert Number under certain circum-

stances are same.
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Example 9.20: Galileo Number Level: Intermediate
Galileo Number is a dimensionless number which represents the ratio of gravita-

tional forces and viscous forces in the system as

Ga =
ρ2 g ℓ3

µ2
(9..b)

The definition of Reynolds number has viscous forces and the definition of Froude

number has gravitational forces. What are the relation between these numbers?

Solution
Submit your answer.

Example 9.21: Laplace Number Level: Intermediate
Laplace Number is another dimensionless number that appears in fluid mechanics

which related to Capillary number. The Laplace number definition is

La =
ρσ ℓ

µ2
(9.21.a)

Show what are the relationships between Reynolds number, Weber number and

Laplace number.

Solution
Submit your answer.

Example 9.22: Rotating Froude Number Level: Intermediate
The Rotating Froude Number is a somewhat a similar number to the regular Froude

number. This number is defined as

FrR =
ω2 ℓ

g
(9.22.a)

What is the relationship between two Froude numbers?

Solution
Submit your answer.
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Example 9.23: Ohnesorge Number Level: Intermediate
Ohnesorge Number is another dimensionless parameter that deals with surface ten-

sion and is similar to Capillary number and it is defined as

Oh =
µ√
ρσ ℓ

(9..c)

DefinedOh in term ofWe and Re numbers.

Solution

9.4.3 Examples for Dimensional Analysis

Example 9.24: Pump Similarity Level: Intermediate
The similarity of pumps is determined by comparing several dimensional numbers

among them are Reynolds number, Euler number, Rossby number etc. Assume that

the only numbers which affect the flow are Reynolds and Euler number. The flow

rate of the imaginary pump is 0.25 [m3/sec] and pressure increase for this flow rate

is 2 [Bar] with 2500 [kw]. Due to increase of demand, it is suggested to replace the

pump with a 4 times larger pump. What is the new estimated flow rate, pressure

increase, and power consumption?

Solution
It provided that the Reynolds number controls the situation. The density and viscosity remains

the same and hence

Rem = Rep =⇒ UmDm = UpDp =⇒ Up =
Dm

DP
Um (9.24.a)

It can be noticed that initial situation is considered as the model and while the new pump is

the prototype. The new flow rate,Q, depends on the ratio of the area and velocity as

Qp

Qm
=
ApUp

AmUm
=⇒ Qp = Qm

ApUp

AmUm
= Qm

Dp
2Up

Dm
2Um

(9.24.b)

Thus the prototype flow rate is

Qp = Qm

(
Dp

Dm

)3
= 0.25× 43 = 16

[
m3

sec

]
(9.24.c)

The new pressure is obtain by comparing the Euler number as

Eup = Eum =⇒
(

∆P
1
2ρU

2

)

p

=

(
∆P
1
2ρU

2

)

m

(9.24.d)
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Rearranging equation (9.24.d) provides

(∆P)p
(∆P)m

=

(
�ρU

2
)
p(

�ρU
2
)
m

=

(
U2
)
p(

U2
)
m

(9.24.e)

Utilizing equation (9.24.a)

∆Pp = ∆Pm

(
Dp

Dm

)2
(9.24.f)

The power can be obtained from the following

Ẇ =
F ℓ

t
= FU = PAU (9.24.g)

In this analysis, it is assumed that pressure is uniform in the cross section. This assumption

is appropriate because only the secondary flows in the radial direction (to be discussed in this

book section on pumps.). Hence, the ratio of power between the two pump can be written as

Ẇp

Ẇm
=

(PAU)p
(PAU)m

(9.24.h)

Utilizing equations above in this ratio leads to

Ẇp

Ẇm
=

Pp/Pm︷ ︸︸ ︷(
Dp

Dm

)2
Ap/Am︷ ︸︸ ︷(
Dp

Dm

)2
Up/Um︷ ︸︸ ︷(
Dp

Dm

)
=

(
Dp

Dm

)5 (9.24.i)

Example 9.25: Simulating Water by Air Level: Intermediate
The flow resistance to flow of the water in a pipe is to be simulated by flow of air.

Estimate the pressure loss ratio if Reynolds number remains constant. This kind

of study appears in the industry in which the compressibility of the air is ignored.

However, the air is a compressible substance that flows the ideal gas model. Water is

a substance that can be considered incompressible flow for relatively small pressure

change. Estimate the error using the averaged properties of the air.

Solution
For the first part, the Reynolds number is the single controlling parameter which affects the

pressure loss. Thus it can bewritten that the Euler number is function of the Reynolds number.

Eu = f(Re) (9.25.a)

Thus, to have a similar situation the Reynolds and Euler have to be same.

Rep = Rem Eum = Eup (9.25.b)

Hence,

Um

Up
=
ℓp

ℓm

ρ

ρm

µp

µm
(9.25.c)
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End of Ex. 9.25
and for Euler number

∆Pm

∆Pp
=
ρm

ρp

Um

Up
(9.25.d)

and utilizing equation (9.25.c) yields

∆Pm

∆Pp
=

(
ℓp

ℓm

)2 (µm
µp

)2 ( ρp
ρm

)
(9.25.e)

Inserting the numerical values results in

∆Pm

∆Pp
= 1× 1000× (9.25.f)

It can be noticed that the density of the air changes considerably hence the calculations produce

a considerable error which can render the calculations useless (a typical problem of Bucking-

ham’s method). Assuming a new variable that effect the problem, air density variation. If that

variable is introduced into problem, air can be used to simulate water flow. However as a first

approximation, the air properties are calculated based on the averaged values between the en-

trance and exit values. If the pressure reduction is a function of pressure reduction (iterative

process).

to be continue

Example 9.26: Boat Model Level: Intermediate
A device operating on a surface of a liquid to study using a model with a ratio 1:20.

What should be ratio of kinematic viscosity between themodel and prototype so that

Froude and Reynolds numbers remain the same. Assume that body force remains the

same and velocity is reduced by half.

Solution
The requirement is that Reynolds

Rem = Rp =⇒
(
Uℓ

ν

)

p

=

(
Uℓ

ν

)

m
(9.26.a)

The Froude needs to be similar so

Frm = Frp =⇒
(
U√
g ℓ

)

p

=

(
Uℓ

ν

)

m
(9.26.b)

dividing equation (9.26.a) by equation (9.26.b) results in

(
Uℓ

ν

)

p

/

(
U√
g ℓ

)

p

=

(
Uℓ

ν

)

m

/

(
U√
g ℓ

)

m
(9.26.c)

or (
ℓ
√
g ℓ

ν

)

p

=

(
ℓ
√
g ℓ

ν

)

m
(9.26.d)
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End of Ex. 9.26

If the body force
a
, g, The kinematic viscosity ratio is then

νp

νm
=

(
ℓm

ℓp

)3/2
= (1/20)3/2 (9.26.e)

It can be noticed that this can be achieved using Ohnesorge Number like this presentation.

a
The body force does not necessarily have to be the gravity.

Example 9.27: AP Physics Level: Intermediate
In AP physics in 2005 the first question reads “A ball of massM is thrown vertically

upward with an initial speed ofU0. Does it take longer for the ball to rise to its maxi-

mum height or to fall from its maximum height back to the height fromwhich it was

thrown? It also was mentioned that resistance is proportional to ball velocity (Stoke

flow). Justify your answer.” Use the dimensional analysis to examine this situation.

Solution
The parameters that can effect the situation are (initial) velocity of the ball, air resistance (as-

suming Stokes flowe.g. the resistance is function of the velocity), maximumheight, and gravity.

Functionality of these parameters can be written as

t = f(U, k, H, m, g) (9.27.a)

The time up and/or down must be written in the same fashion since fundamental principle of

Buckingham’s π theorem the functionally is unknown but only dimensionless parameters are

dictated. Hence, no relationship between the time up and down can be provided.

However, Nusselt’s method provides first to written the governing equations. The governing

equation for the ball climbing up is

m
dU

dt
= −mg− kU (9.27.b)

when the negative sign indicates that the positive direction is up. The initial condition is that

U(0) = U0 (9.27.c)

The governing equation the way down is

m
dU

dt
= −mg+ kU (9.27.d)

with initial condition of

U(0) = 0 (9.27.e)

Equation (9.27.d) has no typical velocity (assuming at this stage that solution was not solved

ever before). Dividing equation (9.27.d) bymg and inserting the gravitation constant into the

derivative results in

dU

d (g t)
= −1+

kU

mg
(9.27.f)
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End of Ex. 9.27
The gravity constant, g, could be inserted because it is constant. Equation suggests that veloc-

ity should be normalized by as dimensionless group, kU/mg. Without solving the equations,

it can be observed that value of dimensionless group above or below one change the charac-

teristic of the governing equation (positive slop or negative slop). Non–dimensioning of initial

condition (9.27.c) yields

kU(0)

mg
=
kU0
mg

(9.27.g)

In this case, if the value kU0/mg is above one change the characteristic of the situation. This

exercisewhat not to solve this simple Physicsmechanics problembut rather to demonstrate the

power of dimensional analysis power. So, What this information tell us? In the case the supper

critical initial velocity, the ball can be above critical velocity

kU0
mg

> 1 on the up. However the

ball never can be above the critical velocity and hence the time up will shorter the time done.

For the initial velocity below the critical velocity, while it is know that the answer is the same,

the dimensional analysis does not provide a solution. On the way up ball can start

Example 9.28: Sail Boats Level: Simple

Two boats sail from the opposite

sides of river (see Figure 9.5). They

meet at a distance ℓ1 (for example

1000) meters from bank AAA. The

boats reach the opposite side re-

spectively and continue back to

their original bank. The boats

meet for the second time at ℓ2 (for

example 500) [m] from bank BBB.
What is the river width? What are

the dimensional parameters that

control the problem?

AAA

BBB

ℓ1ℓ1ℓ1

ℓ2ℓ2ℓ2

Fig. 9.5 – Description of the boat crossing river.

Solution
The original problem was constructed so it was suitable to the 11 years old author’s daughter

who was doing her precalculus. However, it appears that this question can be used to demon-

strate some of the power of the dimensional analysis. Using the Buckingham’s method it is

assumed that diameter is a function of the velocities and lengths. Hence, the following can be

written

D = f(ℓ1, ℓ2, UA, UB) (9.28.a)

WhereD is the river width. Hence, according basic idea the following can be written

D = ℓ1
a ℓ1

bUA
cUB

d
(9.28.b)
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continue Ex. 9.28

The solution of equation (9.28.b) requires that

D = [L]a [L]b
[
L

T

]c [L
T

]d
(9.28.c)

The time has to be zero hence it requires that

0 = c+ d (9.28.d)

The units length requires that

1 = a+ b+ c+ d (9.28.e)

Combined equation (9.28.d) with equation (9.28.e) results in

1 = a+ b (9.28.f)

It can noticed that symmetry arguments require that a and b must be identical. Hence, a =

b =
√
1/2 and the solutions is of the formD = f(

√
ℓ1 ℓ2). From the analytical solution it was

found that this solution is wrong.

Another approach utilizing the minimized Buckingham’s approach reads

D = f(ℓ1, UA) (9.28.g)

In the standard form this leads to

D = [L]a
[
L

T

]b
(9.28.h)

Which leads to the requirements of b = 0 and a = 1. Which again conflict with the actual

analytical solution.

Using Nusselt’s method requires to write the governing equation. The governing equations

are based equating the time traveled to first and second meeting as the following

ℓ1
UA

=
D− ℓ1
UB

(9.28.i)

At the second meeting the time is

D+ ℓ2
UA

=
2D− ℓ2
UB

(9.28.j)

Equations (9.28.i) and (9.28.j) have three unknowns D, UA and UB. The non–dimensioning

process can be carried by dividing governing equations byD and multiply by UB to become

ℓ1 =
(
1− ℓ1

) UA
UB

(9.28.k)

1+ ℓ2 =
(
2− ℓ2

) UA
UB

(9.28.l)

Equations (9.28.k) and (9.28.l) have three unknowns. However, the velocity ratio is artificial

parameter or dependent parameter. Hence division of the dimensionless governing equations

yield one equation with one unknown as

ℓ1

1+ ℓ2
=
1− ℓ1

2− ℓ2
(9.28.m)
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End of Ex. 9.28
Equation 9.28.m determines that ℓ1 is a function of ℓ2. It can be noticed thatD, ℓ1 and ℓ2 are

connected. Hence, knowing two parameters leads to the solution of the missing parameter.

From dimensional analysis it can be written that the

ℓ2 = f(ℓ1) =

2
ℓ1

1− ℓ1
− 1

1+
ℓ1

1− ℓ1

(9.28.n)

It can be concluded that river width is a function of implicit of ℓ1 and ℓ2. Clearly the Nusselt’s

technique provided write based to obtain the dimensionless parameters. A bit smarter selec-

tion of the normalizing parameter can provide explicit solution. An alternative definition of

dimensionless parameters of D̃ = D/ℓ1 and ℓ̃2 = ℓ2/ℓ1 can provide the need path. Equation

(9.28.m) can be converted quadratic equation forD as

1

D̃− ℓ̃2
=

D̃− 1

2 D̃− ℓ̃2
(9.28.o)

Equation (9.28.o) is quadratic which can be solved analytically. The solution can be presented

as

D = ℓ1 f

(
ℓ2
ℓ1

)
(9.28.p)

Example 9.29: Lumped capacity System Level: Intermediate
Lumped Capacity System refers to a systems were the heat conduction is faster then

the heat convection process. This situation is typical when to small metal is placed

into cooling air. This situations can be approximated by Newton Law of cooling.

Assume that dimensional analysis indeed show that the situation for Newton law of

cooling. The temperature of the metal object is measured at two different times and

the temperature was recorded. Find what parameters effect the temperature ratio by

using the two methods: Buckingham and Nusselt.

Solution
The Buckingham method requires that the parameters should be guessed. In this situation

some knowledge of the problem can be helpful. It is logical to assume that the heat conduction

coefficient, k, surface area, A, volume, V , density, ρ, heat capacity, Cv, the convection coef-

ficient, h and temperature difference are the effecting parameters of the time. Thus it can be

written that

t = f(k,A,V , ρ,Cv,h,∆T) (9.29.a)

Later it can be shown that these parameters are indeed affecting the time. The number of basic

parameters in this problem is four which are, length, L,M, t, and θ.

k =

[
ML

t3 θ

]
A =

[
L2
]
V =

[
L3
]
ρ =

[
M

L3

]
Cv =

[
L2

t2 θ

]
h =

[
L2

t2 θ

]
J/(L2 K)

unfinished.
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Example 9.30: Floating Body Nusselt Level: Basic
Repeat Ex. 9.12 using Nusselt’s technique assuming the body is with uniform den-

sity.

The governing equation for the stability of floating body is

θ = α (9.30.a)

where θ is the arbitrary turning angle and α is the angle

resulting from change of the centroid of submerge volume

due to the change in θ. The relationship between the var-

ious geometrical parameters is determined connection ac-

cording to Eq. (9.30.a). That relationship requires look at the

component of triangle at Fig. 9.6. The base of the triangle is

determined by

β
s

∆x

G

Fig. 9.6 – Floating
body showing
α and other
dimensions.

Solution

∆x = xn − x0 =
V

V0
(xa − xr) (9.30.b)

and xa and xr is related to ratio

xa =

∫
xdV∫
dV

=

∫
x(x tan θ)d(x)dx

V
=

tan θ
∫
x2

dA︷ ︸︸ ︷
d(x)dx

V

(9.30.c)

or using the definition of moment of inertia Eq. (9.30.c) can be transferred into

xa =
tan θ Ixx

V
(9.30.d)

After the opposite side calculation, adjacent side (GBGBGB center of (BBB) buoyancy (GGG) center of

gravity ) thus (GGG-BBB). The weight can be estimated asm = ρℓAB = ρsAG. WhenA is typical

cross section, thus

GB = G

(
1−

ρs

ρℓ

)
(9.30.e)

Combining equations (9.30.d) and (9.30.e) results in

α =

tan θ Ixx
V

G
(
1− ρs

ρℓ

) (9.30.f)

Observation of Eq. (9.30.f) so dimensional group
ρs

ρℓ
, and

Ixx
GV While the analysis was clumsy

and rough it provides dimensionless parameters while Buckingham’s method fails dramati-

cally.
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9.5 Abuse of Dimensional Analysis
Buckingham’s method while simple can produce significant errors. Recently (2020) Wuhan

Corona Virus (WCV) was propagated from China to the many places around the world. To

analysis many researchers utilize Buckingham’s method and mistakenly referring to it as Di-

mensional Analysis. While this book has no intention to criticize people in this case, it has

to make exception and single case demonstrate how Buckingham’s methods produce errors

because the wrong parameters are used. As it was discussed earlier in this Chapter, Buck-

ingham is useful when main if not all parameters are used. For example Contreras et al
16

suggest the following parameters as controlling the spread of Wuhan Coronavirus. Because

the caparison with these research their nomenclature is adapted in this section only. These

parameters include the following, ambient temperature θ, air currents (Ca), air humidity H

(absolute humidity), rainfall Pr. Additionally, Contreras et al mentioned several parameters

that might effect the spread such as social structure Efs, seasonal changes of behaviorCe and

pre-existing immunity Ip. The spread velocity is denoted as Vp. According Contreras et al

the suggested relationship is

Vp = a× Ca

Pr2
C1 + b×

Ce×Ca2 × Efs× Ip
Pr3

(9.53)

where a and b are constants that set so that units match and math some figures. This method

has the logic that units has to match. This logic is proper and of coarse the model has to

match the data. Thus,to this extend this approach has some logical consistency. However,

dimensional analysis is not panacea. The dimensional provides consistency but not solution.

Supposed that there is another parameter that effect the spread and themortalitywhich totally

change the model. For example, in New York the politicians like Andrew Cuomo sent sick

people to nursing homes by spread WCV. On the other hand, president Trump by closing

the boarder with China reduced and/or slow down the spread. Clearly these factors did not

enter into the equations that suggested by this researchers group. Hence, none of the model

predict the results are close to reality. For example, none of the models predict the following

waves that appeared in Spain and else where. Furthermore, none of the models utilizing this

approach can predict the reduction due to the vaccination because none of them can predict

the Trump’s actions will create vaccination. None of the models can predict that China will

allow and encourage to fly to Italy and create a nucleus for spread. No dimensional analysis

can help these models.

9.6 Summary
The two dimensional analysis methods or approaches were presented in this chapter. Buck-

ingham’s π technique is a quick “fix approach” which allow rough estimates and relationship

between model and prototype. Nusselt’s approach provides an heavy duty approach to ex-

16
Contreras, G. Sanglier, M. Robas Mora, and P. Jimenez Gómez. "Use of Quantitative Forecasting Methods and

Error Calculation for Better Adaptability to the Application of a Mathematical Model to Determine the Speed of

Spread of a Coronavirus Infection (COVID-19) in Spain."
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amine what dimensionless parameters effect the problem. It can be shown that these two

techniques in some situations provide almost similar solution. In other cases, these technique

proves different and even conflicting results. The dimensional analysis technique provides a

way to simplify models (solving the governing equation by experimental means) and to pre-

dict effecting parameters.

9.7 Appendix summary of Dimensionless Form of Navier–Stokes
Equations

In a vector form Navier–Stokes equations can be written and later can be transformed into

dimensionless form which will yield dimensionless parameters. First, the typical or charac-

teristics values of scaling e parameters has to b presented and appear in the following table

Parameter Symbol Parameter Description Units

h characteristic length [L]

U0 characteristic velocity

[
L

t

]

f characteristic frequency

[
1

t

]

ρ0 characteristic density

[
M

L3

]

Pmax − P∞ maximum pressure drive

[
M

Lt2

]

Basic non–dimensional form of the parameters

t̃ = ft r̃rr =
r⃗rr

h
ŨUU =

U⃗UU

U0

P̃PP =
PPP− P∞

Pmax − P∞ ∇̃ = h∇ ρ̃ =
ρ

ρ0

(9.54)

For the Continuity Equation (8.17) for non–compressible substance can be transformed

into

�
�
��
0

∂ρ

∂t
+∇ · (ρ̃UUU) = 0 (9.55)

For theN-S equation, every additive term has primary dimensionsm1L−2t−2. To non

nondimensionalization, we multiply every term by L/(V2), which has primary dimensions

m−1L2t2, so that the dimensions cancel.
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Using these definitions equation (8.117) results in

f h

U0

∂ŨUU

∂t̃
+
(
ŨUU · ∇̃) ŨUU = −

(
Pmax − P∞

ρŨUU

)
∇̃P̃PP+ 1

ŨUU
2

gh

f⃗g +
1

ρŨUUh

µ

∇̃2ŨUU (9.56)

Or after using the definition of the dimensionless parameters as

St
∂ŨUU

∂t̃
+
(
ŨUU · ∇̃) ŨUU = −Eu∇̃P̃PP+ 1

Fr2
f⃗g +

1

Re
∇̃2ŨUU (9.57)

The definition of Froude number is not consistent in the literature. In some places Fr is de-

fined as the square of Fr = U2/gh.

The Strouhal number is named after Vincenz Strouhal (1850–1922), who used this pa-

rameter in his study of “singing wires.” This parameter is important in unsteady, oscillating

flow problems in which the frequency of the oscillation is important.

Example 9.31: Constant Accelarated Level: Intermediate
A device is accelerated linearly by a constant value BBB. Write a new N–S and con-

tinuity equations for incompressible substance in the a coordinate system attached

to the body. Using these equations developed new dimensionless equations so the

new “Froude number” will contain or “swallow” by the new acceleration. Measure-

ment has shown that the acceleration to be constant with small sinusoidal on top the

constant such away as

aaa = BBB+ ϵ sin
(
f

2 π

)
(9..d)

Suggest a dimensionless parameter that will take this change into account.

Solution
Under construction

9.8 Supplemental Problems
1. An airplane wing of chord length 3 [m] moves through still air at 15

◦
Cand 1 [Bar] and

at at a speed of 15 [m/sec]. What is the air velocity for a 1:20 scale model to achieve

dynamic similarity between model and prototype? Assume that in the model the air

has the same pressure and temperature as that in prototype. If the air is considered as

compressible, what velocity is required for pressure is 1.5[bar] and temperature 20
◦
C?

What is the required velocity of the air in the model test when the medium is made of

water to keep the dynamic similarity?

2. An airplane 100[m] long is tested by 1 [m] model. If the airplane velocity is 120 [m] and

velocity at the wind–tunnel is 60 [m], calculate the model and the airplane Reynolds
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numbers. You can assume that both model and prototype working conditions are the

same (1[Bar] and 60◦C).

3. What is the pipe diameter for oil flowing at speed of 1[m/sec] to obtain dynamic simi-

larity with a pipe for water flowing at 3 [m/sec] in a 0.02[m] pipe. State your assump-

tions.

4. The pressure drop for water flowing at 1 [m/sec] in a pipe was measured to be 1 [Bar].

The pipe is 0.05 [m] diameter and 100 [m] in length. What should be velocity of Castor

oil to get the same Reynolds number? What would be pressure drop in that case?

Example 9.32: Match Dimensional Number Level: GATE 2010
Match the following.

Column-I

P. Compressible flow

Q. Free surface flow

R. Boundary layer flow

S. Pipe flow

T. Heat convection

Column-II

U. Reynolds number

V. Nusselt number

W. Weber number

X. Froude number

Y. Mach number

Z. Skin friction coefficient

(a) P-U, Q-X, R-V, S-Z, T-W

(b) P-W, Q-X, R-Z, S-U, T-V

(c) P-Y, Q-W, R-Z, S-U, T-X

(d) P-Y, Q-W, R-Z, S-U, T-V

Solution
The Reynolds number (Re) represents the ratio of inertia force and viscous force and com-

monly used inmany situations and has it can be used almost everywhere. Yet it more dominate

in pipe flow as the main parameter. While this question is not really well defined it probably

meant for that situation. Mach number is commonly used in compressible flow as it represents

the ratio of sonic velocity and gas velocity. The reason thatMach number represents how com-

pressible the flow is. The Weber number (We) with his cosines (Capillary number and Bond

number) is the ratio between the inertial force and the surface tension force. Nusselt number

(Nu) represents the ratio of heat convected through the fluid and heat conducted through the

fluid. The Froude number (Fr) is a dimensionless value that describes ratio inertial forces to

gravity force. The flow regimes in open channel flow are determine by this number.

Based on the above discussion it has to be that P-Y and thus (a) and (b) must be false. (c) fails

because that heat convection is not related to Froude number.

The answer is (d).
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Example 9.33: The surface Tension Unites Level: GATE 1996
The dimension of surface tension is

(a) ML−1 (b) L2 T−1

(c) ML−1 T−1 (d) MT−2

Solution
Note that in GATE terminoligy T is actually t. The units appear in table 9.1 with the value of

(d). As the units are [N/m].
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10
External Flow

10.1 Introduction
The external flow refers to flow around immersed bodies. In this analysis, the approached

adapted is to start from from close proximity to body and increase the size gradualy. Several

geological shapewill be introduced. In the extreme casewhen the Boundary Layer ecomposes

the whole field it refered as the Stokes’s problem which will be introduced. Stokes’s problem

is a special class problem that Boundary Layer is very thick and ecompose the whole field.

Ideal flowIdeal flowIdeal flow

Boundary LayerBoundary LayerBoundary Layer

Solid Body

Fig. 10.1 – Boundary layer schamatics to show region of influence.

401
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10.2 Boundary Layer Theory
The boundary layer was introduced by Prandtl in 1904 to connect between the experimen-

tal or empirical and the theoretical or analytical work. Many, if not most, of the analytical

work was based on Euler equation (inviscid fluid) to experiment work (mostly) which was

on viscous flow. The basic idea is that most of the domain of the flow is not affected by

the viscous effects while in the close proximity to boundaries of the (mostly) solid bodies

the viscosity effects are dominated. This idea based on dimensional analysis of the Naiver–

Stokes equation. That is, the local Reynolds number based on the Boundary Layer is much

smaller the general Reynolds number based

on the entire dimension. In these bound-

aries the transfer of themomentumoccurs (see

Fig. 10.1).

A very thin layer around the solid body

shown in Fig. 10.1 is referred as boundary layer.

The velocity profile in the boundary layer has

several requirements which will be discussed.

The limit of the

U∞U∞U∞

U(y)U(y)U(y)

xx′xx′xx′

xxxxxx

y
y

y
y

y
y y
y ′

y
y ′

y
y ′

︸ ︷︷ ︸
L

︸ ︷︷ ︸
L

︸ ︷︷ ︸
L

b



b



b





Fig. 10.2 – General description of boundary
layer.

Boundary Layer is where the relative velocityU/U∞ is about one. For practical purposes the

value that is taken for relative velocity isU/U∞ ∼ 0.99. The velocity of the boundary layer is
unknown and it turned out with reasonable demands yield similar results. These conditions

include, at minimum, zero velocity at the solid object and the velocity at Boundary Layer

edge to be same as the far away from the body, U∞. Once, the velocity profile is guessed, the

momentum transfer can be examined. As the simplest scenario is a flow of along flat flat as

depicted in Fig. 10.2. The flow of fluid over the plate plat starting the leading edge. The mass

conservation reads

mout(x) =




xx ′︷ ︸︸ ︷∫
ρu(y)dy−

xx︷ ︸︸ ︷∫
ρU∞ dy


 =

∫δ
0
ρ (U∞ − u(y)) dy (10.1)

−b

∫x
0
τw dx = b




xx ′︷ ︸︸ ︷∫
ρu2 dy−

xx︷ ︸︸ ︷∫
ρU∞2 dy


+ (10.2)

10.2.1 Non–Circular Shape Effect
The discussion until now was focused on the circular or pipe shape. The conduit shape has

significant effect on the velocity profile. Thus, it strongly affects the resistance to the flow.

The closer actual shape to a circular shape the smaller the resistance is. For example, square

cross section shape or even equiangular triangle are close enough to circular shape and hence

utilize the information that was developed for the circular pipe. For this reason the hydraulic
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diameter has to be defined or established. It was found that the following equation produce a

reasonable results

10.2.2 Examples

Example 10.1: Flat Plate Level: GATE 2004
For air flow over a flat plate, velocity (U) and boundary layer thickness (δ) can be

expressed, respectively, as

U

U∞ =
3

2

(y
δ

)
−
1

2

(y
δ

)3
(10.1.a)

δ =
4.64 x√
Re x

(10.1.b)

If the free stream velocity is 2 [m/s], and air has kinematic viscosity of 1.5× 10−5
[m2/s] and density of 1.23 [kg/m3] , the wall shear stress at x = 1[m], is

(a) 2.36× 102N/m2 (b) 43.6× 10−3N/m2
(c) 4.36× 10−3N/m2 (d) 2.18× 10−3N/m2

Solution
First one must comment on the question as Eq. (10.1.a) is error in the dimension. On the left

hand side, the dimension is as length while the right hand side is in a square root of length.

Clearly something is wrong. But in this case the question how to solve GATE and not how to

make GATE correct.

The Reylonds number according to this logic is

Re =
U∞ x
ν

= 133333 (10.1.c)

Utilizing this value and plug it into Eq. (10.1.b)

δ =
4.64× 1√
133333× 1 = 0.0127072 (10.1.d)

Differentiating Eq. (10.1.a) with respect to y and setting y = 0 provides (notice that only first

term participating) (
∂U

∂y

)

y=0

=
3U∞
2 δ

(10.1.e)

The shear stress is

τ =

µ︷︸︸︷
νρ

3U∞
2 δ

= 4.36× 10−3[N/m2] (10.1.f)

Answer (c).
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Example 10.2: Increasing Re on Plate Level: GATE 2012
In incompressible fluid flows over a flat plate with zero pressure gradient. The

boundary layer thickness is 1 mm at a location where the Reynolds number is 1000.

If the velocity of the fluid alone is increased by a factor of 4, then the boundary layer

thickness at the same location, in mm, will be

(a) 4 (b) 2

(c) 0.5 (d) 0.25

Solution
The thickness of boundary layer expressed according to the Blasius solution conditions as

δ

x
=

5

Rex
(10.2.a)

where the definition of Re is

Rex =
ρUx

µ
(10.2.b)

Therefore, keeping constant x, ρ, and µ, results in

δ ∝ 1√
U

(10.2.c)

In the current case boundary layer thickness is (δ1 = 1 [mm]) with the ratio of the boundary

layer thickness solve the problem. The ratio of the thickness is

δ1
δ2

=

1√
U1
1√
U2

=

√
U2√
U1

=

√
U2
U1

= 2 (10.2.d)

Hence, δ2 = 1[mm]/2 = 0.5[mm]

The answer is (c).



11
Internal Flow or Conduit Flow

11.1 Introduction
A flow of fluid through a pipe or conduit has a significant applicability and impor-

tance for many engineering processes. In the Chapters 14 and 15
1
a discussion about the

compressible substance and several models discussing flow in conduits were introduced.

These models were introduced based on

pure analytical consideration with the ex-

ception of the friction factor, f. In this

chapter the emphasis is on the “exper-

imental” data of the flow in a constant

cross section although other configura-

tions will be presented. Additionally, var-

ious connections of the conduits or pipes

will be included. These kinds of flow are

referred as “Internal Flows” as opposed

to “External Flows” that were discussed

DDD

P1P1P1P2P2P2
Boundary LayerBoundary LayerBoundary Layer

Entry LengthEntry LengthEntry Length

Fig. 11.1 – Simple Entry length into a pipe under
laminar flow.

in the previous Chapter. The Internal Flow is different in the sense that the boundary condi-

tions for the other side (the side wall) affects the entire flow field. The entry region length is

discussed later in this chapter (see Figure 11.1 for entry length).

1
Notice theway this book iswritten, these Chapters appeared earlier. Thus, the reference to these chapters appear

here.

405
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This discussion is focused on the incompress-

ible flow to simplify the analysis. The di-

mensional analysis will be used in this dis-

cussion to guide for a direction. Flow in

pipe can be considered undergoing several

stages or regions, roughly speaking, which

including entry length, in intermediate, and

a fully developed flow (see Figure (11.2)).

The flow is referred to as fully developed

when the flow profile is the same for ev-

ery consecutive cross section. The fully

DDD

P1P1P1P2P2P2

dxdxdx LLL

element

c.v.

Fig. 11.2 – Fully developed and steady state
flow in a conduit.

developed flow is depicted in Figure 11.2. The connection of the shear stress and the pressure

loss is to be established. Consider the element and the control volume shown in Figure 11.2.

The momentum conservation of the control volume reads

(P1 − P2) A−

∫L
0
τw

dA︷ ︸︸ ︷
πDdx =

∫
A
ρUUrn dA (11.1)

Notice that the infinitesimal areas, dAs, are different. In the first integral, infinitesimal area,

dA, refers to the tangential area while the second infinitesimal area refers to cross section

area. The shear forces represent the total of the local shear stress. In this case, the shear stress

value is constant because the velocity profile is constant for every cross section. Hence, this

shear stress value (τw) can be taken out the integration. It can be also noticed that the shear

stress is opposite to the flow direction. The right hand side term in equation (11.1) is the net

momentum flux which is zero in this case due to the basis assumptions of the uniform profile

(uniform flow). Equation (11.1) transitions to

(P1 − P2) A = ∆PA = τw πDL (11.2)

The relationship between the velocity (profile) and the shear stress has to be established. If

the velocity profile is known, then the shear stress can be calculated regardless to the flow

regime.

Example 11.1: Maximum Velocity Level: Basic
Consider a fluid with an hypothetical velocity profile given by

U(r) = Umax

(
1−

( r
R

)2)
(11.1.a)

What is the relationship between the velocity profile (parameters of the velocity pro-

file) and the shear stress.

Solution
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End of Ex. 11.1
The shear stress is given by

τw = −µ
∂U

∂r
(11.1.b)

Using the given velocity profile

τw = µ2Umax
r

R2

∣∣∣
r=R

=
2µUmax

R
(11.1.c)

Since the maximum velocity is twice the average velocity equation (11.1.c) it can be written as

τw =
4µUave

R
(11.1.d)

It has to emphasize that for the fully developed flow the shear stress is constant regard-

less where or not the flow is laminar or turbulent. Hence, the fully developed flow, the shear

stress can be written as

τw = τw = constant (11.3)

For unknown velocity profile, this shear stress is needed to be obtained from experimen-

tal investigation. The list of major researchers who contribute to this relationship includes

Chézy, Weisbach, Darcy, Poiseuille, Hagen, Prandtl, Blasius, von Kármán, Nikuradse, Cole-

brook, White, Rouse and Moody
2
. The diagram named after Moody, even though this dia-

gram was just simple representation of Rouse’s work
3
. It was found that several parameters

affect the shear stress which include the following: viscosity µ, density ρ, velocityU, diameter

D, and roughness ε. When the effective parameters are known from experimental evidence,

then the π theorem can be used to obtain the general relationship. The general relationship

can be written as

τw = f (ρ,µ,U,D, ε) (11.4)

Notice that the units of shear stress are the identical to units of pressure. Using the Dimen-

sional Analysis three dimensional groups control the flow which include the following

Re =
ρUD

µ
,

ε

D
, and

τw

ρU2
(11.5)

The first group is referred as Reynolds number and the second is the relative roughness. So

according the Dimensional Analysis, the relationship can be written in the form of

τw

ρU2
= f

(
Re,

ε

D

)
(11.6)

2
Excellent article about this topic is provided by Brown (Brown 2003). Moody contributed the lest and got the

most of the honor.

3
Apparently Microsoft did not invent the concept of embraced, extend and extinguish scheme of purloin ideas

from others.
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Fig. 11.3 – Moody diagram by TomDavis see for more copyright details at http://www.mathworks.
com/matlabcentral/fileexchange/7747-moody-diagram. This drawing is a place holder until
a cleaner diagram will be build without the strange units.

http://www.mathworks.com/matlabcentral/fileexchange/7747-moody-diagram
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The left hand side is a dimensionless groupwhich is commonly referred as the frictional

factor. In the literature there are two different friction factors known as Fanning friction fac-

tor, f (seldom also denoted by λ) which is four times of the Darcy friction factor. To make

things more complicated, both factors most times are denoted as f. In this book unless oth-

erwise noted, Darcy factor is used. From equation (11.2), the shear stress can be rearranged

as

∆P =
τw πDL

A
(11.7)

From equation (11.6) τw = f ρU2 and substituting into equation (11.7)

∆P =
f ρU2 πDL

A
=
f ρU2 πDL

πD2

4

=
4 f L

D
ρ
U2

2
(11.8)

It is common to define a new parameter which referred as the head loss which represents the

change normalized pressure loss as

Hl ≡
∆P

ρg

Head Loss Definition

(11.9)

Utilizing the definitions of equation (11.9) and equation (11.8) become

Hl = 4 f
U2

2 g

L

D
(11.10)

or

4 f =
Hl(

Uave
2

2 g

) (
L

D

) (11.11)

This relation is exhibited by Figure 11.3. The velocity profile given in Example 11.1 represents

laminar flow. For laminar velocity profile, the relationship between the friction factor and

Reynolds number can be derived based on the velocity profile which was shown earlier. The

velocity profile was

U(r) =

(
∆PD2

16µL

)[
1−

(
2 r

D

)2]
(11.12)

It was shown that the averaged velocity is half of the maximum velocity for parabolic profile
4
.

Hence, the conservation of the mass requires that

Uave =

∫
U(r)dr

A︸︷︷︸
πD2/4

=
∆PD2

32µL
(11.13)

4
The reader should attempt to work this part to verify correctness of this statement
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Rearranged equation (11.13) reads

∆P =
32Uave µL

D2
(11.14)

Dividing equation by
1
2 ρUave

2
provides

∆P
1
2 ρUave

2
=

32µ���Uave L

D
1
2 ρUave�

2
(11.15)

which can be rearranged to be

∆P
1
2 ρUave

2
= 64

(
µ

ρUaveD

)(
L

D

)
=
64

Re

(
L

D

)
(11.16)

or ultimately to become

∆P = 1
2 ρUave

2

f︷︸︸︷
64

Re
(
L

D
) (11.17)

which means that f = 64/Re Darcy factor (or f = 16/Re Fanning factor) for laminar flow

. For other flow regimes there are no exact analytical expression. The laminar flow appears

in low Reynolds number range. It is common to assume that this range of Reynolds number

is smaller than 2000 and that turbulent flow appears for Reynolds number larger than 4000.

The region between these two zones referred as transitional region. If the velocity profile

is unknown, the experimental data provides the needed relationship. This data is plotted in

Moody’s diagram (Figure 11.3). It can be observed fromMoody diagram that for high value of

roughness, ε/D, the friction factor become constant for large Reynolds number. This zone is

where the flow is “completely turbulent.” This information is depicted in Figure 11.3.

The friction factor for smooth pipe with turbulent flow region has been suggested to

be

1√
f
= 1.930 ln

(
Re

√
f
)
− 0.537 (11.18)

The accuracy was reported (McKeon, Swanson, Zagarola, Donnelly, and SMITS 2004) to be

around 1% for the range of 300, 000 ⩾ Re ⩾ 13.6 106.
In general, Moody diagram is only suggestive what are regions and friction factor value

might be in reality. In general, these values are correlated with for situations that are under

steady state and do not have Entry problem or Entry issue becomes negligible. Moody dia-

gram is used for the most situations in reality. Nikuradse (Nikuradse 1932) suggested that the

velocity profile in a smooth pipe can be written by

U

Umax
=
(
1−

r

R

) 1
n

(11.19)
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ReReRe n Umax/Uave ReReRe n Umax/Uave

4 103 6.0 1.26 2.3 104 6.6 1.24

1.1 105 7.0 1.22 1.1 106 8.8 1.18

2.0 106 10.0 1.16 3.2 106 10.0 1.16

Table 11.1 – Nikuradse’s suggestion for velocity profiles.

where n is a function of the Reynolds number. Thus, the velocity distribution is related to

Reynolds number and provides some information, if needed, for engineering purposes. This

information is provided in a Table 11.1. All these powers and correlations suggest that very

near the wall the velocity is relatively very small and therefore the flow is laminar in parts of

the pipe. Also from the boundary condition, the velocity must be zero at the wall. These facts

suggest that very close to the wall the flow should be considered laminar. The shear stress at

the wall is

τw = µ

(
∂U

∂y

)

y=0

(11.20)

If the velocity is expend in Taylor series then the first term is linear so that the velocity near

the wall can be given by

U =
τw

µ
y (11.21)

from dimensional analysis point of view, the ratio τw/ ρ units arem
2/sec2 or the units of√

τw/ ρ arem/sec. The term
√
τw/ ρ is traditionally referred as “Friction velocity” and is

denoted as U⋆
. Normalizing equation (11.21) by dividing the velocity yields

U√
τw/ ρ

=

τw

µ
y

√
τw

=

√
τw/ ρ

ν
y (11.22)

With the new definition, equation (11.22) is converted to

U

U⋆
=
U⋆

ν
y (11.23)

While this sub region (close to the wall) is considered to

be laminar the flow structure is not simple. The zone

between the turbulent core and the laminar flow is re-

ferred as the buffer zone. These three zones are drown

in Figure 11.4.

yyy

Pipe centerline

Laminar Subrigion
Buffer zone




}
}

Turbulent core

RRR

Fig. 11.4 – Description of the sub
regions of velocity in turbu-
lent flow.
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The size of these subregions will be provided later on. It is common to use for the

velocity (profile) in the turbulent core region the following expression

U

U⋆
= 5.5+ 5.75 log

(
U⋆ y

ν

)
(11.24)

The velocity profile for the buffer zone has been proposed to be represented by

U

U⋆
= −3.05+ 11.5 log

(
U⋆ y

ν

)
(11.25)

It was proposed that these ranges limits to be as following.

• Equation (11.23) in the range of

0 ⩾
U⋆

ν
y ⩾ 5 (11.26)

• Equation (11.24) in the range of

5 ⩾
U⋆

ν
y ⩾ 70 (11.27)

• Equation (11.25) in the range of

70 ⩾
U⋆

ν
y (11.28)

To analysis the practical applications of the these equations consider a water flow in a pipe

of 5[cm]with Reynolds number of 106 and viscosity 0.001Ns/m2. The density of the water
roughly is about 1000[kg/m3]. The laminar subregion will be based the equation (11.26). The

averaged velocity will be

U =
Reµ

Dρ
=
106 × 0.001
0.05× 1000 = 20

[ m
sec

]

From Figure 11.3 for Re = 106 and smooth pipe friction factor is

4 f ∼=
8 τw

ρU2
=
8U⋆2

U2

Hence, the friction velocity is

U⋆ = U

√
4 f

8
= 20×

√
0.0115
8

≃ 0.76
[ m
sec

]

The thickness of the laminar zone (11.26) is

y =
5× µ
U⋆ ρ

=
5× 0.001
0.75× 1000 ≃ 0.000067[m]
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Fig. 11.5 – The left Figure exhibits the various subregions of the flow in a pipe with their equations.
The right Figure exhibits the coefficient for the turbulence and the range of these coefficients.

This value demonstrates that the shear size of the laminar region is very small and the tur-

bulent core is the vast majority of the pipe. All these equations plus experimental results are

presented in Figure 11.5a.

The relationship between the laminar sublayer size and the roughness presents a new

issue.

The velocity profile for rough pipe with turbulence has analytical expression (11.24)

which the general form is

U

U⋆
= Constant+ 5.75 log

y

ε
(11.29)

When the constant is a function of the wall roughness and diameter.

It was demonstrated that the laminar sublayer is very small size. When the roughness

exceeds the laminar sublayer thickness then it said the flow region to be in complete rough

flow. In that case, the Constant value is 8.50 (see Figure 11.13). For roughness smaller than the

laminar sublayer the contestant varies according to the Exhibit 11.5b. When the ε < λ are

referred as hydraulically smooth and the constant can be approximated by

Constant = 5.50+ 5.75 logU⋆ εν (11.30)

Substituting equation (11.30) into equation (11.29) provides

U

U⋆
= 5.5+ 5.75 log

U⋆ y

ν
(11.31)

Equation (11.31) is identical to equation (11.24) as it would be expected for smooth pipe.

Generally speaking, the laminar flow can be related as log ∆PL = logU while the tur-

bulent flow can be treated as log ∆PL = a logU. When a is coefficient in this relationship

which value is between 1.7 < a < 2.0. Thus it can be written that

Laminar ∆P ∝ U
Turbulent ∆P ∝ Ua

(11.32)
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These equations are supported by experimental relationships, however, these relationships

do not provide a direct information on the shear stress at the wall τw for a particular fluid.

Yet, knowing the shear Stress, τw, could come from the balance of momentum equation.

11.1.1 Colebrook-White equation for Friction Factor, f
Colebrook and White did a large number of experiments on commercial pipes. Their work

with some important theoretical work by von Karman and Prandtl resulted in an equation

named after them as the Colebrook–White equation:

1√
f
= −2 log

(
ε

3.7Dh
+
2.51

ReReRe
√
f

)
(11.33)

This equation (11.33) is implicitwhere f has to appear on both sides and it is solved by numerical

methods.

In the literature there is a reference to Colebrook–White equation that is based on the

pipe material. This equation roughness is replaced by pipe material (for typical commercial

material) when this coefficient is given as

1√
f
= −4 log

(
ks

3.7Dh
+
1.26

ReReRe
√
f

)
(11.34)

The coefficient ks is given in a table

Table 11.2 – Typical value for material roughness

Pipe Material ks [mm]

Asbestos Cement 0.03

Bitumen–lined Ductile Iron 0.03

Brass, Copper, Glass, Perspex 0.003

Galvanized Iron 0.15

Plastic 0.03

Slimmed Concrete Sewer 0.6

Spun Concrete lined ductile Iron 0.03

Wrought Iron 0.06

According to More (2006) there is no analytical solution to Colebrook–White equa-

tion. The solution for f is obtained by numerical methods. In the literature there are several

methods to approximate the solution of Colebrook–White equation by explicit equation. The
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Swamee–Jain equation is more simple explicate approximation to solve directly the friction

factor, f for a fully developed circular pipe

f = 0.25
[

log
(

ε

3.7D
+
5.74

ReReRe0.9

)]−2
(11.35)

or more sophisticate by Haaland (1983) which is defined as:

1√
f
= −1.8 log

[(
ε

3.7Dh

)1.11
+
6.9
ReReRe

]
(11.36)

11.2 Entry Problem

The steady state, which was discussed above,

appears after a certain length inwhich the fluid

either accelerate or decelerate or both. This

question whether the flow accelerate or accel-

erate depends on the flow initial condition (the

entrance conditions or geometrical configura-

tions) of the pipe. The relationship between

the

DDD

P1P1P1P2P2P2
Boundary LayerBoundary LayerBoundary Layer

Entry LengthEntry LengthEntry Length

U0U0U0

U0U0U0

Fig. 11.6 – Boundary Layer creating the Entry
Length.

acceleration and the momentum or energy loss depends on the Entry length. At one extreme

if somehow miraculously the flow enters to the pipe at the steady state profile then the entry

length is zero since it is already at steady state condition. The amount of acceleration (or

decelerating) is determined by the velocity profile at the entrance.

The following discussion refers to fluid entering the pipewith a uniformflow. It also notewor-

thy to point the difference of flow regime (laminar to turbulence flow) can change outcome.

The basic idea of Entry Length is based on grow of the boundary layer to the pipe center line.

As was discussed before, the boundary layer rate growth depends on the flow regime. Con-

sider flow with Reynolds number less than 2000, the flow should be laminar. In that case, the

boundary layer should be also laminar thus it can be according the laminar boundary layer.

A typical laminar boundary is depicted in Figure 11.6. This boundary layer can be described

by smooth growth.

The flow is turbulent when the Reynolds num-

ber is above 4000 and the flow is at steady

state. The turbulence is results of an in-

stability (to be covered later). Thus, the

flow start as laminar (at least at the bound-

ary layer) and at one point, the flow (es-

pecially at the boundary layer
5
) changes to

turbulent. At that the point, the boundary

layer growth rate increases and the Entry

Length is shorter. The specific point, where

DDD

P1P1P1P2P2P2
LaminarBoundary LayerLaminarBoundary LayerLaminarBoundary Layer

Entry LengthEntry LengthEntry Length

U0U0U0

TurbulentTurbulentTurbulent

TurbulentTurbulentTurbulent

Fig. 11.7 – Boundary Layer creating the Entry
Length for turbulent flow.
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the transition from laminar to turbulent occur, depends on the initial condition and the

Reynolds number at steady state. However, as all the turbulence phenomenon the transition

can not be predicted precisely only the trends can. Hence, it can be said that the boundary

turbulent Entry Length is shorter than the laminar Entry Length. Furthermore, it can be said

that the increase of Reynolds number tend to shorten the entry length. The turbulent entry

length depicted in Figure 11.7 which shows the change in the rate of growth in the boundary

layer.

Initial Conditions

The initial conditions into the pipe are determined mostly by the immediate geometry

before the entrance to the pipe. Hence, clearly the entry length must be influenced by these

conditions. Furthermore these conditions can introduce another velocity component (two

dimensional verse one dimensional) that further complicate the analysis. The practical point

is that these conditions experimentally where investigated and the results in data given Figure

11.8.

The analysis of the actual length size of the entry length is beyond the scope this book.

However, experimental and analytical studies showed that it can be expressed as

L

D
= 0.06

ρ UL

µ
(11.37)

where in this case L refers to the entry length. For turbulent entrance length size is has dif-

ferent functionally with Reynolds number as

L

D
= 4.4

(
ρUL

µ

)1/6
(11.38)

These equations (11.37) and (11.38) depended on the initial conditions (geometrical con-

ditions) at the pipe entrance. However, from practical point of view, these equations provide

adequate accuracy for many engineering calculations regardless to the initial conditions.

Earlier the discussion dealt with the feeding or sourcing pipeswith fluids entering from

a upstream with a larger area to the pipe (at the extreme even “infinite” large source). The

attention has to be turned to the case where the feeding source area is smaller than the pipe

area. In addition, this configuration can also viewed as something that can occur in themiddle

of pipe system as well. Hence, this category is a special case and referred as abrupt expansion

or sudden enlargement. As many things in thermofluid field, opposite to our instinct, there is

approximate analytical solution for turbulent flowwhile for the laminar flow regime requires

a complicate numerical simulation. The turbulent flow is depicted by Figure 11.9. The flow

enters a from a smaller pipe to a larger pipe (at the extreme to a reservoir). The discussion

about the geometry (a sharp square or chamfered corner) will be presented later.

5
The turbulence commonly starts at the core and transfer to the boundary.
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DDD
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K ∼ 0.78− 1K ∼ 0.78− 1K ∼ 0.78− 1

Large tank

(a) Pipe with an inward connection.
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(b) Pipe with a squared connection.
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(c) Pipe with a chamfered connection.
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(d) Pipe with a round connection.
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(e) diagram showing the resistance as function of the radius.

Fig. 11.8 – These figures exhibiting the entry loss into pipe from a large tank based on the initial
condition (geometrical configuration). In the literature there is a dispute on the exact values.
For example, Crane Co. contents that inward connection is k = 0.78 while Kotowski et al
found that K = 1. Any value in this range seems reasonable. See at the end of the Chapter for
references. Any increase of r/D beyond the value of 0.15 seem fruitless.
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Consider the control volume depicted

in Figure 11.9. Note while this flow is not

one–dimensional, it is treated as a quasi

one dimensional flow. For this analysis it

is assumed that the pressure across sections

(1 and 2) remains constant. This assump-

tion is closer to reality as pipe get smaller

and flow rate faster. The accurate analy-

sis requires complicated dimensional analy-

sis. It was found that the eddy zone de-

picted in deeper blue in Figure 11.9 are stagnant.

A2A2A2

Control 

volume

A1A1A1

Eddy

 zone

Fig. 11.9 – Abrupt expansion for turbulent
flow.

These two zones are responsible for the energy losses that occurred. These two triangles

create situations were the static pressure does not vary across the enlargement that is from

point 1 to point 2. Utilizing the momentum equation for steady state leads to

(P1 − P2) A2 + f1−→2 = ρU2
2A2 − ρU1

2A1 (11.39)

where f1−→2 is the friction force. Or

(P1 − P2) A2 + f1−→2 = ṁ (U2 −U1) = ρU2A2 (U2 −U1) (11.40)

for the basic analysis the friction force, f1−→2,is traditionally assumed negligible. This as-

sumption is appropriate for incompressible flow (and some compressible flow situations) for

large range of Reynolds number and relative smaller ratio of expansion. Otherwise the analy-

sis is applicable for a free jet entering to a largemedium. Hence, equation (11.40) can bewritten

as

(P1 − P2)��A2 = ρU2��A2 (U2 −U1) (11.41)

When the area, A2, is canceled in combination with neglecting of the friction force.

The conservation of the energy reads

P1
ρg

+
U1
2

2 g
=
P2
ρg

+
U2
2

2 g
+

Hl︷ ︸︸ ︷
head loss (11.42)

Hence the head loss can be expressed as

Hl =
P1 − P2
ρg

−
U1
2 −U2

2

2 g
(11.43)

Substituting equation (11.41) into equation 11.43 results in

Hl =
1

g

(
U2 (U2 −U1) −

U1
2 −U2

2

2

)
(11.44)
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(a) Sudden expansion loss coefficient.
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(b) Relationship of gradual expansion to abrupt ex-
pansion

Fig. 11.10 – The left Exhibit show resistance to the abrupt expansionwhile right Exhibit demonstrate
the relative resistance of gradual change to abrupt transition. The zonewhere gradual transition
is evident from the Figure.

or

Hl =
1

g


�

��>

U2
2

2

U2
2 −U2U1 −

U1
2 −�

�U2
2

2


 =

1

2 g

(U1−U2)
2︷ ︸︸ ︷(

U1
2 − 2U1U2 +U2

2
)

(11.45)

Finally,

Hl =
1

2 g
(U1 −U2)

2 =
U1
2

2 g

(
1−

U2
U1

)2
(11.46)

The mass conservation of the control volume reads

A1U1 −A2U2 = 0 =⇒ U2
U1

=
A1
A2

(11.47)

Substituting equation (11.47) into equation (11.46) results in

Hl =
U1
2

2 g

(
1−

A1
A2

)2
Sudden Expansion Turbulent Flow

(11.48)

This approximate analysis provides reasonable equation to calculate the head loss

which also provided in a figure form (see Figure 11.10a). However, the minimum distance

for this sudden Expansion is not discussed.

For the laminar flow the expression in (11.48) is not correct and it is recommended

(Oliveira, Pinho, and Schulte 1998) to use

K =
19.2

Re0.93 − 2.55+ 2.87 log Re − 0.542 (log Re)2 (11.49)
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It is import to allude to an interesting point in regard to gradual change. Rosa (Rosa and

Pinho 2006) with others shown that the resistance of the of gradual change can be larger and

abrupt change. The deviation is summarized in figure for wide range of Reynolds number as

shown in Figure 11.10b. It can be notice up 17-18 degrees the resistance is reduced while any

angle above this value will increase the resistance. Unless small angle is possible to build, the

transition should be trough abrupt expansion. Nevertheless, analysis of this Figure show that

it better to design the transition with small angle and then to change for abrupt transition. In

that case the resistance can change very significantly.

11.2.1 Non–Circular Shape Effect
The discussion until now was focused on the circular or pipe shape. The conduit shape has

significant effect on the velocity profile. Thus, the shape strongly affects the resistance to the

flow. The closer actual shape to a circular shape the smaller the resistance is. For example,

square cross section shape or even equiangular triangle are close enough to circular shape

and hence utilize the information that was developed for the circular pipe. For this reason the

hydraulic diameter has to be defined or established. It was found that the following equation

produce a reasonable results

D ≡ 4× Flow cross section

wetted perimeter of the cross-section

Hydraulic Diameter

(11.50)

Some equations contain a definition of the hydraulic radiuswhich is different than the current

definition
6
. This diameter can be used to calculate Reynolds number and roughness ratio

based in this diameter. Several shapes are tabulated and presented in the following table.

Table 11.3 – Basic hydraulic diameter for various shapes

Geometry Figure HD Comment

pipe/tube

DHDHDH

4 (πD2
/
4)

πD
= D

Regular

Diameter

Continued on next page

6
It must be noted that hydraulic diameter diameter is not double the hydraulic radius but 4 times the radius.
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Table 11.3 – Basic hydraulic diameter for various shapes (continue)

Geometry Figure HD Comment

Square Duct
2a2a2a

2a2a2a

4a2

4a = a Half length

Rectangular Duct
2a2a2a

2b2b2b
4 ab

2 (a+ b)
= 2ab
a+b

Very Wide Duct
2a2a2a

2b2b2b lim
b→∞ 4ab

2 (a+b) = 2 b

Equilateral Triangle aaa

√
3

6
a

Equilateral polygon
aaarrr a

2 tan πn
n # sides

Annulus

DoDoDo

DiDiDi

4π

(
Do

2−Di
2

4

)

π(Do+Di)
Do −Di

11.3 Losses in Conduits Connections and Other Devices
Most conduits or tubes are connected trough a network pipes which can be in different sizes.

These connections are made between conduits of the same size or different sizes. These con-

nections exhibit increased of the resistance to the flow. In addition to these connections there

are valves to regulate the flow and other devices which increases the flow. These additional

resistances are referred to as minor losses. The reason that the term “minor” attached to it

because under long conduits these resistances are relatively small or in other words the pipe

resistance is considered the main resistance. However, for small pipe or tube these minor re-

sistances are considerable. The representation of these minor resistances represented in the

same fashion as conduits. The twomain reasons for this representation are: convenience and
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the dimensional analysis suggests that it is appropriated way of representation. Hence, the

resistance of the minor loss is represented as

Hl = K
U2

2 g
(11.51)

where K is loss coefficient that depend on Reynolds number and geometrical configuration.

Thus the total loss can be written as

Hl =

(
f L

D
+

N∑
i

Ki + exit loss

)
U2

2 g
(11.52)

The first term on the right hand side is the familiar loss due the flow in the conduits. The

second term represents all the minor losses and the last term represent all due to the exit.

The common approach is to assume that the sudden expansion can describe this head loss. At

the extreme case when the exit is connected to the very large tank or reservoir for which the

maximum lost occur which is one (1). Kotowski et al (Kotowski, Szewczyk, and Ciezak 2011)

have pointed out that the lost at the pipe can be larger than one for turbulent flow especially

when there is energy difference between energy measured by U2/2 g and the actual energy.

This energy difference is due to the liquid movement perpendicular to flow direction and can

be described by

Kexit = 1+ 0.113
(
10

lnRe

)2
− 0.107

(
10

lnRe

)4
+ 0.101

(
10

lnRe

)6
(11.53)

However, for most practical calculations, this correction can be neglected.
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11.3.1 Minor Loss
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Fig. 11.11 – The resistance in 90◦ bend with relative roughness.
The head lost in the bend depends on the relative roughness but primarily on the ratio of

the radius of bending and the pipe diameter. This information is exhibited in Figure 11.11 for

various ratio of the roughness. Generally, the resistance is larger for very mall ratios of the

r/D. at about ratio of about 7 this value (K) reaches a minimum and increase thereafter. It

can be noticed that between the range of r/D = 2 to r/D = 5.5 the resistance, K decrease

mildly. while before it is strong function. The roughness increase the resistance as can be

expected. Another connection that commonalty appear in the pipe network is the Tee. This

connection has two possible configurations. In one configuration, the flow is in a straight

line with a connection from the side. In another possible configuration the flow split to two

branches at 90◦. The “Y” connection is actually extension of the tee branching with various

angles.

The typical network configuration contain a switch which referred in fluid mechanics

as the valve. There several configuration of the valves which include globe valve, angle value

and gate valve.
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111 333

222
(a) Tee connection inline flow.

111
333

222

(b) Standard “Y” connection.

aaa
θθθ
(c) Bend connection.

Fig. 11.12 –Various connections for conduits network. The “tee” connections on the right canhave two
configurations. One as depicted in thefigure (in line) and one that flow starts at point 2 and going
to 1 and 3 (branch flow). Themiddle exhibit depicts the typical improved tee connection (branch
flow) which referred as “Y” connection. The figure on the right depicts the bend transition with
different angle than 90◦.

(a) Globe valve exhibits one (strong) di-
rection resistance.

(b) Angle valve with one diction
change.

(c) Gate valve no direction prefer-
ence.

(d) Metso Butterfly Valve. (e) Ball Valve.

Fig. 11.13 – Possible “switches” valves of pipe network are exhibit. The various design of valve creates
different resistance for the switching and regulation. The gate value is typically design to on
or off mode (an improved design is a ball valve) while the other two are used in addition for
regulation (flow control). Clearly, the resistance in the gate value is less because there is change
in the flow direction. The Figures 11.13d and 11.13e represent additional design of no change of
flow direction.
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In addition to the above connection the pipe

network can contain coupling connection

(see Figure 11.14). The quality of these auxil-

iary connections is not uniform because dif-

ferences in the design and the installation.

Hence it impossible to determine universal

value for the coupling. Yet, because the rela-

tive small value of resistance of this device is

about 0.06.

Fig. 11.14 – Coupling connection in a network.
This connection is createmostly to extend
the segment of pipes or tubes.

Fitting Loss Typical

Coefficient % Error

Regular 90◦ elbow (bend) 1.1 ± 40

Regular 45◦ elbow (bend) ± 0.34 ± 25

Tee connection inline 0.9 ± 25

Tee connection branch 1.5 ± 25

Gate valve 0.19 ± 20

Angle valve 2.9 ± 20

Butterfly valve 0.86 ± 20

Coupling 0.06 ± 50

Example 11.2: Pipe Entrance Level: Intermediate
The pressure at the entrance to a piping system for delivering water is 4[Bar]. The

piping system is made from 15 [m] horizontal pipe and 90◦ elbow (bend). The elbow

is followed by 5 [m] vertical line. The vertical is followed by 90◦ elbow and a 8 [m]

horizontal pipe. At the exit there is restricting device before entering to atmospheric

pressure. Assume that pipe is made from galvanized pipe. Estimate the water flow

rate when the water temperature is 20◦C.

Solution
Denoting the entrance as point 1 and exit as point 2. The energy conservation between point
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continue Ex. 11.2

1 and point 2 reads

P1
ρg

+
U1
2

2 g
+ z1 =

P2
ρg

+
U2
2

2 g
+ z2 +Hl (11.2.a)

The water, under the pressure and temperature presented in this problem, can be assumed

to incompressible fluid. Hence, for constant cross section, the velocity can be assumed to be

constant as

U1 = U2 (11.2.b)

Equation (11.2.a) can be simplified if z1 is denoted zero as

P1
ρg

−
P2
ρg

− z2 = Hl (11.2.c)

But on the other side, the energy lost is made from the lost at the entrance, pipe flow, minor

loss, and exit.

Hl =
U2

2 g

(
Kentrance +Kpipe +Kbends +Kexit

)
(11.2.d)

The resistance in the entrance, exit, and elbow can be assumed to be relatively small compared

to the residence of the pipe. The resistance of the pipe is 4 f L/D However, the Reynolds

number and/or the velocity (profile) are unknowns at this stage. The solution is obtained by

applying the following the procedure.

1. The roughness ratio can be calculated because the material of the pipe is known. For

galvanized pipe the roughness is obtained from Table 11.2 for which is 0.15[mm]. The

roughness ratio is obtained (pipe diameter is 30mm) as

ε

D
=
0.015
25

= .0006 (11.2.e)

With this value the friction coefficient is obtained as 4f = 0.032. The resistance is then

Kpipe =

4 f

3∑
i=1

Li

D
=
0.032× (15+ 5+ 8)

0.025
= 35.84

(11.2.f)

The velocity can be obtained from equation (11.2.c) and hence

U =

√√√√√
∆P

ρ
− z2 g

Kentrance +Kpipe +Kbends +Kexit

(11.2.g)

Since the other resistances are neglected then

U =

√√√√√2

(
∆P

ρ
− z2 g

)

Kpipe
=

√√√√√2

(
400000− 100000

1000
− 5× 9.8

)

35.84
= 3.74[m] (11.2.h)
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End of Ex. 11.2
The friction coefficient was based on the assumption that the flow is fully turbulent.

However, this friction coefficient has to be checked and verified by looking at Reynolds

number. The Reynolds number, which can be obtained using temperature of 20◦C,
with this assumption becomes

Re =
ρUD

µ
=
1000× 3.74× 0.025
1.002× 10−3 = 92315 (11.2.i)

with this Reynolds number a new estimate of the friction coefficient has to be made.

From the Figure 11.3 it can be observed that the change is not significant and the new

value is 0.0325. The change is not significant enough to repeat the calculations in prac-

tice. However, the improve accuracy will required that recalculating the improve ve-

locity estimate. It can be pointed out that taking into account the minor resistance will

more the accuracy than the improved friction coefficient.

The flow rate can be calculated by multiply the area by the velocity as

q = UA = 3.74× π× 0.0252
4

= 0.000018359
[
m3

sec

]
(11.2.j)

11.3.2 FlowMeters (FlowMeasurements)

The flow meters are devices that are used to measure flow rate for various reasons to find

the amount of material passing through. The flow can be measured by that uses different

effects. In this section, some of these effects are demonstrated. Like all the measurements,

these measurements them self affect the flow. These methods include direct measurement

(filling a fixed volume of fluid and then count the number of times the volume is filled), while

other methods based on measurement of the pressures/forces created by the fluid streams as

it overcomes a designed obstacle. In general the flow rate is measure by know combination

measuring the velocity with a given area.
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11.3.2.1 Orifice Metering

In this simple method, a plate with given hole

is inserted into the pipe. This device that con-

structed from inserting orifice obstacle into

the pipe. Experimentally it was found that the

following parameters affects the flow rate

Q = f (∆P , ρ ,µ ,D1 ,D2) (11.54)

In the cases where the effecting parameters

is determined, then untiling the dimensional

analysis. Denoting the area, A for this case as

A ≡ πD2
2

4
(11.55)

VenaVenaVena
ContractaContractaContracta

DiameterDiameterDiameter

OrificeOrificeOrifice
PlatePlatePlate

FlowFlowFlowD1D1D1 D2D2D2

Fig. 11.15 – Orifice Plate inserted into pipe to
be used measurement of flow rate.

The analysis provides a possible solution of (notice 1/2 was inserted for convenience)

π1 =
1
2 ρ, Q2

∆P, A2
π2 =

ρ QA D1

µ
π3 =

D2
D1

(11.56)

Thus the relationship can be written as

1
2 ρQ

2

A2 ∆P
= f

(
ρ QA D1

µ
,
D2
D1

)
(11.57)

Rearranging equation (11.57) leads to

Q2 =
2A2 ∆Pi

ρ
f

(
ρ QA D1

µ
,
D2
D1

)
(11.58)

Or

Q = A

√√√√∆Pi

ρ
2 f

(
ρ QA D1

µ
,
D2
D1

)
= A

√
∆Pi

ρ

√√√√2 f
(
ρ QA D1

µ
,
D2
D1

)

︸ ︷︷ ︸ (11.59)

The right hand side expression over the underbrace is dimensionless and experimental work

was carried on this point which is presented in Figure 11.16. For large Reynolds number, the

Figure 11.16 exhibits that this coefficient is only function of the diameters ratio. For Reynolds

numbers the resistance increases with the decreasing of the Reynolds number.
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A2/A1 = 0.05

Fig. 11.16 – The resistance due to the Orifice data taken from NACA Report TM 952 by g3data.

This resistance at for the large Reynolds number, is pre-

sented in Figure 11.17. This Figure provides a way to cal-

culate the flow rate. The flow rate can be obtained as

Q = AC

√
∆Pi

ρ
(11.60)

Where the constant, C is obtained from Figure 11.17 for

large Reynolds number or more general from Figure

11.16.

0.6

0.625

0.65

0.675

0.7

0.725

0.75

0.775

0.8

5 6 7 8 910
-1

2 3 4 5 6 7 8

C

A2/A1

Fig. 11.17 – The resistance due
to Orifice in high Reynolds
number.



430 CHAPTER 11. INTERNAL FLOW

11.3.3 Nozzle FlowMeter

While the orifice flow measurement

is simple to construct it has a ma-

jor flaw. The orifice causes con-

siderable energy loss or pressure

loss which is not desirable. Basi-

cally the orifice is device that cheap

to produce but expensive to main-

tain. This cost consideration lead

High PressureHigh PressureHigh Pressure
TapTapTap

Flange Flange

Low PressureLow PressureLow Pressure
TapTapTap

Flow

Fig. 11.18 – Nozzle flowmeter.

engineers to search to alternative. The orifice is similar to a pipe with a squared connection

(see Figure 11.8b). It is logical to look at Figure 11.8 to draw idea to where the next step in the

design should be. The rounded connection looks as reduction of the pressure loss and hence

the cost reduction of operation. Practically, the construction of the rounded connection is

done by the converging nozzle (see Figure ??). This configuration, the nozzle, as well other
configurations also have been tested and tabulated. Similarly, to the orifice configuration

the experience has shown that to the same equation is obtained on the same ground and

the same parameters affects the flow. However, as opposed to the orifice, the nozzle is

employed in situations where the density is varied. In that case the experimental evidence

and dimensionless analysis shows that equation is

Q =
CdAT√
1−β4

√
2∆P

ρ
(11.61)

whereQ is the flow rate, Cd is the discharge coefficient, β is the diameters ratio of D2/D1,

AT is the throat area, and other parameters such the pressure difference, and density are the

same as before.

Additional reduction the nozzle flow meter could be achieved by extending the con-

verging nozzle in smooth way to the original size. This extension is similar to the diverging

part of nozzle. It combined nozzle, that is the converging and diverging part also referred in

the literature as Venturi meter as shown in figure 11.19. This configuration is also used for the

compressible substance and hence new dimensionless parameter is added

Q =
CdAT Y√
1−β4

√
2∆P

ρ
(11.62)

Y is the compressibility factor (or it is referred as the expansion factor) which is defined as the

pressure ratio due the change of the area ratio (more on this topic in the compressible flow

chapters).
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Example 11.3: Venturi Meter Level: Simple

Agas flows through a venturi and the pres-

sure at the entrance is 6.5 [Bar] and the

temperature is 350K. The measurement of

the pressure at the throat shows 5 [Bar].

The diameter of the inlet is 0.05[m] while

the diameter at the throat is 0.025[m]. Es-

timate the volume flow rate of the gas.

Assume that universal constant is R =

0.287Kj/kgK.

h1h1h1

h2h2h2

Head lossHead lossHead loss

D1D1D1 DDDD2D2D2
Flow

h1 − h2h1 − h2h1 − h2

Fig. 11.19 – Venturi meter schematic
shown the head in different loca-
tion.

Solution
The flow rate is determined by equation (11.62) since it was build for the venturi meter. The

density at the entrance can be evaluated by ideal gas law as

ρ1 =
P1
R T1

The discharge coefficient can be found by trial and error using Figure ??. In this case the

pressure ratio is r = P2
P1

= 5
6.5 = 0.77 The area ratio is β = 0.025/ 0.05. From the Figure

?? it can be observed with the values of β and pressure ratio and the value that is obtained

Y = 0.86. The ratio can be

P1 − P2
ρ1

=
P1 − P2
P1

R T1 = 1−
P2
P1
R T1 (11.3.a)

11.4 Flow Network
Fluid system constructed in different configurations which have different specifications.

However, in analyzing it common to differentiate between two different connections. Gener-

ally, connections categorized as a series and parallel connection. These connections are not

unique and several more complex situations are possible. Yet understanding these conditions

provides the building blocks to analysis more complex situations.

11.4.1 Series Conduits Systems

The series connection is characterized by the fact that the flow rate is constant throughout the

pipe at least in steady state situations. The flow rate along the pipe is same while the velocity

might be different at various cross sections. This constant flow rate is simple result of mass

conservation. The typical questions that categorized into different classes. These classes are

summarized as

Class I:
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QAQAQA

QBQBQB

QCQCQC

1 2Q2Q2Q2Q1Q1Q1

(a) Parallel connections.

HHH

H1H1H1

H2H2H2

A

B

(b) Series Connections.

Fig. 11.20 – The left Figure exhibits parallel connections with different flow rate. The right Figure
demonstrate the series connection include the tank itself. The flow goes from “A” to “B” but it
include the flow in the tank from the fluid surface.

Flow rate, Q and pipe diameter, D, are known, loss head, h1−→2 is unknown. The

knowledge of flow rate also mean that velocity at various cross section is known.

a. Using the velocity at various cross section calculate the energy losses. By using mass con-

servation (Q = AU).

b. Identify all the terms that make up energy losses, such as pipe losses, and minor losses.

c. Using the velocity, U determine the Reynolds number, ReReRe, and calculate the needed loss

coefficients, Ki.

d. By using the Reynolds number,ReReRe, and relative roughness, ε/D, determineDarcy friction

coefficient.

e. Apply the energy equation to the two end sides

P1
g

+ z1 +
U1
2

2 g
=
P2
g

+ z2 +
U2
2

2 g
+ h1−→2 (11.63)

f. Solve for the unknown or required output

Class II:
Pipe diameter, D, and pressure drop, ∆P„ are known, while flow rate, Q, is unknown.

This class requires iterative procedure.

a. Use the energy equation (11.63) as the governing equation.

b. Express the terms in (11.63) as a function of the unknown velocity, U.
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c. Express the energy losses as a function of the unknown velocity, U.

d. Express the friction coefficient, f, as a function of the velocity. Or use Moody diagram to

estimate the friction coefficient for the given roughness ratio, ε/D.

e. Use equation (11.63) to calculate the velocity,U to determine the Reynolds number,ReReRe, and
determine a new f value.

f. Calculate the new velocity, U

g. In most cases this state is iterative process in which the new velocity is check against the

friction factor.

Class III:
Pressure drop, ∆P, and flow rate,Q, are known, the diameter,D is unknown. It prob-

ably the most applicable question facing engineers. This procedure is iterative because the

implicit nature of the problem. It can be noticed that the relationship between the flow rate

and the velocity isn’t known.

The procedure is as the following

a. Use the energy equation (11.63) as the governing equation. Notice that the velocity has to

be inserted as Q/A.

b. Separate known variables from the unknown variables. Put the known variables on the

left hand side of the equation, and the unknowns on the right side as shown in equation

(11.65).

P1
g

+ z1 −
P2
g

− z2 =
Q2
2

2 gA2
2
−

Q1
2

2 gA1
2
+

(
4 f L

D
+

N∑
i=1

Ki +Kend points

)

︸ ︷︷ ︸
f(D)

Q1
2

2 gA2
(11.64)

Or

Q2 =

P1
g

+ z1 −
P2
g

− z2

1

2 gA2
2
−

1

2 gA1
2
+ f(D)

1

2 gA2

(11.65)

Where simple A in the last term in the denominator refers to the specific area the devices

and pipes area.

c. Identify all the devices and contribute the energy loss in equation (11.65).
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d. Equation (11.65) can be solved by various numerical method The boundaries for which the

solution can be found are very small pipe diameter and very large. The relative roughness

can be estimated from the diameter.

e. An internal adjustment (iterations) must be made for friction factor, f depending for the

Reynolds number.

11.4.2 Parallel Pipe Line Systems
In this configuration, the pressure drop for every branch is similar to other branch, yet, the

flow rate are different. There are typical question that associate with this configuration.

Class I
Two branches, total flow rate,Q, and diameter,D, are known (or required). Total pres-

sure drop (or total head) and the flow rates are needed.

a. Determine all the energy loss for each branch.

b. Express each energy loss as a function of the velocity in each branch.

c. Express the flow rate for each branch, Qi, as a function of the diameter and the velocity

in each branch.

d. The pressure loss in each branch is the same. Hence the pressure loss in each branch should

be equated in terms of velocity, U1 and U2 and the respected friction factors.

e. Expressed the velocity at one of the branch as a function of the velocity of the other branch

utilizing the relationship mass conservation of

Q
total

= Q1 +Q2 (11.66)

Or since the diameters are know, the velocity utilizing equation (11.66).

f. The initial guess value for f1 and f2 (between 0.005 and 0.1), and by using equation (11.66)

to find U1 and U2,

g. DetermineReReRe1 andReReRe2, D1/e1 and D2/e2, and find f1 and f2.

h. Repeat previous steps until f1 and f2 converge to steady values.

i. Finally, determine flow rateQ1 andQ2.

Class II
Two branches, total pressure drop for every branch and the diameters are known. Total

flow rate and individual branch flow rates are unknown.

a. This similar to class II of series flow for every branch. Calculate the flow rate for each

branch.

b. Combine the total flow rate utilizing equation (11.66).
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11.4.3 Additional Questions

Example 11.4: Viscous Syringe Level: GATE 2003

A syringe with a frictionless plunger

contains water and has at its end, a

100 [mm] long needle of 1 [mm] diam-

eter. The internal diameter of the sy-

ringe is 10 [mm]. Water density is 1000

[kg/m3]. The plunger is pushed in at

10 [mm/s] and the water comes out as

10 mm

Water jet
Syringe

F
Needle

10 mm/s
1 mm
100 mm

Fig. 11.21 – Frictionless Syringe plunger
pushing a jet.

a jet. Neglect losses in the cylinder and assume fully developed laminar viscous flow

throughout the needle; the Darcy friction factor is 64/Re, where Re is the Reynolds

number. Given that the viscosity of water is 1.0 × 10−3 [kg/s m], the force F in

newtons required on the plunger is

(a) 0.13 (b) 0.16

(c) 0.3 (d) 4.4

Solution
The resistance is provided as

f =
64

Re
(11.4.a)

The viscosity is µ = 1.0× 10−3 [kg/sm] Reynolds number can be calculated as

Re =
ρU2 d2
µ

= 1000 (11.4.b)

The friction coefficient is obtained

f =
64

Re
∼ 0.064 (11.4.c)

The energy loss is

h12 = f
l2U2

2

d2 2 g
∼ 0.3262[m] (11.4.d)

Unitizing Bernoulli’s equation with energy loss is

∆P

ρg
=
U2
2 −U1

2

2 g
+ h12 ∼ ∆p = 3699.95Pa (11.4.e)

The required force is

F = ∆PA = ∆P
πd1

2

4
= 0.290593 ∼ 0.3[N] (11.4.f)

Answer (c)
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Example 11.5: Axi–Symmetric Level: GATE 2007
Consider steady laminar incompressible axi–symmetric fully developed viscous flow

through a straight circular pipe of constant cross sectional area at a Reynolds number

of 5. The ratio of inertia force to viscous force on a fluid particle is

(a) 5 (b) 1/5

(c) 0 (d) ∞
Solution
This question goes to the definition and the meaning of Reynolds number. Reynolds number

is defined as

Re =
inertia forces

viscous force

(11.5.a)

So, the answer is in the body of the question.

Answer (a)

Example 11.6: Water in Pipe Level: GATE 2009
Water at 25◦C is flowing through a 1.0 [km] long galvanized iron pipe of 200 [mm]

diameter at the rate of 0.07 [m3/s]. If the value of Darcy friction factor for this pipe

is 0.02 and density of water is 1000 [kg/m3], the pumping power (in kW) required

to maintain the flow is

(a) 1.8 (b) 17.4

(c) 20.5 (d) 41.0

Solution
one has to find the velocity to calculate the energy lost as

U =
Q

A
=
4Q

πD2
= 2.23

[m
s

]
(11.6.a)

The pressure loss is

∆P =
4 f L

D

U2

2 g
∼= 25.3

[m
s

]
(11.6.b)

The energy loss will be

P = ρgQ∆P ∼ 17.377[kW] (11.6.c)

The answer is (b)
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Example 11.7: Laminar Flow Fully Developed Level: GATE 2009

The velocity profile of a fully developed

laminar flow in a straight circular pipe, as

shown in the figure, is given by the expres-

sion

U(r) = −
R2

4µ

(
dp

dx

)(
1−

r2

R2

)

where dp/dx is a constant.

The average velocity of fluid in the pipe is

x
r

u(r)
R

Fig. 11.22 – Developed laminar flow for
Ex. 11.7.

(a) −
R2

8µ

dp

dx
(b) −

R2

4µ

dp

dx

(c) −
R2

2µ

dp

dx
(d) −

R2

µ

dp

dx

Solution
The definition of the averaged velocity is

U =
1

A

∫
UdA (11.7.a)

In this case

U =
1

�πZZR
2

∫R
0
−
ZZR2

4µ

(
dp

dx

)(
1−

r2

R2

)
2 �π rdr (11.7.b)

Some cleaning of ?? leads to

U = −
1

2µ

(
dp

dx

) ∫R
0

(
1−

r2

R2

)
r dr = −

R2

8µ

dp

dx
(11.7.c)

The answer is (a)

Example 11.8: Relationship Between Max to Mean Level: GATE 2010
Themaximumvelocity of a one–dimensional incompressible fully developed viscous

flow, between two fixed parallel plates, is 6 [m/s]. The mean velocity (in [m/s]) of the

flow is

(a) 2 (b) 3

(c) 4 (d) 5
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End of Ex. 11.8

Solution
The relation between the averaged and maximum velocity are provided to two different

configurations. For 2–D it is 2/3 that is Uave = 2/3Umax while the circular shape it is

Uave = 2Umax. Hence for Umax = 6 [m/s] for 2–D the averaged velocity U = 4 [m/s]

The answer is (c)

Example 11.9: Pipe Elevation: Level: GATE 2010
A smooth pipe of diameter 200 [mm] carries water. The pressure in the pipe at section

S1 (elevation: 10 [m]) is 50 [kPa]. At Section S2 (elevation: 12 [m]) the pressure is 20 kPa

and velocity is 2 [m/s]. Density of water is 1000 [kg/m3] and acceleration due to

gravity is 9.8 [m/s2] . Which of the following is TRUE?

1. the flow of S1 to S2 and heat loss is 0.53 [m]

2. the flow of S2 to S1 and heat loss is 0.53 [m]

3. the flow of S1 to S2 and heat loss is 1.06 [m]

4. the flow of S2 to S1 and heat loss is 1.06 [m]

Solution
Due to the fact that the pipe diameter is constant the velocity is constant throughout pipe

(incompressible flow). It direction of the flow is not know and it can be chosen arbitrary. If

the result is positive the guess was correct otherwise the flow to other direction. In this case,

here it is assumed that the flow is from S1 to S2. Utilzing Bernoulli’s equation reads (notice the

velocity is neglected)

hf =
P1
ρg

+ z1 −
P2
ρg

+ z2 = 1.06[m] (11.9.a)

The answer is (c).

Example 11.10: Oil Flow Level: GATE 2012
Oil flows through a 200 [mm] diameter horizontal cast iron pipe (friction factor 4 f

= 0.0225) of length 500 [m]. The volumetric flow rate is 0.2 [m3/s]. The head loss (in

m) due to friction is (assume g = 9.81 [m/s2] )

(a) 116.18 (b) 0.116

(c) 18.22 (d) 232.36

Solution
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End of Ex. 11.10
The velocity can be obtained by

U =
U

A
=
4Q

πD2
=
4× 0.2
π× 0.22 ∼ 6.37m/s (11.10.a)

The head loss is

hf =
4 L f

D

U2

2 g
(11.10.b)

Or

hf =
4× 500× 0.0223

0.2
× 6.372

2× 9.81 = 116.194[m] (11.10.c)

The Answer is (a).

Example 11.11: Pipe Shear Wall Level: GATE 2013
For steady, fully developed flow inside a straight pipe of diameterD, neglecting grav-

ity effects, the pressure drop ∆p over a length L and the wall shear stress τw are

related by

(a) τw =
∆pD

4L
(b) τw =

∆pD2

4 L2

(c) τw =
∆pD

2L
(d) τw =

4∆pL

D

Solution
For steady state (usually no acceleration) and neglecting the body forces results in the equal

driving forces to the resistance as

Aside ∆p = τwAperiphery (11.11.a)

or explicitly as

�πDA
2

4
∆p = τw �πZDL

(11.11.b)

Rearranging Eq. (11.11.c) yields

τw =
D∆p

4L
(11.11.c)

The answer is (a).

Example 11.12: Tab Jet Acceleration Level: GATE 2013
Water is coming out from a tap and falls vertically downwards. At the tap opening,

the stream diameter is 20 [mm] with uniform velocity of 2 [m/s]. Acceleration due to

gravity is 9.81 [m/s2] . Assuming steady, inviscid flow, constant atmospheric pressure

everywhere and neglecting curvature and surface tension effects, the diameter is mm

of the stream 0.5 [m] below the tap is approximately
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End of Ex. 11.12

(a) 10 (b) 15

(c) 20 (d) 25

Solution
The gravitation energy is converted into velocity and hence Bernoulli’s equation is used be-

tween the two points.

U2
2

2 g
+ h2 =

U1
2

2 g
+ h1 (11.12.a)

The velocity at point downstream is

U2
2

2 g
=
U1
2

2 g
+ h1 − h2 −−→ U2 =

√
U1
2 + 2 g (h1 − h2) (11.12.b)

Inserting the values to obtain

U2 =
√
22 + 2× 9.81× 0.5 = 3.716[m/s] (11.12.c)

The conservation of the mass reads

U2A2 = U1A1 −−→

πD2
2

4︷︸︸︷
A2 =

U1A1
U2

−−→ D2 =

√
U1D1

2

U2

(11.12.d)

and with the values it can be written that

D2 ∼

√
2

3.72
× 20 ∼ 15mm (11.12.e)

The answer is (b).

Without solving the problem it can be noticed the area at 2 must be reduced thus answers (c)

and (d) should be eliminated right away.



12
Inviscid Flow or Potential Flow

12.1 Introduction
Themathematical complication of the Naiver–Stokes equations suggests that a simplified ap-

proached can be employed. N–S equations are a second non–linear partial equations. Hence,

the simplest step will be to neglect the second order terms (second derivative). From a phys-

ical point of view, the second order term represents the viscosity effects. The neglecting

of the second order is justified when the coefficient in front of the this term, after non–

dimensionalzing, is approaching zero. This coefficient in front of this term is 1/Re where

Re is Reynold’s number. A large Reynolds number means that the coefficient is approaching

zero. Reynold’s number represents the ratio of inertia forces to viscous forces. There are

regions where the inertia forces are significantly larger than the viscous flow.

Experimental observations show that when the flow field region is away from a solid

body, the inviscid flow is an appropriate model to approximate the flow. In this way, the

viscosity effects can be viewed as a mechanism in which the information is transferred from

the solid body into depth of the flow field. Thus, in a very close proximity to the solid body,

the region must be considered as viscous flow. Additionally, the flow far away from the body

is an inviscid flow. The connection between these regions was proposed by Prandtl and it is

referred as the boundary layer.

The motivations or benefits for such analysis are more than the reduction of mathe-

matical complexity. As it was indicated earlier, this analysis provides an adequate solution

for some regions. Furthermore the Potential Flow analysis provides several concepts that ob-

scured by other effects. These flow patterns or pressure gradients reveal several “laws” such

441
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as Bernoulli’s theorem, vortex/lift etc which will be expanded. There are several unique con-

ceptswhich appear in potential flow such as AddMass, Add Force, andAddMoment of Inertia

otherwise they are obscured with inviscid flow. These aspects are very important in certain

regions which can be evaluated using dimensional analysis. The determination of what re-

gions or their boundaries is a question of experience or results of a sophisticated dimensional

analysis which will be discussed later.

The inviscid flow is applied to incompressible flow as well to compressible flow. How-

ever, themain emphasis here is on incompressible flow because the simplicity. The expansion

will be suggested when possible.

12.1.1 Inviscid Momentum Equations
The Naiver–Stokes equations (equations (8.118), (8.119) and (8.120)) under the discussion above

reduced to

ρ

(
∂Ux

∂t
+Ux

∂Ux

∂x
+Uy

∂Ux

∂y
+Uz

∂Ux

∂z

)
= −

∂P

∂x
+ ρgx

ρ

(
∂Uy

∂t
+Ux

∂Uy

∂x
+Uy

∂Uy

∂y
+Uz

∂Uy

∂z

)
= −

∂P

∂y
+ ρgy

ρ

(
∂Uz

∂t
+Ux

∂Uz

∂x
+Uy

∂Uz

∂y
+Uz

∂Uz

∂z

)
= −

∂P

∂z
+ ρgz

Euler Equations in Cartesian Coordinates

(12.1)

These equations (12.1) are known as Euler’s equations in Cartesian Coordinates. Euler equa-

tions can be written in a vector form as

ρ
DUUU
Dt

= −∇P −∇ ρggg ℓ (12.2)

where ℓℓℓ represents the distance from a reference point. Where the DUUU/Dt is the material

derivative or the substantial derivative. The substantial derivative, in Cartesian Coordinates,

is

DUUU
Dt

= iii
(
∂Ux

∂t
+Ux

∂Ux

∂x
+Uy

∂Ux

∂y
+Uz

∂Ux

∂z

)

+ jjj
(
∂Uy

∂t
+Ux

∂Uy

∂x
+Uy

∂Uy

∂y
+Uz

∂Uy

∂z

)

+kkk
(
∂Uz

∂t
+Ux

∂Uz

∂x
+Uy

∂Uz

∂y
+Uz

∂Uz

∂z

)
(12.3)

In the following derivations, the identity of the partial derivative is used

Ui
∂Ui
∂i

=
1

2

∂ (Ui)
2

∂i
(12.4)
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where in this case i is x, y, and z. The convective term (not time derivatives) in x direction of

equation (12.3) can be manipulated as

Ux
∂Ux

∂x
+Uy

∂Ux

∂y
+Uz

∂Ux

∂z
=
1

2

∂ (Ux)
2

∂x
+

Uy

(
∂Ux

∂y
−
∂Uy

∂x

)

︷ ︸︸ ︷ Uz

(
∂Ux

∂z
−
∂Uz

∂x

)

︷ ︸︸ ︷Uy
∂Uy

∂x︷ ︸︸ ︷
1

2

∂ (Uy)
2

∂x
−Uy

∂Uy

∂x︸ ︷︷ ︸
=0

+Uy
∂Ux

∂y
+

Uz
∂Uz

∂x︷ ︸︸ ︷
1

2

∂ (Uz)
2

∂x
−Uz

∂Uz

∂x︸ ︷︷ ︸
=0

+Uz
∂Ux

∂z
(12.5)

It can be noticed that equation (12.5) several termswere added and subtracted according

to equation (12.4). These two groups are marked with the underbrace and equal to zero. The

two terms in blue of equation (12.5) can be combined (see for the overbrace). The same can

be done for the two terms in the red–violet color. Hence, equation (12.5) by combining all the

“green” terms can be transformed into

Ux
∂Ux

∂x
+Uy

∂Ux

∂y
+Uz

∂Ux

∂z
=
1

2

∂ (Ux)
2

∂x
+
1

2

∂ (Uy)
2

∂x
+
1

2

∂ (Uz)
2

∂x
+

Uy

(
∂Ux

∂y
−
∂Uy

∂x

)
+Uz

(
∂Ux

∂z
−
∂Uz

∂x

)
(12.6)

The, “green” terms, all the velocity components can be combined because of the

Pythagorean theorem to form

1

2

∂ (Ux)
2

∂x
+
1

2

∂ (Uy)
2

∂x
+
1

2

∂ (Uz)
2

∂x
=
∂ (UUU)2

∂x
(12.7)

Hence, equation (12.6) can be written as

Ux
∂Ux

∂x
+Uy

∂Ux

∂y
+Uz

∂Ux

∂z
=
∂ (UUU)2

∂x

+Uy

(
∂Ux

∂y
−
∂Uy

∂x

)
+Uz

(
∂Ux

∂z
−
∂Uz

∂x

)
(12.8)

In the same fashion equation for y direction can be written as

Ux
∂Uy

∂x
+Uy

∂Uy

∂y
+Uz

∂Uy

∂z
=
∂ (UUU)2

∂y

+Ux

(
∂Uy

∂x
−
∂Ux

∂y

)
+Uz

(
∂Uy

∂z
−
∂Uz

∂y

)
(12.9)
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and for the z direction as

Ux
∂Uz

∂x
+Uy

∂Uz

∂y
+Uz

∂Uz

∂z
=
∂ (UUU)2

∂y

+Ux

(
∂Uz

∂x
−
∂Ux

∂z

)
+Uy

(
∂Uz

∂y
−
∂Uy

∂z

)
(12.10)

Hence equation (12.3) can be written as

DUUU
Dt

= iii

(
∂Ux

∂t
+
∂ (UUU)2

∂x
+Uy

(
∂Ux

∂y
−
∂Uy

∂x

)
+Uz

(
∂Ux

∂z
−
∂Uz

∂x

))

+ jjj

(
∂Uy

∂t
+
∂ (UUU)2

∂y
+Ux

(
∂Uy

∂x
−
∂Ux

∂y

)
+Uz

(
∂Uy

∂z
−
∂Uz

∂y

))

+kkk

(
∂Uz

∂t
+
∂ (UUU)2

∂y
+Ux

(
∂Uz

∂x
−
∂Ux

∂z

)
+Uy

(
∂Uz

∂y
−
∂Uy

∂z

))
(12.11)

All the time derivatives can be combined also the derivative of the velocity square (notice the

color coding) as

DUUU
Dt

=
∂UUU

∂t
+∇ (UUU)2 + i

(
Uy

(
∂Ux

∂y
−
∂Uy

∂x

)
+Uz

(
∂Ux

∂z
−
∂Uz

∂x

))

+ j

(
Ux

(
∂Uy

∂x
−
∂Ux

∂y

)
+Uz

(
∂Uy

∂z
−
∂Uz

∂y

))

+ k
(
Ux

(
∂Uz

∂x
−
∂Ux

∂z

)
+Uy

(
∂Uz

∂y
−
∂Uy

∂z

))
(12.12)

Using vector notation the terms in the parenthesis can be represent as

curlUUU = ∇×UUU = iii
(
∂Uz

∂y
−
∂Uy

∂z

)
+ jjj

(
∂Ux

∂z
−
∂Uz

∂x

)

+kkk
(
∂Uy

∂x
−
∂Ux

∂y

)
(12.13)

With the identity in (12.13) can be extend as

UUU×∇×UUU = −iii

(
Uy

(
∂Ux

∂y
−
∂Uy

∂x

)
+Uz

(
∂Ux

∂z
−
∂Uz

∂x

))

− jjj

(
Ux

(
∂Uy

∂x
−
∂Ux

∂y

)
+Uz

(
∂Uy

∂z
−
∂Uz

∂y

))

−kkk

(
Ux

(
∂Uz

∂x
−
∂Ux

∂z

)
+Uy

(
∂Uz

∂y
−
∂Uy

∂z

))
(12.14)



12.1. INTRODUCTION 445

The identity described in equation (12.14) is substituted into equation (12.12) to obtain the form

of

DUUU
Dt

=
∂UUU
∂t

+∇ (UUU)2 −UUU ×∇×UUU (12.15)

Finally substituting equation (12.15) into the Euler equation to obtain a more convenient form

as

ρ

(
∂UUU
∂t

+∇ (UUU)2 −UUU ×∇×UUU
)

= −∇P −∇ ρggg ℓ (12.16)

A common assumption that employed in an isothermal flow is that density, ρ, is a mere

function of the static pressure, ρ = ρ(P). According to this idea, the density is constant when

the pressure is constant. The mathematical interpretation of the pressure gradient can be

written as

∇P =
dP

dn
n̂ (12.17)

where n̂ is an unit vector normal to surface of constant property and the derivative d /dn

refers to the derivative in the direction of n̂. Dividing equation (12.17) by the density, ρ, yields

∇P
ρ

=
1

dn

dP

ρ
n̂ =

1

dn

zero

net

effect︷︸︸︷
d

∫ (
dP

ρ

)
n̂ =

d

dn

∫ (
dP

ρ

)
n̂ = ∇

∫ (
dP

ρ

)
(12.18)

It can be noticed that taking a derivative after integration cancel both effects. The derivative

in the direction of n̂ is the gradient. This function is normal to the constant of pressure, P,

and therefore

∫
(dP/ ρ) is function of the mere pressure.

Substituting equation (12.18) into equation (12.16) and collecting all terms under the gra-

dient yields

∂UUU
∂t

+∇
(
UUU2

2
+ggg ℓ+

∫ (
dP

ρ

))
= UUU ×∇×UUU (12.19)

The quantity∇×UUU is referred in the literature as the vorticity and it represents the rotation

of the liquid.

Ω ≡ ∇×UUU

Vorticity Definition

(12.20)
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Example 12.1: Vorticity Field Level: Basic
Using the equation for vorticity calculate this quantity for the velocity field.

U = Ay sin(y z) î+Ax [sin(y z) + y z cos(y z)] ĵ+
(
Axy2 cos(y z)

)
k̂ (12.1.a)

Where A in this case is a constant.

Is the flow rotational or not?

Solution

ω⃗ωω = ∇× U⃗UU =

(
∂Uz

∂y
−
∂Uy

∂z

)
î+

(
∂Ux

∂z
−
∂Uz

∂x

)
ĵ+

(
∂Uy

∂x
−
∂Ux

∂y

)
k̂ (12.1.b)

The velocities components are substitute into the equation

(
∂
(
Axy2 cos(y z)

)

∂y
−
∂ (Ax [sin(y z) + y z cos(y z)])

∂z

)
î+

(
∂ (Ay sin(y z))

∂z
−
∂
(
Axy2 cos(y z)

)

∂x

)
ĵ+

(
∂ (Ax [sin(y z) + y z cos(y z)])

∂x
−
∂ (Ay sin(y z))

∂y

)
k̂ (12.1.c)

For x coordinate the results are

(
2Axy cos(y z) −Axy2 z sin(y z) −Axy cos(y z)−

Axy cos(y z) +Axy2 z sin(y z)

)
î+

(
Ay2 cos(y z) −Ay2 cos(y z)

)
ĵ+

(
A [sin(y z) + y z cos(y z)] −A sin(y z) −Ayz cos(y z)

)
k̂ (12.1.d)

which results in

ω⃗ωω = 0 î+ 0 ĵ+ 0 k̂ (12.1.e)

Hence the flow is not rotational.



12.1. INTRODUCTION 447

The definition (12.20) substituted into equation (12.19) provides

∂UUU
∂t

+∇
(
UUU2

2
+ggg ℓ+

∫ (
dP

ρ

))
= UUU ×Ω

Euler Equation or Inviscid Flow

(12.21)

One of the fundamental condition is referred to as irrotational flow. In this flow, the

vorticity is zero in the entire flowfield. Hence, equation (12.21) under irrotational flow reduced

into

∂UUU
∂t

+∇
(
UUU2

2
+ggg ℓ+

∫ (
dP

ρ

))
= 0

Bernoulli Equation

(12.22)

For steady state condition equation (12.24) is further reduced when the time derivative drops

and carry the integration (to cancel the gradient) to became

UUU2

2
+ggg ℓ+

∫ (
dP

ρ

)
= c

Steady State Bernoulli Equation

(12.23)

It has to be emphasized that the symbol ℓ denotes the length in the direction of the body force.

For the special case where the density is constant, the Bernoulli equation is reduced to

UUU2

2
+ggg ℓ+

P

ρ
= c

Constant Density Steady State Bernoulli Equation

(12.24)

The streamline is a line tangent to velocity vector. For the unsteady state the streamline

change their location or position. The direction derivative along the streamline depends the

direction of the streamline. The direction of the tangent is

ℓ̂ =
UUU

U
(12.25)

Multiplying equation (12.21) by the unit direction of the streamline as a dot product results in

UUU
U

· ∂UUU
∂t

+
UUU
U

· ∇
(
UUU2

2
+ggg ℓ+

∫ (
dP

ρ

))
=

UUU
U

·UUU ×Ω (12.26)

The partial derivative of any vector, Υ, with respect to time is the same direction as the unit

vector. Hence, the product of multiplication of the partial derivative with an unit vector is

∂Υ

∂ℓ
·
(̂
Υ

Υ

)
=
∂Υ

∂ℓ
(12.27)
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where Υ is any vector and Υ its magnitude. The right hand side of equation (12.26) UUU×Ω

is perpendicular to both vectorsUUU andΩ. Hence, the dot product of vectorUUU with a vector

perpendicular to itself must be zero. Thus equation (12.26) becomes

∂UUU
∂t

+

UUU
U

·∇︷︸︸︷
d

dℓ

(
UUU2

2
+ggg ℓ+

∫ (
dP

ρ

))
=

=0︷ ︸︸ ︷
UUU
U

·UUU ×Ω (12.28)

or

∂UUU
∂t

+
d

dℓ

(
UUU2

2
+ggg ℓ+

∫ (
dP

ρ

))
= 0 (12.29)

The first time derivative of equation (12.28) can be manipulated as it was done before to get

into derivative as

∂UUU

∂t
=
d

dℓ

∫
∂UUU

∂t
dℓ (12.30)

Substituting into equation (12.28) writes

d

dℓ

(
∂UUU
∂t

+
UUU2

2
+ggg ℓ+

∫ (
dP

ρ

))
= 0 (12.31)

The integration with respect or along stream line, “ℓ” is a function of time (similar integration

with respect x is a function of y.) and hence equation (12.28) becomes

∂UUU
∂t

+
UUU2

2
+ggg ℓ+

∫ (
dP

ρ

)
= f(t)

Bernoulli On A Streamline

(12.32)

In these derivations two cases where analyzed the first case, for irrotational Bernoulli’s

equation is applied any where in the flow field. This requirement means that the flow field

must obey UUU ×Υ. The second requirement regardless whether the flow is irrotational or

not, must be along a streamline where the value is only function of the time and not location.

The confusion transpires because these two cases are referred as the Bernoulli equation while

they refer to two different conditions or situations
1
. For both Bernoulli equations the viscosity

must be zero.

12.2 Potential Flow Function
The two different Bernoulli equations suggest that some mathematical manipulations can

provide several points of understating. These mathematical methods are known as potential

1
It is interesting to point out that these equations where developed by Euler but credited to the last D. Bernoulli.

A discussion on this point can be found in Hunter’s book at Rouse, Hunter, and Simon Ince. History of hydraulics.

Vol. 214. Ann Arbor, MI: Iowa Institute of Hydraulic Research, State University of Iowa, 1957.
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flow. The potential flow is defined as the gradient of the scalar function (thus it is a vector) is

the following

UUU ≡ ∇ϕ (12.33)

The potential function is three dimensional and time dependent in the most expanded case.

The vorticity was supposed to be zero for the first Bernoulli equation. According to the defi-

nition of the vorticity it has to be

Ω = ∇×UUU = ∇×∇ϕ (12.34)

The above identity is shown to be zero for continuous function as

∇×

∇ϕ︷ ︸︸ ︷(
i
∂ϕ

∂x
+ j
∂ϕ

∂y
+ k

∂ϕ

∂z

)
= i
(
∂2ϕ

∂y∂z
−
∂2ϕ

∂z∂y

)

+ j
(
∂2ϕ

∂z∂x
−
∂2ϕ

∂x∂z

)
+ k

(
∂2ϕ

∂y∂x
−
∂2ϕ

∂x∂y

)
(12.35)

According to Clairaut’s theorem (or Schwarz’s theorem)
2
the mixed derivatives are identi-

cal ∂xy = ∂yx. Hence every potential flow is irrotational flow. On the reverse side, it can

be shown that if the flow is irrotational then there is a potential function that satisfies the

equation (12.33) which describes the flow. Thus, every irrotational flow is potential flow and

conversely. In these two terms are interchangeably and no difference should be assumed.

Substituting equation (12.33) into (12.24) results in

∂∇ϕ
∂t

+∇
(
(∇ϕ)2
2

+ggg ℓ+
∫ (

dP

ρ

))
= 0 (12.36)

It can be noticed that the order derivation can be changed so

∂∇ϕ
∂t

= ∇∂ϕ

∂t
(12.37)

Hence, equation (12.36) can be written as

∇
(
∂ϕ

∂t
+

(∇ϕ)2
2

+ggg ℓ+
∫ (

dP

ρ

))
= 0 (12.38)

The integration with respect the space and not time results in the

∂ϕ

∂t
+

(∇ϕ)2
2

+ggg ℓ+
∫ (

dP

ρ

)
= f(t)

Euler Equation or Inviscid Flow

(12.39)

2
Hazewinkel, Michiel, ed. (2001), “Partial derivative,” Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-

010-4
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Example 12.2: Velocity Potential Function Level: Basic
The potential function is given byϕ = x2−y4+5. Calculate the velocity component

in Cartesian Coordinates.

Solution
The velocity can be obtained by applying gradient on the potentialUUU = ∇ϕ as

Ux =
∂ϕ

∂x
= 2 x

Uy =
∂ϕ

∂y
= −4 y3

Uz =
∂ϕ

∂z
= 0

(12.2.a)

12.2.1 Streamline and Stream function
The streamline was mentioned in the earlier section and now the focus is on this issue. A

streamline is a line that represent the collection of all the point where the velocity is tangent

to the velocity vector. Equation (12.25) represents the unit vector. The total differential is made

of three components as

ℓ̂ = î
Ux

U
+ ĵ

Uy

U
+ k̂

Uz

U
= î

dx

dℓ
+ ĵ

dy

dℓ
+ k̂

dz

dℓ
(12.40)

It can be noticed that dx /dℓ is x component of the unit vector in the direction of x. The

discussion proceed from equation (12.40) that

Ux

dx
=
Uy

dy
=
Uz

dz
(12.41)

Equation (12.41) suggests a system of three ordinary differential equations as a way to find the

stream function. For example, in the x–y plane the ordinary differential equation is

dy

dx
=
Uy

Ux
(12.42)

Example 12.3: What Steamlines Level: Simple
What are streamlines that should be obtained in Example 12.2.

Solution
Utilizing equation (12.42) results in

dy

dx
=
Uy

Ux
=

−4 y3

2 x
(12.3.a)
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End of Ex. 12.3
The solution of the non–linear ordinary differential obtained by separation of variables as

−
dy

2y3
=
dx

2 x
(12.3.b)

The solution of equation streamLineSimple:separation is obtained by integration as

1

4 y2
= ln x+C (12.3.c)

From the discussion above it follows that streamlines

are continuous if the velocity field is continuous. Hence,

several streamlines can be drawn in the field as shown

in Figure 12.1. If two streamline (blue) are close an ar-

bitrary line (brown line) can be drawn to connect these

lines. A unit vector (cyan) can be drawn perpendicularly

to the brown line. The velocity vector is almost paral-

lel (tangent) to the streamline (since the streamlines are

very close) to both streamlines. Depending on the ori-

entation of the connecting line (brown line) the direc-

tion of the unit vector is determined. Denoting a stream

function asψwhich in the two dimensional case is only

function of x,y, that is

xxx

yyy

UUU

111

ψ1

ψ2

222

dddℓ

α

ŝ

Fig. 12.1 – Streamlines to explain
stream function.

ψ = f (x,y) =⇒ dψ =
∂ψ

∂x
dx+

∂ψ

∂y
dy (12.43)

In this stage, no meaning is assigned to the stream function. The differential of stream func-

tion is defied as

dψ = UUU · ŝ dℓ (12.44)

The term ,dℓ refers to a small straight element line connecting two streamlines close to each

other. It could be viewed as a function as some representing the accumulative of the velocity.

The physical meaning is needed to be connected with the previous discussion of the two

dimensional function. If direction of the ℓ is chosen in a such away that it is in the direction

of x as shown in Figure 12.2a. In that case the ŝ in the direction of −ĵ as shown in the Figure

12.2a. In this case, the stream function differential is

dψ =
∂ψ

∂x
dx+

∂ψ

∂y
dy =

(
îUUUx + ĵUUUy

)
·


−

ŝ︷︸︸︷
ĵ




dℓ︷︸︸︷
dx = −UUUy dx (12.45)

In this case, the conclusion is that

∂ψ

∂x
= −UUUy (12.46)
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xxx

yyy

UUU

111

ψ1

ψ2

222

dddℓ

α

ŝ

(a) Streamlines with element in X direction.

xxx

yyy

UUU

111 ψ1

ψ2

222

dddℓ

α

ŝ

(b) Streamlines with straight in Y direction.

Fig. 12.2 – Streamlines with different element in different direction to explain the stream function.

On the other hand, if dℓ in the y direction as shown in Figure 12.2b then ŝ = îii as shown
in the Figure.

dψ =
∂ψ

∂x
dx+

∂ψ

∂y
dy =

(
îUUUx + ĵUUUy

)
·




ŝ︷︸︸︷
î




dℓ︷︸︸︷
dy = UUUx dy (12.47)

In this case the conclusion is the

∂ψ

∂y
= UUUx (12.48)

Thus, substituting equation (12.46) and (12.48) into (12.43) yields

UUUx dy−UUUy dx = 0 (12.49)

It follows that the requirement onUUUx andUUUy have to satisfy the above equationwhich leads to

the conclusion that the full differential is equal to zero. Hence, the function must be constant

ψ = 0.

It also can be observed that the continuity equation can be represented by the stream

function. The continuity equation is

∂UUUx

dx
+
∂UUUy

dy
= 0 (12.50)

Substituting for the velocity components the stream function equation (12.46) and (12.46) yields

∂2ψ

dxdy
−
∂2ψ

dydx
= 0 (12.51)

In addition the flow rate, Q̇ can be calculated across a line. It can be noticed that flow

rate can be calculated as the integral of the perpendicular component of the velocity or the
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perpendicular component of the cross line as

Q̇ =

∫2
1
UUU · ŝ dℓ (12.52)

According the definition dψ it is

Q̇ =

∫2
1
UUU · ŝ dℓ =

∫2
1
dψ = ψ2 −ψ1 (12.53)

Hence the flow rate is represented by the value of the stream function. The difference

between two stream functions is the actual flow rate.

In this discussion, the choice of the coordinates orientation was arbitrary. Hence equa-

tions (12.46) and (12.48) are orientation dependent. The natural direction is the shortest dis-

tance between two streamlines. The change between two streamlines is

dψ = UUU · n̂ dn =⇒ dψ = Udn =⇒ dψ

dn
= U (12.54)

where dn is dℓ perpendicular to streamline (the shortest possible dℓ.

The stream function properties can be summarized to satisfy the continuity equation,

and the difference two stream functions represent the flow rate. A by–product of the previous

conclusion is that the stream function is constant along the stream line. This conclusion also

can be deduced from the fact no flow can cross the streamline.

12.2.2 Compressible Flow Stream Function
The stream function can be defined also for the compressible flow substances and steady state.

The continuity equation is used as the base for the derivations. The continuity equation for

compressible substance is

∂ρUUUx

dx
+
∂ρUUUy

dy
= 0 (12.55)

To absorb the density, dimensionless density is inserted into the definition of the stream func-

tion as

∂ψ

dy
=
ρUx

ρ0
(12.56)

and

∂ψ

dx
= −

ρUy

ρ0
(12.57)

Where ρ0 is the density at a location or a reference density. Note that the new stream function

is not identical to the previous definition and they cannot be combined.

The stream function, as it was shown earlier, describes (constant) stream lines. Using

the same argument in which equation (12.46) and equation (12.48) were developed leads to
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equation (12.49) and there is no difference between compressible flow and incompressible flow

case. Substituting equations (12.56) and (12.57) into equation (12.49) yields

(
∂ψ

∂y
dy+

∂ψ

∂x
dx

)
ρ0
ρ

=
ρ0
ρ
dψ (12.58)

Equation suggests that the stream function should be redefined so that similar expressions to

incompressible flow can be developed for the compressible flow as

dψ =
ρ0
ρ
UUU · ŝ dℓ (12.59)

With the new definition, the flow crossing the line 1 to 2, utilizing the new definition of (12.59)

is

ṁ =

∫2
1
ρUUU · ŝ d ′ℓ = ρ0

∫2
1
dψ = ρ0 (ψ2 −ψ1) (12.60)

12.2.2.1 Stream Function in a Three Dimensions

Pure three dimensional stream functions exist physically but at present there is no knownway

to represent thenmathematically. One of theways thatwas suggested byYih in 1957
3
suggested

using two stream functions to represent the three dimensional flow. The only exception is a

stream function for three dimensional flow exists but only for axisymmetric flow i.e the flow

properties remains constant in one of the direction (say z axis).

Advance material can be skipped

The three dimensional representation is based on the fact the continuity equationmust

be satisfied. In this case it will be discussed only for incompressible flow. The ∇UUU = 0

and vector identity of ∇ · ∇UUU = 0 where in this case UUU is any vector. As opposed to two

dimensional case, the stream function is defined as a vector function as

BBB = ψ∇ξ (12.61)

The idea behind this definition is to build stream function based on two scalar functions one

provide the “direction” and one provides the magnitude. In that case, the velocity (to satisfy

the continuity equation)

UUU = ∇× (ψ∇χ) (12.62)

whereψ andχ are scalar functions. Notewhileψ is used here is not the same stream functions

that were used in previous cases. The velocity can be obtained by expanding equation (12.62)

to obtained

UUU = ∇ψ×∇χ+ψ
=0︷ ︸︸ ︷

∇× (∇χ) (12.63)

3

1. C.S. Yih “Stream Functions in Three–Dimensional Flows,” La houille blanche, Vol 12. 3 1957

2. Giese, J.H. 1951. “Stream Functions for Three–Dimensional Flows”, J. Math. Phys., Vol.30, pp. 31-35.
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The second term is zero for any operation of scalar function and hence equation (12.63) be-

comes

UUU = ∇ψ×∇χ (12.64)

These derivations demonstrates that the velocity is orthogonal to two gradient vectors. In

another words, the velocity is tangent to the surfaces defined by ψ = constant and χ =

constant. Hence, these functions,ψ and χ are possible stream functions in three dimensions

fields. It can be shown that the flow rate is

Q̇ = (ψ2 −ψ1) (χ− χ1) (12.65)

The answer to the question whether this method is useful and effective is that in some limited

situations it could help. In fact, very few research papers deals this method and currently

there is not analytical alternative. Hence, this method will not be expanded here.

End Advance material

12.2.3 The Connection Between the Stream Function and the Poten-
tial Function

For this discussion, the situation of two dimensional incompressible is assumed. It was shown

that

UUUx =
∂ϕ

∂x
=
∂ψ

∂y

Velocity from Stream/Potential Function x

(12.66)

and

UUUy =
∂ϕ

∂y
= −

∂ψ

∂x

Velocity from Stream/Potential Function y

(12.67)

These equations (12.66) and (12.67) are referred to as the Cauchy–Riemann equations.

Definition of the potential function is based on the gradient operator asUUU = ∇ϕ thus

derivative in arbitrary direction can be written as

dϕ

ds
= ∇ϕ · ŝ = UUU · ŝ (12.68)

where ds is arbitrary direction and ŝ is unit vector in that direction. If s is selected in the

streamline direction, the change in the potential function represent the change in streamline

direction. Choosing element in the direction normal of the streamline and denoting it as

dn and choosing the sign to possible in the same direction of the stream function it follows

that
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U =
dϕ

ds
(12.69)

If the derivative of the stream function is chosen in the

direction of the flow then as in was shown in equation

(12.54). It summarized as

dϕ

ds
=
dψ

dn
(12.70)

There are several conclusions that can be drawn

from the derivations above. The conclusion from

Eq. (12.70) that the stream line are orthogonal to

UUU

xxx

yyy

111

φ1

φ
=
co
ns
ta
nt

dn

ψ1

ψ2
ds

ψ
=
constant

222

φ2

Fig. 12.3 – Constant Stream lines
and Constant Potential lines.

potential lines. Since the streamline represent constant value of stream function it follows

that the potential lines are constant as well. The line of constant value of the potential are

referred as potential lines.
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Fig. 12.4 – Stream lines and potential lines are drawn as drawn for two dimensional flow. The green
to green–turquoise color are the potential lines. Note that opposing quadrants (first and third
quadrants) have the same colors. The constant is larger as the color approaches the turquoise
color. Note there is no constant equal to zerowhile for the stream lines the constant can be zero.
The stream line are described by the orange to blue lines. The orange lines describe positive
constant while the purple lines to blue describe negative constants. The crimson line are for
zero constants.4

Figure 12.4 describes almost a standard case of stream lines and potential lines.

Example 12.4: 2D Steam Function Level: Basic
A two dimensional stream function is given as ψ = x4 − y2. Calculate the expres-

sion for the potential function ϕ (constant value) and sketch the streamlines lines (of

constant value).

Solution
Utilizing the differential equation (12.66) and (12.67) to

∂ϕ

∂x
=
∂ψ

∂y
= −2 y (12.4.a)

Integrating with respect to x to obtain

ϕ = −2 x y+ f(y) (12.4.b)

where f(y) is arbitrary function of y. Utilizing the other relationship ((12.66)) leads

∂ϕ

∂y
= −2 x+

d f(y)

dy
= −

∂ψ

∂x
= −4 x3 (12.71)

Therefore

d f(y)

dy
= 2 x− 4 x3 (12.72)

After the integration the function ϕ is

ϕ =
(
2 x− 4 x3

)
y+ c (12.4.c)

The results are shown in Figure

4
This Figure was part of a project by Eliezer Bar-Meir to learn GLE graphic programming language.
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End of Ex. 12.4
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φ = (2x − 4x3) y ψ = x4 − y2

Fig. 12.5 – Stream lines and potential lines for Example 12.4.

12.2.3.1 Existences of Stream Functions

The potential function in order to exist has to have demised vorticity. For two dimensional

flow the vorticity, mathematically, is demised when

∂Ux

∂y
−
∂Ux

∂x
= 0 (12.73)

The stream function can satisfy this condition when

∂

∂y

(
∂ψ

∂y

)
+
∂

∂x

(
∂ψ

∂x

)
= 0 =⇒ ∂2ψ

∂y2
+
∂2ψ

∂x2
= 0

Stream Function Requirements

(12.74)
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Example 12.5: Is the Potential Level: Basic
Is there a potential based on the following stream function

ψ = 3 x5 − 2 y (12.5.a)

Solution
Equation (12.74) dictates what are the requirements on the stream function. According to this

equation the following must be zero

∂2ψ

∂y2
+
∂2ψ

∂x2
?
= 0 (12.5.b)

In this case it is

0
?
= 0+ 60 x3 (12.5.c)

Since x3 is only zero at x = 0 the requirement is fulfilled and therefore this function cannot

be appropriate stream function.

12.3 Potential Flow Functions Inventory
This section describes several simple scenarios of the flow field. These flow fields will be

described and exhibits utilization of the potential and stream functions. These flow fields can

be combined by utilizing superimposing principle.

Uniform Flow

The trivial flow is the uniform flow in which the fluid field moves directly and uni-

formly from one side to another side. This flow is further simplified, that is the coordinates

system aligned with to flow so the x–coordinate in the direction of the flow. In this case the

velocity is given by

Ux = U0

Uy = 0

(12.75)

and according to definitions in this chapter

Ux =
∂ϕ

∂x
=
∂ψ

∂y
= U0 (12.76)

Hence, it can be obtained that

ϕ = U0 x+ fy(y)

ψ = U0 x+ fx(x)

(12.77)
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where fy(y) is arbitrary function of the y and fx(x) is arbitrary function of x. In the same

time these function have to satisfy the condition

Uy =
∂ϕ

∂x
and −

∂ψ

∂x
= 0 (12.78)

These conditions dictate that

d fy(y)

dy
= 0

d fx(x)

dx
= 0

(12.79)

Hence

fy(y) = constant =⇒ ϕ = U0 x+ constant (12.80a)

fx(x) = constant =⇒ ψ = U0 y+ constant (12.80b)

These lines can be exhibits for various constants as shown in Figure below.
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Fig. 12.6 – Uniform flow streamlines and potential lines.

Line Source and Sink Flow
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Another typical flow is a flow from a

point or a line in a two dimensional field. This

flow is only an idealization of the flow into a

single point. Clearly this kind of flow cannot

exist because the velocity approaches infinity

at the singular point of the source. Yet this

idea has its usefulness and is commonly used

bymany engineers. This idea can be combined

with other flow fields and provide a more re-

alistic situation.

The volumetric flow rate (two dimen-

sional) Q̇ denotes the flow rate out or in to

control volume into the source or sink. The

flow rate is shown in Figure 12.7 is constant for

every potential line. The flow rate can be de-

termined by

-1.0-3.0-5.0-7.0-9.0 1.0 3.0 5.0 7.0 9.0
-2.0

-4.0

-6.0

-8.0

1.0

3.0

5.0

7.0

9.0

φ = const

ψ = const

ψ = 0

Fig. 12.7 – Streamlines and potential lines
due to source or sink.

Q̇ = 2 π rUr (12.81)

Where Q̇ is the volumetric flow rate, r is distance from the origin and Ur is the velocity

pointing out or into the origin depending whether origin has source or sink. The relationship

between the potential function to velocity dictates that

∇ϕ = UUU = U r̂ =
Q̇

2 π r
r̂ (12.82)

Explicitly writing the gradient in cylindrical coordinate results as

∂ϕ

∂r
r̂ +

1

r

∂ϕ

∂θ
θ̂+

∂ϕ

∂z
ẑ =

Q̇

2 π r
r̂ + 0 θ̂+ 0 ẑ (12.83)

Equation (12.83) the gradient components must satisfy the following

∂ϕ

∂r
=

Q̇

2 π r
r̂

∂ϕ

∂z
=
∂ϕ

∂θ
= 0

(12.84)

The integration of equation results in

ϕ−ϕ0 =
Q̇

2 π r
ln
r

r0
(12.85)

where r0 is the radius at a known point and ϕ0 is the potential at that point. The stream

function can be obtained by similar equations that were used or Cartesian coordinates. In the

same fashion it can be written that

dψ = UUU···ŝ dℓ (12.86)
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Where in this case dℓ = r dθ (the shortest distance between two adjoining stream lines is

perpendicular to both lines) and hence equation (12.86) is

dψ = UUU··· r dθ r̂̂r̂r =
Q̇

2 π r
r dθ =

Q̇

2 π
dθ (12.87)

Note that the direction ofUUU and r̂̂r̂r is identical. The integration of equation (12.87) yields

ψ−ψ0 =
Q̇

2 π r
(θ− θ0) (12.88)

It traditionally chosen that the stream functionψ0 is zero at θ = 0. This operation is possible

because the integration constant and the arbitrary reference.

In the case of the sink rather than the source, the velocity is in the opposite direction.

Hence the flow rate is negative and the same equations obtained.

ϕ−ϕ0 = −
Q̇

2 π r
ln
r

r0
(12.89)

ψ−ψ0 = −
Q̇

2 π r
(θ− θ0) (12.90)

Free Vortex Flow

As opposed to the radial flow direction (which

was discussed under the source and sink) the

flow in the tangential direction is referred to as

the free vortex flow. Another typical name for

this kind of flow is the potential vortex flow.

The flow is circulating the origin or another

point. The velocity is only a function of the

distance from the radius as

Uθ = f(r) (12.91)

And in vector notation the flow is

UUU = θ̂ f(r) (12.92)

1.0 3.0 5.0 7.0

1.0

3.0

5.0

7.0

U

φ = const

ŝ = −θ̂

ψ = const

φ = 0

Fig. 12.8 – Two dimensional Vortex free flow.
In the diagram exhibits part the circle
to explain the stream lines and potential
lines.

The fundamental aspect of the potential flow is that this flow must be irrotational flow. The

gradient of the potential in cylindrical coordinates is

UUU = ∇ϕ =
∂ϕ

∂r
r̂rr +

1

r

∂ϕ

∂θ
„̂„„ (12.93)
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Hence, equation (12.93) dictates that

1

r

∂ϕ

∂θ
= f(r)

∂ϕ

∂r
= 0

(12.94)

From these equations it can be seem that

ϕ = ϕ(θ) (12.95)

and

∂ϕ

∂θ
= r f(r) (12.96)

Equation (12.96) states that the potential function depends on the angle, θwhile it also a func-

tion of the radius. The only what the above requirement is obtained when the derivative of

ϕand the equation are equal to a constant. Thus,

r f(r) = c =⇒ f(r) =
c

r

∂ϕ

∂θ
= c =⇒ ϕ−ϕ0 = c1 (0− θ0)

(12.97)

It can be observed from equation (12.96) that the velocity varies inversely with the radius. This

variation is referred in the literature as the natural vortex as oppose to forced vortex where

the velocity varies in any different functionality. It has to be noted that forced vortex flow is

not potential flow.

The stream function can be found in the “standard” way as

dψ = UUU ··· ŝ dr

It can observed, in this case, from Figure 12.8 that ŝ = −„̂„„ hence

dψ = „̂„„
c1
r
··· (−„̂„„)dr = c1

dr

r
(12.98)

Thus,

ψ−ψ0 = −c1 ln
(
r

r0

)
(12.99)

The source point or the origin of the source is a singular point of the stream function and

there it cannot be properly defined. Equation (12.97) dictates that velocity at the origin is in-

finity. This similar to natural situation such as tornadoes, hurricanes, and whirlpools where

the velocity approaches a very large value near the core. In these situation the pressure be-

came very low as the velocity increase. Since the pressure cannot attain negative value or
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even approach zero value, the physical situation changes. At the core of these phenomenon a

relative zone calm zone is obtained.

The Circulation Concept
In the construction of the potential flow or the inviscid flow researchers discover im-

portant concept of circulation. This term mathematically defined as a close path integral

around area (in two dimensional flow) of the velocity along the path.

The circulation is denoted as Γ and defined as

Γ =

∮
UUUs ds (12.100)

Where the velocity UUUs represents the velocity compo-

nent in the direction of the path. The symbol

∮
indicat-

ing that the integral in over a close path. Mathematically

to obtain the integral the velocity component in the di-

rection of the path has to be chosen and it can be defined

as

xxx

yyy UUU

C

dsdsds
UsUsUs

Fig. 12.9 –Circulationpath to illus-
trate varies calculations.

Γ =

∮
C

UUU ··· d̂sdsds (12.101)

Substituting the definition potential function into equation (12.101) provides

Γ =

∮
C
∇∇∇ϕ ···

d̂sdsds︷︸︸︷
ŝssds (12.102)

And using some mathematical manipulations yields

Γ =

∮
C

∇ϕ ··· ŝss︷︸︸︷
dϕ

ds
ds =

∮
C
dϕ (12.103)

The integration of equation (12.103) results in

Γ =

∮
C
dϕ = ϕ2(starting point) −ϕ1(starting point) (12.104)

Unless the potential function is dual or multi value, the difference between the two points

is zero. In fact this what is expected from the close path integral. However, in a free vortex

situation the situation is different. The integral in that case is the integral around a circular

path which is

Γ =

∮
UUU ··· iii

︷︸︸︷
r dθ ds =

∮
c1
r
r dθ = c1 2 π (12.105)

In this case the circulation, Γ is not vanishing. In this example, the potential function ϕ is a

multiple value as potential function the potential function with a single value.
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Example 12.6: Source Circulation Level: Basic
Calculate the circulation of the source on the path of the circle around the originwith

radius a for a source of a given strength.

Solution
The circulation can be carried by the integration

Γ =

∮ =0︷︸︸︷
UUU ··· iii r dθds = 0 (12.6.a)

Since the velocity is perpendicular to the path at every point on the path, the integral identically

is zero.

Thus, there are two kinds of potential functions one where there are single value and

those with multi value. The free vortex is the cases where the circulation add the value of the

potential function every rotation. Hence, it can be concluded that the potential function of

vortex is multi value which increases by the same amount every time, c1 2 π. In this case value

at θ = 0 is different because the potential function did not circulate or encompass a singular

point. In the other cases, every additional enclosing adds to the value of potential function a

value.

It was found that the circulation, Γ is zero when there is no singular
point within the region inside the path.

For the free vortex the integration constant can be found if the circulation is known as

c1 =
Γ

2 π
(12.106)

In the literature, the term Γ is, some times, referred to as the “strength” of the vortex. The

common form of the stream function and potential function is in the form of

ϕ =
Γ

2 π
(θ− θ0) +ϕ0 (12.107a)

ψ =
Γ

2 π
ln
(
r

r0

)
+ψ0 (12.107b)

Superposition of Flows
For incompressible flow and two dimensional the continuity equation reads

∇∇∇···UUU =∇∇∇···∇∇∇ϕ =∇∇∇2ϕ =
∂2ϕ

∂x2
+
∂2ϕ

∂y2
= 0 (12.108)

The potential function must satisfy the Laplace’s equation which is a linear partial dif-

ferential equation. The velocity perpendicular to a solid boundary must be zero (boundary
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must be solid) and hence it dictates the boundary conditions on the potential equation. From

mathematical point of view this boundary condition as

UUUn =
dϕ

dn
=∇∇∇ϕ···n̂nn = 0 (12.109)

In this case, n̂nn represents the unit vector normal to the surface.

A solution to certain boundary condition with certain configuration geometry and

shape is a velocity flow field which can be described by the potential function, ϕ. If such

function exist it can be denoted as ϕ1. If another velocity flow field exists which describes,

or is, the solutions to a different boundary condition(s) it is denoted as ϕ2. The Laplacian of

first potential is zero,∇∇∇2ϕ1 = 0 and the same is true for the second one∇∇∇2ϕ2 = 0. Hence,

it can be written that

=0︷ ︸︸ ︷
∇∇∇2ϕ1+

=0︷ ︸︸ ︷
∇∇∇2ϕ2 = 0 (12.110)

Since the Laplace mathematical operator is linear the two potential can be combined as

∇∇∇2 (ϕ1 +ϕ2) = 0 (12.111)

The boundary conditions can be also treated in the same fashion. On a solid boundary con-

dition for both functions is zero hence

dϕ1
dn

=
dϕ2
dn

= 0 (12.112)

and the normal derivative is linear operator and thus

d (ϕ1 +ϕ2)

dn
= 0 (12.113)

It can be observed that the combined new potential function create a new velocity field. In

fact it can be written that

UUU =∇∇∇(ϕ1 +ϕ2) =∇∇∇ϕ1 +∇∇∇ϕ2 = UUU1 +UUU2 (12.114)

The velocitiesUUU1 andUUU2 are obtained fromϕ1 andϕ2 respectively. Hence, the superposition
of the solutions is the characteristic of the potential flow.

Source and Sink Flow or Doublet Flow

In the potential flow, there is a special case where the source and sink are combined

since it represents a special and useful shape. A source is located at point B which is r0 from

the origin on the positive x coordinate. The flow rate from the source isQ0 and the potential

function is
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Q1 =
Q0
2 π

ln
(
rB
r0

)
(12.115)

The sink is at the same distance but at the neg-

ative side of the x coordinate and hence it can

be represented by the potential function

Q1 = −
Q0
2 π

ln
(
rA
r0

)
(12.116)

The description is depicted on Figure 12.10.

The distances, rA and rB are defined from the

points A and B respectively. The potential of

the source and the sink is

xxx

yyy

θOA

rrr rrr
A

rrr
B

rrr0rrr0

R

B θθθAθθθ
B

Fig. 12.10 – Combination of the Source and
Sink located at a distance r0 from the
origin on the x coordinate. The source
is on the right.

ϕ =
Q0
2 π

(ln rA − ln rB) (12.117)

In this case, it is more convenient to represent the situation utilizing the cylindrical coordi-

nates. The Law of Cosines for the right triangle (OBR) this cases reads

rB
2 = r2 + r0

2 − 2 r r0 cosθ (12.118)

In the same manner it applied to the left triangle as

rA
2 = r2 + r0

2 + 2 r r0 cosθ (12.119)

Therefore, equation (12.117) can be written as

ϕ = −
Q0
2 π

1

2
ln




r2 + r0
2

2 r r0 cos θ
+ 1

r2 + r0
2

2 r r0 cos θ
− 1


 (12.120)

Caution: mathematical details which can be skipped

It can be shown that the following the identity exist

coth−1(ξ) = 1
2 ln

(
ξ+ 1

ξ− 1

)
(12.121)

where ξ is a dummy variable. Hence, substituting into equation (12.120) the identity of equa-

tion (12.121) results in

ϕ = −
Q0
2 π

coth−1

(
r2 + r0

2

2 r r0 cos θ

)
(12.122)
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The several following stages aremore of amathematical nature which provideminimal

contribution to physical understanding but are provide to interested reader. The manipula-

tions are easier with an implicit solution and thus

coth
(
−
2 πϕ

Q

)
=

r2 + r0
2

2 r r0 cos θ
(12.123)

Equation (12.123), when noticing that the cos θ coth(−x) = − coth(x), can be written as

−2 r0 r cos θ coth
(
2 πϕ

Q

)
= r2 + r0

2
(12.124)

In Cartesian coordinates equation (12.124) can be written as

−2 r0

r cosθ︷︸︸︷
x coth

(
−
2 πϕ

Q

)
= x2 + y2 + r0

2
(12.125)

Equation (12.125) can be rearranged by the left hand side to right as and moving r0
2
to left side

result in

−r0
2 = 2 r0

r cosθ︷︸︸︷
x coth

(
2 πϕ

Q

)
+ x2 + y2 (12.126)

Add to both sides r0
2 coth2

2 πϕ

Q0
transfers equation (12.126)

r0
2 coth2

2 πϕ

Q0
− r0

2 = r0
2 coth2

2 πϕ

Q0
+ 2 r0

r cosθ︷︸︸︷
x coth

(
2 πϕ

Q

)
+ x2 + y2 (12.127)

The hyperbolic identity
5
can be written as

r0
2
csch

2 2 πϕ

Q0
= r0

2 coth2
2 πϕ

Q0
+ 2 r0

r cosθ︷︸︸︷
x coth

(
2 πϕ

Q

)
+ x2 + y2 (12.128)

End Caution: mathematical details

It can be noticed that first three term on the right hand side are actually quadratic and

can be written as

r0
2
csch

2 2 πϕ

Q0
=

(
r0 coth

2 πϕ

Q0
+ x

)2
+ y2 (12.129)

equation (12.129) represents a circle with a radius r0 csch
2 πϕ

Q0
and a center at

±r0 coth
(
2 πϕ

Q0

)
. The potential lines depicted on Figure 12.11.

5coth2(x) − 1 =
cosh2(x)
sinh2(x)

− 1 =
cosh2(x)− sinh2(x)

sinh2(x)
and since by the definitions

cosh2(x)− sinh2(x) = 1 the identity is proved.
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For the drawing purposes equation (12.129) is transformed into a dimensionless form as

(
coth

2 πϕ

Q0
+
x

r0

)2
+

(
y

r0

)2
= csch

2 2 πϕ

Q0
(12.130)

Notice that the stream function has the same dimensions as the source/sink flow rate.
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Fig. 12.11 – Stream and Potential line for a source and sink. It can be noticed that stream line (in blue
to green) and the potential line are in orange to crimson. This figure is relative distances ofx/r0
and y/r0. The parameter that change is 2πϕ/Q0 and 2πψ/Q0. Notice that for give larger
ofϕ the circles are smaller.

The stream lines can be obtained by utilizing similar procedure. The double stream function

is made from the combination of the source and sink because stream functions can be added

up. Hence,

ψ = ψ1 +ψ2 =
Q0
2 π

(θ1 − θ2) (12.131)

The angle θ1 and θ2 shown in Figure 12.11 related other geometrical parameters as

θ1 = tan−1 y

x− r0
(12.132)

and

θ2 = tan−1 y

x+ r0
(12.133)

The stream function becomes

ψ =
Q0
2 π

(
tan−1 y

x− r0
− tan−1 y

x+ r0

)
(12.134)
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Caution: mathematical details which can be skipped

Rearranging equation (12.134) yields

2 πψ

Q0
= tan−1 y

x− r0
− tan−1 y

x+ r0
(12.135)

Utilizing the identity tan−1 u+ tan−1 v = tan−1
(
u+v
1−uv

)
6
Equation (12.135) transfers to

tan
2 πψ

Q0
=

y

x− r0
−

y

x+ r0

1+
y2

x2 − r02

(12.136)

As in the potential function cases, Several manipulations to convert the equation (12.136) form

so it can be represented in a “standard” geometrical shapes are done before to potential func-

tion. Reversing and finding the common denominator provide

cot
2 πψ

Q0
=

x2 − r0
2 + y2

x2 − r02

y (x+ r0) − y (x− r0)

x2 − r02

=
x2 − r0

2 + y2

y (x+ r0) + y (x− r0)︸ ︷︷ ︸
2yr0

(12.137)

or

x2 + y2 − r0
2 = 2 r0 y cot

2 πψ

Q0
(12.138)

End Caution: mathematical details

Equation (12.138) can be rearranged, into a typical circular representation as

x2 +

(
y− r0 cot

2 πψ

Q0

)2
=

(
r0 csc

2 πψ

Q0

)2
(12.139)

Equation (12.139) describes circles with center on the y coordinates at y = r0 cot
2 πψ

Q0
. It

can be noticed that these circles are orthogonal to the circle that represents the the potential

lines. For the drawing it is convenient to write equation s (12.139) in dimensionless form as

(
x

r0

)2
+

(
y

r0
− cot

2 πψ

Q0

)2
=

(
csc

2 πψ

Q0

)2
(12.140)

Dipole Flow

6
This identity is derived from the geometrical identity of tan(α+β) = tanα+tanβ

1−tanα tanβ by simple defining that

u = tan−1α and v = tan−1β.
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It was found that when the distance between the sink and source shrinks to zero a new

possibility is created which provides benefits to new understanding. The new combination

is referred to as the dipole. Even though, the construction of source/sink to a single location

(as the radius is reduced to zero) the new “creature” has direction as opposed to the scalar

characteristics of source and sink. First the potential function and stream function will be

presented. The potential function is

lim
r0→0

ϕ = −
Q0
2 π

1

2
ln
(
r2 + r0

2 − 2 r r0 cos θ
r2 + r02 + 2 r r0 cos θ

)
(12.141)

To determine the value of the quantity in equation (12.141) the L’Hôpital’s rule will be used.

First the appropriate form will be derived so the technique can be used.

Caution: mathematical details which can be skipped

Multiplying and dividing equation (12.141) by 2 r0 yields

lim
r0→0

ϕ =

1st part︷ ︸︸ ︷
Q0 2 r0
2 π

2nd part︷ ︸︸ ︷
1

2 2︸︷︷︸
4

r0
ln
(
r2 + r0

2 − 2 r r0 cos θ
r2 + r02 + 2 r r0 cos θ

)
(12.142)

Equation (12.142) has two parts. The first part, (Q0 2 r0)/2 π, which is a function ofQ0 and r0
and the second part which is a function of r0. While reducing r0 to zero, the flow increases

in such way that the combination of Q0 r0 is constant. Hence, the second part has to be

examined and arranged for this purpose.

lim
r0→0

ln
(
r2 + r0

2 − 2 r r0 cos θ
r2 + r02 + 2 r r0 cos θ

)

4 r0
(12.143)

It can be noticed that the ratio in the natural logarithm approach one r0 → 0. The L’Hopital’s

rule can be applied because the situation of nature of 0/0. The numerator can be found using

a short cut
7

End Caution: mathematical details

7
In general the derivative ln f(ξ)

g(ξ) is done by derivative of the natural logarithmwith fraction inside. The general

form of this derivative is

d

dξ
ln
f(ξ)

g(ξ)
=
g(ξ)

f(ξ)

d

dξ

(
f(ξ)

g(ξ)

)

The internal derivative is done by the quotient rule and using the prime notation as

(
ln
f(ξ)

g(ξ)

)′

=
g(ξ)

f(ξ)



f(ξ)

(
g(ξ)

)′

−g(ξ)
(
f(ξ)

)′

(
g(ξ)

)2
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at

lim
r0→0

���*0
2 r0 − 2 r cos θ

r2 +�
�>
0

r0
2 −������:0

2 r r0 cos θ
− ���*0

2 r0 + 2 r cos θ

r2 +�
�>
0

r0
2 +������:0

2 r r0 cos θ
4

= −
cos θ
r

(12.144)

Combining the first and part with the second part results in

ϕ = −
Q0 r0
π

cos θ
r

(12.145)

After the potential function was established the attention can be turned into the stream

function. To establish the stream function, the continuity equation in cylindrical is usedwhich

is

∇∇∇···UUU =
1

r

(
∂ rUr

∂r
+
∂Uθ
∂θ

)

The transformation of equations (12.46) and (12.48) to cylindrical coordinates results in

Ur =
1

r

∂ψ

∂θ
(12.146a)

Uθ = −
∂ψ

∂r
(12.146b)

The relationship for the potential function of the cylindrical coordinates was determined

before an appear the relationship (12.66) and (12.67) in cylindrical coordinates to be

Ur =
∂ϕ

∂r
and (12.147a)

Uθ =
1

r

∂ϕ

∂θ
(12.147b)

Thus the relationships that were obtained before for Cartesian coordinates is written in cylin-

drical coordinates as

∂ϕ

∂r
=
1

r

∂ψ

∂θ
(12.148a)

by canceling the various parts (notice the color coding). First canceling the square (the red color) and breaking to

two fractions and in the first one canceling the numerator (green color) second one canceling the denominator (cyan

color), one can obtain

(
ln
f(ξ)

g(ξ)

)′

= ��g(ξ)

��f(ξ)



��f(ξ)

(
g(ξ)

)′

−��g(ξ)
(
f(ξ)

)′

(
��g(ξ)

)�2


 =

(
g(ξ)

)′

g(ξ)
−

(
f(ξ)

)′

f(ξ)
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1

r

∂ϕ

∂θ
= −

∂ψ

∂r
(12.148b)

In the case of the dipole, the knowledge of the potential function is used to obtain the

stream function. The derivative of the potential function as respect to the radius is

∂ϕ

∂r
=
Q0
2 π

cos θ
r2

1

r

∂ψ

∂θ
(12.149)

And

1

r

∂ϕ

∂θ
=
Q0
2 π

sin θ
r2

−
∂ψ

∂r
(12.150)

From equation (12.149) after integration with respect to θ one can obtain

ψ =
Q0
2 π r

sin θ+ f(r) (12.151)

and from equation (12.150) one can obtain that

−
∂ψ

∂r
=

Q0
2 π r2

sin θ+ f ′(r) (12.152)

The only way that these conditions co–exist is f(r) to be constant and thus f ′(r) is zero. The
general solution of the stream function is then

ψ =
Q0 sin θ
2π r

(12.153)

Caution: mathematical details which can be skipped

The potential function and stream function describe the circles as following: In equa-

tion (12.153) it can be recognized that r =
√
x2 + y2 Thus, multiply equation (12.153) by r and

some rearrangement yield

2 πψ

Q0




r2︷ ︸︸ ︷
x2 + y2


 =

rsinθ︷︸︸︷
y (12.154)

Further rearranging equation (12.154) provides




r2︷ ︸︸ ︷
x2 + y2


 =

Q0
2 πψ

r sinθ︷︸︸︷
y −

=0︷ ︸︸ ︷(
Q0
2 πψ

)2
+

(
Q0
2 πψ

)2
(12.155)

and converting to the standard equation of circles as

y−
Q0
2πψ︷ ︸︸ ︷

y2 −
Q0
2 πψ

y+

(
Q0
2 πψ

)2
+ x2 =

(
Q0
2 πψ

)2
(12.156)
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End Caution: mathematical details

The equation (12.153) (or (12.156)) represents a circle with a radius of
Q0
2πψ with location

at x = 0 and y = ± Q0
2πψ . The identical derivations can be done for the potential function.

It can be noticed that the difference between the functions results from difference of r sin θ
the instead of the term is r cos θ. Thus, the potential functions are made from circles that the

centers are at same distance as their radius from origin on the x coordinate. It can be noticed

that the stream function and the potential function can have positive and negative values and

hence there are family on both sides of coordinates. Figure 12.12 displays the stream functions

(cyan to green color) and potential functions (gold to crimson color). Notice the larger the

value of the stream function the smaller the circle and the same for the potential functions.
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Fig. 12.12 – Stream lines and Potential lines for Doublet. The potential lines are in gold color to
crimson while the stream lines are cyan to green color. Notice the smaller value of the stream
function translates the smaller circle. The drawing were made for the constant to be one (1) and
direct value can be obtained by simply multiplying.

It must be noted that in the derivations above it was assumed that the sink is on the left and

source is on the right. Clear similar results will obtained if the sink and source were oriented

differently. Hence the dipole (even though) potential and stream functions are scalar functions

have a direction. In this stage this topic will not be treated but must be kept in question form.
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Example 12.7: Angled Dipole Level: Intermediate
This academic example is provided mostly for practice of the mathematics. Built the

stream function of dipole with angle. Start with a source and a sink distance r from

origin on the line with a angle β from x coordinates. Let the distance shrink to zero.

Write the stream function.

Solution

12.3.1 Flow Around a Circular Cylinder
After several elements of the potential flow were built earlier, the first use of these elements

can be demonstrated. Perhaps the most celebrated and useful example is the flow past a cylin-

der which this section will be dealing with. The stream function made by superimposing a

uniform flow and a doublet is

ψ = U0 y+
Q0
2 π

sin θ
r

= U0 r sin θ+
Q0
2 π

r sin θ
r2

(12.157)

Or after some arrangement equation (12.157) becomes

ψ = U0 r sin θ
(
1+

Q0
2U0 π r2

)
(12.158)

Denoting
Q0
2U0 π

as −a2 transforms equation (12.158) to

ψ = U0 r sin θ
(
1−

a2

r2

)
(12.159)

The stream function for ψ = 0 is

0 = U0 r sin θ
(
1−

a2

r2

)
(12.160)

This value is obtained when θ = 0 or θ = π and/or r = a. The stream line that is defined by

radius r = a describes a circle with a radius awith a center in the origin. The other two lines

are the horizontal coordinates. The flow does not cross any stream line, hence the stream line

represented by r = a can represent a cylindrical solid body.

For the case where ψ ̸= 0 the stream function can be any value. Multiplying equation

(12.159) by r and dividing by U0 a
2
and some rearranging yields

r

a

ψ

aU0
=
( r
a

)2
sin θ− sin θ (12.161)

It is convenient, to go through the regular dimensionless process as

rψ = (r)2 sin θ− sin θ or r2 −
ψ

sin θ
r− 1 = 0 (12.162)
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The radius for other streamlines can found or calculated for a given angle and given

value of the stream function. The radius is given by

r =

ψ

sin θ
±
√(

ψ

sin θ

)2
+ 4

2
(12.163)

It can be observed that the plus sign must be used for radius with positive values (there are no

physical radii which negative absolute value). The various value of the stream function can

be chosen and drawn. For example, choosing the value of the stream function as multiply of

ψ = 2n (where n can be any real number) results in

r =

2n

sin θ
±
√(

2n

sin θ

)2
+ 4

2
= n csc(θ) +

√
n2 csc2(θ) + 1 (12.164)

The various values for of the stream function are represented by the ratios n. For example

for n = 1 the (actual) radius as a function the angle can be written as

r = a

(
csc(θ) +

√
csc
2(θ) + 1

)
(12.165)

The value csc(θ) for θ = 0 and θ = π is equal to infinity (∞) and for values of csc(θ =

π/2) = 1. Similar every line can be evaluated. The lines are drawn in Figure 12.13.
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Fig. 12.13 – Stream function of uniform flow plus doublet results in solid body with flow around it.
Stream function (n and not ψ) starts from -2.0 (green line) to 3 the (purple line). The negative
streamlines lines are inside the solid body. The arrows are calculated by trapping they for given
ψ around the end points. Hence, the slight difference between the arrow and the line. Themore
negative the stream function the smaller the counter. The larger positive stream function the
further away the line form the x coordinate. It can be noticed closer the “solid body” the lines
are more curved. The GLE code is attached in the source code to this book. The value ofn is the
bubbles.

The velocity of this flow field can be found by using the equations that were developed

so far. The radial velocity is

Ur =
1

r

∂ψ

∂θ
= U0 cos θ

(
1−

a2

r2

)
(12.166)

The tangential velocity is

Uθ = −
∂ψ

∂r
= U0 sin θ

(
1+

a2

r2

)
(12.167)

Example 12.8: Sink in Uniform Flow Level: Basic
A sink is placed in a uniform flow field from the left to right. Describe flow field by

the stream lines. Find the shape of the solid body described by this flow.

Solution
The stream function for uniform flow is given by equation (12.80b) and the stream by equation

(12.90) (with positive sign because it is source). Hence the stream function is

ψ = U0 r sin θ+
Q̇

2 π
θ (12.8.a)

For ψ = 0 equation (12.8.a) becomes

r = −
Q̇ θ

2 πU0 sin θ
(12.8.b)

or in for any value of stream function, ψ as

r =
ψ

U0 sin θ
−

Q̇ θ

2 πU0 sin θ
(12.8.c)

The long cigar shape resulted from the combination of the uniform flow with the source is

presented in Figure 12.14. The black line represents the solid body that created and show two

different kind of flows. The exterior and the interior flow represent the external flow outside

and the inside the black line represents the flow on the enclosed body.

The black line divides the streamline, which separates the fluid coming from the uniform

source the flow due to the inside source. Thus, these flows represent a flow around semi–

infinite solid body and flow from a source in enclosed body.
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End of Ex. 12.8

The width of the body at infinity

for incompressible flow can be deter-

mined by the condition that the flow

rate must be the same. The veloc-

ity can be obtained from the stream

function.

Substituting into (12.8.b) as

r sinθ︷︸︸︷
y = −

Q̇ θ

2 πU0
(12.8.d)

An noticing that at θ = π is on the

right hand side (opposite to your the

intuition) of the solid body (or infin-

ity). Hence
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Fig. 12.14 – Source in the Uniform Flow.

equation (12.8.d) can be written as

y =
Q̇ �π
2 �πU0

=
Q̇

2U0
(12.8.e)

It can be noticed that sign in front of y is accounted for and thus removed from the equation.

To check if this analysis is consistent with the continuity equation, the velocity at infinity must

be U = U0 because the velocity due to the source is reduced as ∼ 1/r. Hence, the source flow

rate must must be balanced (see for the integral mass conservation) flow rate at infinity hence

Q = U0 2 y = U0 2
Q0
2U0

= Q0 (12.8.f)

The stagnation point can be seen from Figure 12.14 by ascertaining the location where

the velocity is zero. Due to the symmetry the location is on “solid” body on the x–coordinate at

some distance from the origin. This distance can be found by looking the combined velocities

as

U0 =
Q0
2 π r

=⇒ r =
Q0
2 πU0

(12.8.g)

Pressure Distribution

One advantage of the inviscid flow approach is the ability to have good estimates of the

pressure and velocity distribution. These two (pressure and velocity distribution) are related

via the Bernoulli’s equation. The explanation and use is based on a specific example and for a

specific information.

To illustrate this point the velocity distribution consider a doublet in uniform flow

which was examined earlier. The velocity field is a function of x, y and hence to an-

swer questions such as the location where the highest velocity or the highest velocity it-

self is required to find the maximum point. This operation is a standard operation in
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mathematics. However, in this case the observa-

tion of Figure 12.13 suggests that the height veloc-

ity is at the line of the y–coordinate. The funda-

mental reason for the above conclusion is that the

area symmetry around y coordinate and the fact

that cross area shrink. The radial velocity is zero

on the y–coordinate (due the symmetry and simi-

lar arguments) is zero. The tangential velocity on

the “solid” body is

Uθ = −2U0 sin θ (12.168)

The maximum velocity occurs at

U0U0U0

Fig. 12.15 – Velocity field around a dou-
blet in uniform velocity.

dUθ
dθ

= −2U0 cos θ = 0 (12.169)

The angle π/2 and 3 π/2 are satisfying equation (12.169). The velocity as function of the radius

is

Uθ = ±U0
(
1+

a2

r2

)
(12.170)

Where the negative sign is for θ = π/2 and the positive sign for θ = 3 π/2. That is the velocity

on surface of the “solid body” is the highest. The velocity profile at specific angles is presented

in Figure (12.15).

Beside the velocity field, the pressure distribution is a common knowledge needed for

many engineering tasks. The Euler number is a dimensionless number representing the pres-

sure and is defined as

Eu =
P0 − P∞
1

2
ρU0

2
(12.171)

In inviscid flow (Euler’s equations) as a sub set of Naiver–Stokes equations the energy con-

served hence (see for discussion on Bernoulli equation),

P0 = P+ 1
2 ρU

2
or P0 − P = 1

2 ρU
2

(12.172)

Dividing equation (12.172) by U0
2
yields

P0 − P

U0
2

= 1
2 ρ

U2

U0
2
=⇒ P0 − P

1
2 ρU0

2
=
U2

U0
2

(12.173)

The velocity on the surface of the “solid” body is given by equation (12.168) Hence,

P0 − P
1
2 ρU0

2
= 4 sin2 θ (12.174)
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It is interesting to point that integration of the pressure results in no lift and no resistance to

the flow.This “surprising” conclusion can by provided by carrying the integration of around

the “solid” body and taking the x or y component depending if lift or drag is calculated. Ad-

ditionally, it can noticed that symmetry play major role which one side cancel the other side.

Example 12.9: Doublet Level: Simple
Derive an expression for a two dimensional doublet angle to the x coordinate. from

the superposition of a source and a sink with the same strength m and located a

distance 2a apart from each other.

Solution
The superposition of the source and sink follows:

ϕ(x,y) =
m

2π

(
ln
√

(x− a cos θ)2 + (y− a sin θ)2

+ ln
√

(x+ a cos θ)2 + (y+ a sin θ)2
)

(12.9.a)

Let µ = 2ma then

ϕ(x,y) = lim
a→0

µ

2πa

(
ln
√

(x− a cos θ)2 + (y− a sin θ)2

+ ln
√

(x+ a cos θ)2 + (y+ a sin θ)2
)

(12.9.b)

From mathematical point of view this can be replaced by

ϕ(x,y) =
∂

∂a

µ

2πa

(
ln
√
(x− a cos θ)2 + (y− a sin θ)2

+ ln
√

(x+ a cos θ)2 + (y+ a sin θ)2
)∣∣∣∣∣
a=0

(12.9.c)

The results of the latest equation after some manipulations can be summarized as

ϕ(x,y) = −
µ

2π

x cos θ+ y sin θ
x2 + y2

(12.9.d)

12.3.1.1 Adding Circulation to a Cylinder

The cylinder discussed in the previous sectionswasmade fromadipole in a uniformflowfield.

It was demonstrated that in the potential flow has no resistance, and no lift due to symmetry

of the pressure distribution. Thus, it was suggested that by adding an additional component

that it would change the symmetry but not change the shape and hence it would provide the

representation cylinder with lift. It turned out that this idea yields a better understanding of

the one primary reason of lift. This results was verified by the experimental evidence.
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The linear characteristic (superposition principle) provides by adding the stream func-

tion of the free vortex to the previous the stream function for the case. The stream function

in this case (see equation (12.159)) is

ψ = U0 r sin θ
(
1−

( r
a

)2)
+
Γ

2 π
ln
a

r
(12.175)

It can be noticed that this stream function (12.175) on the body is equal toψ(r = a) = 0.

Hence, the shape of the body remains a circle. The corresponding radial velocity in cylindrical

coordinates (unchanged) and is

Ur =
1

r

∂ψ

∂θ
= U0 cos θ

(
1−

(a
r

)2)
(12.176)

The tangential velocity is changed (add velocity at the top and reduce velocity at the bottom

or vice versa depending of the sign of the Γ ) to be

Uθ = −
∂ψ

∂r
= U0 sin θ

(
1+

(a
r

)2)
+

Γ

2 π r
(12.177)

As it was stated before, examination of the stream function ψ = 0 is constructed. As it

was constructed and discussed earlier it was observed that the location of stagnation stream

function is on r = a. On this line, equation (12.175) can be written as

0 = U0 r sin θ
(
1−

(a
r

)2)
+
Γ

2 π
ln
a

r
(12.178)

or

sin θ = −

Γ

2 π
ln
r

a

U0 r

(
1−

(a
r

)2) =
Γ

4 πU0
r

a
a

2 ln
a

r(
1−

(a
r

)2) =

Γ

4 πU0
r

a
a

ln
(a
r

)2

1−
(a
r

)2 =
Γ

4 πU0 r a

ln
(
1

r

)2

1−

(
1

r

)2 (12.179)

At the point r = a the ratio in the box is approaching 0/0 and to examine what happen to it

L’Hopital’s rule can be applied. The examination can be simplified by denoting ξ = (a/r)2 =

r and noticing that ξ = 1 at that point and hence

lim
ξ→1

ln ξ
1− ξ

= lim
ξ→1

1

ξ

−1
= −1 (12.180)
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Hence, the relationship expressed in equation (12.178) as

sin θ =
−Γ

4 πU0 a
(12.181)

This condition (12.181) limits the value of maximum circulation on the body due to the maxi-

mum value of sin function. The doublet strength maximum strength can be The condition

|Γ | ⩽ 4 πU0 a (12.182)

The value of doublet strength determines the stagnation points (which were moved

by the free vortex so to speak). For example, the stagnation points for the value Γ =

−2
√
2−

√
3 πU0 a can be evaluated as

sin θ =

−Γ︷ ︸︸ ︷
2
√
2−

√
3 πU0 a

4πU0 a
=

√
2−

√
3

2
(12.183)

The solution for equation (theta, θ) (12.183) is 15◦ or π/12 and 165◦ or 11 π/12. For various

stagnation points can be found in similar way.

The rest of the points of the stagnation stream lines are found from the equation (12.179).

For the previous example with specific value of the ratio, Γ as

sin θ =

√
2−

√
3 a

2 r

ln
(a
r

)2

1−
(a
r

)2 (12.184)

There is a special point where the two points are merging 0 and π.

For all other points stream function can be calculated from equation (12.175) can be

written as

ψ

U0 a
=
r

a
sin θ

(
1−

(a
r

)2)
+

Γ

2 πU0 a
ln
r

a
(12.185)

or in a previous dimensionless form plus multiply by r as

rψ

sin θ
= r2

(
1−

(
1

r

)2)
+

Γr

2 πU0 a sin θ
ln r (12.186)

After some rearrangement of moving the left hand side to right and denoting Γ =
Γ

4 πU0 a
along with the previous definition of ψ = 2n equation (12.186) becomes

0 = r2 −
rψ

sin θ
− 1+

2 Γ r ln r
sin θ

(12.187)
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(a) Streamlines of doublet in uniform field with
stagnation point on the body. Γ = 0.2 for this
figure.
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(b) Boundary case for streamlines of doublet in
uniform field merged stagnation points.

Fig. 12.16 – Doublet in a uniform flow with Vortex in various conditions. Typical condition for the
dimensionless Vortex below on and dimensionless vortex equal to one. The figures were gener-
ated by the GLE and the program will be available on the on–line version of the book.

Note the sign in front the last term with the Γ is changed because the ratio in the logarithm

is reversed.

The stagnation line occur when n = 0 hence equation (12.187) satisfied for all r = 1

regardless to value of the θ. However, these are not the only solutions. To obtain the solution

equation (stagnation line) (12.187) is rearranged as

θ = sin−1

(
2 Γ r ln r
1− r2

)
(12.188)

Equation (12.187) has three roots (sometime only one) in the most zone and parameters.

One roots is in the vicinity of zero. The second roots is around the one (1). The third and the

largest root which has the physical meaning is obtained when the dominate term r2 “takes”

control.

The results are shown in Figure 12.16. Figure 12.16a depicts the stream lines when the

dimensionless vortex is below one. Figure 12.16b depicts the limiting case where the dimen-

sionless vortex is exactly one. Once the dimensionless vortex exceeds one, the stagnation

points do touch the solid body.

Example 12.10: Code Streamlines Level: Advance
This question is more as a project for students of Fluid Mechanics or Aerodynamics.

The stream lines can be calculated in two ways. The first way is for the given n, the

radius can be calculated from equation (12.187). The second is by calculating the angle

for given r from equation (12.188). Examine the code (attached with the source code)

that was used in generating Figures 12.16 and describe or write the algorithm what
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End of Ex. 12.10

was used. What is the “dead” radius zones?

Solution

Example 12.11: GLE code Level: Advance
Expand the GLE provided code to cover the case where the dimensionless vortex is

over one (1).

Solution

Pressure Distribution Around the solid Body
The interesting part of the above analysis is to find or express the pressure around the

body. With this expression the resistance and the lift can be calculated. The body reacts to

static pressure, as opposed to dynamic pressure, and hence this part of the pressure needed

to be evaluated. For this process the Bernoulli’s equation is utilized and can be written as

Pθ = P0 −
1
2ρ
(
Ur
2 +Uθ

2
)

(12.189)

It can be noticed that the two cylindrical components were accounted for. The radial com-

ponent is zero (no flow cross the stream line) and hence the total velocity is the tangential

velocity (see equation (12.177) where r = a) which can be written as

Uθ = 2U0 sin θ+
Γ

2 πa
(12.190)

Thus, the pressure on the cylinder can be written as

P = P0 −
1
2 ρ

(
4U0

2 sin2 θ+
2U0 Γ sin θ

πa
+

Γ2

4 π2 a2

)
(12.191)

Equation (12.191) is a parabolic equation with respect to θ (sin θ). The symmetry dictates that

D’Alembert’s paradox is valid i.e that there is no resistance to the flow. However, in this case

there is no symmetry around x coordinate (see Figure 12.16). The distortion of the symmetry

around x coordinate contribute to lift and expected. The lift can be calculated from the inte-

gral around the solid body (stream line) and taking only the y component. The force elements

is

dF = −jjj ···PnnndA (12.192)

where in this case jjj is the vertical unit vector in the downward direction, and the infinitesimal

area has direction which here is broken into in the value dA and the standard directionnnn. To
carry the integration the unit vectornnn is written as

nnn = iii cos θ+ jjj sin θ (12.193)
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The reason for definition or split (12.193) to take into account only the vertical component.

Using the above derivation leads to

jjj···nnn = sin θ (12.194)

The lift per unit length will be

L = −

∫2π
0

[
P0 −

1
2 ρ

(
4U0

2 sin2 θ+
2U0 Γ sin θ

πa
+

Γ2

4 π2 a2

)] eq.(12.194)︷ ︸︸ ︷
sin θ adθ (12.195)

Integration of the sin θ in power of odd number between 0 and 2 π is zero. Hence the only

term that left from the integration (12.195) is

L = −
ρU0 Γ

πa

∫2π
0

sin2 θdθ = U0 ρ Γ (12.196)

The lift created by the circulating referred as the Magnus effect which name after a

Jewish scientist who live in Germany who discover or observed this phenomenon. In

fact, physicists and engineers dismiss this phenomenon is “optical illusion.” However,

the physical explanation is based on the viscosity and the vortex is the mechanism that

was found to transfer the viscosity to inviscid flow. In certain ranges the simultane-

ously translate and rotation movement causes the lift of the moving object. This can be

observed in a thrown ball with spin over 1000

rpm and speed in over 5m/sec. In these param-

eters, the ball is moving in curved line to the

target. To understand the reason for this curv-

ing, the schematic if the ball is drawn (Figure

12.17). The ball is moving to the right and ro-

tating counter clockwise. The velocity at the

top of the ball is reduced due to the rotation

while the velocity at the bottom of the ball is

increased. According to Bernoulli’s equation,

reduction or increase of the velocity changes

the static pressure. Hence, the static pressure

is not symmetrical and it causes a force per-

pendicular to the ball movement. It can be

noticed the direction of the rotation changes

U0U0U0
ωωω

U0U0U0−r ω−r ω−r ω

U0U0U0+r ω+r ω+r ω
Fig. 12.17 – Schematic to explainMagnus’s ef-

fect.

the direction of the forces. In addition to the change of the pressure, the resistance changes

because it is a function of the velocity. In many ranges the increase of the velocity increase

the resistance. Hence, there are two different velocities at the top and bottom. The resistance,

as a function of the velocity, is different on the bottom as compared to the top. These two

different mechanisms cause the ball to move in perpendicular direction to the flow direction.

The circulation mimics the Magnus’s effect and hence it is used in representative flow.

In the above discussion it was used for body of perfect circular shape. However, it was ob-

served that bodies with a very complicated shape such as airplane wing, the lift can be repre-

sented by of vortex. This idea was suggested independently by the German Martin Wilhelm
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Kutta from the numerical method of Runge–Kutta and by the Russian Nikolay Yegorovich

Zhukovsky (Joukowski). Zhukovsky suggested that the dimensionless nature of vortex is con-

trolling the any shape. The extension can be done by defining the circulation as

Γ =

∮
C

UUU ·dsdsds =

∮
C
U cos θds (12.197)

Kutta–Joukowski theorem refers to the equa-

tion

L = −ρ∞U∞ Γ (12.198)

The circulation of a ball or cylinder is easy

to imagine. Yet a typical air plane do not

rotate. Perhaps, the representation of in-

viscid flow of with vortex can represent the

U0U0U0

SLSLSL
SBSBSB

Fig. 12.18 – Wing in a typical uniform flow.

viscous flow. For example flow airplane wing will have typical stream line such as shown

in Figure 12.18. However, the viscous flow does not behaves in this fashion especially at the

trailing part of the wing. The flow around the wing sheds vortexes because the sharp turn of

the flow. The sheds vortexes existence is like the free vortexes since integral including these

vortexes can be included in the calculations of the circulation (see equation 12.197).

12.4 Complex Potential
12.4.1 Complex Potential and Complex Velocity
The definition of Cauchy–Riemann equations can lead to the definition of the complex po-

tential F(z) as following

F(z) = ϕ(x,y) + iψ(x,y) (12.199)

where z = x+ i y. This definition based on the hope that F is differentiable and continuous8

or in other words analytical. In that case a derivative with respect to zwhen z is real number

is

dF

dz
=
dF

dx
=
dϕ

dx
+ i

dψ

dx
(12.200)

On the other hand, the derivative with respect to the z that occurs when z is pure imaginary

number then

dF

dz
=
1

i

dF

dy
= −i

dF

dy
= −

dϕ

dy
+
dψ

dy
(12.201)

Equations (12.200) and (12.201) show that the derivative with respect to z depends on the ori-

entation of z. It is desired that the derivative with respect zwill be independent of the orien-

8
An analytic function is a function that is locally given by a convergent power series.
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tation. Hence, the requirement is that the result in both equations must be identical. Hence,

∂ϕ

∂x
=
∂ψ

∂y
(12.202)

∂ϕ

∂y
= −

∂ψ

∂x
(12.203)

In fact, the reverse also can be proved that if the Cauchy–Riemann equations condition exists

it implies that the complex derivative also must be exist.

Hence, using the complex number guarantees that the Laplacian of the stream function

and the potential function must be satisfied (why?). While this method cannot be generalized

three dimensions it provides good education purposes and benefits for specific cases. One

major advantage of this method is the complex number technique can be used without the

need to solve differential equation. The derivative of the F is independent of the orientation

of the z and the complex velocity can be defined as

W(z) =
dF

dz
(12.204)

This also can be defined regardless as the direction as

W(z) =
dF

dx
=
∂ϕ

∂x
+ i
∂ψ

∂x
(12.205)

Using the definition that were used for the potential and the stream functions, one can obtain

that

dF

dz
= Ux − iUy (12.206)

The characteristic complex number when multiplied by the conjugate, the results in a

real number (hence can be view as scalar) such as

WW = (Ux − iUy) (Ux + iUy) = Ux
2 +Uy

2
(12.207)

In Bernoulli’s equation the summation of the squares appear and so in equation (12.207).

Hence, this multiplication of the complex velocity by its conjugate needs velocity for rela-

tionship of pressure–velocity.

The complex numbers sometimes are easier to handle using polar coordinates in such

case like finding roots etc. From the Figure the following geometrical transformation can be

written

Ux = Ur cos θ−Uθ sin θ (12.208)

and

Ux = Ur sin θ+Uθ sin θ (12.209)
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Using the above expression in the complex velocity yields

W = (Ur cos θ−Uθ sin θ) − i (Ur sin θ+Uθ cos θ) (12.210)

Combining the r and θ component separately

W = Ur (cos θ− i sin θ) −Uθ (cos θ− i sin θ) (12.211)

It can be noticed the Euler identity can be used in this case to express the terms that, are

multiplying the velocity and since they are similar to obtain

W = (Ur − iUθ) e
−iθ

(12.212)

Uniform Flow
The uniform flow is revisited here with a connection to the complex numbers presen-

tation. In the previous section, the uniform flowwas present as the flow from the left to right.

Here, this presentation will be expanded. The connection between the mathematical presen-

tation to the physical flow is weak at best and experience is required. One can consider the

flow that described by the function

F(z) = c z = c (x+ i ) (12.213)

The complex flow is

W =
dF

dz
= c (12.214)

The complex velocity was found to be represented as

W = c = Ux − iUy (12.215)

There are three extreme cases that need to be examined. The first case is when c is a real

number. In that case, it requires that Ux = c which is exactly the case that was presented

earlier. The case the constant is imaginary resulting in

Ux − iUy = −i c (12.216)

When it was chosen that the constant value is negative it yields

Uy = c (12.217)

This kind of flow is when the direction is upward and was not discussed in the standard pre-

sentation earlier. The third case, the constant is a complex number. In that case, the complex

number is present in either polar coordinate for convenience or in Cartesian coordinate to

be as

F(z) = c e−iθ z (12.218)
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The complex velocity will be then

W(z) = c cos θ− i c sin θ (12.219)

Hence the component of the velocity are

Ux = c cos θ

Uy = c sin θ

(12.220)

This flow is the generalized uniform flow where the flow is in arbitrary angle with the coor-

dinates. In general the uniform flow is described in two–dimensional field as

F(z) = U0 e
−iθ z (12.221)

This flow contains two extremes cases discussed earlier horizontal and vertical flow.

Flow in a Sector
The uniform flow presentation seem to be just repeat of what was done in the presenta-

tion without the complex numbers. In sector flow is an example where the complex number

presentation starts to shine. The sector flow is referred to as a flow in sector. Sector is a flow

in opening with specific angle.The potential is defined as

F(z) = U0 z
n

(12.222)

where n ⩾ 1 the relationship between the n and opening angle will be established in this

development. The polar represented is used in this derivations as z = r eiθ and substituting

into equation (12.222) provides

F(z) = U0 r
n cos(nθ) + iU0 rn sin(nθ) (12.223)

The potential function is

ϕ = U0 r
n cos(nθ) (12.224)

and the stream function is

ψ = U0 r
n sin(nθ) (12.225)

The stream function is zero in two extreme cases: onewhen theθ = 0 and twowhenθ = π/n.

The stream line where ψ = 0 are radial lines at the angles and θ = 0 and θ = π/n. The zone

between these two line the streamline are defined by the equation of ψ = U0 r
n sin(nθ).

The complex velocity can be defined as the velocity along these lines and is

W(z) = nU0 z
n−1 = nU0 r

n−1ei (n−1)θ =

= nU0 r
n−1 cos(nθ) + i nU0 rn−1 sin(nθ) eiθ (12.226)
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Thus the velocity components are

Ur = nU0 r
n−1 cos(nθ) (12.227)

and

Uθ = −nU0 r
n−1 sin(nθ) (12.228)

It can be observed that the radial velocity is positive in the range of 0 < θ < π
2n while it is

negative in the range
π
2n < θ <

π
n . The tangential velocity is negative in the 0 < θ < π

2n

while it is positive in the range
π
2n < θ <

π
n .

In the above discussion it was established the relationship between the sector angle

and the power n. For n the flow became uniform and increased of the value of the power,

n reduce the sector. For example if n = 2 the flow is in a right angle sector. Generally the

potential of shape corner is given by

F(z) = U0 z
n

(12.229)

Flow Around a Sharp Edge
It can be observed that when n < 1 the angle is larger then π this case of flow around

sharp corner. This kind of flow creates a significant acceleration that will be dealt in some

length in compressible flow under the chapter of Prandtl-Meyer Flow. Here it is assumed that

the flow is ideal and there is continuation in the flow and large accelerations are possible.

There is a specific situation where there is a turn around a flat plate. In this extreme

case is when the value of n < 0.5. In that case, the flow turn around the 2 π angle. In that

extreme case the complex potential function is

F(z) = c
√
z (12.230)

If the value of c is taken as real the angle must be limited within the standard 360◦ and the

explicit potential in polar coordinates is

F(z) = c
√
r e0.5 iθ

(12.231)

The potential function is

ϕ = c
√
r cos

θ

2
(12.232)

The stream function is

ψ = c
√
r sin

θ

2
(12.233)

The streamlines are along the part the sin zero which occur at θ = 0 and θ = 2 π.
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12.5 Blasius’s Integral Laws

FxFxFx

FyFyFy

MMM

dydydy

dxdxdx
UxUxUx

UyUyUy

Fig. 12.19 – Contour of two dimensional body with control volume.
In the previous sections it was shown that solid bodies can represented by elementary el-

ements that that obey Laplace’s Equation equation. It was shown that these bodies follow

D’Alembert’s paradox. This can be observed by utilizing Bernoulli’s equation to calculate the

pressure distribution. Several parameters derived with these kind of calculation are related

to the circulation. These important parameters are the focus of this section. To examine this

point an two–dimensional arbitrary body is examined. Suppose that this arbitrary body is

enclosed by a control volume as depicted in the Figure ??.
The lifting force and the resistance (force) are depended on the pressure distribution

along the body and with the body surface contour. This analysis is attempted to find the what

part the core contributor the these forces. The force can be utilize the momentum equa-

tion applied to the control volume. It can noticed that the body surface is actually a stream

line where no flow accords. The force due to the pressure on body is eliminated because

D’Alembert’s paradox. There is no force acting on the body because there is no shear stress.

Hence the force on the body in the x coordinate can be written as

−Fx −

∮
cout

P dx =

∮
cout

ρUx (Ux dy−Uy dx) (12.234)

The right hand side is written from the observations the Ux contribute to the momentum

while theUy detracts from themomentum. Under the same arguments themomentum equa-

tion can be written in the y direction as

−Fy −

∮
cout

P dy =

∮
cout

ρUy (Ux dy−Uy dx) (12.235)

Equations (12.234) and (12.235) allow to solve the forces (resistance and the lift) as

Fx =
∮
cout

P dx+ ρUx (Ux dy−Uy dx)

Fy =
∮
cout

P dy+ ρUy (Ux dy−Uy dx)

(12.236)
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The Bernoulli’s equation can be used to eliminate the pressure from equation (12.236) as P +

ρ
(
Ux
2 +Uy

2
)/
2 = CB where CB is a constant.

Fx = ρ
∮
cout

[(
Ux
2 −Uy

2
)
dy+UxUy dx

]

Fy = −ρ
∮
cout

[(
Ux
2 −Uy

2
)
dx+UyUy dy

] (12.237)

It can be noticed that the identity

∮
C = 0 was used. It happened that equation can be repre-

sented by the complex velocity as

Fx − i Fy = i
ρ

2

∮
W2 dz

1st Blasius’ Theorem

(12.238)

This identity can be proved by carrying the expanding the terms in equation (12.238).∮
cout

W2 dz =

∮
cout

(Ux − iUy)
2 (dx+ i dy) =∮

cout

[(
Ux
2 −Uy

2
)
dx+ 2UxUy dy+ i

(
Ux
2 −Uy

2
)
dx+ 2UxUy dy

]
(12.239)

Which is the same as in equation (12.237) It has to be emphasized the Fx and Fy are the forces

that act on the through the center of mass. And the complex velocityW(z) is the velocity that

determined also by the derivative of the complex potential. The evaluation of the integral is

normally done by computed by using Cauchy’s residue theorem.

The 1st Blasius theorem is referred to the forces that act through the center of mass

the same can done for the moment that act on the center of the mass.

M = i
ρ

2

∮
W2 dz

2nd Blasius’ Theorem

(12.240)

12.5.1 Forces and Moment Acting on Circular Cylinder.
The approach adapted in “Ideal Flow” was to find a solution specific shape and then convert

any shape to the “solution” shape. The conversion of shapes is referred as conformal mapping.

The chosen shape is the simplest as a cylinder. The complex potential of cylinder was given

as

F(z) = U

(
z+

a2

z

)
+
i Γ

2 π
ln
z

a

Thus, the complex velocity is

W(z) = U

(
1−

a2

z2

)
(12.241)
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The velocity square in that case is

W2(2) = U2 −
2U2 a2

z2
+
U4 a4

z4
+
iU

π z
−

Γ

4 π2 z2
−
iU Γ a2

π z3
(12.242)

Utilizing the Blasius’s first theorem reads

Fx − i Fy =
i ρ

2

(
2 π i

∑
W2(residues in side the control volume)

)
(12.243)

According the theory, the residue contribution is due to the singular points of the form of c/z

contribute. In the is case

i ρ

2

(
2 π i

(
iU Γ

π

))
= −i ρU Γ (12.244)

This calculations show that there is no resistance force but the force in the y direction (the

lift) is equal

Fy = ρU Γ

Kutta–Joukowski Theorem

(12.245)

According to Kutta–Joukowski theorem there is no lift if there is no vortex. Interesting this

fact was observed in creation of circulation (vortex) in many aviation devices. Furthermore,

the direction of the circulation (clockwise or counterclockwise) determines the direction of

the lift up or down. The examination of the moment on cylindrical shape can be done by

Blasius second theorem.

zW2(2) = zU2 −
2U2 a2

z
+
U4 a4

z3
+
iU

π
−

Γ

4 π2 z
−
iU Γ a2

π z2
(12.246)

The moment is depends on the residue. In this case there two terms the contribute to the

residue.

M =
ρ

2
Real

(
2π i

(
2U2 −

Γ2

2 π2

))
= 0 (12.247)

This result could be explained by the symmetry that there is no moment.

12.5.2 Conformal Transformation or Mapping

12.6 Unsteady State Bernoulli in Accelerated Coordinates

12.7 Qualitative questions
1) The potential function is given by

ϕ = x5 − 3 x y3 (Question 12.a)

Determine the velocity components of this potential function. Calculate the stream func-

tion and sketch the stream function.
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2) A Wheel–type flow is a flow describe by the equation

Uθ = U0
r

r0
(Question 12.b)

Where radial velocity is zeroUr = 0 and r0 is typical dimension in this case. Demonstrate

that such flow can be potential flow. Calculate the vorticity in this case.

3) The stream line function is given by the equation

ψ = U0 x+
Q0
2 π

cot1
x

y
(Question 12.c)

Calculate the Cartesian components of the velocity field. Sketch the stream line and the

stagnation points of the flow.

12.8 Additional Example

Example 12.12: Flow to Streamlines Level: Intermediate
The velocity field is described the equation

UUU = −3 y ĵ+ 3 x ĵ (12.12.a)

Draw the streamlines. Is there a potential function? If so what the potential function.

Solution
The streamlines can be determined from equation (12.66) and therefore

dy

dx
=
Uy

Ux
= −

3 x

3 y
= −

x

y
(12.12.b)

Equation (12.12.b) is a simple ODE that can be solved by direction integration as

ydy+ xdx = 0 =⇒ y2 + x2 = c (12.12.c)

These stream lines are of description of the circular streamlines.

Example 12.13: Get Stream From U Level: Intermediate
A two dimensional flow field is given as

Uy =
µ

2π
yx2 + y2Ux =

µ

2π
xx2 + y2 (12.13.a)

Find the stream function and what is the line described by ψ = 0?

Solution
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End of Ex. 12.13
The stream function can be obtained by integration as

ϕ =

∫
Uy dy+ f(x) + c (12.13.b)

ϕ =

∫
Ux dx+ f(y) + c (12.13.c)

The integration of the equations (12.13.b) and (??) leads

ϕ =

∫
µ

2π
yx2 + y2 dy+ f(x) + c =

µ

4π
ln
(
x2 + y2

)
+ f(x) + c (12.13.d)

it can be noticed that x2 + y2 = r2 and hence equation (12.13.d) can be written as

ϕ =
µ

4π
ln
(
r2
)
+ f(x) + c = �2µ

A42 π
ln (r) + f(x) + c (12.13.e)

Hence,

ϕ =
µ

2π
ln (r) + f(x) + c (12.13.f)

In the same fashion it can be done for the other direction as

ϕ =
µ

2π
ln (r) + f(y) + c (12.13.g)

It is evident from equations (12.13.f) (12.13.g) that

f(x) = f(y) = c (12.13.h)

In summary the potential function is

ϕ =
µ

2π
ln (r) + c (12.13.i)

But when r = 1 the potential ϕ = 0 (otherwise ) hence c = 0.

The radial velocity is

Ur =
∂ϕ

∂r
=
1

r

∂ψ

∂θ
(12.13.j)

In this case the stream function found by

∂ψ

∂θ
=
µ

2π
=⇒ ψ =

µ

2π
θ+ f(r) (12.13.k)

In the same fashion it is done to in the θ direction as

Uθ =
1

r

∂ψ

∂r
= −

∂ψ

∂r
= 0 (12.13.l)

Hence, f(r) = constant. Thus,

ψ =
µ

2π
θ (12.13.m)
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Example 12.14: Section Structures Level: Intermediate
Uniform along the direction of the x coordinate needs several different flows struc-

tures. Draw the streamline for these various situation.

1. Source

2. Sink

3. Left Doublet

4. Right Doublet

Explain why the stream line looks the way they looks.

Solution
The flow description of source and uniform flow is provided earlier by Rankine body what is

shown in Figure 12.14. The flow of an uniform flow around sink can be analyzed by looking the

extreme situations. The flow at the far left (downstream) is not affected by the sink. The same

argument can be said to the far right (downstream), the flow is not affected by the missing

flow (sink) because it is divided by the infinite size of the uniform flow. From dimensional

analyzed this situation is similar an infinitely weak sink in uniform flow. The flow at the right

(downstream) is affected by the sink. The streamline are given by the equation of

ψ = U− r sinθ−
Q̇

2 π
θ (12.14.a)

At the case of ψ = 0 the solid body that it is created is exact opposite of the of source and

uniform flow. The situation is depicted in Figure 12.20.

Uniform flow with right doublet was described before. Uniform flow with left doublet (sink

is upstream and source downstream) has different characteristic.
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-1.0-2.0-3.0-4.0-5.0 1.0 2.0 3.0 4.0 5.0

-1.0

-2.0

-3.0

-4.0

-5.0

1.0

2.0

3.0

4.0

5.0

Fig. 12.20 – Uniform flow with a sink.

Table 12.1 – Table of Basic Solutions to Laplaces’ Equation

Name Stream Function Potential Function Complex Potential

ψ ϕ F(z)

Uniform Flow
in x

U0 y U0 x U0 z

Uniform Flow
in y −U0 x U0 y −iU0 z

Uniform Flow
in an Angle U0x y−U0y x U0y x+U0x y

(
U0x − iU0y

)
z

Continued on next page
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Table 12.1 – Table of Basic Solutions to Laplaces’ Equation (continue)

Standard System

Name Stream Function Potential Function Complex Potential

Source
Q

2π
θ

Q

2π
ln r

Q

2π
ln z

Sink −
Q

2π
θ −

Q

2π
ln r −

Q

2π
ln z

Vortex −
Γ

2 π
ln r

Γ

2 π
θ −

i Γ

2 π
ln z

Doublet Eq. (12.120) Eq. (12.134) −
Q

2π
ln
z+ r0
z− r0

Dipole −
µ

2π r
cos θ

µ

2π r
cos θ

µ

2π

1

z

90◦ Sector Ur2 sin 2θ U r2 cos 2 θ Uz2

Sector Flow Urn sin nθ Urn cos nθ Uzn

Table 12.2 – Axisymmetrical 3–D Flow

Name Stream Function Potential Function

Name ψ ϕ

UniformFlow in
z direction

U0 z = U0r cos θ
U0 r

2

2
sin2 θ

Source −
Q cos θ
4π r

−
Q

4π r

Sink
Q cos θ
4π r

Q

4π r

Continued on next page
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Table 12.2 – Axisymmetrical 3–D Flow (continue)

Name Stream Function Potential Function

Name ψ ϕ

Doublet

m

4π

(
x

(x− a)2 + y2 + x2

-

x

(x+ a)2 + y2 + x2

)

m

4π

(
1√

(x− a)2 + y2 + x2

-

1√
(x− a)2 + y2 + x2

)

Doublet
µ

4π r
sin2 θ −

µ cos θ
4π r2

Table 12.3 – Table of Complex Potential for 2D Flow

Name Description Complex Potential

General Uniform
Flow UoyUoyUoy

xxx
UoxUoxUox

i yi yi y
Genera

l D
ire

ctio
n

Flow
(
U0x − iU0y

)
z

Source in z0
Q

2π

Q

2 π

Q

2 π

xxx

i yi yi y Q

2π
ln (z− z0)

Sink in z0 − Q

2π
− Q

2π
− Q

2 π

xxx

i yi yi y
−
Q

2π
ln (z− z0)

Doublet in arbi-
trary direction

Q

2π

Q

2 π

Q

2 π

xxx

i yi yi y

z0z0z0

− Q

2π
− Q

2π
− Q

2 π Q

2π
ln
(
z+ z0
z− z0

)

Continued on next page
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Table 12.3 – Table of Complex Potential for 2D Flow (continue)

Standard System

Name Description Complex Potential

Dipole in x µ

2π

µ

2 π

µ

2 π

xxx

i yi yi y

z0z0z0

µ

2π

(
1

z− z0

)

Dipole in y µ

2π

µ

2 π

µ

2 π

xxx

i yi yi y

z0z0z0

−i µ

2 π

(
1

z− z0

)

Dipole in general
direction

−iµ

2π

−iµ

2 π

−iµ

2 π

xxx

i yi yi y

z0z0z0
µ

2π

µ

2 π

µ

2 π

mux − i µy
2 π

(
1

z− z0

)

Vortex

xxx

i yi yi y

z0z0z0

ΓΓΓ

i Γ

2 π
ln (z− z0)

Straight Corner

xxx

i yi yi y

z0z0z0

UUU U (z− z0)
2

Sharp Corner

xxx

i yi yi y

z0z0z0

UUU

π

n

π

n

π

n
U (z− z0)

1/2

Continued on next page
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Table 12.3 – Table of Complex Potential for 2D Flow (continue)

Standard System

Name Description Complex Potential

nth Corner

xxx

i yi yi y

z0z0z0

UUU

π

n

π

n

π

n
U (z− z0)

n

Example 12.15: Venturi and Spring Level: GATE 2003

Air flows through a venturi and into at-

mosphere. Air density is ρ; atmospheric

pressure is pa; throat diameter is Dt ;

exit diameter is D and exit velocity is U.

The throat is connected to a cylinder con-

taining a frictionless piston attached to a

spring. The spring constant is k. The bot-

tom surface of the piston is exposed to

atmosphere. Due to the flow, the piston

moves by distance x.

Assuming incompressible frictionless

flow, x is

kkk

DtDtDt

DsDsDs

xxx

UUU

papapa

DDD
UtUtUt

Fig. 12.21 – Spring attached to venturi to
measure pressure.

(a)
ρU2

2k × πDs2 (b)
ρU2

8k

(
D2

Dt
2 − 1

)
πDs

2

(c)
ρU2

2k

(
D2

Dt
2 − 1

)
πDs

2
(d)

ρU2

8k

(
D4

Dt
4 − 1

)
πDs

2

Solution
The continuity equation on the control volume between the throat and the exit planes reads

Ut

U
=

(
D

Dt

)2
(12.15.a)

Utilizing Bernoulli’s equation between the exist and the throat written as

pt − pa =
ρ

2

(
U2 −Ut

2
)

(12.15.b)

Utilizing Eq. (12.15.a) and substituting the throat velocity into Eq. (12.15.b) as

pt − pa =
ρU2

2

(
1−

(
D

Dt

)4)
(12.15.c)
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End of Ex. 12.15

Balance forces on the piston and assuming a linear spring reads

−k x =
πDs

2

4
(pt − pa) (12.15.d)

Utilizing the pressure difference in Eq. (12.15.c) and substituting into Eq. (12.15.d) and obtaining

x = −
πDs

2

4

ρU2

2

(
1−

(
D

Dt

)4)
(12.15.e)

or

x =
πρ (DsU)

2

2

((
D

Dt

)4
− 1

)
(12.15.f)

Example 12.16: Ideal Syringe Level: GATE 2003

A syringe with a frictionless plunger

contains water and has at its end, a

100 [mm] long needle of 1 [mm] diam-

eter. The internal diameter of the sy-

ringe is 10 [mm]. Water density is 1000

10 mm

Water jet
Syringe

F
Needle

10 mm/s
1 mm
100 mm

Fig. 12.22 – Frictionless Syringe plunger
pushing a jet.

[kg/m3]. The plunger is pushed in at 10 [mm/s] and the water comes out as a jet.

Assuming ideal flow, the force F , in Newtons, required on the plunger to push out

the water is

(a) 0 (b) 0.04

(c) 0.13 (d) 1.15

Solution
Denoting 1 for syringe and 2 for needle. Given : d1 = 0.01 [m], d2 = 0.001 [m] l2 = 0.1
[m], ρ = 1000 [kg/m], and v1 = 0.01 [m/s] Assuming incompressible flow and with mass

conservation read in this case

v2 = v1

(
d1
d2

)2
= 0.01× 102 = 1[m/s] (12.16.a)

The needle opens to the atmosphere therefore the pressure at the exit is atmosphere (also not

needed). Utilizing Bernoulli’s equation

p1 − p2
ρ

=
v2
2 − v1

2

2
(12.16.b)

The force that has overcome this pressure difference is

F = ∆PA1 = ∆P
πD1

2

4
(12.16.c)
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End of Ex. 12.16
which is

F = 0.039266 ∼ 0.04[N] (12.16.d)

Example 12.17: Velocity Field Level: GATE 2004

A fluid flow is represented by the velocity field U = ax, î + ay, ĵ, where a is a

constant. The equation of streamline passing through a point (1,2) is

(a) x - 2y = 0 (b) 2x + y = 0

(c) 2x - y = 0 (d) x + 2y = 0

Solution
The velocity Components are

u =ax

v =ay
(12.17.a)

The stream line is obtained by

dx

u
=
dy

v
dx

Aax
=
dy

Aay
dx

x
=
dy

y

(12.17.b)

The integration of both sides reads

ln x = lny+ ln c = ln c y (12.17.c)

So the general form is

x = c y (12.17.d)

For point at question (x = 1, y = 2), c = 1/2. Therefore, equation of stream line is

2x− y = 0 (12.17.e)

The answer is (c).

Example 12.18: Divergent Flow Level: GATE 2004
For a fluid flow through a divergent pipe of length L having inlet and outlet radii R1
and R2, respectively, and a constant flow rate of Q, assuming the velocity to be axial

and uniform at any cross-section, the acceleration at the exit is

(a)
2Q (R1−R2)

πLR2
3 (b)

2Q2(R1−R2)

π2 LR2
3

(c)
2Q2(R1−R2)

π2 LR2
5 (d)

2Q2 (R2−R1)

π2 LR2
5
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End of Ex. 12.18

Solution
In this case the radial and θ velocity or other words in Cartesian velocity u and v component

are zero. The flow is steady state hence the acceleration is given by

ax =
�
��7
0

du

dt
+ u

∂u

∂x
= u

∂u

∂x

(12.18.a)

The velocity at point 1 is

u1 =
Q

A
=

Q

πR1
2 (12.18.b)

and at point 2 is

u2 =
Q

A
=

Q

πR2
2 (12.18.c)

At this stage there two possibilities (actually more) to calculate the longitudinal velocity gradi-

ent. The simple approach is what probably expect fromGATE is to assume linear distribution.

Or to assume a distribution of the radius as a function of x. Since the second approach is not

expect from the student the first method is used.

∂u

∂x
=
u2 − u1
L

(12.18.d)

Substituting into Eq. (12.18.a) reads

ax =
Q

πR2
2

Q

πR2
2
−

Q

πR1
2

L
=

Q2

π2 LR2
2

(
1

R2
2
−

1

R1
2

)
(12.18.e)

ax =
Q2

π2 LR2
2

R1
2 − R2

2

R2
2 R1

2
=

Q2

π2 LR2
2

(R1 + R2) (R1 − R2)

R2
2 R1

2
(12.18.f)

At this stage a nasty assumption (not appropriate or fair) in which R1 ∼ R2 for the summation

(not for subtraction) as

ax =
Q2

π2 L

2R2︷ ︸︸ ︷
(R1 + R2) (R1 − R2)

R2
6

(12.18.g)

As final expression

ax =
2Q2

π2 L

(R1 − R2)

R2
5

(12.18.h)

The answer (c).

Example 12.19: Venturi Meter Level: GATE 2005
A venturimeter of 20 [mm] throat diameter is used to measure the velocity of water

in a horizontal pipe of 40 [mm] diameter. If the pressure difference between the pipe

and throat sections is found to be 30 [kPa] then, neglecting frictional losses, the flow

velocity is
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End of Ex. 12.19
(a) 0.2 [m/s] (b) 1.0 [m/s]

(c) 1.4 [m/s] (d) 2.0 [m/s]

Solution
Given

p1 − p2 = 30000[Pa] (12.19.a)

For simplicity assume that water density is 1000[kg/m3] and utilizing continuity equation

reads

U1A1 = U2A2 −−→ U1 d1
2 = U2 d2

2 −−→ U1 = 4U2 (12.19.b)

Applying Bernoulli equation yields

p1 − p2
ρg

=
U1
2 −U2

2

2 g
−−→ U1 =

√
p1 − p2
ρAg

2Ag
42 − 1

∼ 2[m/sec] (12.19.c)

Example 12.20: Vortex Flow True Level: GATE 2007
Which of the following statements about steady incompressible forced vortex flow

is correct?

P: Shear stress is zero at all points in the flow.

Q: Vorticity is zero at all points in the flow.

R: Velocity is directly proportional to the radius from the center of the vortex.

S: Total mechanical energy per unit mass is constant in the entire flow field.

(a) P and Q (b) R and S

(c) P and R (d) P and S

(a) P and Q (c) P and R (b) R and S (d) P and S

Solution
What is forced vortex flow?

A force is applied to fluid causing translation or rotation at constant acceleration when there is

no relative motion between the liquid particle, then no shear stresses exit. An obvious example

is container rotation around its vertical axis (full) of liquid in a constant angular velocity. In

this case the fluid rotate as a solid body. Examples of forced vortex flow include a whirlpool,

water flows out of a bathtub or toilet or sink, flow in the centrifugal pump, even flow in a pipe

bend.

P is sometime correct. In this case, incompressible and steady is such case. There is no velocity

gradient and thus no vorticity.

Answer (a)
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Example 12.21: What Flow To Choice Level: GATE 2009
You are asked to evaluate assorted fluid flows for their suitability in a given labora-

tory application. The following three flow choices, expressed in terms of the two–

dimensional velocity fields in the xy–plane, are made available.

P. u = 2 y, v = −3 x

Q. u = 3 x y, v = 0

R. u = −2 x, v = 2 y

Which flow(s) should be recommended when the application requires the flow to be

incompressible and irrotational?

(a) P and R

(b) Q

(c) Q and R

(d) R

Solution
The condition of the incompressible flow is∇ ·U = 0 or in explicit form as

∂u

∂x
+
∂v

∂y
= 0 (12.21.a)

The irrotational flow requires that

∂y

∂x
=
∂v

∂x
(12.21.b)

Examining the conditions or statements above shows that

P. 0+ 0 = 0, 2 ̸= −3

Q. 3 y+ 0 ̸= 0
R. 2− 2 = 0, 0=0

Only RRR is satisfy the requirements of incompressible and irrotational.

Answer (d)

Example 12.22: Vorticity Example Level: GATE 2010
Velocity vector of a flow field is given as

v = 2 x y î− x2 z ĵ (12.249)

The vorticity vector at (1, 1, 1) is

(a) 4 î− ĵ (b) 4 î− k̂

(c) î− 4 ĵ (d) î− 4 k̂
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End of Ex. 12.22
Solution
The Vorticity is defined (see Eq. (12.20)) as

Ω ≡ ∇×UUU (12.22.a)




î ĵ k̂

∂
∂x

∂
∂y

∂
∂z

2 x y −x2 z 0




(12.22.b)

which results in

Ω = x2 î+ 0 ĵ+ (−2 x z− 2 x) k̂ = x2 î+ (−2 x z− 2 x)k̂ (12.22.c)

At point (1,1,1) the vorticity vector is

Ω = 12 î+ (−2× 1× 1− 2× 1)k̂ = î− 4k̂ (12.22.d)

The answer is (d)

Example 12.23: Stream Lines and Potential Lines Level: GATE 2011
stream line and an equipotential line in a flow field

(a) are parallel to each other

(b) are perpendicular to each other

(c) intersect at an acute angle

(d) are identical

Solution
The way to remember the relationship between these lines is that stream lines are line which

the fluid flows along them. Conceptually, the potential line represent the difference that causes

the fluid to move (the driving force). Thus these lines must be perpendicular (orthogonal) to

each other.

The answer is (b).
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13
Added Mass (Moment of Inertia) and

Transfer Properties

13.1 Introduction
This chapter is dedicated to my teacher, Dr. Touvia Miloh.

Genick Bar-Meir

Traditionally this topic is not covered by an introductory class on fluid mechanics nor

ship stability or marine architecture. This topic is considered to be too advanced for regu-

lar fluid mechanics students or marine architecture. Here, it is advocating to introduce the

material conceptually without actually doing the actual calculations of the added mass and

added moment of inertia. The reason for this approach is to make students aware of these

phenomena and/or at least to the practitioners in the field.

It is the experience of this undersign, that it is common that people not aware of these

properties and make calculations that have very little to do with reality. The most obvious,

a typical usage of both properties is in the marine or ship calculations issue dealing with

interaction of fluid with solid structures and energy harvesting. Yet, many engineers who

start to work in these areas are clueless on these issues. Not only entry engineers are in lack

understanding even researchers who work in this area of added mass. Some of the these

researchers are making calculations that are not rooted on reality or break the meaning of

the addedmass. For instance, some papers dealing with numerical calculations of addedmass

but they include turbulence effects while turbulence should not account by the calculations of

509
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the added mass (Kianejad, Enshaei, and Ranmuthugala 2017)
1
. For another example Brennen

a main/premier researcher stated that (Brennen 1982, p 6 second paragraph)

One other complication will emerge in the following section when the complete

added mass matrix is defined, namely that the force on the body due to acceler-

ation is not necessarily in the same direction as the acceleration. For an unsym-

metnic body acceleration in one direction can give rise to an "added mass" effect

resulting in a force which has a component in a direction perpendicular to the

direction of acceleration. If, for example, one were lifting a body from the ocean

bottom bymeans of a cable then an increase in the lift rate could produce a lateral

action of the body.

This statement is wrong! Brennen was not aware to the existence of the transfer properties.

He conflates the transfer properties with the added properties which will be discussed down

below. The added mass properties are related to the acceleration.

In fact, since this material has been changed dramatically the current state of knowl-

edge, it should be brought even to the attention of the people which deal with added mass re-

search, mass transfer transfer (bubble flow) or multi–phase (especially with liquid solid flow

or large change in density)
2
. Even the most fundamental part like difference between the

added mass coefficients vs the added mass was not clear in any book or research to this point

even to this author before the writing.

This chapter is introductory which emphasis the understanding of the concept rather

than actual calculations. Hence, this chapter provides examples where people mistakenly

claim that something is results of added mass effect while it is not. Thus, a discussion will

be focusing on the definition and character, later attempt is made to differentiate what is and

what is not added mass (or related to it or results of it).

One can wonder how long it will take this information to penetrate to premier univer-

sities, USA government and other organizations?
3

The added properties are not just a theoretical concept but a practical one and probably

all people felt it when got intowater. When a question on “why people feel heavy in thewater?”

is common on many quora and other discussion boards. However, they get wrong since their

assume that it related to buoyancy. They conflating two phenomena the buoyancy and the

added mass. The buoyancy makes us feel lighter but our movement feel heavy because we

have to move the water which is double our weight (mass).

1
Kianejad et al also include among other thing large angles (strange) and several other parameters. It is not unique

and many other researchers include these parameters. None of them seem to be able to explain this inclusion. It is a

case of more is actually less

2
It so strange to write something and while you doing it to realize that so little is based on science. Everything

has to be questioned so it could be understand because the common believe is full with misconceptions.

3
Some individuals believe that it will take about 10 years to spread the information. Other believe that it will be

about 40 years. This author contacted several individuals who work with the USA government or with association

with the government yet they did not bother to reply. This fact makes one to believe that it will take long time. Yet

two discussions on the invitation to give a workshop makes one more optimistic.
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13.2 History

Meta
The added mass was introduced as early as 1776 by Du Buat (Du Buat 1786) in first edi-

tion (copy of the book strangely can be found the University of Michigan call num-

ber QC151.D8211816). The time and gravity calculations required more precision which

was prompted notice added mass (time for the pendulum period). His measurements

showed that the added mass of sphere was value in the range 0.45-0.67. Consider that

theoretical value is 0.5 which is a great success. Later Green studied the added mass

in 1833 for the same reason and George Stokes (Stokes et al. 1851). In parallel Friedrich

Bessel proposed the concept of addedmass in 1828 (no real reference only claims of sec-

ond hand). Even Charles Darwin (Darwin 1953) have worked on showing that the par-

ticle actually moving during the movement of the body. The sphere shape was solved

on 1833 by Green (Lamb 1924). The generalization of the added properties was done by

Stokes where investigate the affects of the boundaries.

Meta End
13.3 What is the Added Mass?
A ball placed in a close container and via exterior (or interior) force such as magnetic

force is propelled foreword. A ball in a container full with fluid is shown in Fig. 13.1.

The container is closed and hence no mate-

rial leaves or enters the container. First, it is

assumed that fluid in the container is incom-

pressible. Some of the material must move to

the right when the ball moves to the left (con-

servation of mass). The mass conservation re-

quires that if a change in ball’s location oc-

curs then the first derivative (velocity) and the

second derivative (acceleration) etc of the ball

must be compensated as well. These compen-

sations of such movement requires the fluid to

dU
dt
dU
dt
dU
dt

Fig. 13.1 – Accelerating ball in a close con-
tainer.

displace volume not occupying by the ball. These changes in the fluid field require that

a force or in other words, the change in the field energy must occur. Namely, additional

force is needed to give the body a certain acceleration beside the regular F = mbody a.

This additional force, can be written as Fa = ma a where a is the same acceleration of

the body, Fa is the required added force, and ma is the added mass. Without the detail, it

must recognized the (exterior not required) force also to the right (even though the liquid

moves the left). Thus, if the force can be calculated, the added mass can be calculated. The

flow field is elliptical character and hence the added force should linearly depend on the

body acceleration. The term elliptical refers to the superposition possibility (see equation
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Eq. (12.108)). Body in a flow in which obeys these kind of equations can have a segregate

added force and the added mass (There are those who oppose to this statement.). These

complicated calculations of those forces and moments due to the fact that they requires two

stages (at least). The first stage is to find velocity field and the second to find how this velocity

field is changed with the body acceleration.

The addedmass is not defined by actualmaterial. Furthermore, it does not confined/de-

fined to thematerial that has a certain acceleration. The definition of the added simply is based

on the added force. The added mass, like all the masses, represents the resistance to the ac-

celeration. In “normal” situation the added mass confined to specific material. In this case, no

specific material can be assigned or confined. This imaginary material is material that would

be at the origin coordinate system used for the calculations andmass value is ratio of the force

and the acceleration. In fact this mass is attributed to liquid (with constant density) and hence

it can be defined by the liquid volume (utilizing the liquid density). This volume is not the

same as the volume of the body but a strong unction of the body geometry.

Suppose that these calculations can be carried (somehow easily), the change of the force

depends on the container. Different containers require different forces. As engineers always

have done, the documentations/calculations are broken into two parts. The first part, calcu-

lations/documentations are carried for a moving body in a infinite container. Second part

done when the added mass is calculated/documented for body, then the change in the con-

tainer size effects are calculated and documented. The question, can the container effects be

transferable from one body to another. At first glance, the problem problem is elliptic in na-

ture (allows superposition) and it seems that it should be correct. Yet, this topic for some

strange reasons is not conclusive and there is a dispute on accuracy of the idea (even though

the proof in the appendix of this chapter it is still debatable
4
). Of course, the main opposition

rest with those how believe that turbulence and velocity (Reynolds number) should entered

into the calculations. This author takes the position that is reasonable to apply superposition
5
.

The added mass is important in several situations specialty when the added properties

are in same size as the forces or themoments to the only the body. The typical situationswhere

the added properties important are themarine (ship or floating bodies), high rise building, and

propellers.

Two topics are to be mentioned the compressibility, free surface, and the case of the

two phase materials like water and air. The second topic is a typical issue for ship stability

and even for multiphase flow. Compressible substance such as air, often have much lower

density then the solid (or semisolid) body and hence can be ignored for most applications in

this introductory material. The calculations of the added mass for free surface suffered from

additional complications. The surface is deformed and it added complexity to the calculations.

At this stage a little can be added (to free surface) that is not too complicate.

The idea of addedmass is initially build for high Reynolds numbers (ideal flow). Clearly

4
The meaning dispute in this context is that there are many publications dealing with different boundary condi-

tions for different bodies.

5
If someone can provided the proof to either way that should be the case. The proof at the end of this chapter

convince some but not all.
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the added mass exist in different Reynolds number range yet the separation is harder. It is

implies that added mass is somehow depends on Reynolds seem a bit strange and again this

point is not conclusive. It seems that it like turbulence, and viscosity should not be accepted to

be part the addedmass topic. If accepting the Reynolds number effect, it means that the added

mass depends somehow on the Reynolds number among other parameters in situations like

Stokes flow. Thus, the reading the “fine print” is important. That is, at what ranges and other

limiting factors, it is applicable (is viscosity and other effects are really segregated).

13.4 The Added Mass Matrix of a Body
The velocity potential of inviscid flow is defined in (Bar-Meir 2021a) as

Ux =
∂ϕ

∂x
Uy =

∂ϕ

∂y
Uz =

∂ϕ

∂z
(13.1)

Note, the velocity due to the rotation is not defined in this book. The elliptic character (lin-

earity) of the ideal flow (Bar-Meir 2021a) allows combination of different potentials due to

different velocity which can be combined as

ϕ = ϕx +ϕy +ϕz (13.2)

where ϕ is the potential function and the subscript i = x,y, z is due to the velocity in the

i direction. Where the subscript i can be in any orthogonal coordinate system. While this

description is not fully used in this section, it gives a hint how the potential function is used

later. The added force is a single force that act on the body. In other words added force like all

the forces is a vector. When a vector (with 3 elements) is divided by a vector (with 3 elements)

then results is a matrix of 3 × 3 (see the two vectors in Fig. 13.2). Thus dividing the force

(a vector) by the velocity (a vector) create similar situation to the stress matrix (created by

division of the force by area which is a vector also see Eq. (A.11)). The results are added mass

coefficients which are not the added masses
6
. The added mass is a scalar in the same way the

body mass which the reason it can be added to the body mass without any limitations. This

added mass can be assumed to be located at the body gravity centroid (at least is acting on the

action line of the gravity centroid). As opposed to the regular mass, the added mass value is

not a constant and it depends on the direction of the acceleration. Hence, the added mass is

not a vector in the regular meaning but a scalar with different value which depends on the

direction
7
. The added mass is based on the added force and if the added force can be broken

into three components, Fx, Fy, and Fz a new added mass can be defined as

mi =
Fi
ai

i = x, y, z (13.3)

The added mass that the body experience in the direction x depends on g acceleration and

the total added force and cosine of the angle to x. This value is not added mass coefficients

6
This is source of confusion that got even this author sin in accepting this point before.

7
This author is not familiar with a similar physical concept. Notice that Force is in the same direction of the

acceleration. Hence dimensional of the units is of [kg]
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which are different creatures. The discussion on the added mass coefficients is provided in

the appendix at the end of this chapter.

It is common believe, the added moment of inertia in many publications in the same

vein as the added mass. The total added moment of inertia does exist, but unfortunately the

common believe defined it as a moment inertia that the body rotation around the gravity

centroid (well it would be true if the body indeed rotate around the gravity centroid). If the

ship or the marine body was rotating around the gravity centroid it would be appropriate.

However, as it was shown in this book, the floating body (ship) does not rotate around the

gravity centroid. Furthermore, the rotating axes do not pass through the gravity centroid but

depend on the geometry of the body location of the liquid line. The governing equations are

needed to be solvedwhen analyzed themarine body and have to use the actual addedmoment

of inertia (or close to real value and not something that is hundreds of percents off the mark

like today it is done). As it not enough, the axes for added moment of inertia have different

origin. The ascertain the actual moment of inertia for marine body, the parallel theorem for

added properties has to be used. This theorem is similar to the tensor parallel axis theorem

which will discussed in the appendix.

It is the commonbelieve that the addedmass is amatrix of 6×6. The reason the number

is six because there is 6 different movements. Assuming that the argument about the rotation

potential is dismissed and the rotations are included. The elements of the matrix is made

of added mass coefficients not the added masses. The matrix is made of the main diagonal

(green color) which display the main added mass coefficients. The regular (black color) are

secondary added mass coefficients. The secondary coefficients are the results of the division

of the added mass by the velocity for example of x and taking the component in y direction.

Themain addedmass components refers to the addedmass created by dividing by x and the x

element of that value. The values of main added mass are always positive they are never zero

(in the common believe). The secondary values can be zero or a positive. Vininje (1989) claims

to find negative values yet it generally rejected by all others and this author has no opinion

on this point either way because it like twilight zone. In fact, it is very common to have zero

for secondary added masses (on the non main part). Under the common believe is that, the

secondary added mass appears when only when there is velocity the secondary direction.

None seem to explain why this happen based any physical principle. No explanation, on how

this added property can happen or even possible, was found in the literature. According to

the common believe the matrix looks like is

m =




m11 m12 m13 m14 m15 m16

m21 m22 m23 m24 m25 m26

m31 m32 m33 m34 m35 m36

m41 m42 m43 m44 m45 m46

m51 m52 m53 m54 m55 m56

m61 m62 m63 m64 m65 m66




(13.4)
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It can be noticed that some elements of the matrix have two kind units (actually three), mass

and moment of inertia. According to the common believe this matrix is always symmetrical

that is, for example, m32 = m23. The appendix of this chapter offers a discussion when

the conditions for this symmetry really happen
8
. This kind of writing allows to present the

compactwritingwhich supposed to reduce the clutter. It is interesting to point out that people

holding the common believe put large efforts to prove this idea.

According to the common method, the secondary added mass coefficients appear

only when the secondary velocity appears. The real reason “secondary added mass”

appears completely different from the reason that common believe adapted. The rea-

son stems from the fact that the body has truly only one added mass (It is amazing

that no one has noticed this basic fundamental fact.). To make things easy for calcu-

lations, people attribute the added mass to different velocity components. This pro-

cess attribution is what create that added mass coefficients. It is the reverse is only

the convenience that people are using to describe added mass in the velocity coordinate.

actually has only a single velocity (strange that

it has to be pointed out but trees are missed

because the forest.). These claims that body

has secondary added mass (such as m12) are

simply wrong and they are not property of the

body in the same sense as the common believe

of this ideology. The added mass of a body

is actually a single component as opposed to

transfer property that will be discussed later.

To understand it, consider a body that moves

UUU

xxx

yyy

Fig. 13.2 – Ship in two dimensional general
coordinate.

in the general direction U. The floating body is accelerating in the arbitrary direction with

the velocity U. At that direction the body has only added mass mU and body does not

have any secondary added mass. This claim can easily verified by the fact that the added

force is only a single component at the direction of the acceleration. The common believe

internal conflict is exposed because there are no other velocity components and yet common

believe claims that they exist. The body is only affected in the direction of the acceleration.

According to the common believe, in the coordinate system shown in the Fig. 13.2 the body

has to have two components main and two secondary added mass. Yet, the actual value of

the added force is mU dU/dt. The component of added force in the x is mU dU/dt cos θ
where θ is the angle between the velocity and x coordinate. In same time, the added force

in the y direction is mU dU/dt sin θ. Thus, the added mass in the x direction must be

mU cos θ and the added mass in the y direction must bemU sin θ. The common approach

has different values for the added mass in x and y not to mention the secondary added mass.

The difference is results of the conflating added mass with added mass coefficients.

For example, Brennen suggested (that appeared earlier) that somehow there is added

force perpendicular to the direction of boy acceleration is conflating two different concepts

8
This common believe is just like CNN or NBC or BBC never know when they are telling the true.
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and conflicts with the definition of the added mass
9
. One concept is dealing with added mass

and other concept deals with the transfer properties (related mostly to velocity). The distin-

guishing can be done by checking if only the acceleration affects the force or the velocity. In

the case of asymmetrical body, the force appears even if there is no acceleration, hence it is

transfer properties.

Example 13.1: Galina’s First Question Level: Intermediate
Prof. Galina Yakovlevna Dynnikova expert on added mass suggested that suppose

the body that moves a long the path of U is asymmetrical than there must be a force

in the direction perpendicular to the body’s path. Hence there must be secondary

added mass. Thus, this facts breaks the idea of uniqueness of the added mass on the

direction ofU. Explain why the researcher’s idea is not breaking uniqueness of added
mass.

Solution
If the body moves along a line (and either accelerates or not), then the body asymmetry might

create a force. First case, the body is moving with a constant velocity then there is only force

perpendicular to movement. Hence there is no work (work is force in the direction of the ve-

locity). Hence change in the energy of the velocity field is zero. If there is no acceleration, there

is no work and again no added force and hence no added mass. Second case, the acceleration

in the direction of body does no affect the force in perpendicular direction and hence no added

force and therefore no added mass.

What cause these added masses in the different direction?
10

All the explanations that

appear in the literature do not make sense or were clear to this author. For example, in MIT

class 2.016 Hydrodynamics it is stated that

A good way to think of the added mass components, mij, is to think of each

term as mass associated with a force on the body in the ith direction due to a

unit acceleration in the jth direction.

All the explanations must obey the physics laws or discuss the intuition and state that it is

intuition. It further has to be pointed that researchers who hold the common believe that

the secondary addedmass appears only when the velocity in the secondary direction appears.

In reality, the body does not know about any coordinates system. People are thinking about

velocity components as different velocities in x or y etc which not make it correct. The body

moves only in one direction which is vectorially combination of the components but it is

only one direction. And in the acceleration direction, the body only has one added mass, no

other direction! The added mass can be broken into components. However, in the human

imagination and convenience, the factual added mass can be broken into components for

convenient of the calculations. The reason that added mass can be broken into component is

because the added force can be broken into components. The secondmistake of this statement

9
Added mass is results of the acceleration.

10
This was explained before it was a rehash. It seems to a necessity because the previous explanation was not

digested well with some individuals.
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is that word “acceleration” in the third line is not right and should be velocity. At this stage it
is not clear if it because conceptional misunderstanding or just typo or not paying attention

to wording (this author is famous for doing it all the time). Is there connection between the

added mass coefficients in different coordinates to arbitrary direction? Or in other words,

can added properties coefficients utilized to build the added mass? The answer is yes.

Example 13.2: Using Added Mass Coefficients Level: S. S. Advance
Extruded ellipse with big radius a is and

small radius b shown in Fig. 13.3. The

added mass coefficients are given for the

small radius πb2 and for the large radius

πa2 Using the data calculate the added

mass for a body that moves at angle α as

shown in Fig. 13.3. The calculations in-

volve using transformation of coordinates

which is advance material. Nevertheless,

this material is provided here to demon-

strate how the transformation is done and

to teach linear algebra. Yet, the back-

ground will be provide in the appendix to

the book.

xxx

yyyy′y′y′
x′x′x′

aaa

bbb UUU

Fig. 13.3 – Calculation of added mass
from added mass coefficients

Solution
The added mass coefficients is given two dimension matrix as

M ′ = ρπ


b

2 0

0 a2


 (13.2.a)

It can be noticed that the main terms are similar cylinder as “seen” by the flow. The secondary

terms are zero because symmetry. The acceleration in the prime coordinate is dU/dt cosα in

the x ′ direction and the y ′
(note the negative direction) −dU/dt sinα.

F = dU/dt cosαx̂ ′x ′x ′ − dU/dt sinαŷ ′y ′y ′
(13.2.b)

Writing it in a matrix form the added force in prime coordinate system is then

F ′ = −ρπ
dU

dt


b

2 0

0 a2


 ·


 cosα

− sinα


 (13.2.c)

In coordinate x–y the tensor of the added masses is

M = ρπ


 cosα sinα

− sinα cosα


 ·


b

2 0

0 a2


 ·


cosα − sinα

sinα cosα


 (13.2.d)
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End of Ex. 13.2

after the arithmetic one gets (hopefully)

M = ρπ


 b2 cos2 α+ a2 sin2 α

(
a2 − b2

)
cosα sinα

−
(
a2 − b2

)
cosα sinα b2 sin2 α+ a2 cos2 α


 (13.2.e)

The added force is then

F = ρπ


 b2 cos2 α+ a2 sin2 α

(
a2 − b2

)
cosα sinα

−
(
a2 − b2

)
cosα sinα b2 sin2 α+ a2 cos2 α





1

0


 (13.2.f)

or in simple terms as

F = ρπ
dU

dt


−b2 cos2 α+ a2 sin2 α
(
a2 − b2

)
cosα sinα


 (13.2.g)

The equation Eq. (13.2.g) shows the value of the added force and added mass will be without

the acceleration.

Example 13.3: Added Mass Calculations Level: S. Advance
The added mass in a given orientation has value of 3.0V0. At this stage the units
are ignored. Where V0 is the volume of the body. The body accelerates in a two

dimensional coordinate system with 30 degree to x coordinate. The body does not

experience any rotation. Calculate the added mass for the x coordinate and added

mass for the y coordinate. Explain if the normalization process is required. Can the

body has added mass that is 3 times the body volume?

Solution
First, the added mass has to be transferred to x and y. In x the added mass is

mx = ma cos θ = 3.0V0 ×
√
3

2
(13.3.a)

The transfer of the added mass to y is

my = ma sin θ = 3.0V0 × 1

2
(13.3.b)

The discussion about the normalization refers to the formulation such that when multiply by

U0 the actual addedmass is added. The added force is Fa = ma dU0/dt and the added force in

the x direction. The added force in the x direction is Fx = cos θ Fa or Fx = cos θma dU0/dt.
Thus, the added mass in the x direction should be multiply by the actual velocity of the body.

The body can have a large added mass. For example, a thin body moving in the largest cross

section has added mass several time the volume (times the liquid density).
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13.4.1 Added Moment of Inertia Coefficients

A slightly similar situation to this one in linear motion happens in the rotations. The three

rotations can be combined to form a single rotation if the rotations share common origin.

If the common origin does not exist than the rotations components cannot be joined. Thus,

only some circumstances rotations components can be combined. As writing this section,

there is no known method to make general solution for it
11
. In the particular case where the

rotation components have the same origin then the components can be combined to create a

new axis around in which actuality the body is rotated. Then if the added moment of inertia

known, it can be broken into specific coordinate. The arguments used the linear motion can

be used for added moment of inertia as well.

xxx

yyy

zzz
UUU

(a) Rolling around the x coordinate

xxx

yyy

zzz
UUU

(b) Rolling around the y coordinate

Fig. 13.4 – Rolling with two possibilities one around the x coordinate and two around y coordinate

After establishing the general principle concept for the linear and rotation added properties,

at this stage the combination of two kinds is discussed. Two simple cases can be provided

a taste of the situation and they are presented here. The first case shown in Fig. 13.3a and

second case shown in Fig. 13.3b. In both cases, the body move in the x coordinate direction.

However, the first case the body is rotating around the x coordinate and the second case

the body is rotating around the y coordinate. In the first case the rotation does not change

added mass nor it change the added moment of inertia of the body (this observation conflicts

with the common believe ideology).
12
The reason for this “oblivion” behavior is that the fluid

sees the same kind of body during the trajectory (direction). Along the path fluid, the body

rotation does not change the addedmoment of inertia. It can be verified by tying to calculated

the moment of inertia at any in body projection. For a body with a constant velocity in x

direction and a rotation around x, according to the definitions in this book (dU/dt = 0),

will experience no added force and therefor no added mass in the direction of the movement.

That is, the acceleration does not change the effect of rotation on the added mass in the x

direction. For the second case, fluid sees a different body during the trajectory. The added

moment of inertia does not change during that process because the rotation will cause the

same energy change in fluid field. The change in the added mass in this case if some kind

periodic value (sinusoidal). As side note, it can be noticed that the cylinder causes added mass

in all directions while moment of inertia in the special direction has a zero value.

11
At the moment of this writing, this undersign is the only who accept this idea. And if this author has no a

solution, no one has.

12
This author did found any explanation to this conflict. The rotation does not change the energy field of the fluid

and has no change in the added mass according to the definition in this book.
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13.5 Calculations of the Added Mass
There are several techniques used to evaluate the added masses and the added moment of

inertia. The first technique is done by representing the body by potential flow elements. The

word represents in this context means body that normal (perpendicular) velocity at the body

border is zero relative to the body. Thus, the elements create a body with zero velocity at

the surface (or in case of porous media some kind condition specific to boundary). Later,

the potential flow elements are used, in various techniques, to evaluate the force and hence

obtaining the added mass value. There those who conflate viscosity or viscous effects with

added mass. Added mass is not result of viscosity. This process is very delicate and requires

understanding the even and odd functions as a prerequisite (most of the time). This technique

is out scope for introductory book
13
. The other method is numerical calculations by solving

the Euler equation (This statement is disputed by some who believe in turbulence is of added

mass. In this book definition turbulence is not part of the definition of added mass). There

are two ways (actually more) to do it, one by looking at the forces forces and two by looking

at energy considerations.

The acceleration is related to the kinetic energy. Furthermore, a change in the kinetic

energy of the field requires power supply to be delivered to the body to make the change.

The kinetic energy in the field is

E =
ρℓ
2

∫
V

(
(u1)

2 + (u2)
2 + (u3)

2
)
dV (13.5)

where here E denotes the energy of the entire field and u1 is the locale velocity in let say x the

same for the other components (u2 velocity in y and u3 velocity in z or any other orthogonal

coordinate system). Note, this statement is correct for any orthogonal system. The velocity

of the body is denoted as U0 and can be pulled out the integral as

E =
ρℓ (U0)

2

2

∫
V

((
u1
U0

)2
+

(
u2
U0

)2
+

(
u3
U0

)2)
dV (13.6)

This operation is carried out to relate velocity field and the body velocity. This operation has

the advantage of solving only for a body with one unit of velocity. Now, there is no need to

solve the equation for all velocities. The integral can be written as

M =

∫
V

((
u1
U0

)2
+

(
u2
U0

)2
+

(
u3
U0

)2)
dV (13.7)

The value of the integral Eq. (13.7) is independent of body velocity and every geometry and

ordination can be evaluated. The kinetic energy of the fluid field is

E =
ρℓU0

2

2
M (13.8)

13
The undersign spend a semester to study this material and another semester as a teaching assistance. Even with

this experience, it is considered to be difficult topic.
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The derivative with respect to time of M (or in other words, the added mass is fixed) is zero.

The derivative of Eq. (13.8) utilizing the chain role yields

dE

dt
= ρU0M

dU0
dt

(13.9)

Yet, the power need to supply the field to carry this change has to be

power = FU0 (13.10)

The energy conservation requires that power supplied have to be equal to the change of the

kinetic energy of the field where here, F is the force and U is the velocity, hence

FU0 =
dE

dt
= ρℓU0M

dU

dt
(13.11)

Canceling the velocity on both sides of Eq. (13.11) Provides

F = ρℓM
dU

dt
(13.12)

Eq. (13.12) can get the standard form F = ma when ρℓM is denoted the added mass. This

addedmass is not actual liquid mass but rather a representation of equivalent mass if it would

be accelerated with the body. A entire fluid field is accelerated but not in the same neither

uniform amount of amount. So, instead of doing the calculations for the entire field it is done

for a simpler representation is utilized.

The simple case to calculate is a two dimensional cylinder with radius, R. In this case

the radial velocity is given Eq. (12.166) and it is copied into here as

Ur = U0 cos θ
(
1−

a2

r2

)
(13.13)

The tangential velocity is Eq. (12.167)

Uθ = U0 sin θ
(
1+

a2

r2

)
(13.14)

Eq. (13.7) is independent of the coordinate system, so a cylinder coordinate system is

used and Ur and Uθ can be used instead the regular Cartesian coordinate that was used in

the definition. Thus the added mass is

M =

∫∞
R

∫2π
0

[(
Uθ
U0

)2
+

(
Ur

U0

)2]
r dθdr = πR2 (13.15)

The added mass of cylinder is exactly the same of the volume as it displaced multiply

the density of liquid (as oppose to the density of the cylinder). Thus, when light cylinder is

moving in a heavy flow, the resistance will be mostly due to the acceleration of liquid.
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For sphere the potential is given by spherical coordinates

ϕ = U0 cos θ
(
r+

R3

2 r2

)
(13.16)

The radial velocity is then

Ur = U0 cos θ
(
1−

R3

r3

)
(13.17)

while the tangential velocity (θ) is

Uθ = −U0 sin θ
(
1+

R3

2 r3

)
(13.18)

Subtitling Eq. (13.17) and Eq. (13.18) into the definition Eq. (13.15) yield

M =
2 π

3
R3 (13.19)

which is half of the volume of the sphere. Thus, the added mass is a strong function of the

geometry and not affected by the body’s velocity (it was eliminated). Yet, one can see some

logic (intuition) in this value. The body continuously penetrates two dimensional surfaces.

The cylinder cut the surface with infinite length in one direction while the sphere cut in only

in a finite length. While this explanation is not scientific, it does provide some hints to the

expecting value.

Suppose that body A and body B are connected by a thin rode the added masses of

the bodies can be summed up (because the linearity of the problem). This idea is not totally

accepted by all researchers. Yet, there is interest in bodies that are long slender which lead to

slender body theory of integration of infinity thin slices (think long submarine for example,

even ships). These coefficients (properties) are depend on the orientation of the body. Hence,

they are function of all the angles (all the three angles). The observed current research work

this days (as 2020) still assumes that the addedmasses are constant (for themoving coordinate).

Hence, all these research works should be considered a progress point at best at this stage.

The term added mass has been misused by many and in following examples of such

cases will be discussed.

Example 13.4: Poking Styrofoam Level: Advance
The following video https://www.youtube.com/watch?v=g5ihS9QFAP0
shows a person explaining or demonstrating the added mass concept. He was

attempting to poke hole in a small square floating on the water. The small square

was pushed into and no hole in square could be made. On the other hand, when

experiment is done with the bigger square and the researcher is successful to poke a

hole. The researcher claims that the reason for the different result is the added mass.

Is the researcher is right? Explain.

https://www.youtube.com/watch?v=g5ihS9QFAP0
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End of Ex. 13.4
Solution
The forces that act on the styrofoam are buoyancy, gravity in the opposite direction, and the

force that apply to poke the hole, Fpoke. Taking downward as a positive direction provides

∑
F = Fpoke +

gravity

force︷ ︸︸ ︷
mstyrofoam g

buoyancy

force︷ ︸︸ ︷
−A∆xρℓ

(13.4.a)

The right trick is to recognize that at equilibrium the gravity (force) is equals to buoyancy

(force). Thus, the focus has to be on the deviation from equilibrium.

∑
F = Fpoke +

buoyancy

force︷ ︸︸ ︷
−A∆xρℓ

(13.4.b)

In Eq. (13.4.b) the buoyancy refers to the change from equilibrium and it is not same as in

Eq. (13.4.a). Locking the equation Eq. (13.4.b) it is recognized that Fpoke about same in both

cases. The only thing that is different is the area of styrofoam, A. Since styrofoam depth is

limited amount of (∆)x as long as areaA is large enough the poking makes a hole. Thus, in this

analysis no added mass present because there is no movement and the claim of the scientist

wrong and it is not issue of added mass. The depth of the styrofoam is pushed into liquid is

d =
Fpoke

Aρℓ
(13.4.c)

Where Fpoke is the force required to poke a hole in that specific styrofoam.

Example 13.5: Obtaining Energy from Truck Level: Intermediate
A truck is driven on highway. If you want to reduce your energy consumption what

you will do. What kind of action you should take? Go behind the truck? get away

from the truck? Move in–front of the truck? Is this operation is related to added

mass phenomenon?

Solution
This question has a practical application if you drive on large distance. The truck accelerates

the air around it and the air has a velocity and acceleration in the direction of the truck. This

velocity field is stronger as closer you get to the truck. (assume safety is not an issue). The field

at the back of the truck is larger and hence more accessible. From the discussion about it is

related to added mass.
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13.6 Transfer Mechanisms and Transfer Properties
13.6.1 History of Transfer Properties
The basic common theory for this “transfer” effect is that a wave moves along the ship change

GMGMGM during the time ship passes the wave. This idea as far it can be judged was suggested by

France and Shin (France, Levadou, Treakle, Paulling, Michel, and Moore 2003; Shin, Belenky,

Paulling, Weems, and Lin 2004).The ship, according to this theory, has to be exposed to a

waves with a frequency of twice the natural ship frequency (van Laarhoven 2009) which is

defined as

ωϕ =

√
ρℓ gV0GM

Ixx +Madd
(13.20)

where ωϕ is the natural frequency andMadd is the added mass of the ship
14
and the other

properties are regular terms used in the book This equation can be recognized as the regular

term from a simple pendulum. In addition, the wave length has to be at certain conditions

(while they are not specified). In the said paper, it seem from the equation has a simple units

mistake and the added mass should be replaced by the added moment of inertia (logically

and dimensionally). (to be added as example to the dimensional analysis chapter) It is not

clear from the model what causes the rolling beside that the rolling is possible (if the natural

frequency was correct). This model disregards the ship shape, shifting rotation point, and

other important characteristics. There are several problems with the assumptions that this

model build on and they will be discussed later.

When engineers do not understand a certain topic, a committee (unknown 2008; Krata

and Wawrzyński 2016) issue recommendation with total disregard to the common believe

physics and realizing that something is going on (It is nice that someone notice it). For exam-

ple, IMO issue in 2008 equation for estimate the frequency (time of the period)
15
as

τ =
2 c b

GMGMGM0
(13.21)

where
16

c = 0.373+ 0.023
b

D
− 0.00043 s (13.22)

where:

c is coefficient describing ships transverse gyration radius,

b ship width, s ship’s length at waterline,

D denotes the ship’s draft, and

GMGMGM0 initial transverse metacentric height.

14
Should be moment of the inertia

15
One can only wonder why the 2 is not swallowed into coefficient c.

16
The author would recommend that these kind of equations should be in dimensional analysis section. Keep in

mind when the various coefficients given their dimensions also should be provided.
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It is interesting in this equation that equation (committee) recognized that the compartmental

approach is erroneous. Yet, the physical sources of the energy transfer from one dimension to

another approach (or to multi–dimensional movements) are unknown. Clearly this equation

is only valid only in special cases at this stage the equation to be considered unknown.
17

13.6.2 Introduction
In general the resistance to movement has three different components, the body mass, added

mass, and the transfer properties. In physics the first part is studied and is the fundamental

of many branches of physics. The second part is presented in graduate class or by used by re-

searchers mostly dealing the interaction of liquid–solid. The third part was discovered by the

undersign and probablywill be study by researchers and latermove to graduate students. This

idea is novel for which only minimum reviews have been done. The added mass/added mo-

ment of inertia are results of the movement uniform medium or at least continuous. Namely

when the density on body surfaces might be different values but they are continuous (for ex-

ample compressible flow). What happen when the media is not continuous either because it

contains two or more phases. Furthermore, when the body moves through a shock or other

discontinuities (large wave) there additional resistance (actually transfer of energy). These

“resistances” occur only because the sharp change of the density.

The transfer properties are different than the added mass in several aspects. The trans-

fer components property of the body and possibly appear only when there is a sharp change

in liquid density for the rotation and the body is asymmetrical for linear movements. The

transfer properties can be represented by a matrix of 6× 618. Notice that the issue of units,
not all the elements have the same units. The transfer properties located on main diagonal

are zero. The transfer properties are not resistance to the body movement but rather acting

as to transfer energy (hence the name transfer properties) from one mode to another
19
. The

transfer properties are mostly related to the velocity and not the acceleration.

z

y

x

Fig. 13.5 – T shape floating to demonstrate the 3D effect The rolling creates yaw and Pitch.

17
This author speculated that about the affecting parameters. Yet, it will appear in later version.

18
There might be better representations. This undersign cowardly admits temporary defeat in this case.

19
This statement is not entirely correct. It should be mentioned that part of the transfer has “efficiency” issues and

not all the energy is transferred.
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The transfer mechanism depends on the transfer properties. The transfer properties can be

calculated for every geometrical shape and orientation
20
. The cause of the transfer is the

change in location of the buoyancy centroid (for the rotationmotions)
21
. The only body shape

that does not transfer from one mode to another is sphere. There is source of waves or other

exciting forces/moments (beside the magnetic forces) that can cause transfer. Thus, the trans-

fer of the motion from one mode to another is because symmetry (or asymmetry or lack of

symmetry) of the body. Here, the transfer mechanisms are divided into two categories: one,

from rotation in one direction to rotation in another direction, and two from rotation to lin-

ear motion (vis versa). The transfer from a linear motion to a linear motion is considered as

the second category
22
.

To understand this transfer consider the T–shape body depicted in Fig. 13.5. The extend

part of the body is just touching the liquid. In this case, the regularmarine coordinate system is

adapted for this discussion (if cannot avoided). If the body is rotating around the x coordinate

(roll or around another parallel line), the buoyancy centroid changes the location when the

body rotated. The change in buoyancy centroidmove has a component in the x direction. Yet,

in this case, as opposed to the extruded body, the buoyancy centroid moves to a new location

with in a different plane of the original z–y plane. In other words, the buoyancy centroid,BBB

has two components one in y direction (as before) and new one in the x. Assuming that the

body was at equilibrium, these changes inBBB centroid location creates a moment in the y axis

(pitch) and also around z (yew). This T–shape effects are created by added submerged volume,

however similar effects can be created by removing part of the submerged body. Themeaning

of removing body is that a body when rotated exhibits a depression. Generally, if the body is

not symmetrical round y any rotation around the x coordinate creates rotation y coordinate

and z coordinate. The gravity centroid remains the same location on the body. Thus, there is

a newmoment that acting the new direction. The described effect is of roll causing pitch (and

yaw). Yet, the same argument can describe pitch movement causing roll. In this discussion,

the source of the rotation is irrelevant. Another source the rotation transfer is asymmetry

in the movement or the orientation but this topic is to advance and is not discussed in this

version.

The previous discussion dealt with the transfer from one rotation to another ro-

tation due to the floating body asymmetry (in previous case the asymmetry was around

20
The textbook was not intended to be a research paper. Yet, because lack of information, the book has sections

which look like a research paper.

21
The movements inside the body caused by roll (for example) can also cause transfer energy like moving bodies

or transfer of liquids.

22
In discussion with one of the reader has pointed out that in the future rotation to linear will be considered the

third category. Time will tell.
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the yz plane). It can be expended to move-

ment of linear like heave to rotation. Themain

difference in this category is that the moment

transferred into force. It must be mentioned

that the energy during the transfer is constant

(if no losses occurs) and the transfer reduces

the oscillations or the movement because the

energy is transferred. Additionally, the trans-

fer does not occur linearly and it depend on

the change of the buoyancy centroid. The

forces in the x coordinate are equal and oppo-

site to each other and hence cancel each other.

BBB

GGG
xxx

yyy

Fig. 13.6 – Extruded triangle to explain
the movement transfer from Heave to
Rolling.

However, the forces in the y direction are not equal and cause a moment which will result

in the rolling rotation. That is, in this case the asymmetry in around y coordinate transfers

energy from the heave to roll. If the floating body is not perfect symmetry it also might

create a movement in other directions. Note that if the body was made from straight lines

going down, it will not have any effect on the other linear direction motion.

The conceptional explanation has to get engineering expression. First, the transfer

from roll to pitch requires to knowledge the change inBBB due to the roll. The calculation of

the change in the x direction is done in a similar fashion to the change buoyancy centroid was

ascertained for symmetrical body. These calculations are 3–D nature at least for the presen-

tation. As this book (at least this version) is pioneer this aspect and the technique presented

here to calculate is crude. Not to be bogged with the mathematics the functionally assumed

to be known. Consider the body shown in Fig. 13.5. First, the change in the z− y plane of

buoyancy is considered. The body is divided into many small slices of with thickness of dx.

For each slice the change in buoyancy and it is denoted as dB. This value is a function of x

and same time the area can be calculated it denoted asA(x) (in mathematical term it referred

as the weight function). The change in the y direction is

∆B(θ)x =
1

V0

∫
V0

∆B(x)A(x)dx (13.23)

The change in the y direction is

∆B(θ)y =
1

V0

∫
V0

yA(x)at new θdx (13.24)

It can be noticed that change in the x is not relevant to the y direction.

Example 13.6: Heave motion Level: Intermediate
Calculate the change in the y direction of the body provided in the figure.

Solution
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13.6.3 Transfer Linear Motion to Rotating Motion

The transfer mechanism from a linear motion to a rotational motion can be demon-

strated by examining two motions In this discussion the most common motions are

presented which are heave (lin-

ear) and roll (rotational). For

simplicity it is assumed that liq-

uid level flat. The body translates

to a lower point in the liquid as

shown in Fig. 13.7. The rotation

point changes when the body

move up or down. The old ratio-

nal point due to movement does

not exist any more. Previously,

the body experience zero net

force and while currently there is

a net force. For the roll rotation,

the rotation point is extremely

important because it dictates

DDD
A′A′A′

GGG

ddd

bbb
sss

bbb

AAA

Fig. 13.7 – Coupling between the Heave and roll. Notice fig-
ure exhibit the old and new liquid levels.

the moment of inertia of the body (ship). Yet, as a first approximation, the rotation is assumed

to be at the same center line as before but at the new liquid surface in the middle of the

surface (moving from AAA −→ AAA ′
which is exact description for extruded bodies, but more

complicated for other bodies.). In this case, the governing equation of movement is must

include the variation of the moment of inertia due to height change.

The rotation location change with the y coordinate is discussed below. First effect of

the change is the change in the body moment of inertia. Second effect is more important

which is the stability changes and the body could cross the stability line on the stability dome.

For the case of ρs/ρℓ < 0.5, when the body moves down it could enter inside the unstable

zone. The reason for it that body effectively increases the ratio of the density. On the opposite

case when ρs/ρℓ > 0.5 when the body moves up it enter the inside the unstable zone. That

is the body effectively decrease the density ratio. Hence, this mechanism in which the linear

motion is transfer to rotation (rolling). The transfer mechanism is clear but at this point the

transfer property is not well defined. It can be noticed that no acceleration is required for this

energy transfer.

The previous discussion dealt with the effect of the transfer from a linear motion to a

rotation motion. The

When the body is turning the resistance (damping forces) is changing according the

angle. In addition the added mass of the floating body changes. One of the reason for this

change asymmetrical resistance on both side of the body. For example, consider the T shape

body that discussed before when it makes rolling rotation. Beside the effect of the rolling on

the pitch and the yaw that creates also heave. The heave is created because one side is liquid

(water) and has larger resistance as compared to the other side. The results of this resistance

to lift the ship. On the other part of cycle it has the opposite effect.
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13.6.4 The Parallel Axes Theorem for Added Mass

Meta
The change of the rotation origin affects only the added moment of inertia. The added

moment of the floating body sometime give or calculated for specific location. How-

ever, the rotation can move from one location to another. One of the problems facing

the individuals who calculating the floating body movement is the change of added

moment of inertia from one axis to another. The floating body rotation axis can be

significant. The reason to the change of the location can be different load of the ship

for which the rotation point is at the liquid plane or other reasons.

In regular body, it was shown in ?? on page ?? that it can used by a simple equation to

transfer the property. The regular transfer of properties cannot be used here because

the fluid does not have the rigid connection that were required from the solid body.

The question, before lunching into calculating the moment of from scratch, can the

old calculations be used.

The energy created by the body around the new axis is

E =
ρℓ
2

y

V

U2dV (13.25)

The velocity due to the rotation isω

√
x ′2 + y ′2

. This velocity is expressed in the new

coordinate system asω

√
(x+∆x)2 + (y+∆y)2

The new axis is parallel to the old axis. It was shown that the integration of the velocity

at the moving body surface.

Meta End
13.6.5 Experimental Observation
People have to find value of the added properties from experiential work. For example, (Aso,

Kan, Doki, and Mori 1991; Brennen 1982; Molin, Remy, and Rippol 2007) have attempted to

separate the various components like the fluid drags and Reynolds number effects. Notice

that added mass should not be affected by the Reynolds number. There uniform method to

carry these experiments and evaluated the values. This especially complicated for mid range

of Reynolds numbers where actually the experiments were carried.
23

13.7 Added Mass and Transfer Properties
Selected Added mass properties. At this state there is no transfer properties worded out.

23
What a mess! These are the reasons we love fluid mechanics.
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Table 13.1 – Moment of Inertia and Other Data

Shape Name Geometry Added Mass Transfer remarks

Sphere RRR 2

3
πR3 0 Symmetrical

Cylinder
RRR

πR2 0 Symmetrical

13.8 Added Moment of Inertia
Selected Added moment of inertia or presented.

Table 13.2 – Moment of Ineria and Other Data

Shape Name Geometry III Transfer remarks

Circle RRR
0 0 Symmetrical

Ellipse 2 a2 a2 a

2 b2 b2 b
π
8

(
a2 − b2

)2
0 Symmetrical

Continued on next page
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Table 13.2 – Moment of inertia (continue)

Shape Name Geometry III Transfer remarks

Flat
Plate

2a2a2a
π
8 a

4 0 Symmetrical

Rectangle
aaa

bbb

πa4 kπa4 kπa4 k

b/a k

0.0 0.125

0.1 0.147

0.2 0.150

0.5 0.150

1.0 0.234

0 Symmetrical

Circle
On
Z

2 a2 a2 a
16
45 a

5 0 Symmetrical

Rectangle 2 a2 a2 a

2 b2 b2 b

a3 b2 ka3 b2 ka3 b2 k

b/a k

0.1 0.8833

0.2 0.7398

0.3 0.6713

0.4 0.6067

0.5 0.5489

1.0 0.3556

0 Symmetrical

At first glance, this should be totally different however other claim that there at least

weak connection. The solution leads to the infinite series which be computed. The results are

shown the following figure.
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Fig. 13.8 – Added mass for vertical cylinder moving at liquid. The parameters shown in the figure λ
is ratio of the diameter cylinder and of the total length, and β is ratio of the total length to wet
length similar to density ratio.

13.A Introduction
This appendix can skipped bymost peo-

ple and it is mostly for crazy people like this

undersign who do not have anything to do in

his life. This section deals with a proof for

boundary conditions and two with the par-

allel transport of of inertia. This informa-

tion was published before somewhere, how-

ever, this author failed to find it.

The potential function fluid is a function

thatwhen a gradient is applied to it exhibits the

velocity such
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Fig. 13.9 – Integration paths of Added Mass.

v = ∇ϕ (13.26)

Which also imply the Laplace equation (∇2ϕ = 0) is valid, when the flow is irrotational flow.

If a potential function is conservative (curl is zero) then relationship between the integral in

area and border for single function can be written as

∫
C

Pdx +Qdy =
x

A

(
∂Q

∂x
−
∂P

∂y

)
dA (13.27)
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where C is the curve and round the surface and rotating the counter–clock. This can be

extended to two functions. First utilizing differentiation Product Rule as

x

A

(
∂ϕ1
∂x

∂ϕ2
∂x

)
dA =

x

A

(
ϕ1

∂ϕ1
∂x

−ϕ1
∂2ϕ2
∂x2

)
dA (13.28)

first integral on the right hand side can be converted by utilizing Green’s theory to be

x

A

(
∂ϕ1
∂x

∂ϕ2
∂x

)
dA =

∫
C

(
ϕ1

∂ϕ1
∂n

)
dA−

x

A

(
ϕ1

∂2ϕ2
∂x2

)
dA (13.29)

if ϕ1 = ϕ2 = ϕ than Eq. (13.29) can be written as

x

A

(
∂ϕ

∂x

)2
dA =

∫
C

(
ϕ
∂ϕ

∂n

)
dA−

x

A

(
ϕ
∂2ϕ

∂x2

)
dA (13.30)

Three dimensional version (and notice C = Sin + Sout) of Eq. (13.30) is

y

V

(
∂ϕ

∂x

)2
dV =

x

Sin+Sout

(
ϕ
∂ϕ

∂n

)
dA−

y

V

(
ϕ
∂2ϕ

∂x2

)
dV (13.31)

Sin denotes to the boundary on the body and Sout denotes to the boundary on other bodies

or boundary of the container that contain the body. To get the total kinetic energy the other

two components should be included and become

y

V

[(
∂ϕ

∂x

)2
+

(
∂ϕ

∂y

)2
+

(
∂ϕ

∂z

)2]
dV =

x

Sin+Sout

(
ϕ
∂ϕ

∂n

)
dA−

y

V

ϕ

∼0︷ ︸︸ ︷(
∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2

)
dV (13.32)

The left hand side represent the kinetic energy in the domain bounded by the body and in-

finity. The right hand side represents the component that contribute to this integral. The

first term on the right represents the perpendicular velocity at the bodies that is in the do-

main boundary. The second term vanishes because the Laplasian is zero inside the domain

(continuity equation). What left on the right split into two as

x

Sin+Sout

(
ϕ
∂ϕ

∂n

)
dA =

on the body︷ ︸︸ ︷
x

Sin

(
ϕ
∂ϕ

∂n

)
dA+

x

Sout
boundary

(
ϕ
∂ϕ

∂n

)
dA+

∼0︷ ︸︸ ︷
x

Sout∞

(
ϕ
∂ϕ

∂n

)
dA (13.33)
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This integral suggests that the closer the boundary is to the body the larger is the added mass.

Furthermore, it suggests that once the boundary contributions is determined then it can be

used for other bodies. Yet, this conclusion is not widely accepted and controversial.

Anther point that it is controversial but should be mentioned is the combined potential

ϕ = U0x ϕ1 +U0y ϕ2 +U0z ϕ3 +ω0x ϕ4 +ω0y ϕ5 +ω0z ϕ6 (13.34)

There are some limitations that statement like the origin of the rotation have to same etc.

Nevertheless,if that is accepted then it can be substitute into Eq. (13.33) so that it provide 36

terms which looks like

mij =
x

S

ϕi
∂ϕj

∂n
dA (13.35)

As the total energy change based on added properties is then

E =
ρ

2

6∑
i=1

6∑
j=1

mijUiUj (13.36)

Compering the energy of the terms opposite of the diagonal the mij mji is done by

subtracting one from each other to see it they are the same value. Notice that energy was

evaluated to according to Eq. (13.32) as a surface integral. Thus,

x

S

ϕi
∂ϕj

∂n
dA−

x

S

ϕj
∂ϕi
∂n

dA =
x

S

(
ϕi
∂ϕj

∂n
−ϕj

∂ϕi
∂n

)
dA (13.37)

The right hand side can be spilt into Sin and Sout as

x

S

(
ϕi
∂ϕj

∂n
−ϕj

∂ϕi
∂n

)
dA =

x

Sin

(
ϕi
∂ϕj

∂n
−ϕj

∂ϕi
∂n

)
dA+

�������������:∼ 0x

Sout

(
ϕi
∂ϕj

∂n
−ϕj

∂ϕi
∂n

)
dA (13.38)

The tricky part is to recognize that according to the identity Eq. (13.29) which is true if only

when the boundary around body is at infinity. That is,

x

Sin

(
ϕi
∂ϕj

∂n
−ϕj

∂ϕi
∂n

)
dA =

y

V

(
∂ϕj

∂x

∂ϕi
∂x

−
∂ϕi
∂x

∂ϕj

∂x

)
dV (13.39)

In a marine situation the liquid domain is made of liquid and gas (air), hence ,the sharp change

in density does not seem to create a problem. That is, the boundary conditions required for

Eq. (13.29) is required to be at infinity. The potential functions that used are not continuous

and there is a problem. It seem that requirement that the boundary should be at infinity not

satisfied thereformij ̸= mji. The conditions formij = mji are such boundary has to be at
infinity. Hence the symmetry of the added mass seems to be lacking.
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Example 13.7: Reverse Flow Level: Advance
A body that is rotating around it gravity

centroid has two possibility rotation. First

rotation is counter–clock and second ro-

tation is clockwise. In most situations this

change does mater because symmetry. For

example, when extruded square is rotat-

ing around it center it does not matter the

direction of the rotation. The question is

about a body that clearly imitatively seen

that the direction should matter shown in

Fig. 13.10. Does it matter the diction in the

calculation of the added moment of iner-

tia?

Fig. 13.10 – Direction of the rotation of
arbitrary direction.

Solution
The answer to the question lay in the recognition what actually cause the added mass or the

moment of inertia. The derivation about sum it in the concept that as long all the velocity

components and rotation have the same origin as in this case the direction of the rotation is

insignificant to the direction of the rotation. In any direction of the rotation the velocities on

the surface will be same.
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14
Compressible Flow One Dimensional

14.1 What is Compressible Flow?
This Chapter deals with an introduction to the flow of compressible substances (gases). The

main difference between compressible flow and “almost” incompressible flow is not the fact

that compressibility has to be considered. Rather, the difference is in two phenomena that do

not exist in incompressible flow. The first phenomenon is the very sharp discontinuity (jump)

in the flow in properties. The second phenomenon is the choking of the flow. Choking is

referred to the situation where downstream conditions, which are beyond a critical value(s),

doesn’t affect the flow.

The shock wave and choking are not intuitive for most people. However, one has to re-

alize that intuition is really a condition where one uses his past experiences to predict other

situations. Here one has to build his intuition tool for future use. Thus, not only engineers but

other disciplines will be able use this “intuition” in design, understanding and even research.

14.2 Why Compressible Flow is Important?
Compressible flow appears in many natural andmany technological processes. Compressible

flow deals, including many different material such as natural gas, nitrogen and helium, etc

not such only air. For instance, the flow of natural gas in a pipe system, a common method of

heating in the U.S., should be considered a compressible flow. These processes include flow

of gas in the exhaust system of an internal combustion engine. The above flows that were

mentioned are called internal flows. Compressible flow also includes flow around bodies

539
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such as the wings of an airplane, and is categorized as external flow.

These processes include situations not expected to have a compressible flow, such as

manufacturing process such as the die casting, injection molding. The die casting process is

a process in which liquid metal, mostly aluminum, is injected into a mold to obtain a near

final shape. The air is displaced by the liquid metal in a very rapid manner, in a matter of

milliseconds, therefore the compressibility has to be taken into account.

Clearly, mechanical or aero engineers are not the only ones who have to deal with some

aspects of compressible flow. Even manufacturing engineers have to deal with many situa-

tions where the compressibility or compressible flow understating is essential for adequate

design. Another example, control engineers who are using pneumatic systems must consider

compressible flow aspects of the substances used. The compressible flow unique phenom-

ena also appear in zoology (bird fly), geological systems, biological system (human body) etc.

These systems require consideration of the

unique phenomena of compressible flow.

In this Chapter, a greater emphasis is

on the internal flow while the external flow

is treated to some extend in the next Chapter.

It is recognized that the basic fluid mechanics

class has a limited time devoted to these top-

ics. Additional information (such as historical

background) can be found in “Fundamentals

of Compressible Flow” by the same author on

Potto Project web site.

ρ
P

c
P+dP
ρ+dρ

Sound

WavedU

Fig. 14.1 –A very slowmoving piston in a still
gas.

14.3 Speed of Sound
Most of compressible flow occurs at relative high velocity as compere to the speed of sound.

Hence, the speed of sound has to discussed initially. Outside the ideal gas, limited other situ-

ations will be discussed.

14.3.1 Introduction

People had recognized for several hundred

years that sound is a variation of pressure.

What is the speed of the small disturbance

travel in a “quiet” medium? This velocity is re-

ferred to as the speed of sound and is discussed

first.

To answer this question consider a pis-

ton moving from the left to the right at

a relatively small velocity (see Figure 14.1).

C.V.

ρ
P

c

P+dP
ρ+dρ

dU c−dU

Fig. 14.2 – Stationary sound wave and gas
moves relative to the pulse.

The information that the piston is moving passes thorough a single “pressure pulse.” It is
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assumed that if the velocity of the piston is infinitesimally small, the pulse will be infinitesi-

mally small. Thus, the pressure and density can be assumed to be continuous. In the control

volume it is convenient to look at a control volume which is attached to a pressure pulse (see

Figure 14.2). Applying the mass balance yields

ρ c = (ρ+ dρ) (c− dU) (14.1)

or when the higher term dUdρ is neglected yields

ρdU = c dρ =⇒ dU =
cdρ

ρ
(14.2)

From the energy equation (Bernoulli’s equation), assuming isentropic flow and neglecting the

gravity results

(c− dU)2 − c2

2
+
dP

ρ
= 0 (14.3)

neglecting second term (dU2) yield

−cdU+
dP

ρ
= 0 (14.4)

Substituting the expression for dU from equation (14.2) into equation (14.4) yields

c2
(
dρ

ρ

)
=
dP

ρ
=⇒ c2 =

dP

dρ

Sound Speed

(14.5)

An expression is needed to represent the right hand side of equation (14.5). For an ideal gas, P

is a function of two independent variables. Here, it is considered that P = P(ρ, s) where s is
the entropy. The full differential of the pressure can be expressed as follows:

dP =
∂P

∂ρ

∣∣∣∣
s

dρ+
∂P

∂s

∣∣∣∣
ρ

ds (14.6)

In the derivations for the speed of sound it was assumed that the flow is isentropic, therefore

it can be written

∂P

∂ρ
=
∂P

∂ρ

∣∣∣∣
s

(14.7)

Note that the equation (14.5) can be obtained by utilizing the momentum equation in-

stead of the energy equation.
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Example 14.1: FromMomentum Level: Intermediate
Demonstrate that equation (14.5) can be derived from the momentum equation.

Solution
The momentum equation written for the control volume shown in Figure 14.2 is

∑
F︷ ︸︸ ︷

(P+ dP) − P =

∫
csU (ρUdA)︷ ︸︸ ︷

(ρ+ dρ)(c− dU)2 − ρ c2
(14.1.a)

Neglecting all the relative small terms results in

dP = (ρ+ dρ)

(
c2 −���:∼ 0

2 c dU+�����:∼ 0
dU2

)
− ρc2 (14.1.b)

And finally it becomes

dP = c2 dρ (14.1.c)

This yields the same equation as (14.5).

14.3.2 Speed of Sound in Ideal and Perfect Gases

The speed of sound can be obtained easily for the equation of state for an ideal gas (also perfect

gas as a sub set) because of a simple mathematical expression. The pressure for an ideal gas

can be expressed as a simple function of density, ρ, and a function “molecular structure” or

ratio of specific heats, k namely

P = constant× ρk (14.8)

and hence

c =

√
∂P

∂ρ
= k× constant× ρk−1 = k×

P︷ ︸︸ ︷
constant× ρk

ρ

= k× P

ρ

(14.9)

Remember that P/ρ is defined for an ideal gas as RT , and equation (14.9) can be written as

c =
√
kR T

Ideal Gas Speed Sound

(14.10)
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Example 14.2: Sound in Water Level: Intermediate
Calculate the speed of sound in water vapor at 20[bar] and 350◦C, (a) utilizes the
steam table, and

(b) assuming ideal gas.

Solution
The solution can be estimated by using the data from steam table

a

c ∼

√
∆P

∆ρ
s=constant

(14.2.a)

At 20[bar] and 350◦C: s = 6.9563

[
kJ

Kkg

]
ρ = 6.61376

[
kg

m3

]

At 18[bar] and 350◦C: s = 7.0100

[
kJ

Kkg

]
ρ = 6.46956

[
kg

m3

]

At 18[bar] and 300◦C: s = 6.8226

[
kJ

Kkg

]
ρ = 7.13216

[
kg

m3

]

After interpretation of the temperature:

At 18[bar] and 335.7◦C: s ∼ 6.9563

[
kJ

Kkg

]
ρ ∼ 6.94199

[
kg

m3

]

and substituting into the equation yields

c =

√
200000

0.32823
= 780.5

[ m
sec

]
(14.2.b)

for ideal gas assumption (data taken from Van Wylen and Sontag, Classical Thermodynamics,

table A 8.)

c =
√
kR T ∼

√
1.327× 461× (350+ 273) ∼ 771.5

[ m
sec

]
(14.2.c)

Note that a better approximation can be done with a steam table, and it · · ·
a
This data is taken from Van Wylen and Sontag “Fundamentals of Classical Thermodynamics” 2nd

edition

14.3.3 Speed of Sound in Almost Incompressible Liquid

Every liquid in reality has a small and important compressible aspect. The ratio of the change

in the fractional volume to pressure or compression is referred to as the bulk modulus of the

material. For example, the average bulk modulus for water is 2.2× 109 N/m2. At a depth
of about 4,000 meters, the pressure is about 4× 107 N/m2. The fractional volume change is

only about 1.8% even under this pressure nevertheless it is a change.

The compressibility of the substance is the reciprocal of the bulkmodulus. The amount

of compression of almost all liquids is seen to be very small as given in the Book “Fundamen-
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tals of Compressible Flow.” The mathematical definition of bulk modulus as following

BT = ρ
∂P

∂ρ
(14.11)

In physical terms can be written as

c =

√
elastic property

inertial property
=

√
BT
ρ

Liquid/Solid Sound Speed

(14.12)

For example for water

c =

√
2.2× 109N/m2
1000kg/m3

= 1493m/s

This value agrees well with the measured speed of sound in water, 1482 m/s at 20◦C.
A list with various typical velocities for different liquids can be found in “Fundamentals of

Compressible Flow” by this author. The interesting topic of sound in variable compressible

liquid also discussed in the above book. In summary, the speed of sound in liquids is about 3

to 5 relative to the speed of sound in gases.

14.3.4 Speed of Sound in Solids
The situation with solids is considerably more complicated, with different speeds in different

directions, in different kinds of geometries, and differences between transverse and longitu-

dinal waves. Nevertheless, the speed of sound in solids is larger than in liquids and definitely

larger than in gases.

Young’s Modulus for a representative value for the bulk modulus for steel is 160 109 N

/m2. A list of materials with their typical velocity can be found in the above book.

Speed of sound in solid of steel, using a general tabulated value for the bulk modulus,

gives a sound speed for structural steel of

c =

√
E

ρ
=

√
160× 109N/m2
7860Kg/m3

= 4512m/s

Compared to one tabulated value the example values for stainless steel lays between the speed

for longitudinal and transverse waves.

14.3.5 The Dimensional Effect of the Speed of Sound
What is the significance of the speed of sound? This speed of sound determines what regime

the flow will be. In Chapter 9 that Mach number was described as important parameter. It
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(a) Object travels at 0.005 of the speed
of sound.

(b) Object travels at 0.05 of the speed
of sound.

(c) Object travels at 0.15 of the speed of sound.

Fig. 14.3 – Moving object at three relative velocities. The gray point in the first circle is the initial
point the object. The finial point is marked by red circled with gray filled. Notice that the circle
line thickness is increase with the time i.e the more green wider circle line thickness. The tran-
sition from the blue fresher lines to the green older lines is properly marked.

will be shown later in this Chapter that when Mach number is around 0.25-0.3 a significant

change occur in the situation of flow. To demonstrate this point, consider a two dimensional

situation where a particle is moving from the left to the right. A particle movement creates

a pressure change which travels toward outside in equal speed relative to the particle. Figure

14.3 depicts an object with three different relative velocities. Figure 14.3(a) demonstrates that

the whole surroundings is influenced by the object (depicted by red color). While Figure 14.3

(b) that there small zone a head object that is “aware” if the object arriving. In Figure 14.3 (c)

the zone that aware of the object is practically zero.

In fact, when the object velocity is about or larger than the speed of sound then the

object arrive to location where the fluid does not aware or informed about the object. The

reason that in gas the compressibility plays significant role is because the ratio of the object or

fluid velocity compared to speed of sound. In gases the speed of sound is smaller as compare

to liquid and defendtly to solid. Hence, gases are media where compressibility effect must be

considered in relationship compressibility. There are some how defined theMach cone as the

shape of object movement approaching to one. This shape has angle and it related to Mach

angle.

14.4 Isentropic Flow
In this section a discussion on a steady state flow through a smooth and without an abrupt

area change which include converging– diverging nozzle is presented. The isentropic flow
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models are important because of two main reasons: One, it provides the information about

the trends and important parameters. Two, the correction factors can be introduced later to

account for deviations from the ideal state.

14.4.1 Stagnation State for Ideal Gas Model

It is assumed that the flow is quasi one–

dimensional (that is the fluid flows mainly

in one dimension). Figure (14.4) describes a

gas flow through a converging–diverging noz-

zle. It has been found that a theoretical state

known as the stagnation state is very useful

in simplifying the solution and treatment of

the flow. The stagnation state is a theoretical

state in which the flow is brought into a com-

plete motionless conditions in isentropic pro-

cess without other forces (e.g. gravity force).

Several properties that can be represented by

this theoretical process which include temper-

ature, pressure, and density et cetera and de-

noted by the subscript “0.”

First, the stagnation temperature is

A∗ Aexit

P

P0

distance, x

M > 1 Supersonic

Subsonic

M < 1

PB = P0

Fig. 14.4 – Flow of a compressible substance
(gas) through a converging–diverging
nozzle.

calculated. The energy conservation can be written as

h+
U2

2
= h0 (14.13)

Perfect gas is an ideal gas with a constant heat capacity, Cp. For perfect gas equation (14.13) is

simplified into

Cp T +
U2

2
= Cp T0 (14.14)

T0 is denoted as the stagnation temperature. Recalling from thermodynamic the relation-

ship for perfect gas R = Cp − Cv and denoting k ≡ Cp ÷ Cv then the thermodynamics

relationship obtains the form

Cp =
kR

k− 1
(14.15)

and where R is the specific constant. Dividing equation (14.14) by (CpT) yields

1+
U2

2Cp T
=
T0
T

(14.16)



14.4. ISENTROPIC FLOW 547

Now, substituting c2 = kR T or T = c2/kR equation (14.16) changes into

1+
kRU2

2Cp c2
=
T0
T

(14.17)

By utilizing the definition of k by equation (2.24) and inserting it into equation (14.17) yields

1+
k− 1

2

U2

c2
=
T0
T

(14.18)

It very useful to convert equation (14.17) into a dimensionless form and denote Mach

number as the ratio of velocity to speed of sound as

M ≡ U

c

Mach Number Definition

(14.19)

Inserting the definition of Mach number (14.19) into equation (14.18) reads

T0
T

= 1+
k− 1

2
M2

Isentropic Temperature relationship

(14.20)

The usefulness of Mach number and equation

(14.20) can be demonstrated by the following simple

example. In this example a gas flows through a tube

(see Figure 14.5) of any shape can be expressed as a

function of only the stagnation temperature as op-

posed to the function of the temperatures and ve-

locities.

AAA

V elocityV elocityV elocity

BBBQQQ

T0T0T0
P0P0P0
ρ0ρ0ρ0

T0T0T0
P0P0P0
ρ0ρ0ρ0

Fig. 14.5 – Perfect gas flows through a
tube.

The definition of the stagnation state provides the advantage of compact writing. For

example, writing the energy equation for the tube shown in Figure 14.5 can be reduced to

Q̇ = Cp (T0B − T0A) ṁ (14.21)

The ratio of stagnation pressure to the static pressure can be expressed as the function

of the temperature ratio because of the isentropic relationship as

P0
P

=

(
T0
T

) k
k−1

=

(
1+

k− 1

2
M2
) k
k−1

Isentropic Pressure Definition

(14.22)

In the same manner the relationship for the density ratio is

ρ0
ρ

=

(
T0
T

) 1
k−1

=

(
1+

k− 1

2
M2
) 1
k−1

Isentropic Density

(14.23)
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Mach number

0

0.1
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0.5
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0.9

1

P/P
0

ρ/ρ
0

T/T
0

Static Properties As A Function of Mach Number

Mon Jun  5 17:39:34 2006

Fig. 14.6 – The stagnation properties as a function of the Mach number, k=1.4.

New useful definitions are introduced for the case whenM = 1 and denoted by superscript

“∗.” The special cases of ratio of the star values to stagnation values are dependent only on the
heat ratio as the following:

T∗

T0
=

c∗2

c02

V2
V1

=

(
T1
T2

) 1
k−1

=

(
ρ1
ρ2

)
=

(
P1
P2

) 1
k

P∗

P0
=

(
2

k+ 1

) k
k−1

ρ∗

ρ0
=

(
2

k+ 1

) 1
k−1

Star Relationship

(14.24)

Using all the definitions above relationship between the stagnation properties to star speed

of sound are

c∗ =

√
kR

2 T0
k+ 2

(14.25)
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14.4.2 Isentropic Converging–Diverging Flow in Cross Section
The important sub case in this chapter is

the flow in a converging–diverging nozzle.

The control volume is shown in Figure (14.7).

There are two models that assume variable

area flow: First is isentropic and adiabatic

model. Second is isentropic and isother-

mal model. Here only the first model will

be described. Clearly, the stagnation tem-

perature, T0, is constant through the adi-

abatic flow because there isn’t heat trans-

fer. Therefore, the stagnation pressure is also

A∗

C.V. ρ
P P+dP

ρ+dρ
T+dT
U+dU

T
U

Fig. 14.7 – Control volume inside a
converging-diverging nozzle.

constant through the flow because the flow isentropic. Conversely, in mathematical terms,

equation (14.20) and equation (14.22) are the same. If the right hand side is constant for one

variable, it is constant for the other. In the same vein, the stagnation density is constant

through the flow. Thus, knowing the Mach number or the temperature will provide all that

is needed to find the other properties. The only properties that need to be connected are the

cross section area and the Mach number. Examination of the relation between properties

can then be carried out.

14.4.3 The Properties in the Adiabatic Nozzle
When there is no external work and heat transfer, the energy equation, reads

dh+UdU = 0 (14.26)

Differentiation of continuity equation, ρAU = ṁ = constant, and dividing by the conti-

nuity equation reads

dρ

ρ
+
dA

A
+
dU

U
= 0 (14.27)

The thermodynamic relationship between the properties can be expressed as

T ds = dh−
dP

ρ
(14.28)

For isentropic process ds ≡ 0 and combining Eqs. (14.26) and (14.28) yields

dP

ρ
+UdU = 0 (14.29)

Differentiation of the equation state (perfect gas), P = ρR T , and dividing the results by the

equation of state (ρR T ) yields

dP

P
=
dρ

ρ
+
dT

T
(14.30)
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Obtaining an expression for dU/U from the mass balance Eq. (14.27) and using it in equation

(14.29) reads

dP

ρ
−U2

dU
U︷ ︸︸ ︷[

dA

A
+
dρ

ρ

]
= 0 (14.31)

Rearranging equation (14.31) so that the density, ρ, can be replaced by the static pressure, dP/ρ

yields

dP

ρ
= U2

(
dA

A
+
dρ

ρ

dP

dP

)
= U2




dA

A
+

1
c2︷︸︸︷
dρ

dP

dP

ρ




(14.32)

Recalling that dP/dρ = c2 and substitute the speed of sound into equation (14.32) to obtain

dP

ρ

[
1−

(
U

c

)2]
= U2

dA

A
(14.33)

Or in a dimensionless form

dP

ρ

(
1−M2

)
= U2

dA

A
(14.34)

Equation (14.34) is a differential equation for the pressure as a function of the cross section

area. It is convenient to rearrange equation (14.34) to obtain a variables separation form of

dP =
ρU2

A

dA

1−M2
(14.35)

14.4.3.1 The pressure Mach number relationship

Before going further in themathematical derivations it is worth looking at the physical mean-

ing of equation (14.35). The term ρU2/A is always positive (because all the three terms can be

only positive). Now, it can be observed that dP can be positive or negative depending on the

dA andMach number. Themeaning of the sign change for the pressure differential is that the

pressure can increase or decrease. It can be observed that the critical Mach number is one.

If the Mach number is larger than one than dP has opposite sign of dA. If Mach number is

smaller than one dP and dA have the same sign. For the subsonic branchM < 1 the term

1/(1−M2) is positive hence

dA > 0 =⇒ dP > 0

dA < 0 =⇒ dP < 0
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From these observations the trends are similar to those in incompressible fluid. An increase

in area results in an increase of the static pressure (converting the dynamic pressure to a static

pressure). Conversely, if the area decreases (as a function of x) the pressure decreases. Note

that the pressure decrease is larger in compressible flow compared to incompressible flow.

For the supersonic branchM > 1, the phenomenon is different. ForM > 1 the term

1/1−M2 is negative and change the character of the equation.

dA > 0⇒ dP < 0

dA < 0⇒ dP > 0

This behavior is opposite to incompressible flow behavior.

For the special case of M = 1 (sonic flow) the value of the term 1 −M2 = 0 thus

mathematically dP → ∞ or dA = 0. Since physically dP can increase only in a finite amount

it must that dA = 0. 1 It must also be noted that whenM = 1 occurs only when dA = 0.

However, the opposite, not necessarily means that when dA = 0 thatM = 1. In that case, it

is possible that dM = 0 thus the diverging side is in the subsonic branch and the flow isn’t

choked.

The relationship between the velocity and the pressure can be observed from equation

(14.29) by solving it for dU.

dU = −
dP

PU
(14.36)

From equation (14.36) it is obvious that dU has an opposite sign to dP (since the term PU is

positive). Hence the pressure increases when the velocity decreases and vice versa.

From the speed of sound, one can observe that the density, ρ, increases with pressure

and vice versa (see equation (14.37)).

dρ =
1

c2
dP (14.37)

It can be noted that in the derivations of the above equations ((14.36) - (14.37)), the equation of

state was not used. Thus, the equations are applicable for any gas (perfect or imperfect gas).

The second law (isentropic relationship) dictates that ds = 0 and from thermodynam-

ics ds = 0 = Cp
dT
T − R

dP

P
and for perfect gas

dT

T
=
k− 1

k

dP

P
(14.38)

Thus, the temperature varies in the same way that pressure does.

The relationship between the Mach number and the temperature can be obtained by

utilizing the fact that the process is assumed to be adiabatic dT0 = 0. Differentiation of

1
It possible to claim that dP → ∞ and dA = 0 but it doesn’t change the fact the pressure increase must be

finite and the same conclusion is obtained.
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equation (14.20), the relationship between the temperature and the stagnation temperature

becomes

dT0 = 0 = dT

(
1+

k− 1

2
M2
)
+ T(k− 1)MdM (14.39)

and simplifying equation (14.39) yields

dT

T
= −

(k− 1)MdM

1+
k− 1

2
M2

(14.40)

14.4.3.2 Relationship Between the Mach Number and Cross Section Area

The equations used in the solution are energy (14.40), second law (14.38), state (14.30), mass

(14.27)
2
. Note, equation (14.34) isn’t the solution but demonstration of certain properties of the

pressure profile.

The relationship between temperature and the cross section area can be obtained by

utilizing the relationship between the pressure and temperature (14.38) and the relationship of

pressure with cross section area (14.34). First stage equation (14.40) is combined with equation

(14.38) and becomes

(k− 1)

k

dP

P
= −

(k− 1)MdM

1+
k− 1

2
M2

(14.41)

Combining equation (14.41) with equation (14.34) yields

1

k

ρU2

A

dA

1−M2

P
= −

MdM

1+
k− 1

2
M2

(14.42)

The following identify, ρU2 = kMP can be proved as

kM2 P = k

M2︷︸︸︷
U2

c2

P︷︸︸︷
ρRT = k

U2

kR T

P︷ ︸︸ ︷
ρR T = ρU2 (14.43)

Using the identity in equation (14.43) changes equation (14.42) into

dA

A
=

M2 − 1

M

(
1+

k− 1

2
M2
)dM (14.44)

2
The momentum equation is not used normally in isentropic process, why?
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Equation (14.44) is very important because it

relates the geometry (area) with the relative ve-

locity (Mach number). In equation (14.44), the

factors M
(
1+ k−1

2 M2
)
and A are positive

regardless of the values ofM or A. Therefore,

the only factor that affects relationship be-

tween the cross area and the Mach number is

M2−1. ForM < 1 theMachnumber is varied

opposite to the cross section area. In the case

ofM > 1 theMach number increases with the

cross section area and vice versa. The special

case is whenM = 1which requires that dA =

0. This condition imposes that internal (This

condition does not impose any restrictions for

A∗

dM

dxM,A

dA

dx

M

A

x

Fig. 14.8 – The relationship between the
cross section and the Mach number on
the subsonic branch.

external flow. In external flow, an object can be moved in arbitrary speed.) flow has to pass

a converting–diverging device to obtain supersonic velocity. This minimum area is referred

to as “throat.”

Again, the opposite conclusion that when dA = 0 implies thatM = 1 is not correct

because possibility ofdM = 0. In subsonic flowbranch, from themathematical point of view:

on one hand, a decrease of the cross section increases the velocity and the Mach number, on

the other hand, an increase of the cross section decreases the velocity and Mach number (see

Figure (14.8)).

14.4.4 Isentropic Flow Examples

Example 14.3: Pressured Air Flow Level: Intermediate
Air is allowed to flow from a reservoir with temperature of 21◦C and with pressure

of 5[MPa] through a tube. It wasmeasured that air mass flow rate is 1[kg/sec]. At some

point on the tube static pressure was measured to be 3[MPa]. Assume that process is

isentropic and neglect the velocity at the reservoir, calculate the Mach number, ve-

locity, and the cross section area at that point where the static pressurewasmeasured.

Assume that the ratio of specific heat is k = Cp/Cv = 1.4.

Solution
The stagnation conditions at the reservoir will be maintained throughout the tube because

the process is isentropic. Hence the stagnation temperature can be written T0 = constant

and P0 = constant and both of them are known (the condition at the reservoir). For the

point where the static pressure is known, the Mach number can be calculated by utilizing the

pressure ratio. With the knownMach number, the temperature, and velocity can be calculated.

Finally, the cross section can be calculated with all these information.
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In the point where the static pressure known

P̄ =
P

P0
=
3[MPa]

5[MPa]
= 0.6

FromTable (14.2) or from Figure (14.6) or utilizing the enclosed program, Potto-GDC, or simply

using the equations shows that

M T
T0

ρ
ρ0

ρ
ρ0

ρ
ρ0

A
A⋆

P
P0

A×P
A∗×P0

F
F∗

0.88639 0.86420 0.69428 1.0115 0.60000 0.60693 0.53105

With these values the static temperature and the density can be calculated.

T = 0.86420338× (273+ 21) = 254.076K

ρ =
ρ

ρ0

ρ0︷ ︸︸ ︷
P0
R T0

= 0.69428839× 5× 106[Pa]

287.0
[
J

kgK

]
× 294[K]

= 41.1416
[
kg

m3

]

(14.3.a)

The velocity at that point is

U =M

c︷ ︸︸ ︷√
kR T = 0.88638317×

√
1.4× 287× 254.076 ∼ 283[m/sec] (14.3.b)

The tube area can be obtained from the mass conservation as

A =
ṁ

ρU
= 8.26× 10−5[m3] (14.3.c)

For a circular tube the diameter is about 1[cm].

Example 14.4: Station Pressure Measurement Level: Intermediate
The Mach number at pointAAA on tube is measured to beM = 23 and the static pres-

sure is 2[Bar]. Downstream at point B the pressure was measured to be 1.5[Bar]. Cal-

culate the Mach number at point B under the isentropic flow assumption. Also, es-

timate the temperature at point B. Assume that the specific heat ratio k = 1.4 and
assume a perfect gas model.

Solution
With the known Mach number at point AAA all the ratios of the static properties to total (stag-

nation) properties can be calculated. Therefore, the stagnation pressure at point AAA is known

and stagnation temperature can be calculated.

AtM = 2 (supersonic flow) the ratios are
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End of Ex. 14.4
M T

T0

ρ
ρ0

ρ
ρ0

ρ
ρ0

A
A⋆

P
P0

A P
A⋆ P0

F
F∗

2.0000 0.55556 0.23005 1.6875 0.12780 0.21567 0.59309

With this information the pressure at point B can be expressed as

PA
P0

=

from the table 14.2 @

M = 2 ︷︸︸︷
PB
P0

×PA
PB

= 0.12780453× 2.0
1.5

= 0.17040604
(14.4.a)

The corresponding Mach number for this pressure ratio is 1.8137788 and TB = 0.60315132
PB
P0

= 0.17040879. The stagnation temperature can be “bypassed” to calculate the temperature

at point B

TB = TA ×

M=2︷︸︸︷
T0
TA

×

M=1.81..︷︸︸︷
TB
T0

= 250[K]× 1

0.55555556
× 0.60315132 ≃ 271.42[K] (14.4.b)

4
.

Example 14.5: Convergin–Diverging Level: Basic
Gas flows through a converging–diverging duct. At point “A” the cross section area

is 50 [cm2] and the Mach number was measured to be 0.4. At point B in the duct the

cross section area is 40 [cm2]. Find the Mach number at point B. Assume that the

flow is isentropic and the gas specific heat ratio is 1.4.

Solution
To obtain the Mach number at point B by finding the ratio of the area to the critical area. This

relationship can be obtained by

AB
A∗ =

AB
AA

× AA
A⋆

=
40

50
×

from the Table 14.2︷ ︸︸ ︷
1.59014 = 1.272112 (14.5.a)

With the value of
AB
A⋆ from the Table 14.2 or from Potto-GDC two solutions can be ob-

tained. The two possible solutions: the first supersonic M = 1.6265306 and second subsonic

M = 0.53884934. Both solution are possible and acceptable. The supersonic branch solution is

possible only if there where a transition at throat where M=1.

3
Well, this question is for academic purposes, there is no knownway for the author to directly measure theMach

number. The best approximation is by using inserted cone for supersonic flow and measure the oblique shock. Here

it is subsonic and this technique is not suitable.

4
This pressure is about two atmospheres with temperature of 250[K]
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M T
T0

ρ
ρ0

ρ
ρ0

ρ
ρ0

A
A⋆

P
P0

A×P
A∗×P0

1.6266 0.65396 0.34585 1.2721 0.22617 0.28772

0.53887 0.94511 0.86838 1.2721 0.82071 1.0440

Example 14.6: French Question Level: Intermediate
Engineer needs to redesign a syringe for medical applications. They complained that

the syringe is “hard to push.” The engineer analyzes the flow and conclude that the

flow is choke. Upon this fact, what engineer should do with the syringe; increase the

pushing diameter or decrease the diameter? Explain.

Solution
This problem is a typical to compressible flow in the sense the solution is opposite the regular

intuition. The diameter should be decreased. The pressure in the choke flow in the syringe is

past the critical pressure ratio. Hence, the force is a function of the cross area of the syringe.

So, to decrease the force one should decrease the area.

14.4.5 Mass Flow Rate (Number)
One of the important engineering parameters is the mass flow rate which for ideal gas is

ṁ = ρUA =
P

R T
UA (14.45)

This parameter is studied here, to examine the maximum flow rate and to see what is the

effect of the compressibility on the flow rate. The area ratio as a function of the Mach num-

ber needed to be established, specifically and explicitly the relationship for the chocked flow.

The area ratio is defined as the ratio of the cross section at any point to the throat area (the

narrow area). It is convenient to rearrange the equation (14.45) to be expressed in terms of the

stagnation properties as

ṁ

A
=
P

P0

P0U√
kR T

√
k

R

√
T0
T

1√
T0

=
P0√
T0
M

√
k

R

f(M,k)︷ ︸︸ ︷
P

P0

√
T0
T

(14.46)

Expressing the temperature in terms of Mach number in equation (14.46) results in

ṁ

A
=

(
kMP0√
kR T0

)(
1+

k− 1

2
M2
)−

k+1
2 (k−1)

(14.47)

It can be noted that equation (14.47) holds everywhere in the converging-diverging duct and

this statement also true for the throat. The throat area can be denoted as by A∗
. It can be
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noticed that at the throat when the flow is chocked or in other wordsM = 1 and that the

stagnation conditions (i.e. temperature, pressure) do not change. Hence equation (14.47) ob-

tained the form

ṁ

A∗ =

(√
kP0√
RT0

)(
1+

k− 1

2

)−
k+1
2 (k−1)

(14.48)

Since the mass flow rate is constant in the duct, dividing equations (14.48) by equation (14.47)

yields

A

A∗ =
1

M

(
1+ k−1

2 M2

k+1
2

)−
k+1
2 (k−1)

Mass Flow Rate Ratio

(14.49)

Equation (14.49) relates the Mach number at any point to the cross section area ratio.

The maximum flow rate can be expressed either by taking the derivative of equation

(14.48) in with respect to M and equating to zero. Carrying this calculation results atM = 1.

(
ṁ

A∗

)

max

P0√
T0

=

√
k

R

(
k+ 1

2

)− k+1
2(k−1)

(14.50)

For specific heat ratio, k = 1.4
(
ṁ

A∗

)

max

P0√
T0

∼
0.68473√

R
(14.51)

The maximum flow rate for air (R = 287
j

kgK
) becomes,

ṁ
√
T0

A⋆P0
= 0.040418 (14.52)

Equation (14.52) is known as Fliegner’s Formula on the name of one of the first engineers who

observed experimentally the choking phenomenon. It can be noticed that Fliegner’s equation

can lead to definition of the Fliegner’s Number.

ṁ
√
T0

A∗P0
=
ṁ

c0︷ ︸︸ ︷√
kR T0√

kRA∗P0
=

1√
R

Fn︷ ︸︸ ︷
ṁ c0
A∗P0

1√
k

(14.53)

The definition of Fliegner’s number (Fn) is

FnFnFn ≡
√
R ṁ c0√
RA∗ P0

(14.54)
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Utilizing Fliegner’s number definition and substituting it into equation (14.48) results in

FnFnFn = kM

(
1+

k− 1

2
M2
)− k+1

2(k−1)

Fliegner’s Number

(14.55)

and the maximum point for Fn atM = 1 is

FnFnFn = k

(
k+ 1

2

)− k+1
2(k−1)

(14.56)

Example 14.7: Why zero Level: Intermediate
Why FnFnFn is zero at Mach equal to zero? Prove Fliegner number, FnFnFn is maximum at

M = 1.

Solution

Thus,

R T0
P2

(
ṁ

A

)2
=
FnFnFn2

k

(
A∗P0
AP

)2
(14.57)

Example 14.8: Naughty Proffesor Level: Intermediate
The pitot tubemeasured the temperature of a flowwhichwas found The to be 300

◦
C.

static pressure was measured to be 2 [Bar]. The flow rate is 1 [kg/sec] and area of the

conduct is 0.001 [m2]. Calculate the Mach number, the velocity of the stream, and

stagnation pressure. Assume perfect gas model with k=1.42.

Solution
This exactly the case discussed above in which the ratio of mass flow rate to the area is given

along with the stagnation temperature and static pressure. Utilizing equation (14.57) will pro-

vide the solution.

R T0
P2

(
ṁ

A

)2
=
287× 373
200, 0002

×
(

1

0.001

)2
= 2.676275 (14.8.a)

According to Table 14.1 the Mach number is aboutM = 0.74 · · · (the exact number does not

appear here demonstrate the simplicity of the solution). The Velocity can be obtained from the

U =Mc =M
√
kR T (14.8.b)

The only unknown the equation (14.8.b) is the temperature. However, the temperature can be

obtained from knowing the Mach number with the “regular” table. Utilizing the regular table

or Potto GDC one obtained.
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End of Ex. 14.8
M T

T0

ρ
ρ0

ρ
ρ0

ρ
ρ0

A
A⋆

P
P0

A×P
A∗×P0

F
F∗

0.74000 0.89686 0.77169 1.0677 0.69210 0.73898 0.54281

The temperature is then

T = (287+ 300)× 0.89686 ∼ 526.45K ∼ 239.4◦C (14.8.c)

Hence the velocity is

U = 0.74×
√
1.42× 287× 526.45 ∼ 342.76[m/sec] (14.8.d)

In the same way the static pressure is

P0 = P

/
P

P0
∼ 2/0.692 ∼ 2.89[Bar] (14.8.e)

The usage of Table 14.1 is only approximation and the exact value can be obtained utilizing

Potto GDC.

Example 14.9: Stagnated Pressure Temperature Level: Intermediate
Calculate the Mach number for flow with given stagnation pressure of 2 [Bar] and

27
◦
C. It is given that the mass flow rate is 1 [kg/sec] and the cross section area is

0.01[m2]. Assume that the specific heat ratios, k =1.4.

Solution

To solve this problem, the ratio
RT
P0

2

(
ṁ
A

)2
has to be found.

(
A∗ P0
AP

)2
=
R T

P0
2

(
ṁ

A

)2
=
287× 300
2000002

(
1

0.01

)2
∼ 0.021525 (14.9.a)

This mean that

A∗ P0
AP

∼ 0.1467. In the table it translate into

M T
T0

ρ
ρ0

ρ
ρ0

ρ
ρ0

A
A⋆

P
P0

A×P
A∗×P0

F
F∗

0.08486 0.99856 0.99641 6.8487 0.99497 6.8143 2.8679
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Table 14.1 – Fliegner’s number and other parameters as a function of Mach number

M Fn ρ̂̂ρ̂ρ
(

P0A∗
AP

)2 RT0
P2

(
ṁ
A

)2
1

Rρ0P

(
ṁ
A

)21
Rρ0P

(
ṁ
A

)21
Rρ0P

(
ṁ
A

)2 1
Rρ0

2T

(
ṁ
A

)21
Rρ0

2T

(
ṁ
A

)21
Rρ0

2T

(
ṁ
A

)2

0.00 1.4E−06 1.000 0.0 0.0 0.0 0.0

0.05 0.070106 1.000 0.00747 2.62E−05 0.00352 0.00351

0.10 0.14084 1.000 0.029920 0.000424 0.014268 0.014197

0.20 0.28677 1.001 0.12039 0.00707 0.060404 0.059212

0.21 0.30185 1.001 0.13284 0.00865 0.067111 0.065654

0.22 0.31703 1.001 0.14592 0.010476 0.074254 0.072487

0.23 0.33233 1.002 0.15963 0.012593 0.081847 0.079722

0.24 0.34775 1.002 0.17397 0.015027 0.089910 0.087372

0.25 0.36329 1.003 0.18896 0.017813 0.098460 0.095449

0.26 0.37896 1.003 0.20458 0.020986 0.10752 0.10397

0.27 0.39478 1.003 0.22085 0.024585 0.11710 0.11294

0.28 0.41073 1.004 0.23777 0.028651 0.12724 0.12239

0.29 0.42683 1.005 0.25535 0.033229 0.13796 0.13232

0.30 0.44309 1.005 0.27358 0.038365 0.14927 0.14276

0.31 0.45951 1.006 0.29247 0.044110 0.16121 0.15372

0.32 0.47609 1.007 0.31203 0.050518 0.17381 0.16522

0.33 0.49285 1.008 0.33226 0.057647 0.18709 0.17728

0.34 0.50978 1.009 0.35316 0.065557 0.20109 0.18992

0.35 0.52690 1.011 0.37474 0.074314 0.21584 0.20316

0.36 0.54422 1.012 0.39701 0.083989 0.23137 0.21703

0.37 0.56172 1.013 0.41997 0.094654 0.24773 0.23155

0.38 0.57944 1.015 0.44363 0.10639 0.26495 0.24674

0.39 0.59736 1.017 0.46798 0.11928 0.28307 0.26264

0.40 0.61550 1.019 0.49305 0.13342 0.30214 0.27926

0.41 0.63386 1.021 0.51882 0.14889 0.32220 0.29663
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Table 14.1 – Fliegner’s number and other parameters as function of Mach number (continue)

M Fn ρ̂̂ρ̂ρ
(

P0A∗
AP

)2 RT0
P2

(
ṁ
A

)2
1

Rρ0P

(
ṁ
A

)21
Rρ0P

(
ṁ
A

)21
Rρ0P

(
ṁ
A

)2 1
Rρ0

2T

(
ṁ
A

)21
Rρ0

2T

(
ṁ
A

)21
Rρ0

2T

(
ṁ
A

)2

0.42 0.65246 1.023 0.54531 0.16581 0.34330 0.31480

0.43 0.67129 1.026 0.57253 0.18428 0.36550 0.33378

0.44 0.69036 1.028 0.60047 0.20442 0.38884 0.35361

0.45 0.70969 1.031 0.62915 0.22634 0.41338 0.37432

0.46 0.72927 1.035 0.65857 0.25018 0.43919 0.39596

0.47 0.74912 1.038 0.68875 0.27608 0.46633 0.41855

0.48 0.76924 1.042 0.71967 0.30418 0.49485 0.44215

0.49 0.78965 1.046 0.75136 0.33465 0.52485 0.46677

0.50 0.81034 1.050 0.78382 0.36764 0.55637 0.49249

0.51 0.83132 1.055 0.81706 0.40333 0.58952 0.51932

0.52 0.85261 1.060 0.85107 0.44192 0.62436 0.54733

0.53 0.87421 1.065 0.88588 0.48360 0.66098 0.57656

0.54 0.89613 1.071 0.92149 0.52858 0.69948 0.60706

0.55 0.91838 1.077 0.95791 0.57709 0.73995 0.63889

0.56 0.94096 1.083 0.99514 0.62936 0.78250 0.67210

0.57 0.96389 1.090 1.033 0.68565 0.82722 0.70675

0.58 0.98717 1.097 1.072 0.74624 0.87424 0.74290

0.59 1.011 1.105 1.112 0.81139 0.92366 0.78062

0.60 1.035 1.113 1.152 0.88142 0.97562 0.81996

0.61 1.059 1.122 1.194 0.95665 1.030 0.86101

0.62 1.084 1.131 1.236 1.037 1.088 0.90382

0.63 1.109 1.141 1.279 1.124 1.148 0.94848

0.64 1.135 1.151 1.323 1.217 1.212 0.99507

0.65 1.161 1.162 1.368 1.317 1.278 1.044

0.66 1.187 1.173 1.414 1.423 1.349 1.094
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Table 14.1 – Fliegner’s number and other parameters as function of Mach number (continue)

M Fn ρ̂̂ρ̂ρ
(

P0A∗
AP

)2 RT0
P2

(
ṁ
A

)2
1

Rρ0P

(
ṁ
A

)21
Rρ0P

(
ṁ
A

)21
Rρ0P

(
ṁ
A

)2 1
Rρ0

2T

(
ṁ
A

)21
Rρ0

2T

(
ṁ
A

)21
Rρ0

2T

(
ṁ
A

)2

0.67 1.214 1.185 1.461 1.538 1.422 1.147

0.68 1.241 1.198 1.508 1.660 1.500 1.202

0.69 1.269 1.211 1.557 1.791 1.582 1.260

0.70 1.297 1.225 1.607 1.931 1.667 1.320

0.71 1.326 1.240 1.657 2.081 1.758 1.382

0.72 1.355 1.255 1.708 2.241 1.853 1.448

0.73 1.385 1.271 1.761 2.412 1.953 1.516

0.74 1.415 1.288 1.814 2.595 2.058 1.587

0.75 1.446 1.305 1.869 2.790 2.168 1.661

0.76 1.477 1.324 1.924 2.998 2.284 1.738

0.77 1.509 1.343 1.980 3.220 2.407 1.819

0.78 1.541 1.362 2.038 3.457 2.536 1.903

0.79 1.574 1.383 2.096 3.709 2.671 1.991

0.80 1.607 1.405 2.156 3.979 2.813 2.082

0.81 1.642 1.427 2.216 4.266 2.963 2.177

0.82 1.676 1.450 2.278 4.571 3.121 2.277

0.83 1.712 1.474 2.340 4.897 3.287 2.381

0.84 1.747 1.500 2.404 5.244 3.462 2.489

0.85 1.784 1.526 2.469 5.613 3.646 2.602

0.86 1.821 1.553 2.535 6.006 3.840 2.720

0.87 1.859 1.581 2.602 6.424 4.043 2.842

0.88 1.898 1.610 2.670 6.869 4.258 2.971

0.89 1.937 1.640 2.740 7.342 4.484 3.104

0.90 1.977 1.671 2.810 7.846 4.721 3.244

0.91 2.018 1.703 2.882 8.381 4.972 3.389
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Table 14.1 – Fliegner’s number and other parameters as function of Mach number (continue)

M Fn ρ̂̂ρ̂ρ
(

P0A∗
AP

)2 RT0
P2

(
ṁ
A

)2
1

Rρ0P

(
ṁ
A

)21
Rρ0P

(
ṁ
A

)21
Rρ0P

(
ṁ
A

)2 1
Rρ0

2T

(
ṁ
A

)21
Rρ0

2T

(
ṁ
A

)21
Rρ0

2T

(
ṁ
A

)2

0.92 2.059 1.736 2.955 8.949 5.235 3.541

0.93 2.101 1.771 3.029 9.554 5.513 3.699

0.94 2.144 1.806 3.105 10.20 5.805 3.865

0.95 2.188 1.843 3.181 10.88 6.112 4.037

0.96 2.233 1.881 3.259 11.60 6.436 4.217

0.97 2.278 1.920 3.338 12.37 6.777 4.404

0.98 2.324 1.961 3.419 13.19 7.136 4.600

0.99 2.371 2.003 3.500 14.06 7.515 4.804

1.00 2.419 2.046 3.583 14.98 7.913 5.016

Example 14.10: Chamber Tube Level: Intermediate
A gas flows in the tube with mass flow rate of 0.1 [kg/sec] and tube cross section is

0.001[m2]. The temperature at chamber supplying the pressure to tube is 27◦C. At
some point the static pressure was measured to be 1.5[Bar]. Calculate for that point

the Mach number, the velocity, and the stagnation pressure. Assume that the process

is isentropic, k = 1.3, R = 287[j/kgK].

Solution
The first thing that need to be done is to find the mass flow per area and it is

ṁ

A
= 0.1/0.001 = 100.0[kg/sec/m2] (14.10.a)

It can be noticed that the total temperature is 300K and the static pressure is 1.5[Bar]. It is

fortunate that Potto-GDC exist and it can be just plug into it and it provide that

M T
T0

ρ
ρ0

ρ
ρ0

ρ
ρ0

A
A⋆

P
P0

A×P
A∗×P0

F
F∗

0.17124 0.99562 0.98548 3.4757 0.98116 3.4102 1.5392

The velocity can be calculated as

U =Mc =
√
kR T M = 0.17×

√
1.3× 287× 300× ∼ 56.87[m/sec] (14.10.b)

The stagnation pressure is

P0 =
P

P/P0
= 1.5/0.98116 = 1.5288[Bar] (14.10.c)
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14.4.6 Isentropic Tables

Table 14.2 – Isentropic Table k = 1.4

M T
T0

ρ
ρ0

ρ
ρ0

ρ
ρ0

A
A⋆

P
P0

A×P
A∗×P0

F
F∗

0.00 1.00000 1.00000 5.8E+5 1.0000 5.8E+ 5 2.4E+5

0.05 0.99950 0.99875 11.59 0.99825 11.57 4.838

0.10 0.99800 0.99502 5.822 0.99303 5.781 2.443

0.20 0.99206 0.98028 2.964 0.97250 2.882 1.268

0.30 0.98232 0.95638 2.035 0.93947 1.912 0.89699

0.40 0.96899 0.92427 1.590 0.89561 1.424 0.72632

0.50 0.95238 0.88517 1.340 0.84302 1.130 0.63535

0.60 0.93284 0.84045 1.188 0.78400 0.93155 0.58377

0.70 0.91075 0.79158 1.094 0.72093 0.78896 0.55425

0.80 0.88652 0.73999 1.038 0.65602 0.68110 0.53807

0.90 0.86059 0.68704 1.009 0.59126 0.59650 0.53039

0.95 0.00328 1.061 1.002 1.044 0.95781 1.017

0.96 0.00206 1.049 1.001 1.035 0.96633 1.013

0.97 0.00113 1.036 1.001 1.026 0.97481 1.01

0.98 0.000495 1.024 1.0 1.017 0.98325 1.007

0.99 0.000121 1.012 1.0 1.008 0.99165 1.003

1.00 0.83333 0.63394 1.000 0.52828 0.52828 0.52828

1.1 0.80515 0.58170 1.008 0.46835 0.47207 0.52989

1.2 0.77640 0.53114 1.030 0.41238 0.42493 0.53399

1.3 0.74738 0.48290 1.066 0.36091 0.38484 0.53974

1.4 0.71839 0.43742 1.115 0.31424 0.35036 0.54655

1.5 0.68966 0.39498 1.176 0.27240 0.32039 0.55401

1.6 0.66138 0.35573 1.250 0.23527 0.29414 0.56182
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Table 14.2 – Isentropic Table k=1.4 (continue)

M T
T0

ρ
ρ0

ρ
ρ0

ρ
ρ0

A
A⋆

P
P0

A×P
A∗×P0

F
F∗

1.7 0.63371 0.31969 1.338 0.20259 0.27099 0.56976

1.8 0.60680 0.28682 1.439 0.17404 0.25044 0.57768

1.9 0.58072 0.25699 1.555 0.14924 0.23211 0.58549

2.0 0.55556 0.23005 1.688 0.12780 0.21567 0.59309

2.5 0.44444 0.13169 2.637 0.058528 0.15432 0.62693

3.0 0.35714 0.076226 4.235 0.027224 0.11528 0.65326

3.5 0.28986 0.045233 6.790 0.013111 0.089018 0.67320

4.0 0.23810 0.027662 10.72 0.00659 0.070595 0.68830

4.5 0.19802 0.017449 16.56 0.00346 0.057227 0.69983

5.0 0.16667 0.011340 25.00 0.00189 0.047251 0.70876

5.5 0.14184 0.00758 36.87 0.00107 0.039628 0.71578

6.0 0.12195 0.00519 53.18 0.000633 0.033682 0.72136

6.5 0.10582 0.00364 75.13 0.000385 0.028962 0.72586

7.0 0.092593 0.00261 1.0E+2 0.000242 0.025156 0.72953

7.5 0.081633 0.00190 1.4E+2 0.000155 0.022046 0.73257

8.0 0.072464 0.00141 1.9E+2 0.000102 0.019473 0.73510

8.5 0.064725 0.00107 2.5E+2 6.90E−5 0.017321 0.73723

9.0 0.058140 0.000815 3.3E+2 4.74E−5 0.015504 0.73903

9.5 0.052493 0.000631 4.2E+2 3.31E−5 0.013957 0.74058

10.0 0.047619 0.000495 5.4E+2 2.36E−5 0.012628 0.74192

(Largest tables in the world can be found in Potto Gas Tables at www.potto.org)
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14.4.7 The Impulse Function

One of the functions that is used in calculating

the forces is the Impulse function. The Impulse

function is denoted here as F, but in the liter-

ature some denote this function as I. To ex-

plain the motivation for using this definition

consider the calculation of the net forces that

acting on section shown in Figure (14.9). To cal-

culate the net forces acting in the x–direction

the momentum equation has to be applied

Fnet = ṁ(U2−U1)+P2A2−P1A1 (14.58)

The net force is denoted here as Fnet.

X− directionX− directionX− direction

Fig. 14.9 – Schematic to explain the signifi-
cance of the Impulse function.

The mass conservation also can be applied to our control volume

ṁ = ρ1A1U1 = ρ2A2U2 (14.59)

Combining equation (14.58) with equation (14.59) and by utilizing the identity in equation (14.43)

results in

Fnet = kP2A2M2
2 − kP1A1M1

2 + P2A2 − P1A1 (14.60)

Rearranging equation (14.60) and dividing it by P0A
∗
results in

Fnet

P0A∗ =

f(M2)︷ ︸︸ ︷
P2A2
P0A∗

f(M2)︷ ︸︸ ︷(
1+ kM2

2
)
−

f(M1)︷ ︸︸ ︷
P1A1
P0A∗

f(M1)︷ ︸︸ ︷(
1+ kM1

2
)

(14.61)

Examining equation (14.61) shows that the right hand side is only a function of Mach

number and specific heat ratio, k. Hence, if the right hand side is only a function of the Mach

number and k than the left hand side must be function of only the same parameters,M and

k. Defining a function that depends only on the Mach number creates the convenience for

calculating the net forces acting on any device. Thus, defining the Impulse function as

F = PA
(
1+ kM2

2
)

(14.62)

In the Impulse function when F (M = 1) is denoted as F∗

F∗ = P∗A∗ (1+ k) (14.63)
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The ratio of the Impulse function is defined as

F

F∗
=
P1A1
P∗A∗

(
1+ kM1

2
)

(1+ k)
=

1

P∗

P0︸︷︷︸
( 2
k+1 )

k
k−1

see function (14.61)︷ ︸︸ ︷
P1A1
P0A∗

(
1+ kM1

2
) 1

(1+ k)
(14.64)

This ratio is different only in a coefficient from the ratio defined in equation (14.61) which

makes the ratio a function of k and the Mach number. Hence, the net force is

Fnet = P0A
∗(1+ k)

(
k+ 1

2

) k
k−1

(
F2
F∗

−
F1
F∗

)
(14.65)

To demonstrate the usefulness of the this function consider a simple situation of the

flow through a converging nozzle.

Example 14.11: Net Force Level: Simple

Consider a flow of gas into a con-

verging nozzle with a mass flow rate

of 1[kg/sec] and the entrance area

is 0.009[m2] and the exit area is

0.003[m2]. The stagnation tempera-

ture is 400K and the pressure at point

2 was measured as 5[Bar]. Calculate

the net force acting on the nozzle and

pressure at point 1.

ṁ=1[kg/sec]

1

2

A1=0.009[m2]

T0=400K

A2=0.003[m2]
P2=50[Bar]

Fig. 14.10 – Schematic of a flow of a com-
pressible substance (gas) through a con-
verging nozzle for example (14.11)

Solution
The solution is obtained by getting the data for the Mach number. To obtained the Mach

number, the ratio of P1A1/A
∗P0 is needed to be calculated. The denominator is needed to be

determined to obtain this ratio. Utilizing Fliegner’s equation (14.52), provides the following

A∗P0 =
ṁ
√
R T

0.058
=
1.0×

√
400× 287
0.058

∼ 70061.76[N] (14.11.a)

and

A2 P2
A⋆ P0

=
500000× 0.003
70061.76

∼ 2.1 (14.11.b)

M T
T0

ρ
ρ0

ρ
ρ0

ρ
ρ0

A
A⋆

P
P0

A×P
A∗×P0

F
F∗

0.27353 0.98526 0.96355 2.2121 0.94934 2.1000 0.96666
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End of Ex. 14.11

With the area ratio of
A
A⋆ = 2.2121 the area ratio of at point 1 can be calculated.

A1
A⋆

=
A2
A⋆

A1
A2

= 2.2121× 0.009
0.003

= 5.2227 (14.11.c)

And utilizing again Potto-GDC provides

M T
T0

ρ
ρ0

ρ
ρ0

ρ
ρ0

A
A⋆

P
P0

A×P
A∗×P0

F
F∗

0.11164 0.99751 0.99380 5.2227 0.99132 5.1774 2.1949

The pressure at point 111 is

P1 = P2
P0
P2

P1
P0

= 5.0× 0.94934/0.99380 ∼ 4.776[Bar] (14.11.d)

The net force is obtained by utilizing equation (14.65)

Fnet = P2A2
P0A

∗

P2A2
(1+ k)

(
k+ 1

2

) k
k−1

(
F2
F⋆

−
F1
F⋆

)

= 500000× 1

2.1
× 2.4× 1.23.5 × (2.1949− 0.96666) ∼ 614[kN]

(14.11.e)

14.5 Normal Shock
In this section the relationships between the

two sides of normal shock are presented. In

this discussion, the flow is assumed to be

in a steady state, and the thickness of the

shock is assumed to be very small. A shock

can occur in at least two different mecha-

nisms. The first is when a large difference

(above a small minimum value) between the

two sides of a membrane, and when the mem-

brane bursts (see the discussion about the

shock tube). Of course, the shock travels

flow

direction

c.v.

Px
Tx

ρx
ρyPy

Ty

Fig. 14.11 – A shock wave inside a tube, but it
can also be viewed as a one–dimensional
shock wave.

from the high pressure to the low pressure side. The second is when many sound waves

“run into” each other and accumulate (some refer to it as “coalescing”) into a large difference,

which is the shock wave. In fact, the sound wave can be viewed as an extremely weak shock.

In the speed of sound analysis, it was assumed the medium is continuous, without any abrupt

changes. This assumption is no longer valid in the case of a shock. Here, the relationship for

a perfect gas is constructed.

In Figure 14.11 a control volume for this analysis is shown, and the gas flows from left
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to right. The conditions, to the left and to the right of the shock, are assumed to be uniform
5
.

The conditions to the right of the shock wave are uniform, but different from the left side.

The transition in the shock is abrupt and in a very narrow width. Therefore, the increase of

the entropy is fundamental to the phenomenon and the understanding of it.

It is further assumed that there is no friction or heat loss at the shock (because the heat

transfer is negligible due to the fact that it occurs on a relatively small surface). It is customary

in this field to denote x as the upstream condition and y as the downstream condition.

The mass flow rate is constant from the two sides of the shock and therefore the mass

balance is reduced to

ρxUx = ρyUy (14.66)

In a shock wave, the momentum is the quantity that remains constant because there

are no external forces. Thus, it can be written that

Px − Py =
(
ρxUy

2 − ρyUx
2
)

(14.67)

The process is adiabatic, or nearly adiabatic, and therefore the energy equation can be written

as

Cp Tx +
Ux
2

2
= Cp Ty +

Uy
2

2
(14.68)

The equation of state for perfect gas reads

P = ρR T (14.69)

If the conditions upstream are known, then there are four unknown conditions down-

stream. A system of four unknowns and four equations is solvable. Nevertheless, one can note

that there are two solutions because of the quadratic of equation (14.68). These two possible

solutions refer to the direction of the flow. Physics dictates that there is only one possible

solution. One cannot deduce the direction of the flow from the pressure on both sides of the

shock wave. The only tool that brings us to the direction of the flow is the second law of

thermodynamics. This law dictates the direction of the flow, and as it will be shown, the gas

flows from a supersonic flow to a subsonic flow. Mathematically, the second law is expressed

by the entropy. For the adiabatic process, the entropy must increase. In mathematical terms,

it can be written as follows:

sy − sx > 0 (14.70)

Note that the greater–equal signs were not used. The reason is that the process is irreversible,

and therefore no equality can exist. Mathematically, the parameters are P, T ,U, and ρ, which
are needed to be solved. For ideal gas, equation (14.70) is

ln
(
Ty

Tx

)
− (k− 1)

Py

Px
> 0 (14.71)

5
in the shock is so significant compared to the changes in medium before and after the shock that the changes in

the mediums (flow) can be considered uniform.
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It can also be noticed that entropy, s, can be expressed as a function of the other pa-

rameters. These equations can be viewed as two different subsets of equations. The first set

is the energy, continuity, and state equations, and the second set is the momentum, continu-

ity, and state equations. The solution of every set of these equations produces one additional

degree of freedom, which will produce a range of possible solutions. Thus, one can have a

whole range of solutions. In the first case, the energy equation is used, producing various

resistance to the flow. This case is called Fanno flow, and Section 14.7 deals extensively with

this topic. Instead of solving all the equations that were presented, one can solve only four (4)

equations (including the second law), which will require additional parameters. If the energy,

continuity, and state equations are solved for the arbitrary value of the Ty, a parabola in the

T − s diagram will be obtained. On the other hand, when the momentum equation is solved

instead of the energy equation, the degree of freedom is now energy, i.e., the energy amount

“added” to the shock. This situation is similar to a frictionless flow with the addition of heat,

and this flow is known as Rayleigh flow. This flow is dealt with in greater detail in Section

(14.9).

Since the shock has no heat transfer (a special case of Rayleigh flow) and there isn’t

essentially any momentum transfer (a special case of Fanno flow), the intersection of these

two curves is what really happened in the shock. The entropy increases from point x to point

y.

14.5.1 Solution of the Governing Equations
Equations (14.66), (14.67), and (14.68) can be converted into a dimensionless form. The reason

that dimensionless forms are heavily used in this book is because by doing so it simplifies and

clarifies the solution. It can also be noted that in many cases the dimensionless equations set

is more easily solved.

From the continuity equation (14.66) substituting for density, ρ, the equation of state

yields

Px

R Tx
Ux =

Py

R Ty
Uy (14.72)

Squaring equation (14.72) results in

Px
2

R2 Tx
2
Ux
2 =

Py
2

R2 Ty
2
Uy
2

(14.73)

Multiplying the two sides by the ratio of the specific heat, k, provides away to obtain the speed

of sound definition/equation for perfect gas, c2 = kR T to be used for the Mach number

definition, as follows:

Px
2

Tx kR Tx︸ ︷︷ ︸
cx2

Ux
2 =

Py
2

Ty kR Ty︸ ︷︷ ︸
cy2

Uy
2

(14.74)
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Note that the speed of sound is different on the sides of the shock. Utilizing the definition of

Mach number results in

Px
2

Tx
Mx

2 =
Py
2

Ty
My

2
(14.75)

Rearranging equation (14.75) results in

Ty

Tx
=

(
Py

Px

)2(My
Mx

)2
(14.76)

Energy equation (14.68) can be converted to a dimensionless form which can be expressed as

Ty

(
1+

k− 1

2
My

2

)
= Tx

(
1+

k− 1

2
Mx

2

)
(14.77)

It can also be observed that equation (14.77) means that the stagnation temperature is the same,

T0y = T0x. Under the perfect gas model, ρU2 is identical to kPM2 because

ρU2 =

ρ︷︸︸︷
P

R T

M2︷ ︸︸ ︷

U2

kR T︸ ︷︷ ︸
c2


kR T = kPM2 (14.78)

Using the identity (14.78) transforms the momentum equation (14.67) into

Px + kPxMx
2 = Py + kPyMy

2
(14.79)

Rearranging equation (14.79) yields

Py

Px
=
1+ kMx

2

1+ kMy
2

(14.80)

The pressure ratio in equation (14.80) can be interpreted as the loss of the static pressure.

The loss of the total pressure ratio can be expressed by utilizing the relationship between the

pressure and total pressure (see equation (14.22)) as

P0y

P0x
=

Py

(
1+

k− 1

2
My

2

) k

k− 1

Px

(
1+

k− 1

2
Mx

2

) k

k− 1

(14.81)

The relationship betweenMx andMy is needed to be solved from the above set of equations.

This relationship can be obtained from the combination of mass, momentum, and energy
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equations. From equation (14.77) (energy) and equation (14.76) (mass) the temperature ratio

can be eliminated.

(
PyMy

PxMx

)2
=
1+

k− 1

2
Mx

2

1+
k− 1

2
My

2
(14.82)

Combining the results of (14.82) with equation (14.80) results in

(
1+ kMx

2

1+ kMy
2

)2
=

(
Mx

My

)2 1+ k− 1

2
Mx

2

1+
k− 1

2
My

2
(14.83)

Equation (14.83) is a symmetrical equation in the sense that ifMy is substituted withMx and

Mx substituted withMy the equation remains the same. Thus, one solution is

My =Mx (14.84)

It can be observed that equation (14.83) is biquadratic. According to the Gauss Biquadratic

Reciprocity Theorem this kind of equation has a real solution in a certain range
6
which will

be discussed later. The solution can be obtained by rewriting equation (14.83) as a polyno-

mial (fourth order). It is also possible to cross–multiply equation (14.83) and divide it by(
Mx

2 −My
2
)
results in

1+
k− 1

2

(
My

2 +My
2
)
− kMy

2My
2 = 0 (14.85)

Equation (14.85) becomes

My
2 =

Mx
2 +

2

k− 1
2 k

k− 1
Mx

2 − 1

Shock Solution

(14.86)

The first solution (14.84) is the trivial solution in which the two sides are identical and no

shock wave occurs. Clearly, in this case, the pressure and the temperature from both sides of

the nonexistent shock are the same, i.e. Tx = Ty, Px = Py. The second solution is where the

shock wave occurs.

The pressure ratio between the two sides can now be as a function of only a single

Mach number, for example,Mx. Utilizing equation (14.80) and equation (14.86) provides the

6
Ireland, K. and Rosen, M. "Cubic and Biquadratic Reciprocity." Ch. 9 in A Classical Introduction to Modern

Number Theory, 2nd ed. New York: Springer-Verlag, pp. 108-137, 1990.
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pressure ratio as only a function of the upstream Mach number as

Py

Px
=

2 k

k+ 1
Mx

2 −
k− 1

k+ 1
or

Py

Px
= 1+

2 k

k+ 1

(
Mx

2 − 1
)

Shock Pressure Ratio

(14.87)

The density and upstreamMach number relationship can be obtained in the same fash-

ion to became

ρy

ρx
=
Ux

Uy
=

(k+ 1)Mx
2

2+ (k− 1)Mx
2

Shock Density Ratio

(14.88)

The fact that the pressure ratio is a function of the upstream Mach number, Mx, provides

additional way of obtaining an additional useful relationship. And the temperature ratio, as a

function of pressure ratio, is transformed into

Ty

Tx
=

(
Py

Px

)



k+ 1

k− 1
+
Py

Px

1+
k+ 1

k− 1

Py

Px




Shock Temperature Ratio

(14.89)

In the same way, the relationship between the density ratio and pressure ratio is

ρx

ρy
=

1+

(
k+ 1

k− 1

)(
Py

Px

)

(
k+ 1

k− 1

)
+

(
Py

Px

)

Shock P− ρ

(14.90)

which is associated with the shock wave.
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Fig. 14.12 – The exit Mach number and the stagnation pressure ratio as a function of upstreamMach
number.

14.5.1.1 The Star Conditions

The speed of sound at the critical condition can also be a good reference velocity. The speed

of sound at that velocity is

c∗ =
√
kR T∗ (14.91)

In the same manner, an additional Mach number can be defined as

M∗ =
U

c∗
(14.92)

14.5.2 Prandtl’s Condition
It can be easily observed that the temperature from both sides of the shock wave is discon-

tinuous. Therefore, the speed of sound is different in these adjoining mediums. It is therefore

convenient to define the star Mach number that will be independent of the specific Mach

number (independent of the temperature).

M∗ =
U

c∗
=
c

c∗
U

c
=
c

c∗
M (14.93)
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The jump condition across the shock must satisfy the constant energy.

c2

k− 1
+
U2

2
=
c∗2

k− 1
+
c∗2

2
=

k+ 1

2 (k− 1)
c∗2 (14.94)

Dividing the mass equation by the momentum equation and combining it with the perfect

gas model yields

c1
2

kU1
+U1 =

c2
2

kU2
+U2 (14.95)

Combining equation (14.94) and (14.95) results in

1

kU1

[
k+ 1

2
c∗2 −

k− 1

2
U1

]
+U1 =

1

kU2

[
k+ 1

2
c∗2 −

k− 1

2
U2

]
+U2 (14.96)

After rearranging and dividing equation (14.96) the following can be obtained:

U1U2 = c∗2 (14.97)

or in a dimensionless form

M∗
1M

∗
2 = c∗2 (14.98)

14.5.3 Operating Equations and Analysis
In Figure 14.12, the Mach number after the shock, My, and the ratio of the to-

tal pressure, P0y/P0x, are plotted as a function of the entrance Mach num-

ber. The working equations were presented earlier. Note that the My has a

minimum value which depends on the specific heat ratio. It can be noticed

that the density ratio (velocity ratio) also

has a finite value regardless of the up-

stream Mach number.

The typical situations in which

these equations can be used also include

the moving shocks. The equations should

be used with the Mach number (upstream

or downstream) for a given pressure ratio

or density ratio (velocity ratio). This kind

of equations requires examining Table 14.3

for k = 1.4 or utilizing Potto-GDC for

for value of the specific heat ratio. Find-

ing the Mach number for a pressure ratio

of 8.30879 and k = 1.32 and is only a few
mouse clicks away from the following ta-

ble.

1 2 3 4 5 6 7 8 9 10
M

x

0.0 

10.0 

20.0 

30.0 

40.0 

50.0 

60.0 

70.0 

80.0 

90.0 

100.0 

110.0 

120.0 

P
y
/P

x

T
y
/T

x

ρ
y
/ρ

x

Shock Wave relationship
P

y
/P

y
, ρ

y
/ρ

x
 and T

y
/T

x
 as a function of M

x

Fri Jun 18 15:48:25 2004

Fig. 14.13 –The ratios of the static properties of the
two sides of the shock.

To illustrate the use of the above equations, an example is provided.
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Example 14.12: Air Shock Level: Basic
Air flows with a Mach number ofMx = 3, at a pressure of 0.5 [bar] and a tempera-

ture of 0◦C goes through a normal shock. Calculate the temperature, pressure, total

pressure, and velocity downstream of the shock. Assume that k = 1.4.

Solution
Analysis:

First, the known information areMx = 3, Px = 1.5[bar] and Tx = 273K. Using these data,

the total pressure can be obtained (through an isentropic relationship in Table (14.2), i.e., P0x is

known). Also with the temperature, Tx, the velocity can readily be calculated. The relationship

thatwas calculatedwill be utilized to obtain the ratios for the downstreamof the normal shock.

Px
P0x

= 0.0272237 =⇒ P0x = 1.5/0.0272237 = 55.1[bar]

cx =
√
kR Tx =

√
1.4× 287× 273 = 331.2m/sec (14.12.a)

Mx My
Ty
Tx

ρy

ρx

ρy

ρx

ρy

ρx

Py
Px

P0y
P0x

3.0000 0.47519 2.6790 3.8571 10.3333 0.32834

Ux =Mx × cx = 3× 331.2 = 993.6[m/sec] (14.12.b)

Now the velocity downstream is determined by the inverse ratio of

ρy/ρx = Ux/Uy = 3.85714. (14.12.c)

Uy = 993.6/3.85714 = 257.6[m/sec] (14.12.d)

P0y =

(
P0y

P0x

)
× P0x = 0.32834× 55.1[bar] = 18.09[bar] (14.12.e)

When the upstreamMach number becomes very large, the downstreamMach number

(see equation (14.86)) is limited by

My
2 =

1+
���

���*
∼0

2

(k− 1)Mx
2

2 k

k− 1
−
�

�
��

∼0

1

Mx
2

=
k− 1

2 k
(14.99)

This result is shown in Figure 14.12. The limits of the pressure ratio can be obtained by looking

at equation (14.80) and by utilizing the limit that was obtained in equation (14.99).
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U′
y

U′
x

c.v.

Px<Py ρyPyTy

Us

(a) Stationary coordinates.

(
Us−U′

y

)
(
Us−U′

x

)c.v.

Px<Py ρyPyTy

U=0

(b) Moving coordinates.

Fig. 14.14 – Comparison between stationary and moving coordinates for the moving shock.

14.5.4 The Moving Shocks

In some situations, the shock wave is not stationary. This kind of situation arises in many

industrial applications. For example, when a valve is suddenly
7
closed and a shock propagates

upstream. On the other extreme, when a valve is suddenly opened or amembrane is ruptured,

a shock occurs and propagates downstream (the opposite direction of the previous case). In

addition to (partially) closing or (partially) opening of value, the rigid body (not so rigid body)

movement creates shocks. In some industrial applications, a liquid (metal) is pushed in two

rapid stages to a cavity through a pipe system. This liquid (metal) is pushing gas (mostly) air,

which creates two shock stages. The moving shock is observed by daily as hearing sound

wave are moving shocks.

As a general rule, the moving shock can move downstream or upstream. The source of

the shock creation, either due to the static device operation like valve operating/closing or due

to moving object, is relevant to analysis but it effects the boundary conditions. This creation

difference while creates the same moving shock it creates different questions and hence in

some situations complicate the calculations. The most general case which this section will be

dealing with is the partially open or close wave. A brief discussion on the such case (partially

close/open but due the moving object) will be presented. There are more general cases where

themoving shocks are createdwhich include a change in the physical properties, but this book

will not deal with them at this stage. The reluctance to deal with the most general case is due

to fact it is highly specialized and complicated even beyond early graduate students level. In

these changes (of opening a valve and closing a valve on the other side) create situations in

which different shocks are moving in the tube. The general case is where two shocks collide

into one shock and moves upstream or downstream is the general case. A specific example

is common in die–casting: after the first shock moves a second shock is created in which its

velocity is dictated by the upstream and downstream velocities.

In cases where the shock velocity can be approximated as a constant (in the majority

of cases) or as near constant, the previous analysis, equations, and the tools developed in this

chapter can be employed. The problem can be reduced to the previously studied shock, i.e.,

to the stationary case when the coordinates are attached to the shock front. In such a case,

the steady state is obtained in the moving control value.

7
It will be explained using dimensional analysis what is suddenly open.
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For this analysis, the coordinates move with the shock. Here, the prime
′′′
denotes the

values of the static coordinates. Note that this notation is contrary to the conventional no-

tation found in the literature. The reason for the deviation is that this choice reduces the

programing work (especially for object–oriented programing like C++). An observer moving

with the shock will notice that the pressure in the shock sides is

Px
′
= Px Py

′
= Py (14.100)

The temperatures measured by the observer are

Tx
′
= Tx Ty

′
= Ty (14.101)

Assuming that the shock is moving to the right, (refer to Figure 14.14) the velocity measured

by the observer is

Ux = Us −Ux
′

(14.102)

Where Us is the shock velocity which is moving to the right. The “downstream” velocity is

Uy
′
= Us −Uy (14.103)

The speed of sound on both sides of the shock depends only on the temperature and it is

assumed to be constant. The upstream prime Mach number can be defined as

Mx
′
=
Us −Ux
cx

=
Us

cx
−Mx =Msx −Mx (14.104)

It can be noted that the additional definition was introduced for the shock upstream Mach

number,Msx = Us
cx

. The downstream prime Mach number can be expressed as

My
′
=
Us −Uy
cy

=
Us

cy
−My =Msy −My (14.105)

Similar to the previous case, an additional definition was introduced for the shock down-

stream Mach number, Msy. The relationship between the two new shock Mach numbers

is

Us

cx
=
cy

cx

Us

cy

Msx =

√
Ty

Tx
Msy

(14.106)

The “upstream” stagnation temperature of the fluid is

T0x = Tx

(
1+

k− 1

2
Mx

2

)
Shock Stagnation Temperature

(14.107)
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and the “upstream” prime stagnation pressure is

P0x = Px

(
1+

k− 1

2
Mx

2

) k
k−1

(14.108)

The same can be said for the “downstream” side of the shock. The difference between the

stagnation temperature is in the moving coordinates

T0y − T0x = 0 (14.109)

14.5.5 Shock or Wave Drag Result from a Moving Shock

It can be shown that there is no shock drag in stationary shock
8
. However, the shock or

wave drag is very significant so much so that at one point it was considered the sound

barrier. Consider the Figure 14.15 where the stream lines are moving with the object

speed. The other boundaries are stationary but

the velocity at right boundary is not zero. The

same arguments, as discussed before in the sta-

tionary case, are applied. What is difference

in the present case (as oppose to the stationary

shock), one side has increase themomentumof

the control volume. This increase momentum

in the control volume causes the shock drag. In

way, it can be view as continuous acceleration

of the gas around the body from zero. Note

this drag is only applicable to a moving shock

(unsteady shock).

ρ1
U1=0

stream lines

U2 6=0
ρ2

A2
P2

A1
P1

moving 
object

stationary lines at the
speed of the object

Fig. 14.15 – The diagram that reexplains the
shock drag effect of a moving shock.

The moving shock is either results from a body that moves in gas or from a sudden

imposed boundary like close or open valve
9
. In the first case, the forces or energies flow from

body to gas and therefor there is a need for large force to accelerate

8
for more information see “Fundamentals of Compressible Flow, Potto Project, Bar-Meir any version”.

9
According to my son, the difference between these two cases is the direction of the information. Both case there

essentially bodies, however, in one the information flows from inside the field to the boundary while the other case

it is the opposite.
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the gas over extremely short distance

(shock thickness). In the second case, the

gas contains the energy (as high pressure,

for example in the open valve case) and the

energy potential is lost in the shock pro-

cess (like shock drag).

For some strange reasons, this topic

has several misconceptions that even ap-

pear in many popular and good textbooks

10
Similar situation exist in the surface ten-

sion area.. Consider the following exam-

ple taken from such a book.

Fig. 14.16 – The diagram for the common expla-
nation for shock or wave drag effect a shock.
Please notice the strange notations (e.g. V and
not U) and they result from a verbatim copy.

.

Example 14.13: Zucorow’s Question Level: Intermediate
A book (see Figure 14.16) explains the shock drag is based on the following rational:

The body is moving in a stationary frictionless fluid under one–dimensional flow.

The left plane is moving with body at the same speed. The second plane is located

“downstream from the bodywhere the gas has expanded isotropically (after the shock

wave) to the upstream static pressure.” The bottom and upper stream line close the

control volume. Since the pressure is the same on the both planes there is no un-

balanced pressure forces. However, there is a change in the momentum in the flow

direction because (U1 > U2). The force is acting on the body. There several mistakes

in this explanation including the drawing. Explain what is wrong in this description

(do not describe the error results from oblique shock).

Solution
Neglecting the mistake around the contact of the stream lines with the oblique shock(see for

retouch in the oblique chapter), the control volume suggested is stretched with time. However,

the common explanation fall to notice that when the isentropic explanation occurs the width

of the area change. Thus, the simple explanation in a change only in momentum (velocity)

is not appropriate. Moreover, in an expanding control volume this simple explanation is not

appropriate. Notice that the relative velocity at the front of the control volume U1 is actually

zero. Hence, the claim of U1 > U2 is actually the opposite, U1 < U2.

14.5.6 Qualitative questions
1. In the analysis of the maximum temperature in the shock tube, it was assumed that

process is isentropic. If this assumption is not correctwould themaximum temperature

obtained is increased or decreased?

10
Similar situation exist in the surface tension area.
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2. In the analysis of the maximum temperature in the shock wave it was assumed that

process is isentropic. Clearly, this assumption is violated when there are shock waves.

In that cases, what is the reasoning behind use this assumption any why?

14.5.7 Tables of Normal Shocks, k = 1.4 Ideal Gas

Table 14.3 – The shock wave table for k = 1.4

Mx My
Ty
Tx

ρy
ρx

ρy
ρx

ρy
ρx

Py
Px

P0y
P0x

1.00 1.00000 1.00000 1.00000 1.00000 1.00000

1.05 0.95313 1.03284 1.08398 1.11958 0.99985

1.10 0.91177 1.06494 1.16908 1.24500 0.99893

1.15 0.87502 1.09658 1.25504 1.37625 0.99669

1.20 0.84217 1.12799 1.34161 1.51333 0.99280

1.25 0.81264 1.15938 1.42857 1.65625 0.98706

1.30 0.78596 1.19087 1.51570 1.80500 0.97937

1.35 0.76175 1.22261 1.60278 1.95958 0.96974

1.40 0.73971 1.25469 1.68966 2.12000 0.95819

1.45 0.71956 1.28720 1.77614 2.28625 0.94484

1.50 0.70109 1.32022 1.86207 2.45833 0.92979

1.55 0.68410 1.35379 1.94732 2.63625 0.91319

1.60 0.66844 1.38797 2.03175 2.82000 0.89520

1.65 0.65396 1.42280 2.11525 3.00958 0.87599

1.70 0.64054 1.45833 2.19772 3.20500 0.85572

1.75 0.62809 1.49458 2.27907 3.40625 0.83457

1.80 0.61650 1.53158 2.35922 3.61333 0.81268

1.85 0.60570 1.56935 2.43811 3.82625 0.79023

1.90 0.59562 1.60792 2.51568 4.04500 0.76736

1.95 0.58618 1.64729 2.59188 4.26958 0.74420
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Table 14.3 – The shock wave table for k = 1.4 (continue)

Mx My
Ty
Tx

ρy
ρx

ρy
ρx

ρy
ρx

Py
Px

P0y
P0x

2.00 0.57735 1.68750 2.66667 4.50000 0.72087

2.05 0.56906 1.72855 2.74002 4.73625 0.69751

2.10 0.56128 1.77045 2.81190 4.97833 0.67420

2.15 0.55395 1.81322 2.88231 5.22625 0.65105

2.20 0.54706 1.85686 2.95122 5.48000 0.62814

2.25 0.54055 1.90138 3.01863 5.73958 0.60553

2.30 0.53441 1.94680 3.08455 6.00500 0.58329

2.35 0.52861 1.99311 3.14897 6.27625 0.56148

2.40 0.52312 2.04033 3.21190 6.55333 0.54014

2.45 0.51792 2.08846 3.27335 6.83625 0.51931

2.50 0.51299 2.13750 3.33333 7.12500 0.49901

2.75 0.49181 2.39657 3.61194 8.65625 0.40623

3.00 0.47519 2.67901 3.85714 10.33333 0.32834

3.25 0.46192 2.98511 4.07229 12.15625 0.26451

3.50 0.45115 3.31505 4.26087 14.12500 0.21295

3.75 0.44231 3.66894 4.42623 16.23958 0.17166

4.00 0.43496 4.04688 4.57143 18.50000 0.13876

4.25 0.42878 4.44891 4.69919 20.90625 0.11256

4.50 0.42355 4.87509 4.81188 23.45833 0.09170

4.75 0.41908 5.32544 4.91156 26.15625 0.07505

5.00 0.41523 5.80000 5.00000 29.00000 0.06172

5.25 0.41189 6.29878 5.07869 31.98958 0.05100

5.50 0.40897 6.82180 5.14894 35.12500 0.04236

5.75 0.40642 7.36906 5.21182 38.40625 0.03536

6.00 0.40416 7.94059 5.26829 41.83333 0.02965
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Table 14.3 – The shock wave table for k = 1.4 (continue)

Mx My
Ty
Tx

ρy
ρx

ρy
ρx

ρy
ρx

Py
Px

P0y
P0x

6.25 0.40216 8.53637 5.31915 45.40625 0.02498

6.50 0.40038 9.15643 5.36508 49.12500 0.02115

6.75 0.39879 9.80077 5.40667 52.98958 0.01798

7.00 0.39736 10.46939 5.44444 57.00000 0.01535

7.25 0.39607 11.16229 5.47883 61.15625 0.01316

7.50 0.39491 11.87948 5.51020 65.45833 0.01133

7.75 0.39385 12.62095 5.53890 69.90625 0.00979

8.00 0.39289 13.38672 5.56522 74.50000 0.00849

8.25 0.39201 14.17678 5.58939 79.23958 0.00739

8.50 0.39121 14.99113 5.61165 84.12500 0.00645

8.75 0.39048 15.82978 5.63218 89.15625 0.00565

9.00 0.38980 16.69273 5.65116 94.33333 0.00496

9.25 0.38918 17.57997 5.66874 99.65625 0.00437

9.50 0.38860 18.49152 5.68504 105.12500 0.00387

9.75 0.38807 19.42736 5.70019 110.73958 0.00343

10.00 0.38758 20.38750 5.71429 116.50000 0.00304

14.6 Isothermal Flow

In this section a model dealing with gas that

flows through a long tube is described. This

model has a applicability to situations which

occur in a relatively long distance and where

heat transfer is relatively rapid so that the tem-

perature can be treated, for engineering pur-

poses, as a constant. For example, this model

is applicable when a natural gas flows over

flow

direction P
T
U

}
(M)

ρ +∆ρ
P +∆P

c.v.
ρ

�

w

�

w

T + ∆T
U + ∆U

}
(M +∆M)

Fig. 14.17 – Control volume for isothermal
flow.

several hundreds of meters. Such situations are common in large cities in U.S.A. where

natural gas is used for heating. It is more predominant (more applicable) in situations where
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the gas is pumped over a length of kilometers.

The high speed of the gas is obtained or explained by the combination of heat transfer

and the friction to the flow. For a long pipe, the pressure difference reduces the density of the

gas. For instance, in a perfect gas, the density is inverse of the pressure (it has to be kept in

mind that the gas undergoes an isothermal process.). To maintain conservation of mass, the

velocity increases inversely to the pressure. At critical point the velocity reaches the speed of

sound at the exit and hence the flow will be choked
11
.

14.6.1 The Control Volume Analysis/Governing equations
Fig. 14.17 describes the flow of gas from the left to the right. The heat transfer up stream (or

down stream) is assumed to be negligible. Hence, the energy equation can be written as the

following:

dQ

ṁ
= cp dT + d

U2

2
= cpdT0 (14.110)

The momentum equation is written as the following

−AdP− τw dAwetted area
= ṁ dU (14.111)

where A is the cross section area (it doesn’t have to be a perfect circle; a close enough shape

is sufficient.). The shear stress is the force per area that acts on the fluid by the tube wall. The

Awetted area is the area that shear stress acts on. The second law of thermodynamics reads

s2 − s1
Cp

= ln
T2
T1

−
k− 1

k
ln
P2
P1

(14.112)

The mass conservation is reduced to

ṁ = constant = ρUA (14.113)

Again it is assumed that the gas is a perfect gas and therefore, equation of state is ex-

pressed as the following:

P = ρR T (14.114)

14.6.2 Dimensionless Representation
In this section the equations are transformed into the dimensionless form and presented as

such. First it must be recalled that the temperature is constant and therefore, equation of state

reads

dP

P
=
dρ

ρ
(14.115)

11
This explanation is not correct as it will be shown later on. Close to the critical point (about, 1/

√
k, the heat

transfer, is relatively high and the isothermal flowmodel is not valid anymore. Therefore, the study of the isothermal

flow above this point is only an academic discussion but also provides the upper limit for Fanno Flow.
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It is convenient to define a hydraulic diameter

DH =
4×Cross Section Area

wetted perimeter

(14.116)

The Fanning friction factor
12
is introduced, this factor is a dimensionless friction factor some-

times referred to as the friction coefficient as

f =
τw
1
2ρU

2
(14.117)

Substituting equation (14.117) into momentum equation (14.111) yields

−dP−
4 dx

DH
f
(
1
2 ρU

2
)
=

ṁ
A︷︸︸︷
ρU dU (14.118)

Rearranging equation (14.118) and using the identify for perfect gasM2 = ρU2/kP yields:

−
dP

P
−
4 f dx

DH

(
kPM2

2

)
=
kPM2 dU

U
(14.119)

The pressure, P as a function of the Mach number has to substitute along with velocity, U as

U2 = kR TM2 (14.120)

Differentiation of equation (14.120) yields

d(U2) = kR
(
M2 dT + T d(M2)

)
(14.121)

d(M2)

M2
=
d(U2)

U2
−
dT

T
(14.122)

It can be noticed that dT = 0 for isothermal process and therefore

d(M2)

M2
=
d(U2)

U2
=
2U dU

U2
=
2dU

U
(14.123)

The dimensionalization of the mass conservation equation yields

dρ

ρ
+
dU

U
=
dρ

ρ
+
2UdU

2U2
=
dρ

ρ
+
d(U2)

2 U2
= 0 (14.124)

Differentiation of the isotropic (stagnation) relationship of the pressure (14.22) yields

dP0
P0

=
dP

P
+




kM2

2

1+
k− 1

2
M2



dM2

M2
(14.125)

12
It should be noted that Fanning factor based on hydraulic radius, instead of diameter friction equation, thus

“Fanning f” values are only 1/4th of “Darcy f” values.
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Differentiation of Eq. (14.20) yields:

dT0 = dT

(
1+

k− 1

2
M2
)
+ T

k− 1

2
dM2 (14.126)

Notice thatdT0 ̸= 0 in an isothermal flow. There is no change in the actual temperature of the

flow but the stagnation temperature increases or decreases depending on the Mach number

(supersonic flow of subsonic flow). Substituting T for equation (14.126) yields:

dT0 =
T0
k− 1

2
dM2

(
1+

k− 1

2
M2
) M2

M2
(14.127)

Rearranging equation (14.127) yields

dT0
T0

=
(k− 1)M2

2

(
1+

k− 1

2

) dM2

M2
(14.128)

By utilizing the momentum equation it is possible to obtain a relation between the pressure

and density. Recalling that an isothermal flow (dT = 0) and combining it with perfect gas

model yields

dP

P
=
dρ

ρ
(14.129)

From the continuity equation (see equation (14.123)) leads

dM2

M2
=
2dU

U
(14.130)

The four equations momentum, continuity (mass), energy, state are described above.

There are 4 unknowns (M, T ,P, ρ)13 and with these four equations the solution is attainable.

One can notice that there are two possible solutions (because of the square power). These

different solutions are supersonic and subsonic solution.

The distance friction, t4fLD , is selected as the choice for the independent variable. Thus,

the equations need to be obtained as a function of
4fL
D . The density is eliminated from equa-

tion (14.124) when combined with equation (14.129) to become

dP

P
= −

dU

U
(14.131)

After substituting the velocity (14.131) into equation (14.119), one can obtain

−
dP

P
−
4 f dx

DH

(
kPM2

2

)
= kPM2

dP

P
(14.132)

13
Assuming the upstream variables are known.
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Equation (14.132) can be rearranged into

dP

P
=
dρ

ρ
= −

dU

U
= −

1

2

dM2

M2
= −

kM2

2
(
1− kM2

)4 f dx
D

(14.133)

Similarly or by other paths, the stagnation pressure can be expressed as a function of
4fL
D

dP0
P0

=

kM2
(
1−

k+ 1

2
M2
)

2
(
kM2 − 1

)(
1+

k− 1

2
M2
)4fdx

D
(14.134)

dT0
T0

=
k (1− k)M2

2
(
1− kM2

)(
1+

k− 1

2
M2
) 4 fdx

D
(14.135)

The variables in equation (14.133) can be separated to obtain integrable form as follows∫L
0

4 f dx

D
=

∫1/k
M2

1− kM2

kM2
dM2 (14.136)

It can be noticed that at the entrance (x = 0) for whichM = Mx=0 (the initial velocity in

the tube isn’t zero). The term
4fL
D is positive for any x, thus, the term on the other side has

to be positive as well. To obtain this restriction 1 = kM2. Thus, the valueM = 1√
k
is the

limiting case from a mathematical point of view. When Mach number larger thanM > 1√
k

it makes the right hand side of the integrate negative. The physical meaning of this value is

similar toM = 1 choked flow which was discussed in a variable area flow in Section 14.4.

Further it can be noticed from equation (14.135) that whenM → 1√
k
the value of right

hand side approaches infinity (∞). Since the stagnation temperature (T0) has a finite value

which means that dT0 → ∞. Heat transfer has a limited value therefore the model of the

flow must be changed. A more appropriate model is an adiabatic flow model yet this model

can serve as a bounding boundary (or limit).

Integration of equation (14.136) requires information about the relationship between

the length, x, and friction factor f. The friction is a function of the Reynolds number along

the tube. Knowing the Reynolds number variations is important. The Reynolds number is

defined as

Re =
DUρ

µ
(14.137)

The quantity Uρ is constant along the tube (mass conservation) under constant area. Thus,

only viscosity is varied along the tube. However under the assumption of ideal gas, viscosity is

only a function of the temperature. The temperature in isothermal process (the definition) is

constant and thus the viscosity is constant. In real gas, the pressure effects are very minimal
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as described in “Basic of fluid mechanics” by this author. Thus, the friction factor can be

integrated to yield

4 f L

D

∣∣∣∣
max

=
1− kM2

kM2
+ ln

(
kM2

)
Friction Mach Isothermal Flow

(14.138)

The definition for perfect gas yieldsM2 = U2/kR T and noticing that T = constant

is used to describe the relation of the properties atM = 1/
√
k. By denoting the superscript

symbol ∗ for the choking condition, one can obtain that

M2

U2
=
1/k

U∗2 (14.139)

Rearranging equation (14.139) is transformed into

U

U∗ =
√
kM (14.140)

Utilizing the continuity equation provides

ρU = ρ∗U∗ =⇒ ρ

ρ⋆
=

1√
kM

(14.141)

Reusing the perfect–gas relationship

P

P∗
=
ρ

ρ∗
=

1√
kM

Pressure Ratio

(14.142)

Utilizing the relation for stagnated isotropic pressure one can obtain

P0
P∗0

=
P

P∗

[
1+ k−1

2 M2

1+ k−1
2k

] k
k−1

(14.143)

Substituting for
P
P∗ equation (14.142) and rearranging yields

P0
P∗0

=
1√
k

(
2 k

3 k− 1

) k
k−1

(
1+

k− 1

2
M2
) k
k−1 1

M

Stagnation Pressure Ratio

(14.144)

And the stagnation temperature at the critical point can be expressed as

T0
T∗0

=
T

T∗
1+

k− 1

2
M2

1+
k− 1

2 k

=
2 k

3 k− 1

(
1+

k− 1

2

)
M2

Stagnation Pressure Ratio

(14.145)

These equations (14.140)-(14.145) are presented on in Figure (14.18).
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Fig. 14.18 – Description of the pressure, temperature relationships as a function of theMach number
for isothermal flow.

14.6.3 The Entrance Limitation of Supersonic Branch
This situation deals with situations where the conditions at the tube exit have not arrived at

the critical condition. It is very useful to obtain the relationships between the entrance and the

exit conditions for this case. Denote 1 and 2 as the conditions at the inlet and exit respectably.
From equation (14.133)

4 f L

D
=
4 f L

D

∣∣∣∣
max1

−
4 f L

D

∣∣∣∣
max2

=
1− kM1

2

kM1
2

−
1− kM2

2

kM2
2

+ ln
(
M1
M2

)2
(14.146)

For the case thatM1 >> M2 andM1 → 1 equation (14.146) is reduced into the following

approximation

4 f L

D
= 2 ln (M1) − 1−

∼0︷ ︸︸ ︷
1− kM2

2

kM2
2

(14.147)

Solving forM1 results in

M1 ∼ e
1
2

(
4fL
D +1

)

(14.148)

This relationship shows the maximum limit that Mach number can approach when the heat

transfer is extraordinarily fast. In reality, even small
4fL
D > 2 results in aMach numberwhich
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is larger than 4.5. This velocity requires a large entrance length to achieve good heat transfer.

With this conflicting mechanism obviously the flow is closer to the Fanno flow model. Yet,

this model provides the directions of the heat transfer effects on the flow.

Example 14.14: Isothermal Example Level: Basic

Calculate the exit Mach number for pipe with

4 f L

D
= 3 under the assumption of the

isothermal flow and supersonic flow. Estimate the heat transfer needed to achieve

this flow.

Solution

14.6.4 Supersonic Branch
Apparently, this analysis/model is over simplified for the supersonic branch and does not

produce reasonable results since it neglects to take into account the heat transfer effects. A

dimensionless analysis
14
demonstrates that all the commonmaterials that the author is famil-

iar which creates a large error in the fundamental assumption of the model and the model

breaks. Nevertheless, this model can provide a better understanding to the trends and devia-

tions from Fanno flow model.

In the supersonic flow, the hydraulic entry length is very large as will be shown below.

However, the feeding diverging nozzle somewhat reduces the required entry length (as op-

posed to converging feeding). The thermal entry length is in the order of the hydrodynamic

entry length (look at the Prandtl number
15
, (0.7-1.0), value for the common gases.). Most of

the heat transfer is hampered in the sublayer thus the core assumption of isothermal flow (not

enough heat transfer so the temperature isn’t constant) breaks down
16
.

The flow speed at the entrance is very large, over hundred of meters per second. For

example, a gas flows in a tube with
4fL
D = 10 the required entry Mach number is over 200.

Almost all the perfect gas model substances dealt with in this book, the speed of sound is a

function of temperature. For this illustration, for most gas cases the speed of sound is about

300[m/sec]. For example, even with low temperature like 200K the speed of sound of air

is 283[m/sec]. So, even for relatively small tubes with
4fD
D = 10 the inlet speed is over 56

[km/sec]. This requires that the entrance length to be larger than the actual length of the tub

for air.

Lentrance = 0.06
UD

ν
(14.149)

The typical values of the kinetic viscosity, ν, are 0.0000185 kg/m-sec at 300K and 0.0000130034

14
This dimensional analysis is a bit tricky, and is based on estimates. Currently and ashamedly the author is looking

for a more simplified explanation. The current explanation is correct but based on hands waving and definitely does

not satisfy the author.

15
is relating thermal boundary layer to the momentum boundary layer.

16
See Kays and Crawford “Convective Heat Transfer” (equation 12-12).
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kg/m-sec at 200K. Combine this information with our case of
4fL
D = 10

Lentrance

D
= 250746268.7

On the other hand a typical value of friction coefficient f = 0.005 results in

Lmax

D
=

10

4× 0.005 = 500

The fact that the actual tube length is only less than 1% of the entry length means that the as-

sumption is that the isothermal flow also breaks (as in a large response time). If Mach number

is changing from 10 to 1 the kinetic energy change is about
T0

T0
∗ = 18.37which means that the

maximum amount of energy is insufficient.

Now with limitation, this topic will be covered in the next version because it provide

some insight and boundary to the Fanno Flow model.

14.6.5 Figures and Tables

Table 14.4 – The Isothermal Flow basic parameters

M 4 f L
D

P
P∗

P0
P0

∗
ρ
ρ∗
ρ
ρ∗
ρ
ρ∗

T0
T0

∗

0.03000 785.97 28.1718 17.6651 28.1718 0.87516

0.04000 439.33 21.1289 13.2553 21.1289 0.87528

0.05000 279.06 16.9031 10.6109 16.9031 0.87544

0.06000 192.12 14.0859 8.8493 14.0859 0.87563

0.07000 139.79 12.0736 7.5920 12.0736 0.87586

0.08000 105.89 10.5644 6.6500 10.5644 0.87612

0.09000 82.7040 9.3906 5.9181 9.3906 0.87642

0.10000 66.1599 8.4515 5.3334 8.4515 0.87675

0.20000 13.9747 4.2258 2.7230 4.2258 0.88200

0.25000 7.9925 3.3806 2.2126 3.3806 0.88594

0.30000 4.8650 2.8172 1.8791 2.8172 0.89075

0.35000 3.0677 2.4147 1.6470 2.4147 0.89644

0.40000 1.9682 2.1129 1.4784 2.1129 0.90300
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Table 14.4 – The Isothermal Flow basic parameters (continue)

M 4 f L
D

P
P∗

P0
P0

∗
ρ
ρ∗
ρ
ρ∗
ρ
ρ∗

T0
T0

∗

0.45000 1.2668 1.8781 1.3524 1.8781 0.91044

0.50000 0.80732 1.6903 1.2565 1.6903 0.91875

0.55000 0.50207 1.5366 1.1827 1.5366 0.92794

0.60000 0.29895 1.4086 1.1259 1.4086 0.93800

0.65000 0.16552 1.3002 1.0823 1.3002 0.94894

0.70000 0.08085 1.2074 1.0495 1.2074 0.96075

0.75000 0.03095 1.1269 1.0255 1.1269 0.97344

0.80000 0.00626 1.056 1.009 1.056 0.98700

0.81000 0.00371 1.043 1.007 1.043 0.98982

0.81879 0.00205 1.032 1.005 1.032 0.99232

0.82758 0.000896 1.021 1.003 1.021 0.99485

0.83637 0.000220 1.011 1.001 1.011 0.99741

0.84515 0.0 1.000 1.000 1.000 1.000

14.6.6 Isothermal Flow Examples

There can be several kinds of questions aside from the proof questions
17
. Generally, the “en-

gineering” or practical questions can be divided into driving force (pressure difference), re-

sistance (diameter, friction factor, friction coefficient, etc.), and mass flow rate questions. In

this model no questions about shock (should) exist
18
.

The driving force questions deal with what should be the pressure difference to obtain

a certain flow rate. Here is an example.

Example 14.15: Isothermal Flow Rate Level: Intermediate
A tube of 0.25 [m] diameter and 5000 [m] in length is attached to a pump. What should

be the pump pressure so that a flow rate of 2 [kg/sec] will be achieved? Assume that

friction factor f = 0.005 and the exit pressure is 1[bar]. The specific heat for the

17
The proof questions are questions that ask for proof or for finding a mathematical identity (normally good for

mathematicians and study of perturbation methods). These questions or examples will appear in the later versions.

18
Those who are mathematically inclined can include these kinds of questions but there are no real world appli-

cations to isothermal model with shock.



14.6. ISOTHERMAL FLOW 593

continue Ex. 14.15
gas, k = 1.31, surroundings temperature 27◦C, R = 290

[
J

Kkg

]
. Hint: calculate the

maximum flow rate and then check if this request is reasonable.

Solution
If the flow was incompressible then for known density, ρ, the velocity can be calculated by

utilizing ∆P = 4fL
D

U2

2g . In incompressible flow, the density is a function of the entrance

Mach number. The exit Mach number is not necessarily 1/
√
k i.e. the flow is not choked.

First, check whether flow is choked (or even possible).

Calculating the resistance,
4fL
D

4 f L

D
=
4× 0.0055000

0.25
= 400

Utilizing Table (14.4) or the Potto–GDC provides

M 4 f l
D

P
P∗

P0
P0

∗
ρ
ρ∗
ρ
ρ∗
ρ
ρ∗

T0
T0

∗

0.04331 400.00 20.1743 12.5921 0.0 0.89446

The maximum flow rate (the limiting case) can be calculated by utilizing the above table. The

velocity of the gas at the entrance U = cM = 0.04331×
√
1.31× 290× 300 ∼= 14.62

[
m
sec

]
.

The density reads

ρ =
P

RT
=
2, 017, 450
290× 300

∼= 23.19
[
kg

m3

]
(14.15.a)

The maximum flow rate then reads

ṁ = ρAU = 23.19× π× (0.25)2

4
× 14.62 ∼= 16.9

[
kg

sec

]
(14.15.b)

The maximum flow rate is larger then the requested mass rate hence the flow is not choked. It

is note worthy to mention that since the isothermal model breaks around the choking point,

the flow rate is really some what different. It is more appropriate to assume an isothermal

model hence our model is appropriate.

For incompressible flow, the pressure loss is expressed as follows

P1 − P2 =
4 f L

D

U2

2
(14.15.c)

Now note that for incompressible flow U1 = U2 = U and
4fL
D represent the ratio of the

traditional h12. To obtain a similar expression for isothermal flow, a relationship between

M2 andM1 and pressures has to be derived. From equation (14.15.c) one can obtained that

M2 =M1
P1
P2

(14.15.d)

To solve this problem the flow rate has to be calculated as

ṁ = ρAU = 2.0
[
kg

sec

]
(14.15.e)
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End of Ex. 14.15

ṁ =
P1
R T

A
kU

k
=

P1√
kR T

A
kU√
kR T

=
P1
c
AkM1 (14.15.f)

Now combining with equation (14.15.d) yields

ṁ =
M2 P2Ak

c
(14.15.g)

M2 =
ṁ c

P2Ak
=

2× 337.59
100000× π×(0.25)2

4 × 1.31
= 0.103

(14.15.h)

From Table (14.4) or by utilizing the Potto–GDC one can obtain

M 4 f L
D

P
P∗

P0
P0

∗
ρ
ρ∗
ρ
ρ∗
ρ
ρ∗

T0
T0

∗

0.10300 66.6779 8.4826 5.3249 0.0 0.89567

The entrance Mach number is obtained by

4 f L

D

∣∣∣∣
1

= 66.6779+ 400 ∼= 466.68 (14.15.i)

Hence,

M 4 f L
D

P
P∗

P0
P0

∗
ρ
ρ∗
ρ
ρ∗
ρ
ρ∗

T0
T0

∗

0.04014 466.68 21.7678 13.5844 0.0 0.89442

The pressure should be

P = 21.76780× 8.4826 = 2.566[Bar] (14.15.j)

Note that tables in this example are for k = 1.31

Example 14.16: Pipe Flow Calculations Level: Basic
A flow of gas was considered for a distance of 0.5 [km] (500 [m]). A flow rate of 0.2

[kg/sec] is required. Due to safety concerns, the maximum pressure allowed for the

gas is only 10[bar]. Assume that the flow is isothermal and k=1.4, calculate the required

diameter of tube. The friction coefficient for the tube can be assumed as 0.02 (A

relative smooth tube of cast iron.). Note that tubes are provided in increments of 0.5

[in]
19
You can assume that the soundings temperature to be 27◦C.

Solution
At first, the minimum diameter will be obtained when the flow is choked. Thus, the maxi-

mumM1 that can be obtained when theM2 is at its maximum and back pressure is at the
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continue Ex. 14.16
atmospheric pressure.

M1 =M2
P2
P1

=

Mmax︷︸︸︷
1√
k

1

10
= 0.0845

(14.16.a)

Now, with the value ofM1 either by utilizing Table 14.4 or using the provided program yields

M 4 f L
D

P
P∗

P0
P0

∗
ρ
ρ∗
ρ
ρ∗
ρ
ρ∗

T0
T0

∗

0.08450 94.4310 10.0018 6.2991 0.0 0.87625

With

4 f L

D

∣∣∣∣
max

= 94.431, the value of minimum diameter.

D =
4fL

4fL
D

∣∣∣
max

≃ 4× 0.02× 500
94.43

≃ 0.42359[m] = 16.68[in]
(14.16.b)

However, the pipes are provided only in 0.5 increments and the next size is 17[in] or 0.4318[m].

With this pipe size the calculations are to be repeated in reverse and produces: (Clearly the

maximum mass is determined with)

ṁ = ρAU = ρAMc =
P

R T
AM

√
kR T =

PAM
√
k√

R T
(14.16.c)

The usage of the above equation clearly applied to the whole pipe. The only point that must

be emphasized is that all properties (like Mach number, pressure and etc) have to be taken at

the same point. The new

4 f L

D
is

4 f L

D
=
4× 0.02× 500

0.4318
≃ 92.64 (14.16.d)

M 4 f L
D

P
P∗

P0
P0

∗
ρ
ρ∗
ρ
ρ∗
ρ
ρ∗

T0
T0

∗

0.08527 92.6400 9.9110 6.2424 1.0 0.87627

To check whether the flow rate satisfies the requirement

ṁ =
106 × π×0.43182

4 × 0.0853×
√
1.4√

287× 300 ≈ 50.3[kg/sec] (14.16.e)

Since 50.3 ⩾ 0.2 the mass flow rate requirement is satisfied.

It should be noted that P should be replaced by P0 in the calculations. The speed of sound at

the entrance is

c =
√
kR T =

√
1.4× 287× 300 ∼= 347.2

[ m
sec

]
(14.16.f)

and the density is

ρ =
P

R T
=
1, 000, 000
287× 300 = 11.61

[
kg

m3

]
(14.16.g)
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End of Ex. 14.16

The velocity at the entrance should be

U =M ∗ c = 0.08528× 347.2 ∼= 29.6
[ m
sec

]
(14.16.h)

The diameter should be

D =

√
4ṁ

πUρ
=

√
4× 0.2

π× 29.6× 11.61
∼= 0.027 (14.16.i)

Nevertheless, for the sake of the exercise the other parameters will be calculated. This situation

is reversed question. The flow rate is given with the diameter of the pipe. It should be noted

that the flow isn’t choked.

.

Example 14.17: Gas Station Level: Intermediate
A gas flows of from a station (a) with pressure of 20[bar] through a pipe with 0.4[m]

diameter and 4000 [m] length to a different station (b). The pressure at the exit (station

(b)) is 2[bar]. The gas and the sounding temperature can be assumed to be 300 K.

Assume that the flow is isothermal, k=1.4, and the average friction f=0.01. Calculate

the Mach number at the entrance to pipe and the flow rate.

Solution
First, the information whether the flow is choked needs to be found. Therefore, at first it will

be assumed that the whole length is the maximum length.

4 f L

D

∣∣∣∣
max

=
4× 0.01× 4000

0.4
= 400 (14.17.a)

with
4fL
D

∣∣∣
max

= 400 the following can be written

M 4 f L
D

T0
T0

∗T
ρ
ρ∗T
ρ
ρ∗T
ρ
ρ∗T

P
P∗T

P0
P0

∗T

0.0419 400.72021 0.87531 20.19235 20.19235 12.66915

From the tableM1 ≈ 0.0419 ,and P0

P0
∗T ≈ 12.67

P0
∗T ∼=

28

12.67
≃ 2.21[bar] (14.17.b)

The pressure at point (b) by utilizing the isentropic relationship (M = 1) pressure ratio is

0.52828.

P2 =
P0

∗T
(
P2

P0
∗T

) = 2.21× 0.52828 = 1.17[bar]
(14.17.c)

19
It is unfortunate, but it seems that this standard will be around in USA for some time.
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End of Ex. 14.17
As the pressure at point (b) is smaller than the actual pressure P⋆ < P2 than the actual pressure

one must conclude that the flow is not choked. The solution is an iterative process.

1. Guess reasonable value ofM1 and calculate
4fL
D

2. Calculate the value of
4fL
D

∣∣∣
2
by subtracting

4fL
D

∣∣∣
1
− 4fL

D

3. ObtainM2 from the Table ? or by using the Potto–GDC.

4.

Calculate the pressure, P2 bear in mind that this isn’t the real pressure but based on the

assumption.

5.

Compare the results of guessed pressure P2 with the actual pressure and choose new

Mach numberM1 accordingly.

The process has been done and is provided in Figure or in a table obtained from Potto–GDC.

M1 M2
4 f L
D

∣∣∣
max

∣∣∣
1

4 f L
D

P2
P1

0.0419 0.59338 400.32131 400.00000 0.10000

The flow rate is

ṁ = ρAMc =
P
√
k√
RT

π×D2
4

M =
2000000

√
1.4√

300× 287 π× 0.2
2 × 0.0419

≃ 42.46[kg/sec]
(14.17.d)

In this chapter, there are no examples on isothermal with supersonic flow.

Table 14.5 – The flow parameters for unchoked flow

M1 M2
4 f L
D

∣∣∣
max

∣∣∣
1

4 f L
D

P2
P1

0.7272 0.84095 0.05005 0.05000 0.10000

0.6934 0.83997 0.08978 0.08971 0.10000

0.6684 0.84018 0.12949 0.12942 0.10000

0.6483 0.83920 0.16922 0.16912 0.10000

0.5914 0.83889 0.32807 0.32795 0.10000

0.5807 0.83827 0.36780 0.36766 0.10000

0.5708 0.83740 0.40754 0.40737 0.10000

14.7 Fanno Flow
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flow

direction P
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ρ +∆ρ
P +∆P
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w

No heat transer
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U + ∆U

}
(M +∆M)

Fig. 14.19 – Control volume of the gas flow in a con-
stant cross section for Fanno Flow.

This adiabatic flow model with friction is

named after Ginno Fanno a Jewish engineer.

This model is the second pipe flowmodel de-

scribed here. The main restriction for this

model is that heat transfer is negligible and

can be ignored
20
. This model is applicable to

flow processes which are very fast compared

to heat transfer mechanisms with small Eck-

ert number. This model explains many in-

dustrial flow processes which includes emp-

tying of pressured container through a relatively short tube, exhaust system of an internal

combustion engine, compressed air systems, etc. As this model raised from the need to ex-

plain the steam flow in turbines.

14.7.1 Introduction
Consider a gas flowing through a conduit with a friction (see Figure 14.19). It is advantages to

examine the simplest situation and yet without losing the core properties of the process. The

mass (continuity equation) balance can be written as

ṁ = ρAU = constant

↪→ ρ1U1 = ρ2U2

(14.150)

The energy conservation (under the assumption that this model is adiabatic flow and

the friction is not transformed into thermal energy) reads

T01 = T02

↪→ T1 +
U1
2

2 cp
= T2 +

U2
2

2 cp

(14.151)

Or in a derivative from

Cp dT + d

(
U2

2

)
= 0 (14.152)

Again for simplicity, the perfect gas model is assumed
21
.

P = ρR T

↪→ P1
ρ1 T1

=
P2
ρ2 T2

(14.153)

20
Even the friction does not convert into heat

21
The equation of state is written again here so that all the relevant equations can be found.
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It is assumed that the flow can be approximated as one–dimensional. The force acting

on the gas is the friction at the wall and the momentum conservation reads

−AdP− τw dAw = ṁ dU (14.154)

It is convenient to define a hydraulic diameter as

DH =
4×Cross Section Area

wetted perimeter

(14.155)

Or in other words

A =
πDH

2

4
(14.156)

It is convenient to substituteD forDH and yet it still will be referred to the same name as the

hydraulic diameter. The infinitesimal area that shear stress is acting on is

dAw = πDdx (14.157)

Introducing the Fanning friction factor as a dimensionless friction factor which is some times

referred to as the friction coefficient and reads as the following:

f =
τw
1
2 ρU

2
(14.158)

By utilizing equation (14.150) and substituting equation (14.158) into momentum equation

(14.154) yields

−

A︷ ︸︸ ︷
πD2

4
dP− πDdx

τw︷ ︸︸ ︷
f
(
1
2 ρU

2
)
= A

ṁ
A︷︸︸︷
ρU dU (14.159)

Dividing equation (14.159) by the cross section area, A and rearranging yields

−dP+
4 f dx

D

(
1
2 ρU

2
)
= ρUdU (14.160)

The second law is the last equation to be utilized to determine the flow direction.

s2 ⩾ s1 (14.161)

14.7.2 Non–Dimensionalization of the Equations
Before solving the above equation a dimensionless process is applied. By utilizing the defini-

tion of the sound speed to produce the following identities for perfect gas

M2 =

(
U

c

)2
=

U2

k R T︸︷︷︸
P
ρ

(14.162)
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Utilizing the definition of the perfect gas results in

M2 =
ρU2

kP
(14.163)

Using the identity in equation (14.162) and substituting it into equation (14.159) and after some

rearrangement yields

−dP+
4 f dx

DH

(
1
2 kPM

2
)
=
ρU2

U
dU =

ρU2︷ ︸︸ ︷
kPM2

dU

U
(14.164)

By further rearranging equation (14.164) results in

−
dP

P
−
4 f dx

D

(
kM2

2

)
= kM2

dU

U
(14.165)

It is convenient to relate expressions of dP/P and dU/U in terms of the Mach number and

substituting it into equation (14.165). Derivative of mass conservation (14.150) results in

dρ

ρ
+

dU
U︷ ︸︸ ︷

1
2

dU2

U2
= 0 (14.166)

The derivation of the equation of state (14.153) and dividing the results by equation of state

(14.153) results

dP

P
=
dρ

ρ
+
dT

dT
(14.167)

Differentiating of equation (14.162) and dividing by equation (14.162) yields

d(M2)

M2
=
d(U2)

U2
−
dT

T
(14.168)

Dividing the energy equation (14.152) byCp and by utilizing the definitionMach number yields

dT

T
+

1(
kR

(k− 1)

)

︸ ︷︷ ︸
Cp

1

T

U2

U2
d

(
U2

2

)
=

↪→ dT

T
+

(k− 1)

kR T︸ ︷︷ ︸
c2

U2

U2
d

(
U2

2

)
=

↪→ dT

T
+
k− 1

2
M2

dU2

U2
= 0

(14.169)

Equations (14.165), (14.166), (14.167), (14.168), and (14.169) need to be solved. These equations are

separable so one variable is a function of only single variable (the chosen as the independent
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variable). Explicit explanation is provided for only two variables, the rest variables can be

done in a similar fashion. The dimensionless friction,
4fL
D , is chosen as the independent

variable since the change in the dimensionless resistance,
4fL
D , causes the change in the other

variables.

Combining equations (14.167) and (14.169) when eliminating dT/T results

dP

P
=
dρ

ρ
−

(k− 1)M2

2

dU2

U2
(14.170)

The term dρ/ ρ can be eliminated by utilizing equation (14.166) and substituting it into equa-

tion (14.170) and rearrangement yields

dP

P
= −

1+ (k− 1)M2

2

dU2

U2
(14.171)

The term dU2/U2 can be eliminated by using (14.171)

dP

P
= −

kM2
(
1+ (k− 1)M2

)

2 (1−M2)

4 f dx

D
(14.172)

The second equation forMach number,M variable is obtained by combining equation (14.168)

and (14.169) by eliminatingdT/T . Thendρ/ρ andU are eliminated by utilizing equation (14.166)

and equation (14.170). The only variable that is left is P (or dP/P) which can be eliminated by

utilizing equation (14.172) and results in

4 f dx

D
=

(
1−M2

)
dM2

kM4(1+
k− 1

2
M2)

(14.173)

Rearranging equation (14.173) results in

dM2

M2
=

kM2
(
1+

k− 1

2
M2
)

1−M2
4 f dx

D
(14.174)

After similar mathematical manipulation one can get the relationship for the velocity

to read

dU

U
=

kM2

2
(
1−M2

) 4 f dx
D

(14.175)

and the relationship for the temperature is

dT

T
= 1
2

dc

c
= −

k (k− 1)M4

2 (1−M2)

4 f dx

D
(14.176)

density is obtained by utilizing equations (14.175) and (14.166) to obtain

dρ

ρ
= −

kM2

2
(
1−M2

) 4 f dx
D

(14.177)
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The stagnation pressure is similarly obtained as

dP0
P0

= −
kM2

2

4 f dx

D
(14.178)

The second law reads

ds = Cp ln
(
dT

T

)
− R ln

(
dP

P

)
(14.179)

The stagnation temperature expresses as T0 = T(1+(1− k)/2M2). Taking derivative of this

expression whenM remains constant yields dT0 = dT(1 + (1 − k)/2M2) and thus when

these equations are divided they yield

dT/T = dT0/T0 (14.180)

In similar fashion the relationship between the stagnation pressure and the pressure can be

substituted into the entropy equation and result in

ds = Cp ln
(
dT0
T0

)
− R ln

(
dP0
P0

)
(14.181)

The first law requires that the stagnation temperature remains constant, (dT0 = 0). Therefore

the entropy change is

ds

Cp
= −

(k− 1)

k

dP0
P0

(14.182)

Using the equation for stagnation pressure the entropy equation yields

ds

Cp
=

(k− 1)M2

2

4 f dx

D
(14.183)

14.7.3 The Mechanics and Why the Flow is Choked?
The trends of the properties can be examined by looking in equations (14.172) through (14.182).

For example, from equation (14.172) it can be observed that the critical point is whenM = 1.

WhenM < 1 the pressure decreases downstream as can be seen from equation (14.172) because

fdx andM are positive. For the same reasons, in the supersonic branch,M > 1, the pressure

increases downstream. This pressure increase is what makes compressible flow so different

from “conventional” flow. Thus the discussionwill be divided into two cases: One, flow above

speed of sound. Two, flow with speed below the speed of sound.

14.7.3.1 Why the flow is choked?

Here, the explanation is based on the equations developed earlier and there is no known ex-

planation that is based on the physics. First, it has to be recognized that the critical point is
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when M = 1. It will be shown that a change in location relative to this point change the

trend and it is singular point by itself. For example, dP(@M = 1) = ∞ and mathematically

it is a singular point (see equation (14.172)). Observing from equation (14.172) that increase or

decrease from subsonic just below oneM = (1− ϵ) to above just above oneM = (1+ ϵ)

requires a change in a sign pressure direction. However, the pressure has to be a monotonic

function which means that flow cannot crosses over the point of M = 1. This constrain

means that because the flow cannot “crossover”M = 1 the gas has to reach to this speed,

M = 1 at the last point. This situation is called choked flow.

14.7.3.2 The Trends

The trends or whether the variables are increasing or decreasing can be observed from look-

ing at the equation developed. For example, the pressure can be examined by looking at equa-

tion (14.174). It demonstrates that the Mach number increases downstream when the flow is

subsonic. On the other hand, when the flow is supersonic, the pressure decreases.

The summary of the properties changes on the sides of the branch

Subsonic Supersonic

Pressure, P decrease increase

Mach number,M increase decrease

Velocity, U increase decrease

Temperature, T decrease increase

Density, ρ decrease increase

14.7.4 The Working Equations
Integration of equation (14.173) yields

4

D

∫Lmax
L

fdx =
1

k

1−M2

M2
+
k+ 1

2k
ln

k+1
2 M2

1+ k−1
2 M2

Fanno FLD–M

(14.184)

A representative friction factor is defined as

f̄ =
1

Lmax

∫Lmax
0

fdx (14.185)

In the isothermal flowmodel it was shown that friction factor is constant through the process

if the fluid is ideal gas. Here, the Reynolds number defined in equation (14.137) is not constant

because the temperature is not constant. The viscosity even for ideal gas is complex function
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of the temperature (further reading in “Basic of Fluid Mechanics” chapter one, Potto Project).

However, the temperature variation is very limited. Simple improvement can be done by as-

suming constant constant viscosity (constant friction factor) and find the temperature on the

two sides of the tube to improve the friction factor for the next iteration. Themaximum error

can be estimated by looking at themaximum change of the temperature. The temperature can

be reduced by less than 20% for most range of the specific heats ratio. The viscosity change

for this change is for many gases about 10%. For these gases the maximum increase of average

Reynolds number is only 5%. What this change in Reynolds number does to friction factor?

That depend in the range of Reynolds number. For Reynolds number larger than 10,000 the

change in friction factor can be considered negligible. For the other extreme, laminar flow

it can estimated that change of 5% in Reynolds number change about the same amount in

friction factor. With the exception of the jump from a laminar flow to a turbulent flow, the

change is noticeable but very small. In the light of the about discussion the friction factor is

assumed to constant. By utilizing the mean average theorem equation (14.184) yields

4 f Lmax

D
=
1

k

(
1−M2

M2

)
+
k+ 1

2 k
ln




k+ 1

2
M2

1+
k− 1

2
M2




Resistance Mach Relationship

(14.186)

Equations (14.172), (14.175), (14.176), (14.177), (14.177), and (14.178) can be solved. For exam-

ple, the pressure as written in equation (14.171) is represented by
4fL
D , andMach number. Now

equation (14.172) can eliminate term
4fL
D and describe the pressure on the Mach number. Di-

viding equation (14.172) in equation (14.174) yields

dP

P
dM2

M2

= −
1+ (k− 1M2

2M2
(
1+

k− 1

2
M2
) dM2 (14.187)

The symbol “⋆” denotes the state when the flow is choked and Mach number is equal to 1.

Thus,M = 1 when P = P∗ equation (14.187) can be integrated to yield:

P

P∗
=
1

M

√√√√√√

k+ 1

2

1+
k− 1

2
M2

Mach–Pressure Ratio

(14.188)

In the same fashion the variables ratios can be obtained

T

T∗
=
c2

c∗2
=

k+ 1

2

1+
k− 1

2
M2

Temperature Ratio

(14.189)
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The density ratio is

ρ

ρ∗
=
1

M

√√√√√√
1+

k− 1

2
M2

k+ 1

2

Density Ratio

(14.190)

The velocity ratio is

U

U∗ =

(
ρ

ρ∗

)−1

=M

√√√√√√

k+ 1

2

1+
k− 1

2
M2

Velocity Ratio

(14.191)

The stagnation pressure decreases and can be expressed by

P0
P0

⋆ =

(
1+
1−k
2 M2

) k
k−1︷︸︸︷

P0
P

P

P0
∗

P∗︸︷︷︸
(
2
k+1

) k
k−1

P∗
(14.192)

Using the pressure ratio in equation (14.188) and substituting it into equation (14.192) yields

P0
P0

∗ =



1+

k− 1

2
M2

k+ 1

2




k
k−1

1

M

√√√√√√
1+

k− 1

2
M2

k+ 1

2

(14.193)

And further rearranging equation (14.193) provides

P0
P0

∗ =
1

M



1+

k− 1

2
M2

k+ 1

2




k+1
2 (k−1)

Stagnation Pressure Ratio

(14.194)

The integration of equation (14.182) yields

s− s∗

Cp
= lnM2

√√√√√√√√




k+ 1

2M2
(
1+

k− 1

2
M2
)




k+1
k

(14.195)
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Fig. 14.20 – Various parameters in Fanno flow shown as a function of Mach number.

The results of these equations are plotted in Figure 14.20

The Fanno flow is in many cases shockless and therefore a relationship between two

points should be derived. In most times, the “star” values are imaginary values that represent

the value at choking. The real ratio can be obtained by two star ratios as an example

T2
T1

=

T

T∗

∣∣∣∣
M2

T

T∗

∣∣∣∣
M1

(14.196)

A special interest is the equation for the dimensionless friction as following

∫L2
L1

4 f L

D
dx =

∫Lmax
L1

4 f L

D
dx−

∫Lmax
L2

4 f L

D
dx (14.197)

Hence,

(
4 f Lmax

D

)

2

=

(
4 f Lmax

D

)

1

−
4 f L

D

fld Working Equation

(14.198)
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14.7.5 Examples of Fanno Flow

Example 14.18: Fanno Reservoir Level: Intermediate
Air flows from a reservoir and enters a uniform pipe with a diameter of 0.05 [m]

and length of 10 [m]. The air exits to the atmosphere. The following conditions

prevail at the exit: P2 = 1[bar]

temperature T2 = 27◦C M2 =

0.922. Assume that the average

friction factor to be f = 0.004
and that the flow from the reser-

voir up to the pipe inlet is essen-

tially isentropic. Estimate the to-

tal temperature and total pressure

in the reservoir under the Fanno

flow model.

P0=?

T0=?◦C

M2=0.9
D=0.05[m]
L=10[m]

T2=27◦C
P2=1[Bar]

Fig. 14.21 – Schematic of Example 14.18.

Solution
For isentropic, the flow to the pipe inlet, the temperature and the total pressure at the pipe

inlet are the same as those in the reservoir. Thus, finding the star pressure and temperature

at the pipe inlet is the solution. With the Mach number and temperature known at the exit,

the total temperature at the entrance can be obtained by knowing the
4fL
D . For given Mach

number (M = 0.9) the following is obtained.

M 4 f L
D

P
P∗

P0
P0

∗
ρ
ρ∗
ρ
ρ∗
ρ
ρ∗

U
U∗

T
T∗

0.90000 0.01451 1.1291 1.0089 1.0934 0.9146 1.0327

So, the total temperature at the exit is

T∗|2 =
T∗

T

∣∣∣∣
2

T2 =
300

1.0327
= 290.5[K] (14.18.a)

To “move” to the other side of the tube the
4fL
D is added as

4fL
D

∣∣∣
1
= 4fL

D + 4fL
D

∣∣∣
2
=
4× 0.004× 10

0.05
+ 0.01451 ≃ 3.21 (14.18.b)

The rest of the parameters can be obtained with the new
4fL
D either from Table 14.6 by inter-

polations or by utilizing the attached program.

M 4 f L
D

P
P∗

P0
P0

∗
ρ
ρ∗
ρ
ρ∗
ρ
ρ∗

U
U∗

T
T∗

0.35886 3.2100 3.0140 1.7405 2.5764 0.38814 1.1699
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End of Ex. 14.18

Note that the subsonic branch is chosen. The stagnation ratios has to be added for M =

0.35886

M T
T0

ρ
ρ0

ρ
ρ0

ρ
ρ0

A
A⋆

P
P0

A×P
A∗×P0

F
F∗

0.35886 0.97489 0.93840 1.7405 0.91484 1.5922 0.78305

The total pressure P01 can be found from the combination of the ratios as follows:

P01 =

P1︷ ︸︸ ︷
P∗︷ ︸︸ ︷

P2
P∗

P

∣∣∣∣
2

P

P∗

∣∣∣∣
1

P0
P

∣∣∣∣
1

=1× 1

1.12913
× 3.014× 1

0.915
= 2.91[Bar]

(14.18.c)

T01 =

T1︷ ︸︸ ︷
T∗︷ ︸︸ ︷

T2
T∗

T

∣∣∣∣
2

T

T∗

∣∣∣∣
1

T0
T

∣∣∣∣
1

=300× 1

1.0327
× 1.17× 1

0.975
≃ 348K = 75◦C

(14.18.d)

Another academic question/example:

Example 14.19: Fonno with Shock Level: Intermediate
A system is composed of a convergent-

divergent nozzle followed by a tube with

length of 2.5 [cm] in diameter and 1.0 [m] long.

The system is supplied by a vessel. The ves-

sel conditions are at 29.65 [Bar], 400 K. With

these conditions a pipe inlet Mach number is

3.0. A normal shock wave occurs in the tube

and the flow discharges to the atmosphere,

determine:

d-c nozzle
atmospheric

conditions

P0 = 29.65[Bar]

T0 = 400K shock

M1=3.0

Mx=?

D=0.025[m]
L=1.0[m]

Fig. 14.22 –The schematic of Example
(14.19).

(a) the mass flow rate through the system;

(b) the temperature at the pipe exit; and

(c) determine the Mach number when a normal shock wave occurs [Mx].

Take k = 1.4, R = 287 [J/kgK] and f = 0.005.

22
This property is given only for academic purposes. There is no Mach meter.
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continue Ex. 14.19
Solution
(a) Assuming that the pressure vessel is very much larger than the pipe, therefore the ve-

locity in the vessel can be assumed to be small enough so it can be neglected. Thus, the

stagnation conditions can be approximated for the condition in the tank. It is further

assumed that the flow through the nozzle can be approximated as isentropic. Hence,

T01 = 400K and P01 = 29.65[Par].
The mass flow rate through the system is constant and for simplicity point 111 is chosen

in which,

ṁ = ρAMc (14.19.a)

The density and speed of sound are unknowns and need to be computed. With the

isentropic relationship, the Mach number at point one (1) is known, then the following

can be found either from Table 14.6, or the popular Potto–GDC as

M T
T0

ρ
ρ0

ρ
ρ0

ρ
ρ0

A
A⋆

P
P0

A×P
A∗×P0

F
F∗

3.0000 0.35714 0.07623 4.2346 0.02722 0.11528 0.65326

The temperature is

T1 =
T1
T01

T01 = 0.357× 400 = 142.8K (14.19.b)

Using the temperature, the speed of sound can be calculated as

c1 =
√
kR T =

√
1.4× 287× 142.8 ≃ 239.54[m/sec] (14.19.c)

The pressure at point 1 can be calculated as

P1 =
P1
P01

P01 = 0.027× 30 ≃ 0.81[Bar] (14.19.d)

The density as a function of other properties at point 1 is

ρ1 =
P

R T

∣∣∣∣
1

=
8.1× 104
287× 142.8 ≃ 1.97

[
kg

m3

]
(14.19.e)

The mass flow rate can be evaluated from equation (14.150)

ṁ = 1.97× π× 0.0252
4

× 3× 239.54 = 0.69
[
kg

sec

]
(14.19.f)
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continue Ex. 14.19

(b) First, check whether the flow is shockless by comparing the flow resistance and the

maximum possible resistance. From the Table 14.6 or by using the famous Potto–GDC,

is to obtain the following

M 4 f L
D

P
P∗

P0
P0

∗
ρ
ρ∗
ρ
ρ∗
ρ
ρ∗

U
U∗

T
T∗

3.0000 0.52216 0.21822 4.2346 0.50918 1.9640 0.42857

and the conditions of the tube are

4fL
D =

4× 0.005× 1.0
0.025

= 0.8 (14.19.g)

Since 0.8 > 0.52216 the flow is choked and with a shock wave.

The exit pressure determines the location of the shock, if a shock exists, by comparing

“possible” Pexit to PB. Two possibilities are needed to be checked; one, the shock at

the entrance of the tube, and two, shock at the exit and comparing the pressure ratios.

First, the possibility that the shock wave occurs immediately at the entrance for which

the ratio forMx are (shock wave Table 14.3)

Mx My
Ty
Tx

ρy

ρx

ρy

ρx

ρy

ρx

Py
Px

P0y
P0x

3.0000 0.47519 2.6790 3.8571 10.3333 0.32834

After the shock wave the flow is subsonic with “M1”= 0.47519. (Fanno Flow Table

14.6)

M 4 f L
D

P
P∗

P0
P0

∗
ρ
ρ∗
ρ
ρ∗
ρ
ρ∗

U
U∗

T
T∗

0.47519 1.2919 2.2549 1.3904 1.9640 0.50917 1.1481

The stagnation values forM = 0.47519 are

M T
T0

ρ
ρ0

ρ
ρ0

ρ
ρ0

A
A⋆

P
P0

A×P
A∗×P0

F
F∗

0.47519 0.95679 0.89545 1.3904 0.85676 1.1912 0.65326

The ratio of exit pressure to the chamber total pressure is

P2
P0

=

1︷ ︸︸ ︷(
P2
P∗

)(
P∗

P1

)(
P1
P0y

)(
P0y

P0x

)
1︷ ︸︸ ︷(
P0x
P0

)

= 1× 1

2.2549
× 0.8568× 0.32834× 1

= 0.12476

(14.19.h)



14.7. FANNO FLOW 611

End of Ex. 14.19
The actual pressure ratio 1/29.65 = 0.0338 is smaller than the case in which shock occurs

at the entrance. Thus, the shock is somewhere downstream. One possible way to find the

exit temperature, T2 is by finding the location of the shock. To find the location of the shock

ratio of the pressure ratio,
P2
P1

is needed. With the location of shock, “claiming” upstream

from the exit through shock to the entrance. For example, calculate the parameters for

shock location with known
4fL
D in the “y” side. Then either by utilizing shock table or the

program, to obtain the upstream Mach number.

The procedure for the calculations:

1)

Calculate the entrance Mach number assuming the shock occurs at the exit:

a) setM
′

2 = 1 assume the flow in the entire tube is supersonic:

b) calculatedM
′

1

Note this Mach number is the high Value.

2)

Calculate the entrance Mach assuming shock at the entrance.

a) SetM2 = 1

b) Add
4fL
D and calculatedM1’ for subsonic branch

c) CalculatedMx forM1’

Note this Mach number is the low value.

3)

According your root finding algorithm
23
calculate or guess the shock location

and then compute as above the newM1.

a) setM2 = 1

b) for the new
4fL
D and compute the newMy’ for the subsonic branch

c) calculatedMx’ for theMy’

d) Add the leftover of
4fL
D and calculated theM1

4) guess new location for the shock according to your finding root procedure and ac-

cording to the result, repeat previous stage until the solution is obtained.

M1 M2
4 f L
D

∣∣∣
up

4 f L
D

∣∣∣
down

Mx My

3.0000 1.0000 0.22019 0.57981 1.9899 0.57910

(c) The way of the numerical procedure for solving this problem is by finding
4fL
D

∣∣∣
up

that will produce M1 = 3. In the process Mx and My must be calculated (see the

chapter on the program with its algorithms.).

Supersonic Branch
In Section (14.6) it was shown that the isothermal model cannot describe adequately the

situation because the thermal entry length is relatively large compared to the pipe length and

the heat transfer is not sufficient to maintain constant temperature. In the Fannomodel there

23
You can use any method you wish, but be-careful second order methods like Newton-Rapson method can be

unstable.
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is no heat transfer, and, furthermore, because the very limited amount of heat transformed it

is closer to an adiabatic flow. The only limitation of the model is its uniform velocity (assum-

ing parabolic flow for laminar and different profile for turbulent flow.). The information from

the wall to the tube center
24
is slower in reality. However, experiments from many starting

with 1938 work by Frossel
25
has shown that the error is not significant. Nevertheless, the com-

parison with reality shows that heat transfer cause changes to the flow and they need/should

to be expected. These changes include the choking point at lower Mach number.

14.7.5.1 Maximum Length for the Supersonic Flow

It has to be noted and recognized that as opposed to subsonic branch the supersonic branch

has a limited length. It alsomust be recognized that there is a maximum length for which only

supersonic flow can exist
26
. These results were obtained from the mathematical derivations

but were verified by numerous experiments
27
. The maximum length of the supersonic can be

evaluated whenM = ∞ as follows:

4 f Lmax

D
=
1−M2

kM2
+
k+ 1

2 k
ln

k+1
2 M2

2
(
1+ k−1

2 M2
) =

4fL
D (M→ ∞) ∼

−∞
k×∞ +

k+ 1

2 k
ln

(k+ 1)∞
(k− 1)∞ =

−1

k
+
k+ 1

2 k
ln

(k+ 1)

(k− 1)
= 4fL

D (M→ ∞, k = 1.4) = 0.8215

4 f Lmax

D
= 4fL

D (M→ ∞,k = 1.4) = 0.8215 (14.199)

The maximum length of the supersonic flow is limited by the above number. From the above

analysis, it can be observed that no matter how high the entrance Mach number will be the

tube length is limited and depends only on specific heat ratio, k.

24
The word information referred to is the shear stress transformed from the wall to the center of the tube.

25
See on the web http://naca.larc.nasa.gov/digidoc/report/tm/44/NACA-TM-844.PDF

26
Many in the industry have difficulties in understanding this concept. The author seeks for a nice explanation of

this concept for non–fluid mechanics engineers. This solicitation is about how to explain this issue to non-engineers

or engineer without a proper background.

27
If you have experiments demonstrating this point, please provide to the undersign so they can be added to this

book. Many of the pictures in the literature carry copyright statements and thus can be presented here.

http://naca.larc.nasa.gov/digidoc/report/tm/44/NACA-TM-844.PDF


14.7. FANNO FLOW 613

14.7.6 Working Conditions

It has to be recognized that there are two

regimes that can occur in Fanno flow model

one of subsonic flow and the other supersonic

flow. Even the flow in the tube starts as a

supersonic in parts of the tube can be trans-

formed into the subsonic branch. A shock

wave can occur and some portions of the tube

will be in a subsonic flow pattern.

The discussion has to differenti-

ate between two ways of feeding the

tube: converging nozzle or a converging-

diverging nozzle. Three parameters, the
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Fig. 14.23 – The effects of increase of 4fLD on
the Fanno line.

dimensionless friction,
4fL
D , the entrance Mach number,M1, and the pressure ratio, P2/P1

are controlling the flow. Only a combination of these two parameters is truly independent.

However, all the three parameters can be varied and some are discussed separately here.

14.7.6.1 Variations of The Tube Length (4fLD ) Effects

In the analysis of this effect, it should be assumed that back pressure is constant and/or low

as possible as needed to maintain a choked flow. First, the treatment of the two branches are

separated.

Fanno Flow Subsonic branch

sss

TTT

T0T0T0

Fanno lines

1

1’

1’’

2

2’

2’’

constant pressure
lines

Fig. 14.24 – The effects of the increase of 4fLD on
the Fanno Line.

For converging nozzle feeding, increasing

the tube length results in increasing the exitMach

number (normally denoted herein asM2). Once

the Mach number reaches maximum (M = 1), no

further increase of the exit Mach number can be

achieved with same pressure ratio mass flow rate.

For increase in the pipe length results inmass flow

rate decreases. It is worth noting that entrance

Mach number is reduced (as some might explain

it to reduce the flow rate). The entrance temper-

ature increases as can be seen from Figure 14.24.

The velocity therefore must decrease because the loss of the enthalpy (stagnation tempera-

ture) is “used.” The density decrease because ρ = P
RT and when pressure is remains almost

constant the density decreases. Thus, the mass flow rate must decrease. These results are

applicable to the converging nozzle.

In the case of the converging–diverging feeding nozzle, increase of the dimensionless

friction,
4fL
D , results in a similar flow pattern as in the converging nozzle. Once the flow

becomes choked a different flow pattern emerges.
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14.7.6.2 Fanno Flow Supersonic Branch

MMM

all supersonic

flow

mixed supersonic

with subsonic

flow with a shock

between
the nozzle

is still

choked

ṁ̇ṁm

ṁ = constṁ = constṁ = const

M = 1M = 1M = 1
M2M2M2

M1M1M1

M1M1M14 f L

D

4 f L

D

4 f L

D

bbb ccc

aaa

Fig. 14.25 – The Mach numbers at entrance and exit
of tube and mass flow rate for Fanno Flow as a
function of the 4fLD .

There are several transitional points that

change the pattern of the flow. Point a is the

choking point (for the supersonic branch) in

which the exit Mach number reaches to one.

Point b is the maximum possible flow for su-

personic flow and is not dependent on the

nozzle. The next point, referred here as the

critical point c, is the point in which no su-

personic flow is possible in the tube i.e. the

shock reaches to the nozzle. There is another

point d, in which no supersonic flow is pos-

sible in the entire nozzle–tube system. Be-

tween these transitional points the effect pa-

rameters such asmass flow rate, entrance and

exit Mach number are discussed.

At the starting point the flow is choked in the nozzle, to achieve supersonic flow. The

following ranges that has to be discussed includes (see Figure 14.25):

0 < 4fL
D <

(
4fL
D

)
choking

0→ a
(
4fL
D

)
choking

< 4fL
D <

(
4fL
D

)
shockless

a → b
(
4fL
D

)
shockless

< 4fL
D <

(
4fL
D

)
chokeless

b → c
(
4fL
D

)
chokeless

< 4fL
D < ∞ c → ∞

includes (see Figure 14.25):

The 0-a range, the mass flow rate is constant because the flow is choked at the nozzle.

The entranceMach number,M1 is constant because it is a function of the nozzle design only.

The exit Mach number,M2 decreases (remember this flow is on the supersonic branch) and

starts (
4fL
D = 0) asM2 =M1. At the end of the range a,M2 = 1. In the range of a − b the

flow is all supersonic.

In the next range a − b the flow is double choked and make the adjustment for the

flow rate at different choking points by changing the shock location. The mass flow rate

continues to be constant. The entranceMach continues to be constant and exitMach number

is constant.

The total maximum available for supersonic flow b − b ′
,

(
4fL
D

)
max

, is only a theo-

retical length in which the supersonic flow can occur if nozzle is provided with a largerMach

number (a change to the nozzle area ratio which also reduces the mass flow rate). In the range

b − c, it is a more practical point.
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In semi supersonic flow b− c (in which no supersonic is available in the tube but only
in the nozzle) the flow is still double choked and the mass flow rate is constant. Notice that

exit Mach number,M2 is still one. However, the entrance Mach number,M1, reduces with

the increase of
4fL
D .

It is worth noticing that in the a − c the mass flow rate nozzle entrance velocity and

the exit velocity remains constant!
28

In the last range ccc −∞ the end is really the pressure limit or the break of the model

and the isothermal model is more appropriate to describe the flow. In this range, the flow

rate decreases since (ṁ ∝M1)29.
To summarize the above discussion, Figures 14.25 exhibits the development ofM1,M2

mass flow rate as a function of
4fL
D . Somewhat different then the subsonic branch the mass

flow rate is constant even if the flow in the tube is completely subsonic. This situation is

because of the “double” choked condition in the nozzle. The exit MachM2 is a continuous

monotonic function that decreases with
4fL
D . The entrance MachM1 is a non continuous

function with a jump at the point when shock occurs at the entrance “moves” into the nozzle.
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Tue Oct 19 09:56:15 2004

28
On a personal note, this situation is rather strange to explain. On one hand, the resistance increases and on the

other hand, the exit Mach number remains constant and equal to one. Does anyone have an explanation for this

strange behavior suitable for non–engineers or engineers without background in fluid mechanics?

29
Note that ρ1 increases with decreases ofM1 but this effect is less significant.
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Fig. 14.26 –M1 as a functionM2 for various 4fLD .
Figure 14.26 exhibits theM1 as a function ofM2. The Figure was calculated by utilizing the

data from Figure 14.20 by obtaining the
4fL
D

∣∣
max

forM2 and subtracting the given
4fL
D and

finding the correspondingM1.
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Fig. 14.27 –M1 as a functionM2 for different 4fLD for supersonic entrance velocity.
The Figure (14.27) exhibits the entrance Mach number as a function of theM2. Obviously

there can be two extreme possibilities for the subsonic exit branch. Subsonic velocity occurs

for supersonic entrance velocity, one, when the shock wave occurs at the tube exit and two, at

the tube entrance. In Figure 14.27 only for
4fL
D = 0.1 and 4fLD = 0.4 two extremes are shown.

For
4fL
D = 0.2 shown with only shock at the exit only. Obviously, and as can be observed,

the larger
4fL
D creates larger differences between exit Mach number for the different shock

locations. The larger
4fL
D largerM1 must occurs even for shock at the entrance.

For a given
4fL
D , below the maximum critical length, the supersonic entrance flow

has three different regimes which depends on the back pressure. One, shockless flow, tow,

shock at the entrance, and three, shock at the exit. Below, the maximum critical length is
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mathematically

4 f L

D
> −

1

k
+
1+ k

2 k
ln
(
k+ 1

k− 1

)

For cases of
4fL
D above themaximum critical length no supersonic flow can be over thewhole

tube and at some point a shock will occur and the flow becomes subsonic flow
30
. EndFoot-

Note

14.7.7 The Pressure Ratio, P2/ P1, effects

In this section the studied parameter is the variation of the back pressure and thus, the pres-

sure ratio (P2/ P1) variations. For very low pressure ratio the flow can be assumed as incom-

pressible with exit Mach number smaller than < 0.3. As the pressure ratio increases (smaller

back pressure, P2), the exit and entrance Mach numbers increase. According to Fanno model

the value of
4fL
D is constant (friction factor, f, is independent of the parameters such as, Mach

number, Reynolds number et cetera) thus the flow remains on the same Fanno line. For cases

where the supply come from a reservoir with a constant pressure, the entrance pressure de-

creases as well because of the increase in the entrance Mach number (velocity).

Again a differentiation of the feeding is important to point out. If the feeding nozzle is

converging than the flow will be only subsonic. If the nozzle is “converging–diverging” than

in some part supersonic flow is possible. At first the converging nozzle is presented and later

the converging-diverging nozzle is explained.

30
See more on the discussion about changing the length of the tube.
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∆PP1 P2

4 f L

D

P2

P1

critical point c
critical point bcritical point a

a shock in

the nozzle
fully subsoinic

flow

critical point d

Fig. 14.28 – The pressure distribution as a function of 4fLD for a short 4fLD .

14.7.7.1 Choking explanation for pressure variation/reduction

Decreasing the pressure ratio or in actuality the back pressure, results in increase of the en-

trance and the exit velocity until a maximum is reached for the exit velocity. The maximum

velocity is when exit Mach number equals one. The Mach number, as it was shown in Sec-

tion 14.4, can increases only if the area increase. In our model the tube area is postulated as a

constant therefore the velocity cannot increase any further. However, for the flow to be con-

tinuous the pressure must decrease and for that the velocity must increase. Something must

break since there are conflicting demands and it result in a “jump” in the flow. This jump is

referred to as a choked flow. Any additional reduction in the back pressure will not change

the situation in the tube. The only change will be at tube surroundings which are irrelevant

to this discussion.

If the feeding nozzle is a “converging–diverging” then it has to be differentiated between

two cases; One case is where the
4fL
D is short or equal to the critical length. The critical length

is the maximum
4fL
D

∣∣
max

that associate with entrance Mach number.



14.7. FANNO FLOW 619

P1 P2

4 f L

D

P

2

P

1

critical point ccritical point bcritical point a

a shock in
the nozzle

fully subsoinic
flow

∆




4 f L

D




M1 = ∞ {
∆




4fL

D




∆P

4 f L

D

∣∣∣∣∣∣∣∣∣max

Fig. 14.29 – The pressure distribution as a function of 4fLD for a long 4fLD .

14.7.7.2 Short 4 f L/D

Figure 14.29 shows different pressure profiles for different back pressures. Before the flow

reaches critical point a (in the Figure 14.29) the flow is subsonic. Up to this stage the nozzle

feeding the tube increases the mass flow rate (with decreasing back pressure). Pressure be-

tween point a and point b the shock is in the nozzle. In this range and further reduction of

the pressure the mass flow rate is constant no matter how low the back pressure is reduced.

Once the back pressure is less than point b the supersonic reaches to the tube. Note however

that exit Mach number,M2 < 1 and is not 1. A back pressure that is at the critical point c
results in a shock wave that is at the exit. When the back pressure is below point c, the tube
is “clean” of any shock

31
. The back pressure below point c has some adjustment as it occurs

with exceptions of point d.

31
It is common misconception that the back pressure has to be at point d.
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Fig. 14.31 – Shock in nozzle for layout reasons.

14.7.7.3 Long 4fLD

In the case of
4fL
D > 4fL

D

∣∣
max

reduction of the back pressure results in the same process as

explained in the short
4fL
D up to point c. However, point c in this case is different from point

c at the case of short tube 4fLD < 4fL
D

∣∣
max

. In this point the exit Mach number is equal to

1 and the flow is double shock. Further reduction of the back pressure at this stage will not

“move” the shock wave downstream the nozzle. At point c or location of the shock wave, is

a function entrance Mach number,M1 and the “extra”
4fL
D . There is no analytical solution

for the location of this point c. The procedure is (will be) presented in later stage.
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Fig. 14.33 – two figure for expiation of calculations. They were assemble tougher for layout reason.

The Maximum Location of the Shock
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The main point in this discussion however, is to find the furthest shock location down-

stream. Figure 14.32a shows the possible ∆
(
4fL
D

)
as a function of retreat of the location of

the shock wave from the maximum location. When the entrance Mach number is infinity,

M1 = ∞, if the shock location is at the maximum length, then shock atMx = 1 results in

My = 1.

The proposed procedure is based on Figure 14.32a.

i) Calculate the extra
4fL
D and subtract the actual extra

4fL
D assuming shock at the left

side (at the max length).

ii) Calculate the extra
4fL
D and subtract the actual extra

4fL
D assuming shock at the right

side (at the entrance).

iii) According to the positive or negative utilizes your root finding procedure.

From numerical point of view, the Mach number equal infinity when left side assumes

result in infinity length of possible extra (the whole flow in the tube is subsonic). To overcome

this numerical problem, it is suggested to start the calculation from ϵ distance from the right

hand side.

Let denote

∆

(
4 f L

D

)
=

¯4 f L
D actual

−
4 f L

D

∣∣∣∣
sup

(14.200)

Note that
4fL
D

∣∣
sup

is smaller than
4fL
D

∣∣
max∞ . The requirement that has to be satisfied is

that denote
4fL
D

∣∣
retreat

as difference between the maximum possible of length in which the

supersonic flow is achieved and the actual length in which the flow is supersonic see Figure

14.32b. The retreating length is expressed as subsonic but

4 f L

D

∣∣∣∣
retreat

=
4 f L

D

∣∣∣∣
max∞ −

4 f L

D

∣∣∣∣
sup

(14.201)

Figure 14.32b shows the entranceMach number,M1 reduces after themaximum length

is exceeded.

Example 14.20: Large FLD Level: Advance
Calculate the shock location for entrance Mach numberM1 = 8 and for 4fLD = 0.9
assume that k = 1.4 (Mexit = 1).

Solution

The solution is obtained by an iterative process. The maximum
4fL
D

∣∣∣
max

for k = 1.4 is

0.821508116. Hence,
4fL
D exceed themaximum length

4fL
D for this entranceMach number. The

maximum forM1 = 8 is 4fLD = 0.76820, thus the extra tube is ∆
(
4fL
D

)
= 0.9− 0.76820 =

0.1318. The left side is when the shock occurs at
4fL
D = 0.76820 (flow is choked and no

additional
4fL
D ). Hence, the value of left side is −0.1318. The right side is when the shock is
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continue Ex. 14.20

at the entrance at which the extra
4fL
D is calculated forMx andMy is

Mx My
Ty
Tx

ρy

ρx

ρy

ρx

ρy

ρx

Py
Px

P0y
P0x

8.0000 0.39289 13.3867 5.5652 74.5000 0.00849

With (M1)
′

M 4 f L
D

P
P∗

P0
P0

∗
ρ
ρ∗
ρ
ρ∗
ρ
ρ∗

U
U∗

T
T∗

0.39289 2.4417 2.7461 1.6136 2.3591 0.42390 1.1641

The extra ∆
(
4fL
D

)
is 2.442− 0.1318 = 2.3102 Now the solution is somewhere between the

negative of left side to the positive of the right side
a
.

In a summary of the actions is done by the following algorithm:

(a) check if the
4fL
D exceeds the maximum

4fL
D

∣∣∣
max

for the supersonic flow. Accord-

ingly continue.

(b) Guess
4fL
D

∣∣∣
up

= 4fL
D − 4fL

D

∣∣∣
max

(c) Calculate the Mach number corresponding to the current guess of
4fL
D

∣∣∣
up

,

(d) Calculate the associate Mach number, Mx with the Mach number, My calculated

previously,

(e) Calculate
4fL
D for supersonic branch for theMx

(f) Calculate the “new and improved”
4fL
D

∣∣∣
up

(g) Compute the “new
4fL
D

∣∣∣
down

= 4fL
D − 4fL

D

∣∣∣
up

(h) Check the new and improved
4fL
D

∣∣∣
down

against the old one. If it is satisfactory

stop or return to stage b.

Shock location is:

M1 M2
4 f L
D

∣∣∣
up

4 f L
D

∣∣∣
down

Mx My

8.0000 1.0000 0.57068 0.32932 1.6706 0.64830

The iteration summary is also shown below
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End of Ex. 14.20
i 4 f L

D

∣∣∣
up

4 f L
D

∣∣∣
down

Mx My
4 f L
D

0 0.67426 0.22574 1.3838 0.74664 0.90000

1 0.62170 0.27830 1.5286 0.69119 0.90000

2 0.59506 0.30494 1.6021 0.66779 0.90000

3 0.58217 0.31783 1.6382 0.65728 0.90000

4 0.57605 0.32395 1.6554 0.65246 0.90000

5 0.57318 0.32682 1.6635 0.65023 0.90000

6 0.57184 0.32816 1.6673 0.64920 0.90000

7 0.57122 0.32878 1.6691 0.64872 0.90000

8 0.57093 0.32907 1.6699 0.64850 0.90000

9 0.57079 0.32921 1.6703 0.64839 0.90000

10 0.57073 0.32927 1.6705 0.64834 0.90000

11 0.57070 0.32930 1.6706 0.64832 0.90000

12 0.57069 0.32931 1.6706 0.64831 0.90000

13 0.57068 0.32932 1.6706 0.64831 0.90000

14 0.57068 0.32932 1.6706 0.64830 0.90000

15 0.57068 0.32932 1.6706 0.64830 0.90000

16 0.57068 0.32932 1.6706 0.64830 0.90000

17 0.57068 0.32932 1.6706 0.64830 0.90000

This procedure rapidly converted to the solution.

a
What if the right side is also negative? The flow is chocked and shock must occur in the nozzle before

entering the tube. Or in a very long tube the whole flow will be subsonic.

14.7.8 The Practical Questions and Examples of Subsonic branch
The Fanno is applicable also when the flow isn’t choke

32
. In this case, several questions appear

for the subsonic branch. This is the area shown in Figure 14.25 in beginning for between points

000 and a. This kind of questions made of pair given information to find the conditions of the

flow, as oppose to only one piece of information given in choked flow. There many combi-

32
These questions were raised from many who didn’t find any book that discuss these practical aspects and send

the questions to this author.
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nations that can appear in this situation but there are several more physical and practical that

will be discussed here.

14.7.9 Subsonic Fanno Flow for Given 4 f L
D and Pressure Ratio

This pair of parameters is the most

natural to examine because, in most

cases, this information is the only

provided information. For a given

pipe

(
4fL
D

)
, neither the entrance Mach

number nor the exit Mach number are

given (sometimes the entrance Mach

number is given see the next sec-

tion). There is no known exact analyt-

ical solution. There are two possible

P2

M2
∆
4fL

D
4fL

D

M1
P1

M = 1

P = P ∗

hypothetical section

Fig. 14.34 –Unchokedflow calculations showing the
hypothetical “full” tube when choked.

approaches to solve this problem: one, by building a representative function and find a root

(or roots) of this representative function. Two, the problem can be solved by an iterative

procedure. The first approach require using root finding method and either method of spline

method or the half method or the combination of the two. In the past, this book advocated

the integrative method. Recently, this author investigate proposed an improved method.

This method is based on the entrance Mach number as the base. The idea based on

the idea that the pressure ratio can be drawn as a function of the entrance Mach number.

One of difficulties lays in the determination the boundaries of the entrance Mach number.

The maximum entrance Mach number is chocking Mach number. The lower possible Mach

number is zero which creates very large
4fL
D . The equations are solve for these large

4fL
D

numbers by perturbation method and the analytical solution is

M1 =

√√√√√√√
1−

[
P2
P0

]2

k
4 f L

D

(14.202)

Equation (14.202) is suggested to be used up toM1 < 0.02. To have small overlapping zone

the lower boundary isM1 < 0.01.
The process is based on finding the pressure ratio for given

4fL
D pipe dimensionless

length. Figure 14.35 exhibits the pressure ratio for fix
4fL
D as function of the entrance Mach

number. As it can be observed, the entrance Mach number lays between zero and the max-

imum of the chocking conditions. For example for a fixed pipe,
4fL
D = 1 the maximum

Mach
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number is 0.50874 as shown in Figure 14.35 by

orange line. For a given entrance Mach num-

ber, the pressure ratio, P1/P
∗
and

4fL
D

∣∣
1
can

be calculated. The exit pipe length,
4fL
D

∣∣
2

is obtained by subtracting the fix length
4fL
D

from
4fL
D

∣∣
1
. With this value, the exit Mach

number,M2 and pressure ratio P2/P
∗
are cal-

culated. Hence the pressure ratio, P2/P1 can

be obtained and is drawn in Figure 14.35.

Hence, when the pressure ratio, P2/P1
is given along with given pipe,

4fL
D the solu-

tion can be obtained by drawing a horizontal

line. The intersection of the horizontal line

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6

M1

0.5
1.0
1.5
5.0

4 f L

D
=

P2

P1

Fig. 14.35 – Pressure ratio obtained for a fix
4fL
D as a function of Mach number for

k=1.4.

with the right curve of the pressure ratio yields the entrance Mach number. This can be

done by a computer program such Potto–GDC (version 0.5.2 and above). The summary of

the procedure is as the following. beginNormalEnumerate

1) If the pressure ratio is P2/P1 < 0.02 then using the perturbed solution the entrance Mach

number is very small and calculate using the formula

M =

√√√√√√√(1−

P2
P1

k

(
4 f L

D

) (14.203)

If the pressure ratio smaller than continue with the following.

2) Calculate the

4 f L

D

∣∣∣∣
1

forM1 = 0.01

3) Subtract the given

4 f L

D
from

4 f L

D

∣∣∣∣
1

and calculate the exit Mach number.

4) Calculate the pressure ratio.

5) Calculate the pressure ratio for choking condition (given

4 f L

D
.

6) Use your favorite to method to calculate root finding (In potto–GDC Brent’s method is

used)

Example runs is presented in the Figure 14.36 for
4fL
D = 0.5 and pressure ratio equal

to 0.8. The blue line in Figure 14.35 intersection with the horizontal line of P2/P1 = 0.8 yield
the solution ofM ∼ 0.5. The whole solution obtained in 7 iterations with accuracy of 10−12.

In Potto–GDC there is another older iterative method used to solve constructed on the

properties of several physical quantities must be in a certain range. The first fact is that the

pressure ratio P2/P1 is always between 0 and 1 (see Figure 14.34). In the figure, a theoretical
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Fig. 14.36 – Conversion of solution for given 4fL
D

= 0.5 and pressure ratio equal 0.8.

extra tube is added in such a length that cause the flow to choke (if it really was there). This

length is always positive (at minimum is zero).

The procedure for the calculations is as the following:

1) Calculate the entrance Mach number,M1
′
assuming the

4fL
D = 4fL

D

∣∣
max

′

(chocked flow);

Calculate the minimum pressure ratio (P2/P1)min forM1
′
(look at table 14.6)

2) Check if the flow is choked:

There are two possibilities to check it.

a) Check if the given
4fL
D is smaller than

4fL
D obtained from the given P1/P2, or

b) check if the (P2/P1)min is larger than (P2/P1),

continue if the criteria is satisfied. Or if not satisfied abort this procedure and con-

tinue to calculation for choked flow.

3) Calculate theM2 based on the (P∗/P2) = (P1/P2),

4) calculate ∆4fLD based onM2,

5) calculate the new (P2/P1), based on the new f
((
4fL
D

)
1

,
(
4fL
D

)
2

)
,

(remember that ∆4fLD =
(
4fL
D

)
2
),

6) calculate the correspondingM1 andM2,

7) calculate the new and “improved” the ∆4fLD by
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Fig. 14.37 – The results of the algorithm showing the conversion rate for unchoked Fannoflowmodel
with a given 4fL

D and pressure ratio.

(
∆
4 f L

D

)

new

=

(
∆
4 f L

D

)

old

∗

(
P2
P1

)
given(

P2
P1

)
old

(14.204)

Note, when the pressure ratios are matching also the ∆4fLD will also match.

8) Calculate the “improved/new”M2 based on the improve ∆4fLD

9) calculate the improved
4fL
D as

4fL
D =

(
4fL
D

)
given

+∆
(
4fL
D

)
new

10) calculate the improvedM1 based on the improved
4fL
D .

11) Compare the abs ((P2/P1)new − (P2/P1)old ) and if not satisfied

returned to stage (5) until the solution is obtained.

To demonstrate how this procedure is working consider a typical example of
4fL
D =

1.7 and P2/P1 = 0.5. Using the above algorithm the results are exhibited in the following

figure.

Figure 14.37 demonstrates that the conversion occur at about 7-8 iterations. With better

first guess this conversion procedure converts much faster but at a certain range it is unstable.

14.7.10 Subsonic Fanno Flow for a GivenM1 and Pressure Ratio
This situation pose a simple mathematical problem while the physical situation occurs in

cases where a specific flow rate is required with a given pressure ratio (range) (this problem
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was considered by some to be somewhat complicated). The specific flow rate can be converted

to entrance Mach number and this simplifies the problem. Thus, the problem is reduced to

find for given entrance Mach, M1, and given pressure ratio calculate the flow parameters,

like the exit Mach number, M2. The procedure is based on the fact that the entrance star

pressure ratio can be calculated using M1. Thus, using the pressure ratio to calculate the

star exit pressure ratio provide the exit Mach number,M2. An example of such issue is the

following example that combines also the “Naughty professor” problems.

Example 14.21:Mexist forMin Level: Intermediate
Calculate the exit Mach number for P2/P1 = 0.4 and entrance Mach numberM1 =

0.25.

Solution
The star pressure can be obtained from a table or Potto-GDC as

M 4 f L
D

P
P∗

P0
P0

∗
ρ
ρ∗
ρ
ρ∗
ρ
ρ∗

U
U∗

T
T∗

0.25000 8.4834 4.3546 2.4027 3.6742 0.27217 1.1852

And the star pressure ratio can be calculated at the exit as following

P2
P∗

=
P2
P1

P1
P∗

= 0.4× 4.3546 = 1.74184 (14.21.a)

And the corresponding exit Mach number for this pressure ratio reads

M 4 f L
D

P
P∗

P0
P0

∗
ρ
ρ∗
ρ
ρ∗
ρ
ρ∗

U
U∗

T
T∗

0.60694 0.46408 1.7418 1.1801 1.5585 0.64165 1.1177

A bit show off the Potto–GDC can carry these calculations in one click as

M1 M2 4 f L
D

P2
P1

0.25000 0.60693 8.0193 0.40000

As it can be seen for the Figure 14.38 the dominating parameter is

4 f L

D
. The results are

very similar for isothermal flow. The only difference is in small dimensionless friction,
4fL
D .
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14.7.11 More Examples of Fanno Flow

Example 14.22: Mass Flow Rate Level: Intermediate
To demonstrate the utility in Figure 14.38 consider the following example. Find the

mass flow rate for f = 0.05, L = 4[m], D = 0.02[m] and pressure ratio P2/P1 =

0.1, 0.3, 0.5, 0.8. The stagnation conditions at the entrance are 300K and 3[bar] air.

Solution
First calculate the dimensionless resistance,

4fL
D .

4 f L

D
=
4× 0.05× 4

0.02
= 40

From Figure 14.38 for P2/P1 = 0.1 M1 ≈ 0.13 etc.
or accurately by utilizing the program as in the following table.

M1 M2
4 f L
D

4 f L
D

∣∣∣
1

4 f L
D

∣∣∣
2

P2
P1

0.12728 1.0000 40.0000 40.0000 0.0 0.11637

0.12420 0.40790 40.0000 42.1697 2.1697 0.30000

0.11392 0.22697 40.0000 50.7569 10.7569 0.50000

0.07975 0.09965 40.0000 107.42 67.4206 0.80000

Only for the pressure ratio of 0.1 the flow is choked.

M T
T0

ρ
ρ0

ρ
ρ0

ρ
ρ0

A
A⋆

P
P0

A×P
A∗×P0

0.12728 0.99677 0.99195 4.5910 0.98874 4.5393

0.12420 0.99692 0.99233 4.7027 0.98928 4.6523

0.11392 0.99741 0.99354 5.1196 0.99097 5.0733

0.07975 0.99873 0.99683 7.2842 0.99556 7.2519

Therefore, T ≈ T0 and is the same for the pressure. Hence, the mass rate is a function of the

Mach number. TheMach number is indeed a function of the pressure ratio but mass flow rate

is a function of pressure ratio only through Mach number.

The mass flow rate is

ṁ = PAM

√
k

R T
= 300000 × π× 0.022

4
× 0.127×

√
1.4

287 300
≈ 0.48

(
kg

sec

)
(14.22.a)
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End of Ex. 14.22
and for the rest

ṁ

(
P2P1
=

0.3
)

∼ 0.48× 0.1242
0.1273

= 0.468
(
kg

sec

)

ṁ

(
P2P1
=

0.5
)

∼ 0.48× 0.1139
0.1273

= 0.43
(
kg

sec

)

ṁ

(
P2P1
=

0.8
)

∼ 0.48× 0.07975
0.1273

= 0.30
(
kg

sec

)
(14.22.b)

14.8 The Table for Fanno Flow

Table 14.6 – Fanno Flow Standard basic Table k=1.4

M 4 f L
D

P
P∗

P0
P0

∗
ρ
ρ∗
ρ
ρ∗
ρ
ρ∗

U
U∗

T
T∗

0.03 787.08 36.5116 19.3005 30.4318 0.03286 1.1998

0.04 440.35 27.3817 14.4815 22.8254 0.04381 1.1996

0.05 280.02 21.9034 11.5914 18.2620 0.05476 1.1994

0.06 193.03 18.2508 9.6659 15.2200 0.06570 1.1991

0.07 140.66 15.6416 8.2915 13.0474 0.07664 1.1988

0.08 106.72 13.6843 7.2616 11.4182 0.08758 1.1985

0.09 83.4961 12.1618 6.4613 10.1512 0.09851 1.1981

0.10 66.9216 10.9435 5.8218 9.1378 0.10944 1.1976

0.20 14.5333 5.4554 2.9635 4.5826 0.21822 1.1905

0.25 8.4834 4.3546 2.4027 3.6742 0.27217 1.1852

0.30 5.2993 3.6191 2.0351 3.0702 0.32572 1.1788

0.35 3.4525 3.0922 1.7780 2.6400 0.37879 1.1713

0.40 2.3085 2.6958 1.5901 2.3184 0.43133 1.1628

0.45 1.5664 2.3865 1.4487 2.0693 0.48326 1.1533

0.50 1.0691 2.1381 1.3398 1.8708 0.53452 1.1429

0.55 0.72805 1.9341 1.2549 1.7092 0.58506 1.1315

0.60 0.49082 1.7634 1.1882 1.5753 0.63481 1.1194
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Table 14.6 – Fanno Flow Standard basic Table (continue)

M 4 f L
D

P
P∗

P0
P0

∗
ρ
ρ∗
ρ
ρ∗
ρ
ρ∗

U
U∗

T
T∗

0.65 0.32459 1.6183 1.1356 1.4626 0.68374 1.1065

0.70 0.20814 1.4935 1.0944 1.3665 0.73179 1.0929

0.75 0.12728 1.3848 1.0624 1.2838 0.77894 1.0787

0.80 0.07229 1.2893 1.0382 1.2119 0.82514 1.0638

0.85 0.03633 1.2047 1.0207 1.1489 0.87037 1.0485

0.90 0.01451 1.1291 1.0089 1.0934 0.91460 1.0327

0.95 0.00328 1.061 1.002 1.044 0.95781 1.017

1.00 0.0 1.00000 1.000 1.000 1.00 1.000

2.00 0.30500 0.40825 1.688 0.61237 1.633 0.66667

3.00 0.52216 0.21822 4.235 0.50918 1.964 0.42857

4.00 0.63306 0.13363 10.72 0.46771 2.138 0.28571

5.00 0.69380 0.089443 25.00 0.44721 2.236 0.20000

6.00 0.72988 0.063758 53.18 0.43568 2.295 0.14634

7.00 0.75280 0.047619 1.0E+2 0.42857 2.333 0.11111

8.00 0.76819 0.036860 1.9E+2 0.42390 2.359 0.086957

9.00 0.77899 0.029348 3.3E+2 0.42066 2.377 0.069767

10.00 0.78683 0.023905 5.4E+2 0.41833 2.390 0.057143

20.00 0.81265 0.00609 1.5E+4 0.41079 2.434 0.014815

25.00 0.81582 0.00390 4.6E+4 0.40988 2.440 0.00952

30.00 0.81755 0.00271 1.1E+5 0.40938 2.443 0.00663

35.00 0.81860 0.00200 2.5E+5 0.40908 2.445 0.00488

40.00 0.81928 0.00153 4.8E+5 0.40889 2.446 0.00374

45.00 0.81975 0.00121 8.6E+5 0.40875 2.446 0.00296

50.00 0.82008 0.000979 1.5E+6 0.40866 2.447 0.00240

55.00 0.82033 0.000809 2.3E+6 0.40859 2.447 0.00198
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Table 14.6 – Fanno Flow Standard basic Table (continue)

M 4 f L
D

P
P∗

P0
P0

∗
ρ
ρ∗
ρ
ρ∗
ρ
ρ∗

U
U∗

T
T∗

60.00 0.82052 0.000680 3.6E+6 0.40853 2.448 0.00166

65.00 0.82066 0.000579 5.4E+6 0.40849 2.448 0.00142

70.00 0.82078 0.000500 7.8E+6 0.40846 2.448 0.00122

14.9 Rayleigh Flow
Rayleigh flow is a model describing a frictionless flow with heat transfer through a pipe of

constant cross sectional area. In practice, Rayleigh flow isn’t a really good model to describe

real situations. Yet, Rayleigh flow is practical and useful concept in a obtaining trends and

limits such as the density and pressure change due to external cooling or heating. As opposed

to the two previous models, the heat transfer can be in two directions not like the friction

(there is no negative friction). This fact creates a different situation as compared to the

previous twomodels. This model can be applied to cases where the heat transfer is significant

and the friction can be ignored. Flow of steam in steam boiler is good examplewhere Rayleigh

flow can be used.

14.9.1 Introduction

flow
direction

�

1

P

1

�

2

P

2

T

1

T

2

heat transfer
 (in and out)

Q

Fig. 14.39 – The control volume of Rayleigh Flow.

The third simple model for 1–dimensional

flow with a constant heat transfer for fric-

tionless flow. This flow is referred to in

the literature as Rayleigh Flow (see histori-

cal notes). This flow is another extreme case

in which the friction effects are neglected be-

cause their relative magnitude is significantly

smaller than the heat transfer effects. While

the isothermal flow model has heat trans-

fer and friction, the main assumption was

that relative length is enables significant heat

transfer to occur between the surroundings and tube. In contrast, the heat transfer in Rayleigh

flow occurs between unknown temperature and the tube and the heat flux is maintained con-

stant. As before, a simple model is built around the assumption of constant properties (poorer

prediction to case where chemical reaction take a place).

This model is used to roughly predict the conditions which occur mostly in situations

involving chemical reaction. In analysis of the flow, one has to be aware that properties do

change significantly for a large range of temperatures. Yet, for smaller range of temperatures

and lengths the calculations are more accurate. Nevertheless, the main characteristics of the
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flow such as a choking condition etc. are encapsulated in this model.

The basic physics of the flow revolves around the fact that the gas is highly compress-

ible. The density changes through the heat transfer (temperature change). Contrary to Fanno

flow in which the resistance always oppose the flow direction, Rayleigh flow, also, the cooling

can be applied. The flow acceleration changes the direction when the cooling is applied.

14.9.2 Governing Equations
The energy balance on the control volume reads

Q = Cp (T02 − T01) (14.205)

The momentum balance reads

A (P1 − P2) = ṁ (V2 − V1) (14.206)

The mass conservation reads

ρ1U1A = ρ2U2A = ṁ (14.207)

Equation of state

P1
ρ1 T1

=
P2
ρ2 T2

(14.208)

There are four equations with four unknowns, if the upstream conditions are known (or

downstream conditions are known). Thus, a solution can be obtained. One can notice that

equations (14.206), (14.207) and (14.208) are similar to the equations that were solved for the

shock wave. Thus, results in the same as before (14.80)

P2
P1

=
1+ kM1

2

1+ kM2
2

Pressure Ratio

(14.209)

The equation of state (14.208) can further assist in obtaining the temperature ratio as

T2
T1

=
P2
P1

ρ1
ρ2

(14.210)

The density ratio can be expressed in terms of mass conservation as

ρ1
ρ2

=
U2
U1

=

U2√
kR T2

√
kR T2

U1√
kR T1

√
kR T1

=
M2
M1

√
T2
T1

(14.211)
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or in simple terms as

ρ1
ρ2

=
U2
U1

=
M2
M1

√
T2
T1

Density Ratio

(14.212)

or substituting equations (14.209) and (14.212) into equation (14.210) yields

T2
T1

=
1+ kM1

2

1+ kM2
2

M2
M1

√
T2
T1

(14.213)

Transferring the temperature ratio to the left hand side and squaring the results gives

T2
T1

=

[
1+ kM1

2

1+ kM2
2

]2 (
M2
M1

)2
Temperature Ratio

(14.214)

P=P⋆

constant Pressure line

M=1

M>1

M<1

M=
1√
k

s

T

Fig. 14.40 – The temperature entropy diagram for
Rayleigh line.

TheRayleigh line exhibits two possiblemax-

imums one for dT/ds = 0 and for ds/dT =

0. The second maximum can be expressed as

dT/ds = ∞. The second law is used to find

the expression for the derivative.

s1 − s2
Cp

= ln
T2
T1

−
k− 1

k
ln
P2
P1

(14.215)

s1 − s2
Cp

= 2 ln

[
(
1+ kM1

2)

(1+ kM2
2)

M2
M1

]
+
k− 1

k
ln

[
1+ kM212

1+ kM1
2

]

(14.216)

Let the initial conditionM1, and s1 be constant and the variable parameters areM2, and s2.

A derivative of equation (14.216) results in

1

Cp

ds

dM
=

2 (1−M2)

M (1+ kM2)
(14.217)

Taking the derivative of equation (14.217) and letting the variable parameters be T2, andM2
results in

dT

dM
= constant× 1− kM2

(
1+ kM2

)3 (14.218)

Combining equations (14.217) and (14.218) by eliminating dM results in

dT

ds
= constant× M(1− kM2)

(1−M2)(1+ kM2)2
(14.219)
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On T–s diagram a family of curves can be drawn for a given constant. Yet for every curve,

several observations can be generalized. The derivative is equal to zero when 1− kM2 = 0

or M = 1/
√
k or when M → 0. The derivative is equal to infinity, dT/ds = ∞ when

M = 1. From thermodynamics, increase of heating results in increase of entropy. And cooling

results in reduction of entropy. Hence, when cooling is applied to a tube the velocity decreases

and when heating is applied the velocity increases. At peculiar point ofM = 1/
√
k when

additional heat is applied the temperature decreases. The derivative is negative, dT/ds < 0,

yet note this point is not the choking point. The choking occurs only whenM = 1 because

it violates the second law. The transition to supersonic flow occurs when the area changes,

somewhat similarly to Fanno flow. Yet, choking can be explained by the fact that increase of

energy must be accompanied by increase of entropy. But the entropy of supersonic flow is

lower (see Figure 14.40) and therefore it is not possible (the maximum entropy atM = 1.).

It is convenient to refer to the value of M = 1. These values are referred to as the

“star”
33
values. The equation (14.209) can be written between choking point and any point on

the curve.

P∗

P1
=
1+ kM1

2

1+ k

Pressure Ratio

(14.220)

The temperature ratio is

T∗

T1
=

1

M2

(
1+ kM1

2

1+ k

)2
Pressure Ratio

(14.221)

The stagnation temperature can be expressed as

T01
T0

∗ =

T1

(
1+

k− 1

2
M1

2

)

T∗
(
1+ k

2

) (14.222)

or explicitly

T01
T0

∗ =
2 (1+ k)M1

2

(1+ kM2)2

(
1+

k− 1

2
M1

2

)
Stagnation Temperature Ratio

(14.223)

The stagnation pressure ratio reads

P01
P0

∗ =

P1

(
1+

k− 1

2
M1

2

)

P∗
(
1+k
2

) (14.224)

33
The star is an asterisk.
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or explicitly

P01
P0

∗ =

(
1+ k

1+ kM1
2

)


1+

k− 1

2
M1

2

(1+ k)

2




k
k−1

Stagnation Pressure Ratio

(14.225)

14.9.3 Rayleigh Flow Tables and Figures
The “star” values are tabulated in Table 14.7. Several observations can be made in regards to

the stagnation temperature. The maximum temperature is not at Mach equal to one. Yet the

maximum entropy occurs at Mach equal to one.

Table 14.7 – Rayleigh Flow k=1.4

M T
T∗

T0
T0

∗
P

P∗
P0

P0
∗

ρ∗
ρ
ρ∗
ρ
ρ∗
ρ

0.03 0.00517 0.00431 2.397 1.267 0.00216

0.04 0.00917 0.00765 2.395 1.266 0.00383

0.05 0.014300 0.011922 2.392 1.266 0.00598

0.06 0.020529 0.017119 2.388 1.265 0.00860

0.07 0.027841 0.023223 2.384 1.264 0.011680

0.08 0.036212 0.030215 2.379 1.262 0.015224

0.09 0.045616 0.038075 2.373 1.261 0.019222

0.10 0.056020 0.046777 2.367 1.259 0.023669

0.20 0.20661 0.17355 2.273 1.235 0.090909

0.25 0.30440 0.25684 2.207 1.218 0.13793

0.30 0.40887 0.34686 2.131 1.199 0.19183

0.35 0.51413 0.43894 2.049 1.178 0.25096

0.40 0.61515 0.52903 1.961 1.157 0.31373

0.45 0.70804 0.61393 1.870 1.135 0.37865

0.50 0.79012 0.69136 1.778 1.114 0.44444

0.55 0.85987 0.75991 1.686 1.094 0.51001



638 CHAPTER 14. COMPRESSIBLE FLOW ONE DIMENSIONAL

Table 14.7 – Rayleigh Flow k=1.4 (continue)

M T
T∗

T0
T0

∗
P

P∗
P0

P0
∗

ρ∗
ρ
ρ∗
ρ
ρ∗
ρ

0.60 0.91670 0.81892 1.596 1.075 0.57447

0.65 0.96081 0.86833 1.508 1.058 0.63713

0.70 0.99290 0.90850 1.423 1.043 0.69751

0.75 1.014 0.94009 1.343 1.030 0.75524

0.80 1.025 0.96395 1.266 1.019 0.81013

0.85 1.029 0.98097 1.193 1.011 0.86204

0.90 1.025 0.99207 1.125 1.005 0.91097

0.95 1.015 0.99814 1.060 1.001 0.95693

1.0 1.00 1.00 1.00 1.00 1.000

1.1 0.96031 0.99392 0.89087 1.005 1.078

1.2 0.91185 0.97872 0.79576 1.019 1.146

1.3 0.85917 0.95798 0.71301 1.044 1.205

1.4 0.80539 0.93425 0.64103 1.078 1.256

1.5 0.75250 0.90928 0.57831 1.122 1.301

1.6 0.70174 0.88419 0.52356 1.176 1.340

1.7 0.65377 0.85971 0.47562 1.240 1.375

1.8 0.60894 0.83628 0.43353 1.316 1.405

1.9 0.56734 0.81414 0.39643 1.403 1.431

2.0 0.52893 0.79339 0.36364 1.503 1.455

2.1 0.49356 0.77406 0.33454 1.616 1.475

2.2 0.46106 0.75613 0.30864 1.743 1.494

2.3 0.43122 0.73954 0.28551 1.886 1.510

2.4 0.40384 0.72421 0.26478 2.045 1.525

2.5 0.37870 0.71006 0.24615 2.222 1.538

2.6 0.35561 0.69700 0.22936 2.418 1.550
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Table 14.7 – Rayleigh Flow k=1.4 (continue)

M T
T∗

T0
T0

∗
P

P∗
P0

P0
∗

ρ∗
ρ
ρ∗
ρ
ρ∗
ρ

2.7 0.33439 0.68494 0.21417 2.634 1.561

2.8 0.31486 0.67380 0.20040 2.873 1.571

2.9 0.29687 0.66350 0.18788 3.136 1.580

3.0 0.28028 0.65398 0.17647 3.424 1.588

3.5 0.21419 0.61580 0.13223 5.328 1.620

4.0 0.16831 0.58909 0.10256 8.227 1.641

4.5 0.13540 0.56982 0.081772 12.50 1.656

5.0 0.11111 0.55556 0.066667 18.63 1.667

5.5 0.092719 0.54473 0.055363 27.21 1.675

6.0 0.078487 0.53633 0.046693 38.95 1.681

6.5 0.067263 0.52970 0.039900 54.68 1.686

7.0 0.058264 0.52438 0.034483 75.41 1.690

7.5 0.050943 0.52004 0.030094 1.0E+2 1.693

8.0 0.044910 0.51647 0.026490 1.4E+2 1.695

8.5 0.039883 0.51349 0.023495 1.8E+2 1.698

9.0 0.035650 0.51098 0.020979 2.3E+2 1.699

9.5 0.032053 0.50885 0.018846 3.0E+2 1.701

10.0 0.028972 0.50702 0.017021 3.8E+2 1.702

20.0 0.00732 0.49415 0.00428 1.1E+4 1.711

25.0 0.00469 0.49259 0.00274 3.2E+4 1.712

30.0 0.00326 0.49174 0.00190 8.0E+4 1.713

35.0 0.00240 0.49122 0.00140 1.7E+5 1.713

40.0 0.00184 0.49089 0.00107 3.4E+5 1.714

45.0 0.00145 0.49066 0.000846 6.0E+5 1.714

50.0 0.00117 0.49050 0.000686 1.0E+6 1.714
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Fig. 14.41 – The basic functions of Rayleigh Flow (k=1.4).

Table 14.7 – Rayleigh Flow k=1.4 (continue)

M T
T∗

T0
T0

∗
P

P∗
P0

P0
∗

ρ∗
ρ
ρ∗
ρ
ρ∗
ρ

55.0 0.000971 0.49037 0.000567 1.6E+6 1.714

60.0 0.000816 0.49028 0.000476 2.5E+6 1.714

65.0 0.000695 0.49021 0.000406 3.8E+6 1.714

70.0 0.000600 0.49015 0.000350 5.5E+6 1.714

The data is presented in Figure 14.41.
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14.9.4 Examples For Rayleigh Flow
The typical questions that are raised in Rayleigh Flow are related to the maximum heat that

can be transferred to gas (reaction heat) and to the maximum flow rate.

Example 14.23: RayleighMexit Level: Simple
Air enters a pipe with pressure of 3[Bar] and temperature of 27◦C at Mach number

ofM = 0.25. Due to internal combustion heat was released and the exit temperature

was found to be 127◦C. Calculate the exit Mach number, the exit pressure, the total

exit pressure, and heat released and transferred to the air. At what amount of energy

the exit temperature will start to decrease? Assume CP = 1.004
[
kJ
kg ◦C

]

Solution

Solution

The entrance Mach number and the exit temperature are given and from Table ?? or from
Potto–GDC the initial ratio can be calculated. From the initial values the ratio at the exit can

be computed as the following.

M T
T∗

T0
T0

∗
P

P∗
P0

P0
∗

ρ∗
ρ
ρ∗
ρ
ρ∗
ρ

0.25000 0.30440 0.25684 2.2069 1.2177 0.13793

and

T2
T∗

=
T1
T∗

T2
T1

= 0.304× 400

300
= 0.4053

M T
T∗

T0
T0

∗
P

P∗
P0

P0
∗

ρ∗
ρ
ρ∗
ρ
ρ∗
ρ

0.29831 0.40530 0.34376 2.1341 1.1992 0.18991

The exit Mach number is known, the exit pressure can be calculated as

P2 = P1
P∗

P1

P2
P∗

= 3× 1

2.2069
× 2.1341 = 2.901[Bar]

For the entrance, the stagnation values are

M T
T0

ρ
ρ0

ρ
ρ0

ρ
ρ0

A
A⋆

P
P0

A×P
A∗×P0

F
F∗

0.25000 0.98765 0.96942 2.4027 0.95745 2.3005 1.0424
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The total exit pressure, P02 can be calculated as the following:

P02 = P1

isentropic︷︸︸︷
P01
P1

P0
∗

P01

P02
P0

∗ = 3× 1

0.95745
× 1

1.2177
× 1.1992 = 3.08572[Bar]

The heat released (heat transferred) can be calculated from obtaining the stagnation temper-

ature from both sides. The stagnation temperature at the entrance, T01

T01 = T1

isentropic︷︸︸︷
T01
T1

= 300/0.98765 = 303.75[K]

The isentropic conditions at the exit are

M T
T0

ρ
ρ0

ρ
ρ0

ρ
ρ0

A
A⋆

P
P0

A×P
A∗×P0

F
F∗

0.29831 0.98251 0.95686 2.0454 0.94012 1.9229 0.90103

The exit stagnation temperature is

T02 = T2

isentropic︷︸︸︷
T02
T2

= 400/0.98765 = 407.12[K]

The heat released becomes

Q

ṁ
= Cp

(
T02 − T01

)
1× 1.004× (407.12− 303.75) = 103.78

[
kJ

sec kg ◦C

]

The maximum temperature occurs at the point where theMach number reaches 1/
√
k

and at this point the Rayleigh relationship are:

M T
T∗

T0
T0

∗
P

P∗
P0

P0
∗

ρ∗
ρ
ρ∗
ρ
ρ∗
ρ

0.84515 1.0286 0.97959 1.2000 1.0116 0.85714

The maximum heat before the temperature can be calculated as following:

Tmax = T1
T∗

T1

Tmax

T∗
∼

300

0.3044
× 1.0286 = 1013.7[K]

The isentropic relationships at the maximum energy are

M T
T0

ρ
ρ0

ρ
ρ0

ρ
ρ0

A
A⋆

P
P0

A×P
A∗×P0

F
F∗

0.84515 0.87500 0.71618 1.0221 0.62666 0.64051 0.53376
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The stagnation temperature for this point is

T0max = Tmax
T0max
Tmax

=
1013.7
0.875

= 1158.51[K]

The maximum heat can be calculated as

Q

ṁ
= Cp

(
T0max − T01

)
= 1× 1.004× (1158.51− 303.75) = 858.18

[
kJ

kg secK

]

Note that this point isn’t the choking point. After this point additional heat results in tem-

perature reduction.

End Solution

Example 14.24: Rayleigh Flow Choked Level: Intermediate
Heat is added to the air until the flow is choked in amount of 600 [kJ/kg]. The exit

temperature is 1000 [K]. Calculate the entrance temperature and the entrance Mach

number.

Solution
The solution involves finding the stagnation temperature at the exit and subtracting the heat

(heat equation) to obtain the entrance stagnation temperature. From the Table 14.7 or from the

Potto-GDC the following ratios can be obtained.

M T
T0

ρ
ρ0

ρ
ρ0

ρ
ρ0

A
A⋆

P
P0

A×P
A∗×P0

F
F∗

1.0000 0.83333 0.63394 1.0000 0.52828 0.52828 0.52828

The stagnation temperature

T02 = T2
T02
T2

=
1000

0.83333
= 1200.0[K] (14.24.a)

The entrance temperature is

T01
T02

= 1−
Q/ṁ

T02CP
= 1200−

600

1200× 1.004
∼= 0.5016 (14.24.b)

It must be noted that T02 = T0
∗
. Therefore with

T01

T0
∗ = 0.5016 either by using Table (14.7) or

by Potto–GDC the following is obtained

M T
T∗

T0
T0

∗
P

P∗
P0

P0
∗

ρ∗

ρ
ρ∗

ρ
ρ∗

ρ

0.34398 0.50160 0.42789 2.0589 1.1805 0.24362

Thus, entrance Mach number is 0.38454 and the entrance temperature can be calculated as

following

T1 = T∗
T1
T∗

= 1000× 0.58463 = 584.6[K] (14.24.c)
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The difference between the supersonic branch to subsonic branch

Example 14.25: Supersonic Rayleigh Flow Level: Intermediate
Air with Mach 3 enters a frictionless duct with heating. What is the maximum heat

that can be added so that there is no subsonic flow? If a shock occurs immediately at

the entrance, what is the maximum heat that can be added?

Solution
To achieve maximum heat transfer the exit Mach number has to be one,M2 = 1.

Q

ṁ
= Cp

(
T02 − T01

)
= Cp T0

⋆

(
1−

T01
T0

∗

)
(14.25.a)

The table forM = 3 as follows

M T
T∗

T0
T0

∗
P

P∗
P0

P0
∗

ρ∗

ρ
ρ∗

ρ
ρ∗

ρ

3.0000 0.28028 0.65398 0.17647 3.4245 1.5882

The higher the entrance stagnation temperature the larger the heat amount that can be ab-

sorbed by the flow. In subsonic branch the Mach number after the shock is

Mx My
Ty
Tx

ρy

ρx

ρy

ρx

ρy

ρx

Py
Px

P0y
P0x

3.0000 0.47519 2.6790 3.8571 10.3333 0.32834

With Mach number of M = 0.47519 the maximum heat transfer requires information for

Rayleigh flow as the following

M T
T∗

T0
T0

∗
P

P∗
P0

P0
∗

ρ∗

ρ
ρ∗

ρ
ρ∗

ρ

0.33138 0.47519 0.40469 2.0802 1.1857 0.22844

or for subsonic branch

M T
T∗

T0
T0

∗
P

P∗
P0

P0
∗

ρ∗

ρ
ρ∗

ρ
ρ∗

ρ

0.47519 0.75086 0.65398 1.8235 1.1244 0.41176

It also must be noticed that stagnation temperature remains constant across shock wave.

Q

ṁ

∣∣∣∣
subsonic

Q

ṁ

∣∣∣∣
supersonic

=

(
1− T01
T0

∗

)

subsonic(
1−

T01
T0

∗

)

supersonic

=
1− 0.65398
1− 0.65398

= 1 (14.25.b)

It is not surprising for the shock wave to be found in the Rayleigh flow.
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Example 14.26: Combustion Chamber Level: Intermediate
One of the reason that Rayleigh flow model was invented is to be analyzed the flow

in a combustion chamber. Consider a flow of air in conduct with a fuel injected into

the flow as shown in Figure 14.42. Calculate

what the maximum fuel–air ratio. Calcu-

late the exit condition for half the fuel–

air ratio. Assume that the mixture prop-

erties are of air. Assume that the combus-

tion heat is 25,000[KJ/kg fuel] for the av-

erage temperature range for this mixture.

Neglect the fuel mass addition and assume

that all the fuel is burned (neglect the com-

plications of the increase of the entropy if

accrue).

P1 = 15[Bar]
T1 = 350[K]

Fuel
injection

M1 = 0.3

Fig. 14.42 – Schematic of the combus-
tion chamber.

Solution
Under these assumptions, themaximum fuel air ratio is obtainedwhen the flow is choked. The

entranced condition can be obtained using Potto-GDC as following

M T
T∗

T0
T0

∗
P

P∗
P0

P0
∗

ρ∗

ρ
ρ∗

ρ
ρ∗

ρ

0.30000 0.40887 0.34686 2.1314 1.1985 0.19183

The choking condition are obtained using also by Potto-GDC as

M T
T∗

T0
T0

∗
P

P∗
P0

P0
∗

ρ∗

ρ
ρ∗

ρ
ρ∗

ρ

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

And the isentropic relationships for Mach 0.3 are

M T
T0

ρ
ρ0

ρ
ρ0

ρ
ρ0

A
A⋆

P
P0

A×P
A∗×P0

F
F∗

0.30000 0.98232 0.95638 2.0351 0.93947 1.9119 0.89699

The maximum fuel-air can be obtained by finding the heat per unit mass.

Q̇

ṁ
=
Q

m
= Cp (T02 − T01) = CpT1

(
1−

T01
T∗

)
(14.26.a)

Q̇

ṁ
= 1.04× 350/0.98232× (1− 0.34686) ∼ 242.022[kJ/kg] (14.26.b)
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End of Ex. 14.26

The fuel–air mass ratio has to be

mfuel
mair

=
needed heat

combustion heat

=
242.022
25, 000

∼ 0.0097[kg fuel/kg air] (14.26.c)

If only half of the fuel is supplied then the exit temperature is

T02 =
Q

mCp
+ T01 =

0.5× 242.022
1.04

+ 350/0.98232 ∼ 472.656[K] (14.26.d)

The exit Mach number can be determined from the exit stagnation temperature as following:

T2
T∗

=
T01
T0

∗
T02
T01

(14.26.e)

The last temperature ratio can be calculated from the value of the temperatures

T2
T∗

= 0.34686× 472.656
350/0.98232 (14.26.f)

The Mach number can be obtained from a Rayleigh table or using Potto-GDC

M T
T∗

T0
T0

∗
P

P∗
P0

P0
∗

ρ∗

ρ
ρ∗

ρ
ρ∗

ρ

0.33217 0.47685 0.40614 2.0789 1.1854 0.22938

It should be noted that this example is only to demonstrate how to carry the calculations.



15
Compressible Flow 2–Dimensional

15.1 Introduction
In Chapter 14 the discussed dealt with one–dimensional and semi one–dimensional flow. In

this Chapter the focus is around the two diminsional effect which focus around the oblique

shock and Prandtl–Meyer flow (in other word it focus around Theodor Meyer’s thesis). This

Chapter present a simplified summary of two chapters from the book “Fundamentals of Com-

pressible Flow” by this author.

15.1.1 Preface to Oblique Shock
In Section 14.5, a discussion on a normal shock

was presented. A normal shock is a special

type of shock wave. Another type of shock

wave is the oblique shock. In the literature

oblique shock, normal shock, and Prandtl–

Meyer function are presented as three sepa-

rate and different issues. However, one can

view all these cases as three different re-

gions of a flow over a plate with a deflection

section. Clearly, variation of the deflection

θ

U1 U2

δ= 0

Fig. 15.1 – A view of a straight normal shock
as a limited case for oblique shock.

angle from a zero (δ = 0) to a positive value results in oblique shock (see Figure 15.1). Further

changing the deflection angle to a negative value results in expansion waves. The common

representation is done by ignoring the boundaries of these models. However, this section

647
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attempts to show the boundaries and the limits or connections of these models.

A normal shock occurs when there is a disturbance downstream which imposes a

boundary condition on the flow in which the fluid/gas can react only by a sharp change in

the flow direction. As it may be recalled, normal shock occurs when a wall is straight/flat

(δ = 0) as shown in Figure 15.1 due to disturbance. When the deflection angle is increased, the

gas flow must match the boundary conditions. This matching can occur only when there is a

discontinuity in the flow field. Thus, the direction of the flow is changed by a shock with an

angle to the flow. This shock is commonly referred to as the oblique shock.

Decreasing the deflection angle also requires the boundary conditions to match the

geometry. Yet, for a negative deflection

angle (in this section’s notation), the flow

must be continuous. The analysis shows

that the flow velocity must increase to

achieve this requirement. This velocity in-

crease is referred to as the expansionwave.

As it will be shown in the next section, as

opposed to oblique shock analysis, the in-

crease in the upstream Mach number de-

termines the downstream Mach number

and the “negative” deflection angle.

It has to be pointed out that both

the oblique shock and the Prandtl–

No Shock
zone

Oblique
Shock

Prandtl
Meyer
Function

ν∞(k)
θmax(k)

Plane

Inclination

0◦

︷ ︸︸ ︷︷ ︸︸ ︷

Fig. 15.2 – The regions where oblique shock or
Prandtl–Meyer function exist. Notice that
both have a maximum point and a “no solu-
tion” zone, which is around zero. However,
Prandtl-Meyer function approaches closer to
a zero deflection angle.

Meyer function have a maximum point for M1 → ∞. However, the maximum point for

the Prandtl–Meyer function is much larger than the oblique shock by a factor of more

than 2. What accounts for the larger maximum point is the effective turning (less entropy

production) which will be explained in the next chapter (see Figure 15.2).

15.1.1.1 Introduction to Zero Inclination

What happens when the inclination an-

gle is zero? Which model is correct to

use? Can these two conflicting models,

the oblique shock and the Prandtl–Meyer

function, co-exist? Or perhaps a differ-

ent model better describes the physics. In

some books and in the famous NACA re-

port 1135 it was assumed that Mach wave

and oblique shock co–occur in the same

zone. Previously (see Section 14.5), it was

C
o
m

p
a
rs

io
n
 L

in
e

U1n θ − δ

δ

θ

π/2− θ

π
U1t

U1
U2t

U2

U2n

Fig. 15.3 – A typical oblique shock schematic.

assumed that normal shock occurs at the same time. In this chapter, the stability issue will be

examined in greater detail.
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15.2 Oblique Shock
The shock occurs in reality in situations where the shock has three–dimensional effects. The

three–dimensional effects of the shock make it appear as a curved plane. However, one–

dimensional shock can be considered a representation for a chosen arbitrary accuracy with a

specific small area. In such a case, the change of the orientation makes the shock considera-

tions two–dimensional. Alternately, using an infinite (or a two–dimensional) object produces

a two–dimensional shock. The two–dimensional effects occur when the flow is affected from

the “side,” i.e., the change is in the flow direction. An example of such case is creation of shock

from the side by deflection shown in Figure 15.3.

To match the boundary conditions, the flow turns after the shock to be parallel to the

inclination angle schematicly shown in Figure 15.3. The deflection angle, δ, is the direction of

the flow after the shock (parallel to the wall). The normal shock analysis dictates that after

the shock, the flow is always subsonic. The total flow after the oblique shock can also be

supersonic, which depends on the boundary layer and the deflection angle.

The velocity has two components (with respect to the shock plane/surface). Only the

oblique shock’s normal component undergoes the “shock.” The tangent component does not

change because it does not “move” across the shock line. Hence, the mass balance reads

ρ1U1n = ρ2U2n (15.1)

The momentum equation reads

P1 + ρ1U1n
2 = P2 + ρ2U2n

2
(15.2)

The momentum equation in the tangential direction is reduced to

U1t = U2t (15.3)

The energy balance in coordinates moving with shock reads

CpT1 +
U1n

2

2
= CpT2 +

U2n
2

2
(15.4)

Equations (15.1), (15.2), and (15.4) are the same as the equations for normal shock with the ex-

ception that the total velocity is replaced by the perpendicular components. Yet, the new re-

lationship between the upstream Mach number, the deflection angle, δ, and the Mach angle,

θ has to be solved. From the geometry it can be observed that

tan θ =
U1n
U1t

(15.5)

and

tan(θ− δ) =
U2n
U2t

(15.6)
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Unlike in the normal shock, here there are three possible pairs
1
of solutions to these

equations. The first is referred to as the weak shock; the second is the strong shock; and

the third is an impossible solution (thermodynamically)
2
. Experiments and experience have

shown that the common solution is the weak shock, in which the shock turns to a lesser

extent
3
.

tan θ
tan(θ− δ)

=
U1n
U2n

(15.7)

The above velocity–geometry equations can also be expressed in term of Mach number, as

sin θ =
M1n
M1

(15.8)

and in the downstream side reads

sin(θ− δ) =
M2n
M2

(15.9)

Equation (15.8) alternatively also can be expressed as

cos θ =
M1t
M1

(15.10)

And equation (15.9) alternatively also can be expressed as

cos (θ− δ) =
M2t
M2

(15.11)

The total energy across a stationary oblique shock wave is constant, and it follows that

the total speed of sound is constant across the (oblique) shock. It should be noted that al-

though, U1t = U2t the Mach number isM1t ̸= M2t because the temperatures on both

sides of the shock are different, T1 ̸= T2.
As opposed to the normal shock, here angles (the second dimension) have to be deter-

mined. The solution from this set of four equations, (15.8) through (15.11), is a function of four

unknowns ofM1,M2, θ, and δ. Rearranging this set utilizing geometrical identities such as

sinα = 2 sinα cosα results in

tan δ = 2 cot θ

[
M1

2 sin2 θ− 1
M1

2 (k+ cos 2θ) + 2

]
Angle Relationship

(15.12)

1
This issue is due to R. Menikoff, who raised the solution completeness issue.

2
The solution requires solving the entropy conservation equation. The author is not aware of “simple” proof and

a call to find a simple proof is needed.

3
Actually this term is used from historical reasons. The lesser extent angle is the unstable angle and the weak

angle is the middle solution. But because the literature referred to only two roots, the term lesser extent is used.
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The relationship between the properties can be determined by substitutingM1 sin θ
for ofM1 into the normal shock relationship, which results in

P2
P1

=
2 kM1

2 sin2 θ− (k− 1)

k+ 1

Pressure Ratio

(15.13)

The density and normal velocity ratio can be determined by the following equation

ρ2
ρ1

=
U1n
U2n

=
(k+ 1)M1

2 sin2 θ
(k− 1)M1

2 sin2 θ+ 2

Density Ratio

(15.14)

The temperature ratio is expressed as

T2
T1

=
2 kM1

2 sin2 θ− (k− 1)
[
(k− 1)M1

2 + 2
]

(k+ 1)2M1

Temperature Ratio

(15.15)

Prandtl’s relation for oblique shock is

Un1Un2 = c
2 −

k− 1

k+ 1
Ut
2

(15.16)

The Rankine–Hugoniot relations are the same as the relationship for the normal shock

P2 − P1
ρ2 − ρ1

= k
P2 − P1
ρ2 − ρ1

(15.17)

15.2.1 Solution of Mach Angle
Oblique shock, if orientated to a coordinate perpendicular and parallel shock plane is like

a normal shock. Thus, the relationship between the properties can be determined by using

the normal components or by utilizing the normal shock table developed earlier. One has to

be careful to use the normal components of the Mach numbers. The stagnation temperature

contains the total velocity.

Again, the normal shock is a one–dimensional problem, thus, only one parameter is

required (to solve the problem). Oblique shock is a two–dimensional problem and two prop-

erties must be provided so a solution can be found. Probably, the most useful properties are

upstreamMach number,M1 and the deflection angle, which create a somewhat complicated

mathematical procedure, and this will be discussed later. Other combinations of properties

provide a relatively simple mathematical treatment, and the solutions of selected pairs and

selected relationships will be presented.
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15.2.1.1 UpstreamMach Number,M1, and Deflection Angle, δ

Again, this set of parameters is, perhaps, the most common and natural to examine. Thomp-

son (1950) has shown that the relationship of the shock angle is obtained from the following

cubic equation:

x3 + a1 x
2 + a2 x+ a3 = 0

Governing Angle Equation

(15.18)

where

x = sin2 θ (15.19)

and

a1 = −
M1

2 + 2

M1
2

− k sin2 δ (15.20)

a2 = −
2M1

2 + 1

M1
4

+

[
(k+ 1)2

4
+
k− 1

M1
2

]
sin2 δ (15.21)

a3 = −
cos2 δ
M1

4
(15.22)

Equation (15.18) requires that x has to be a real and positive number to obtain a real

deflection angle
4
. Clearly, sin θ must be positive, and the negative sign refers to the mirror

image of the solution. Thus, the negative root of sin θmust be disregarded

The solution of a cubic equation such as (15.18) provides three roots
5
. These roots can

be expressed as

x1 = −
1

3
a1 + (S+ T)

First Root

(15.23)

x2 = −
a1
3

−
(S+ T)

2
+
i
√
3 (S− T)

2

Second Root

(15.24)

and

x3 = −
a1
3

−
(S+ T)

2
−
i
√
3 (S− T)

2

Third Root

(15.25)

Where

S =
3

√
R+

√
D, (15.26)

4
This point was pointed out by R. Menikoff. He also suggested that θ is bounded by sin−1 1/M1 and 1.

5
The highest power of the equation (only with integer numbers) is the number of the roots. For example, in a

quadratic equation there are two roots.
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T =
3

√
R−

√
D (15.27)

and where the definition of theD is

D = Q3 + R2 (15.28)

and where the definitions ofQ and R are

Q =
3a2 − a1

2

9
(15.29)

and

R =
9a1a2 − 27a3 − 2a1

3

54
(15.30)

Only three roots can exist for theMach angle, θ. From amathematical point of view, ifD > 0,

one root is real and two roots are complex. For the case D = 0, all the roots are real and at

least two are identical. In the last case whereD < 0, all the roots are real and unequal.

The physical meaning of the above analysis demonstrates that in the range whereD >

0 no solution can exist because no imaginary solution can exist
6
. D > 0 occurs when no

shock angle can be found, so that the shock normal component is reduced to subsonic and

yet parallel to the inclination angle. Furthermore, only in some cases when D = 0 does the

solution have a physical meaning. Hence, the solution in the case ofD = 0 has to be examined

in the light of other issues to determine the validity of the solution.

When D < 0, the three unique roots are reduced to two roots at least for the steady

state because thermodynamics dictates
7
that. Physically, it can be shown that the first solution

(15.23), referred sometimes as a thermodynamically unstable root, which is also related to a

decrease in entropy, is “unrealistic.” Therefore, the first solution does not occur in reality, at

least, in steady–state situations. This root has only a mathematical meaning for steady–state

analysis
8
.

6
A call for suggestions, to explain about complex numbers and imaginary numbers should be included. Maybe

insert an example where imaginary solution results in no physical solution.

7
This situation is somewhat similar to a cubical body rotation. The cubical body has three symmetrical axes

which the body can rotate around. However, the body will freely rotate only around two axes with small and large

moments of inertia. The body rotation is unstable around the middle axes. The reader can simply try it.

8
There is no experimental or analytical evidence, that the author has found, showing that it is totally impossible.

The “unstable” terms can be thermodynamically stable in unsteady case. Though, those who are dealing with rapid

transient situations should be aware that this angle of oblique shock can exist. There is no theoretical evidence that

showing that in strong unsteady state this angle is unstable. The shock will initially for a very brief time transient in

it and will jump from this angle to the thermodynamically stable angles.
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These two roots represent two different

situations. First, for the second root, the shock

wave keeps the flow almost all the time as a su-

personic flow and it is referred to as the weak

solution (there is a small section that the flow is

subsonic). Second, the third root always turns

the flow into subsonic and it is referred to as

the strong solution. It should be noted that this

case is where entropy increases in the largest

amount.

In summary, if an imaginary hand

moves the shock angle starting from the de-

flection angle and reaching the first angle that

Normal

Shock

Fig. 15.4 – Flow around spherically blunted
30◦ cone-cylinder with Mach number
2.0. It can be noticed that the normal
shock, the strong shock, and the weak
shock coexist.

satisfies the boundary condition, this situation is unstable and the shock angle will jump to

the second angle (root). If an additional “push” is given, for example, by additional boundary

conditions, the shock angle will jump to the third root
9
. These two angles of the strong and

weak shock are stable for a two–dimensional wedge (see the appendix of this chapter for a

limited discussion on the stability
10
).

15.2.2 When No Oblique Shock Exist or the case ofD > 0

15.2.2.1 Large deflection angle for given,M1

The first range is when the deflection angle reaches above the maximum point. For a given

upstream Mach number, M1, a change in the inclination angle requires a larger energy to

change the flow direction. Once, the inclination angle reaches the “maximum potential en-

ergy,” a change in the flow direction is no longer possible. As the alternative view, the fluid

“sees” the disturbance (in this case, the wedge) in front of it and hence the normal shock oc-

curs. Only when the fluid is away from the object (smaller angle) liquid “sees” the object in

a different inclination angle. This different inclination angle is sometimes referred to as an

imaginary angle.

The Simple Calculation Procedure

For example, in Figure 15.4 and 15.5, the imaginary angle is shown. The flow is far away

from the object and does not “see’ the object. For example, for, M1 −→ ∞ the maximum

deflection angle is calculated when D = Q3 + R2 = 0. This can be done by evaluating the

9
See the discussion on the stability. There are those who view this question not as a stability equation but rather

as under what conditions a strong or a weak shock will prevail.

10
This material is extra and not recommended for standard undergraduate students.
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M∞

The fluid doesn’t ’’see’
the object

The fluid "sees" 
the object
infront

The fluid ‘‘sees’’the
object with "imaginary"
inclination angle

Intermediate zone













Fig. 15.5 – The view of a large inclination angle from different points in the fluid field.

terms a1, a2, and a3 forM1 = ∞.

a1 = −1− k sin2 δ

a2 =
(k+ 1)2 sin2 δ

4

a3 = 0

With these values the coefficients R andQ are

R =

−9(1+ k sin2 δ)

(
(k+ 1)2 sin2 δ

4

)
− (2)(−)(1+ k sin2 δ)2

54

and

Q =
(1+ k sin2 δ)2

9

Solving equation (15.28) after substituting these values of Q and R provides series of

roots from which only one root is possible. This root, in the case k = 1.4, is just above
δmax ∼ π4 (note that the maximum is also a function of the heat ratio, k).

While the above procedure provides the general solution for the three roots, there is

simplified transformation that provides solution for the strong and weak solution. It must
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be noted that in doing this transformation, the first solution is “lost” supposedly because it is

“negative.” In reality the first solution is not negative but rather some value between zero and

the weak angle. Several researchers
11
suggested that instead Thompson’s equation should be

expressed by equation (15.18) by tan θ and is transformed into

(
1+

k− 1

2
M1

2

)
tan δ tan3 θ−

(
M1

2 − 1
)

tan2 θ+
(
1+

k+ 1

2

)
tan δ tan θ+ 1 = 0

(15.31)

The solution to this equation (15.31) for the weak angle is

θweak = tan−1



M1

2 − 1+ 2 f1(M1, δ) cos
(
4 π+ cos−1(f2(M1, δ))

3

)

3

(
1+

k− 1

2
M1

2

)
tan δ




Weak Angle Solution

(15.32)

θstrong = tan−1
M1

2 − 1+ 2f1(M1, δ) cos
(

cos−1(f2(M1, δ))
3

)

3

(
1+

k− 1

2
M1

2

)
tan δ

Strong Angle Solution

(15.33)

where these additional functions are

f1(M1, δ) =

√
(
M1

2 − 1
)2

− 3

(
1+

k− 1

2
M1

2

)(
1+

k+ 1

2
M1

2

)
tan2 δ (15.34)

and

f2(M1, δ) =

(
M1

2 − 1
)3

− 9

(
1+

k− 1

2
M1

2

)(
1+

k− 1

2
M1

2 +
k+ 1

4
M1

4

)
tan2 δ

f1(M1, δ)3
(15.35)

Figure (15.6) exhibits typical results for oblique shock for two deflection angle of 5 and

25 degree. Generally, the strong shock is reduced as the increase of the Mach number while

the weak shock is increase. The impossible shock for unsteady state is almost linear function

of the upstream Mach number and almost not affected by the deflection angle.

11
A whole discussion on the history of this can be found in “Open content approach to academic writing” on

http://www.potto.org/obliqueArticle.phpattheendofthebook.

http://www.potto.org/obliqueArticle.php at the end of the book.
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February 25, 2013

k = 1.2

Fig. 15.6 – The three different Mach numbers after the oblique shock for two deflection angles of 5◦
and 25◦.

The Procedure for Calculating The Maximum Deflection Point

The maximum angle is obtained whenD = 0. When the right terms defined in (15.20)-

(15.21), (15.29), and (15.30) are substituted into this equation and utilizing the trigonometrical

identity sin2 δ+ cos2 δ = 1 and other trigonometrical identities results in Maximum De-

flection Mach Number’s equation in which is

M1
2 (k+ 1) (M1n

2 + 1) = 2 (kM1n
4 + 2M1n

2 − 1) (15.36)

This equation and its twin equation can be obtained by an alternative procedure proposed

by someone
12
who suggested another way to approach this issue. It can be noticed that in

equation (15.12), the deflection angle is a function of the Mach angle and the upstream Mach

number, M1. Thus, one can conclude that the maximum Mach angle is only a function of

the upstream Much number,M1. This can be shown mathematically by the argument that

differentiating equation (15.12) and equating the results to zero creates relationship between

theMach number,M1 and the maximumMach angle, θ. Since in that equation there appears

only the heat ratio k, and Mach number,M1, θmax is a function of only these parameters.

12
At first, it was seen as C. J.Chapman, English mathematician to be the creator but later an earlier version by

several months was proposed by Bernard Grossman. At this stage, it is not clear who was the first to propose it.



658 CHAPTER 15. COMPRESSIBLE FLOW 2–DIMENSIONAL

The differentiation of the equation (15.12) yields

d tan δ
dθ

=

kM1
4 sin4 θ+

(
2−

(k+ 1)

2
M1

2

)
M1

2 sin2 θ−
(
1+

(k+ 1)

2
M1

2

)

kM1
4 sin4 θ−

[
(k− 1) +

(k+ 1)2M1
2

4

]
M1

2 sin2 θ− 1

(15.37)

Because tan is a monotonous function, the maximum appears when θ has its maximum. The

numerator of equation (15.37) is zero at different values of the denominator. Thus, it is suf-

ficient to equate the numerator to zero to obtain the maximum. The nominator produces a

quadratic equation for sin2 θ and only the positive value for sin2 θ is applied here. Thus, the
sin2 θ is

sin2 θmax =

−1+ i
k+ 1

4
M1

2 +

√√√√(k+ 1)

[
1+

k− 1

2
M1

2 +

(
k+ 1

2
M1

)4]

kM1
2

(15.38)

Equation (15.38) should be referred to as the maximum’s equation. It should be noted that

both the MaximumMach Deflection equation and the maximum’s equation lead to the same

conclusion that the maximum M1n is only a function of upstream the Mach number and

the heat ratio k. It can be noticed that the Maximum Deflection Mach Number’s equation is

also a quadratic equation forM1n
2
. OnceM1n is found, then the Mach angle can be easily

calculated by equation (15.8). To compare these two equations the simple case ofMaximum for

an infinite Mach number is examined. It must be pointed out that similar procedures can also

be proposed (even though it does not appear in the literature). Instead, taking the derivative

with respect to θ, a derivative can be taken with respect toM1. Thus,

d tan δ
dM1

= 0 (15.39)

and then solving equation (15.39) provides a solution forMmax.

A simplified case of the MaximumDeflectionMach Number’s equation for large Mach

number becomes

M1n =

√
k+ 1

2 k
M1 for M1 >> 1 (15.40)

Hence, for large Mach numbers, the Mach angle is sin θ =
√
k+1
2k (for k=1.4), which makes

θ = 1.18 or θ = 67.79◦.
With the value of θ utilizing equation (15.12), themaximumdeflection angle can be com-

puted. Note that this procedure does not require an approximation ofM1n to be made. The
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general solution of equation (15.36) is

M1n =

√√
(k+ 1)2 M1

4 + 8
(
k2 − 1

)
M1

2 + 16 (k+ 1) + (k+ 1) M1
2 − 4

2
√
k

Normal Shock Minikoff Solution

(15.41)

Note that Maximum Deflection Mach Number’s equation can be extended to deal with more

complicated equations of state (aside from the perfect gas model).

This typical example is for those who like mathematics.

Example 15.1: Oblique Perturbation Level: Intermediate
Derive the perturbation of Maximum Deflection Mach Number’s equation for the

case of a very small upstream Mach number number of the formM1 = 1+ ϵ. Hint,

Start with equation (15.36) and neglect all the terms that are relatively small.

Solution
The solution can be done by substituting (M1 = 1+ ϵ) into equation (15.36) and it results in

M1n =

√√
ϵ(k) + ϵ2 + 2 ϵ− 3+ k ϵ2 + 2 kϵ+ k

4 k

Normal Shock Small Values

(15.42)

where the epsilon function is

ϵ(k) = (k2 + 2k+ 1) ϵ4 + (4 k2 + 8 k+ 4) ϵ3+

(14 k2 + 12 k− 2) ϵ2 + (20 k2 + 8 k− 12) ϵ+ 9 (k+ 1)2 (15.43)

Now neglecting all the terms with ϵ results for the epsilon function in

ϵ(k) ∼ 9 (k+ 1)2 (15.1.a)

And the total operation results in

M1n =

√
3 (k+ 1) − 3+ k

4 k
= 1 (15.1.b)

Interesting to point out that as a consequence of this assumption the maximum shock angle,

θ is a normal shock. However, taking the second term results in different value. Taking the

second term in the explanation results in

M1n =

√√√√
√
9 (k+ 1)2 + (20 k2 + 8 k− 12) ϵ− 3+ k+ 2 (1+ k)ϵ

4 k

(15.1.c)

Note this equation (15.1.c) produce an un realistic value and additional terms are required to

obtained to produce a realistic value.
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15.2.2.2 The case ofD ⩾ 0 or 0 ⩾ δ

The second range in which D > 0 is when δ < 0. Thus, first the transition line in which

D = 0 has to be determined. This can be achieved by the standard mathematical procedure

of equatingD = 0. The analysis shows regardless of the value of the upstreamMach number

D = 0 when δ = 0. This can be partially demonstrated by evaluating the terms a1, a2, and

a3 for the specific value ofM1 as following

a1 =
M1

2 + 2

M1
2

a2 = −
2M1

2 + 1

M1
4

a3 = −
1

M1
4

(15.44)

With values presented in equations (15.44) for R andQ becoming

R =

9

(
M1

2 + 2

M1
2

)(
2M1

2 + 1

M1
4

)
+ 27

(
1

M1
4

)
− 2

(
M1

2 + 2

M1
2

)2

54

=
9
(
M1

2 + 2
) (
2M1

2 + 1
)
+ 27M1

2 − 2M1
2
(
M1

2 + 2
)2

54M1
6

(15.45)

and

Q =

3

(
2M1

2 + 1

M1
4

)
−

(
M1

2 + 2

M1
2

)3

9
(15.46)

Substituting the values of Q and R equations (15.45) (15.46) into equation (15.28) provides the

equation to be solved for δ.




3

(
2M1

2 + 1

M1
4

)
−

(
M1

2 + 2

M1
2

)3

9




3

+

[
9
(
M1

2 + 2
) (
2M1

2 + 1
)
+ 27M1

2 − 2M1
2
(
M1

2 + 2
)2

54M1
6

]2
= 0 (15.47)

The author is not aware of any analytical demonstration in the literature which shows that

the solution is identical to zero for δ = 013. Nevertheless, this identity can be demonstrated

by checking several points for example,M1 = 1., 2.0,∞ and addtional discussion and proofs

can be found in “Fundamentals of Compressible Flow” by this author.

13
A mathematical challenge for those who like to work it out.
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µ1 µ2 µ3 µ∞

Fig. 15.7 – The Mach waves that are supposed to be gener-
ated at zero inclination.

In the range where δ ⩽ 0, the

question is whether it is possible for

an oblique shock to exist? The answer

according to this analysis and stability

analysis is no. Suppose that there is a

Mach wave at the wall at zero inclina-

tion (see Figure 15.7). Obviously, another

Machwave occurs after a small distance.

But because the velocity after a Mach

wave (even for an extremely weak shock

wave) is reduced, thus, the Mach angle

will be larger (µ2 > µ1). If the situation

keeps on occurring over a finite distance,

there will be a point where theMach number will be 1 and a normal shock will occur, accord-

ing the common explanation. However, the reality is that no continuousMachwave can occur

because of the viscosity (boundary layer). In reality, there are imperfections in the wall and

in the flow and there is the question of boundary layer. It is well known, in the engineering

world, that there is no such thing as a perfect wall. The imperfections of the wall can be, for

simplicity’s sake, assumed to be as a sinusoidal shape. For such a wall the zero inclination

changes from small positive value to a negative value. If the Mach number is large enough

and the wall is rough enough, there will be points where a weak
14
weak will be created. On

the other hand, the boundary layer covers or smooths out the bumps. With these conflicting

mechanisms, both will not allow a situation of zero inclination with emission of Mach wave.

At the very extreme case, only in several points (depending on the bumps) at the leading edge

can a very weak shock occur. Therefore, for the purpose of an introductory class, no Mach

wave at zero inclination should be assumed.

Furthermore, if it was assumed that no boundary layer exists and the wall is perfect,

any deviations from the zero inclination angle creates a jump from a positive angle (Mach

wave) to a negative angle (expansion wave). This theoretical jump occurs because in a Mach

wave the velocity decreases while in the expansion wave the velocity increases. Furthermore,

the increase and the decrease depend on the upstream Mach number but in different direc-

tions. This jump has to be in reality either smoothed out or has a physical meaning of jump

(for example, detach normal shock). The analysis started by looking at a normal shock which

occurs when there is a zero inclination. After analysis of the oblique shock, the same conclu-

sion must be reached, i.e. that the normal shock can occur at zero inclination. The analysis of

the oblique shock suggests that the inclination angle is not the source (boundary condition)

that creates the shock. There must be another boundary condition(s) that causes the normal

shock. In the light of this discussion, at least for a simple engineering analysis, the zone in

the proximity of zero inclination (small positive and negative inclination angle) should be

viewed as a zone without any change unless the boundary conditions cause a normal shock.

14
It is not a mistake, there are two “weaks.” These words mean two different things. The first “weak” means more

of compression “line” while the other means the weak shock.
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Nevertheless, emission of Mach wave can occur in other situations. The approximation of

weak weak wave with nonzero strength has engineering applicability in a very limited cases,

especially in acoustic engineering, but for most cases it should be ignored.

15.2.2.3 UpstreamMach Number,M1, and Shock Angle, θ

The solution for upstreamMach number,M1, and shock angle, θ, are far much simpler and a

unique solution exists. The deflection angle can be expressed as a function of these variables

as

cot δ = tan (θ)

[
(k+ 1)M1

2

2 (M1
2 sin2 θ− 1)

− 1

]
δ For θ andM1

(15.48)

or

tan δ =
2 cot θ(M12 sin2 θ− 1)
2+M1

2(k+ 1− 2 sin2 θ)
(15.49)

The pressure ratio can be expressed as

P2
P1

=
2 kM1

2 sin2 θ− (k− 1)

k+ 1

Pressure Ratio

(15.50)

The density ratio can be expressed as

ρ2
ρ1

=
U1n
U2n

=
(k+ 1)M1

2 sin2 θ
(k− 1)M1

2 sin2 θ+ 2

Density Ratio

(15.51)

The temperature ratio expressed as

T2
T1

=
c2
2

c12
=

(
2 kM1

2 sin2 θ− (k− 1)
)(

(k− 1)M1
2 sin2 θ+ 2

)

(k+ 1)M1
2 sin2 θ

Temperature Ratio

(15.52)

The Mach number after the shock is

M2
2 sin(θ− δ) =

(k− 1)M1
2 sin2 θ+ 2

2 kM1
2 sin2 θ− (k− 1)

Exit Mach Number

(15.53)
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Fig. 15.8 – The possible range of solutions for different parameters for given upstream Mach num-
bers.

or explicitly

M2
2 =

(k+ 1)2M1
4 sin2 θ− 4 (M12 sin2 θ− 1)(kM12 sin2 θ+ 1)(

2 kM1
2 sin2 θ− (k− 1)

)(
(k− 1)M1

2 sin2 θ+ 2
) (15.54)

The ratio of the total pressure can be expressed as

P02
P01

=

[
(k+ 1)M1

2 sin2 θ
(k− 1)M1

2 sin2 θ+ 2

] k
k−1

[
k+ 1

2kM1
2 sin2 θ− (k− 1)

] 1
k−1

Stagnation Pressure Ratio

(15.55)

Even though the solution for these variables,M1 and θ, is unique, the possible range deflec-

tion angle, δ, is limited. Examining equation (15.48) shows that the shock angle, θ , has to be

in the range of sin−1(1/M1) ⩾ θ ⩾ (π/2) (see Figure 15.8). The range of given θ, upstream

Mach numberM1, is limited between∞ and

√
1/ sin2 θ.
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15.2.2.4 Given Two Angles, δ and θ

It is sometimes useful to obtain a relationship where the two angles are known. The first

upstream Mach number,M1 is

M1
2 =

2 (cot θ+ tan δ)
sin 2θ− (tan δ) (k+ cos 2θ)

Mach Number Angles Relationship

(15.56)

The reduced pressure difference is

2 (P2 − P1)

ρU2
=
2 sin θ sin δ
cos(θ− δ)

(15.57)

The reduced density is

ρ2 − ρ1
ρ2

=
sin δ

sin θ cos(θ− δ)
(15.58)

For a large upstream Mach numberM1 and a small shock angle (yet not approaching

zero), θ, the deflection angle, δ must also be small as well. Equation (15.48) can be simplified

into

θ ∼=
k+ 1

2
δ (15.59)

The results are consistent with the initial assumption which shows that it was an appropriate

assumption.

15.2.2.5 Flow in a Semi–2D Shape

Example 15.2: Wedge Mach Number Level: Intermediate
In Figure 15.9 exhibits wedge in a supersonic flow with unknownMach number. Ex-

amination of the Figure reveals that it is in angle of attack. 1) Calculate the Mach

number assuming that the lower and the upper Mach angles are identical and equal

to ∼ 30◦ each (no angle of attack). 2) Calculate the Mach number and angle of at-

tack assuming that the pressure after the shock for the two oblique shocks is equal.

3) What kind are the shocks exhibits in the image? (strong, weak, unsteady) 4) (Open

question) Is there possibility to estimate the air stagnation temperature from the in-

formation provided in the image. You can assume that specific heats, k is amonotonic

increasing function of the temperature.

Solution

Part (1)
The Mach angle and deflection angle can be obtained from the Figure 15.9. With this data and
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Fig. 15.9 – Color-schlieren image of a two dimensional flow over a wedge. The total deflection angel
(two sides) is 20◦ and upper and lowerMach angel are∼ 28◦ and∼ 30◦, respectively. The image
show the end–effects as it has thick (not sharp transition) compare to shock over a cone. The
image was taken by Dr. Gary Settles at Gas Dynamics laboratory, Penn State University.

continue Ex. 15.2
either using equation (15.56) or potto-GDC results in

M1 Mx Mys Myw „s „w ‹ P0y
P0x

2.6810 2.3218 0 2.24 0 30 10 0.97172

The actual Mach number after the shock is then

M2 =
M2n

sin (θ− δ)
=

0.76617
sin(30− 10)

= 0.839 (15.2.a)

The flow after the shock is subsonic flow.

Part (2)
For the lower part shock angle of ∼ 28◦ the results are

M1 Mx Mys Myw „s „w ‹ P0y
P0x

2.9168 2.5754 0 2.437 0 28 10 0.96549

From the last table, it is clear that Mach number is between the two values of 2.9168 and 2.6810

and the pressure ratio is between 0.96549 and 0.97172. One of procedure to calculate the attack

angle is such that pressure has to match by “guessing” the Mach number between the extreme

values.
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Part (3)
The shock must be weak shock because the shock angle is less than 60◦.

15.2.2.6 Close and Far Views of the Oblique Shock

δ

θ

Fig. 15.10 – A local and a far view of the oblique
shock.

Inmany cases, the close proximity viewprovides a

continuous turning of the deflection angle, δ. Yet,

the far view shows a sharp transition. The tra-

ditional approach to reconcile these two views is

by suggesting that the far view shock is a collec-

tion of many small weak shocks (see Figure 15.10).

At the local view close to the wall, the oblique

shock is a weak “weak oblique” shock. From the

far view, the oblique shock is an accumulation of

many small (or again weak) “weak shocks.” How-

ever, these small “shocks” are built or accumulate

into a large and abrupt change (shock). In this the-

ory, the boundary layer (B.L.) does not enter into the calculation. In reality, the boundary layer

increases the zone where a continuous flow exists. The boundary layer reduces the upstream

flow velocity and therefore the shock does not exist at close proximity to the wall. In larger

distance from the wall, the shock becomes possible.

15.2.2.7 Maximum Value of Oblique shock

The maximum values are summarized in the following Table .

Table 15.1 – Table of maximum values of the oblique Shock k=1.4

Mx My δmaxδmaxδmax θmaxθmaxθmax

1.1000 0.97131 1.5152 76.2762

1.2000 0.95049 3.9442 71.9555

1.3000 0.93629 6.6621 69.3645

1.4000 0.92683 9.4272 67.7023

1.5000 0.92165 12.1127 66.5676

1.6000 0.91941 14.6515 65.7972

1.7000 0.91871 17.0119 65.3066
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Table 15.1 – Maximum values of oblique shock (continue) k=1.4

Mx My δmaxδmaxδmax θmaxθmaxθmax

1.8000 0.91997 19.1833 64.9668

1.9000 0.92224 21.1675 64.7532

2.0000 0.92478 22.9735 64.6465

2.2000 0.93083 26.1028 64.6074

2.4000 0.93747 28.6814 64.6934

2.6000 0.94387 30.8137 64.8443

2.8000 0.94925 32.5875 65.0399

3.0000 0.95435 34.0734 65.2309

3.2000 0.95897 35.3275 65.4144

3.4000 0.96335 36.3934 65.5787

3.6000 0.96630 37.3059 65.7593

3.8000 0.96942 38.0922 65.9087

4.0000 0.97214 38.7739 66.0464

5.0000 0.98183 41.1177 66.5671

6.0000 0.98714 42.4398 66.9020

7.0000 0.99047 43.2546 67.1196

8.0000 0.99337 43.7908 67.2503

9.0000 0.99440 44.1619 67.3673

10.0000 0.99559 44.4290 67.4419

It must be noted that the calculations are for the perfect gas model. In some cases, this

assumptionmight not be sufficient and different analysis is needed. Henderson andMenikoff
15

calculate the maximum deflection angle for arbitrary equation of state
16
.

When the mathematical quantityD becomes positive, for large deflection angle, there

isn’t a physical solution to an oblique shock. Since the flow “sees” the obstacle, the only pos-

15
Henderson and Menikoff "Triple Shock Entropy Theorem" Journal of Fluid Mechanics 366 (1998) pp. 179–210.

16
The effect of the equation of state on themaximum and other parameters at this state is unknown at thismoment

and there are more works underway.
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sible reaction is by a normal shock which occurs at some distance from the body. This shock

is referred to as the detach shock. The detached shock’s distance from the body is a complex

analysis and should be left to graduate class and researchers in this area.

15.2.2.8 Oblique Shock Examples

Example 15.3: Max Angle for Oblique Level: Simple
Air flows at Mach number (M1) orMx = 4 is approaching a wedge. What is the

maximum wedge angle at which the oblique shock can occur? If the wedge angle is

20◦, calculate the weak, the strong Mach numbers, and the respective shock angles.

Solution
The maximum wedge angle for (Mx = 4) D has to be equal to zero. The wedge angle that

satisfies this requirement is by equation (15.28) (a side to the case proximity of δ = 0). The

maximum values are:

Mx My δmaxδmaxδmax θmaxθmaxθmax

4.000 0.97234 38.7738 66.0407

To obtain the results of the weak and the strong solutions either utilize the equation (15.28) or

the GDC which yields the following results

Mx Mys Myw θsθsθs θwθwθw δδδ

4.0000 0.48523 2.5686 1.4635 0.56660 0.34907

δ

θ

Fig. 15.11 – Oblique shock occurs around a cone. This photo is courtesy of Dr. Grigory Toker, a Re-
search Professor at Cuernavaco University of Mexico. According to his measurement, the cone
half angle is 15◦ and the Mach number is 2.2.
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Example 15.4: Is Weak or Strong Level: Simple
A cone shown in Figure 15.11 is exposed to supersonic flow and create an oblique

shock. Is the shock shown in the photo weak or strong shock? Explain. Using the

geometry provided in the photo, predict at whichMach number was the photo taken

based on the assumption that the cone is a wedge.

Solution
The measurements show that cone angle is 14.43◦ and the shock angle is 30.099◦. With given

two angles the solution can be obtained by utilizing equation (15.56) or the Potto-GDC.

M1 Mys Myw θsθsθs θwθwθw δδδ
P0y
P0x

3.2318 0.56543 2.4522 71.0143 30.0990 14.4300 0.88737

Because the flow is around the cone it must be a weak shock. Even if the cone was a wedge,

the shock would be weak because the maximum (transition to a strong shock) occurs at about

60◦. Note that the Mach number is larger than the one predicted by the wedge.
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Fig. 15.12 – Maximum values of the properties in an oblique shock.
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15.2.3 Application of Oblique Shock

normal shock

oblique shock

α1

α2

α3

Fig. 15.13 – Two variations of inlet suction for supersonic flow.

One of the practical applications of the oblique shock is the design of an inlet suction

for a supersonic flow. It is suggested that a series of weak shocks should replace one normal

shock to increase the efficiency (see Figure (15.13))
17
. Clearly, with a proper design, the flow

can be brought to a subsonic flow just belowM = 1. In such a case, there is less entropy

production (less pressure loss). To illustrate the design significance of the oblique shock, the

following example is provided.

Example 15.5: Air on Section Level: Simple

The section described in Figure 15.13

and 15.14 air is flowing into a suction

section at M = 2.0, P = 1.0[bar],
and T = 17◦C. Compare the different

conditions in the two different con-

figurations. Assume that only a weak

shock occurs.

7◦

oblique shoks

�

2 7◦

Normal shock
1

2
3 4

neglect
the detached

distance

α1

Fig. 15.14 – Schematic for Example (15.5).

Solution
The first configuration is of a normal shock for which the results

a
are

Mx My
Ty
Tx

ρy

ρx

ρy

ρx

ρy

ρx

Py
Px

P0y
P0x

2.0000 0.57735 1.6875 2.6667 4.5000 0.72087

17
In fact, there is general proof that regardless to the equation of state (any kind of gas), the entropy is to be

minimized through a series of oblique shocks rather than through a single normal shock. For details see Henderson

and Menikoff “Triple Shock Entropy Theorem,” Journal of Fluid Mechanics 366, (1998) pp. 179–210.
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End of Ex. 15.5
In the oblique shock, the first angle shown is

Mx Mys Myw θsθsθs θwθwθw δδδ
P0y
P0x

2.0000 0.58974 1.7498 85.7021 36.2098 7.0000 0.99445

and the additional information by the minimal info in the Potto-GDC is

Mx Myw θwθwθw δδδ
Py
Px

Ty
Tx

P0y
P0x

2.0000 1.7498 36.2098 7.0000 1.2485 1.1931 0.99445

In the new region, the new angle is 7◦+ 7◦ with new upstreamMach number ofMx = 1.7498
resulting in

Mx Mys Myw θsθsθs θwθwθw δδδ
P0y
P0x

1.7498 0.71761 1.2346 76.9831 51.5549 14.0000 0.96524

And the additional information is

Mx Myw θwθwθw δδδ
Py
Px

Ty
Tx

P0y
P0x

1.7498 1.5088 41.8770 7.0000 1.2626 1.1853 0.99549

An oblique shock is not possible and normal shock occurs. In such a case, the results are:

Mx My
Ty
Tx

ρy

ρx

ρy

ρx

ρy

ρx

Py
Px

P0y
P0x

1.2346 0.82141 1.1497 1.4018 1.6116 0.98903

With two weak shock waves and a normal shock the total pressure loss is

P04
P01

=
P04
P03

P03
P02

P02
P01

= 0.98903× 0.96524× 0.99445 = 0.9496

The static pressure ratio for the second case is

P4
P1

=
P4
P3

P3
P2

P2
P1

= 1.6116× 1.2626× 1.285 = 2.6147

The loss in this case is much less than in a direct normal shock. In fact, the loss in the normal

shock is above than 31% of the total pressure.

a
The results in this example are obtained using the graphical interface of POTTO–GDC thus, no input

explanation is given. In the past the input file was given but the graphical interface it is no longer needed.
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Example 15.6: Supersonic Wedge Level: Simple

A supersonic flow is approaching a very

long two–dimensional bland wedge body

and creates a detached shock at Mach 3.5

(see Figure 15.15). The half wedge angle is

10◦. What is the requited “throat” area ra-

tio to achieve acceleration from the sub-

sonic region to the supersonic region as-

suming the flow is one–dimensional?

Myw

Mys

A∗
10◦

Fig. 15.15 – Schematic for Example (15.6).

Solution
The detached shock is a normal shock and the results are

Mx My
Ty
Tx

ρy

ρx

ρy

ρx

ρy

ρx

Py
Px

P0y
P0x

3.5000 0.45115 3.3151 4.2609 14.1250 0.21295

Now utilizing the isentropic relationship for k = 1.4 yields

M T
T0

ρ
ρ0

ρ
ρ0

ρ
ρ0

A
A⋆

P
P0

A×P
A∗×P0

0.45115 0.96089 0.90506 1.4458 0.86966 1.2574

Thus the area ratio has to be 1.4458. Note that the pressure after the weak shock is irrelevant

to the area ratio between the normal shock and the “throat” according to the standard nozzle

analysis.
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Example 15.7: Two Angle Level: Advance
The effects of a double wedge are ex-

plained in the government web site as

shown in Figure 15.16. Adopt this de-

scription and assume that the turn of 6◦

is made of two equal angles of 3◦ (see

Figure 15.16). Assume that there are no

boundary layers and all the shocks are

weak and straight. Perform the calcula-

tion forM1 = 3.0. Find the required an-
gle of shock BE. Then, explain why this

description has internal conflict.

0 1 2

4

weak
oblique
shock

Slip Plane

A

B

C

D

3

E

M1

P3 = P4

weak
oblique
shock

or expension
wave

Fig. 15.16 – Schematic of two angles turn
with two weak shocks.

Solution
The shock BD is an oblique shock with a response to a total turn of 6◦. The conditions for this
shock are:

Mx Mys Myw θsθsθs θwθwθw δδδ
P0y
P0x

3.0000 0.48013 2.7008 87.8807 23.9356 6.0000 0.99105

The transition for shock AB is

Mx Mys Myw θsθsθs θwθwθw δδδ
P0y
P0x

3.0000 0.47641 2.8482 88.9476 21.5990 3.0000 0.99879

For the shock BC the results are

Mx Mys Myw θsθsθs θwθwθw δδδ
P0y
P0x

2.8482 0.48610 2.7049 88.8912 22.7080 3.0000 0.99894

And the isentropic relationships forM = 2.7049, 2.7008 are

M T
T0

ρ
ρ0

ρ
ρ0

ρ
ρ0

A
A⋆

P
P0

A×P
A∗×P0

2.7049 0.40596 0.10500 3.1978 0.04263 0.13632

2.7008 0.40669 0.10548 3.1854 0.04290 0.13665

The combined shocks AB and BC provide the base of calculating the total pressure ratio at

zone 3. The total pressure ratio at zone 2 is

P02
P00

=
P02
P01

P01
P00

= 0.99894× 0.99879 = 0.997731283
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On the other hand, the pressure at 4 has to be

P4
P01

=
P4
P04

P04
P01

= 0.04290× 0.99105 = 0.042516045

The static pressure at zone 4 and zone 3 have tomatch according to the government suggestion

hence, the angle for BE shock which cause this pressure ratio needs to be found. To do that,

check whether the pressure at 2 is above or below or above the pressure (ratio) in zone 4.

P2
P02

=
P02
P00

P2
P02

= 0.997731283× 0.04263 = 0.042436789

Since
P2
P02

< P4
P01

a weak shock must occur to increase the static pressure (see Figure 14.13).

The increase has to be

P3/P2 = 0.042516045/0.042436789 = 1.001867743

To achieve this kind of pressure ratio the perpendicular component has to be

Mx My
Ty
Tx

ρy

ρx

ρy

ρx

ρy

ρx

Py
Px

P0y
P0x

1.0008 0.99920 1.0005 1.0013 1.0019 1.00000

The shock angle, θ can be calculated from

θ = sin−1 1.0008/2.7049 = 21.715320879◦

The deflection angle for such shock angle with Mach number is

Mx Mys Myw θsθsθs θwθwθw δδδ
P0y
P0x

2.7049 0.49525 2.7037 0.0 21.72 0.026233 1.00000

From the last calculation it is clear that the government proposed schematic of the double

wedge is in conflict with the boundary condition. The flow in zone 3 will flow into the wall

in about 2.7◦. In reality the flow of double wedge will produce a curved shock surface with

several zones. Only when the flow is far away from the double wedge, the flow behaves as only

one theoretical angle of 6◦ exist.

Example 15.8: Deflection Angle Level: Intermediate
Calculate the flow deflection angle and other parameters downstream when the

Mach angle is 34◦ and P1 = 3[bar], T1 = 27◦C, and U1 = 1000m/sec. Assume

k = 1.4 and R = 287J/KgK.
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End of Ex. 15.8
Solution
TheMach angle of 34◦ is belowmaximum deflection which means that it is a weak shock. Yet,

the Upstream Mach number,M1, has to be determined

M1 =
U1√
kR T

=
1000

1.4× 287× 300 = 2.88 (15.8.a)

Using this Mach number and the Mach deflection in either using the Table or the figure or

POTTO-GDC results in

Mx Mys Myw θsθsθs θwθwθw δδδ
P0y
P0x

2.8800 0.48269 2.1280 0.0 34.00 15.78 0.89127

The relationship for the temperature and pressure can be obtained by using equation (15.15) and

(15.13) or simply converting theM1 to perpendicular component.

M1n =M1 sin θ = 2.88 sin(34.0) = 1.61 (15.8.b)

From the Table (??) or GDC the following can be obtained.

Mx My
Ty
Tx

ρy

ρx

ρy

ρx

ρy

ρx

Py
Px

P0y
P0x

1.6100 0.66545 1.3949 2.0485 2.8575 0.89145

The temperature ratio combined upstream temperature yield

T2 = 1.3949× 300 ∼ 418.5K (15.8.c)

and the same for the pressure

P2 = 2.8575× 3 = 8.57[bar] (15.8.d)

And the velocity

Un2 =Myw
√
kR T = 2.128

√
1.4× 287× 418.5 = 872.6[m/sec] (15.8.e)

Example 15.9: Ratio of Stagnation Pressrue Level: Intermediate
For Mach number 2.5 and wedge with a total angle of 22◦, calculate the ratio of the

stagnation pressure.

Solution
Utilizing GDC for Mach number 2.5 and the angle of 11◦ results in
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Mx Mys Myw θsθsθs θwθwθw δδδ
P0y
P0x

2.5000 0.53431 2.0443 85.0995 32.8124 11.0000 0.96873

Example 15.10: Maximum Pressure Ratio Level: Simple
What is the maximum pressure ratio that can be obtained on wedge when the gas is

flowing in 2.5 Mach without any close boundaries? Would it make any difference if

the wedge was flowing into the air? If so, what is the difference?

Solution
It has to be recognized that without any other boundary condition, the shock is weak shock.

For a weak shock the maximum pressure ratio is obtained at the deflection point because it is

closest to a normal shock. To obtain the maximum point for 2.5 Mach number, either use the

Maximum Deflection Mach number’s equation or the Potto–GDC

Mx Mymax θmaxθmaxθmax δδδ
Py
Px

Ty
Tx

P0y
P0x

2.5000 0.94021 64.7822 29.7974 4.3573 2.6854 0.60027

In these calculations, Maximum Deflection Mach’s equation was used to calculate the nor-

mal component of the upstream, then the Mach angle was calculated using the geometrical

relationship of θ = sin−1M1n/M1. With these two quantities, utilizing equation (15.12) the

deflection angle, δ, is obtained.

Example 15.11: Reflective Oblieque Level: Advance
Consider the schematic shown in the fol-

lowing figure. Assume that the upstream

Mach number is 4 and the deflection an-

gle is δ = 15◦. Compute the pressure

ratio and the temperature ratio after the

second shock (sometimes referred to as

the reflective shock while the first shock

is called the incidental shock).

1

2

3

θ

δ
M1 = 4

stream line

Fig. 15.17 – Schematic for Example (15.11).

Solution
This kind of problem is essentially two wedges placed in a certain geometry. It is clear that

the flowmust be parallel to the wall. For the first shock, the upstreamMach number is known

together with deflection angle. Utilizing the table or the Potto–GDC, the following can be



15.2. OBLIQUE SHOCK 677

End of Ex. 15.11
obtained:

Mx Mys Myw θsθsθs θwθwθw δδδ
P0y
P0x

4.0000 0.46152 2.9290 85.5851 27.0629 15.0000 0.80382

And the additional information by using minimal information ratio button in Potto–GDC is

Mx Myw θwθwθw δδδ
Py
Px

Ty
Tx

P0y
P0x

4.0000 2.9290 27.0629 15.0000 1.7985 1.7344 0.80382

With a Mach number ofM = 2.929, the second deflection angle is also 15◦. With these values

the following can be obtained:

Mx Mys Myw θsθsθs θwθwθw δδδ
P0y
P0x

2.9290 0.51367 2.2028 84.2808 32.7822 15.0000 0.90041

and the additional information is

Mx Myw θwθwθw δδδ
Py
Px

Ty
Tx

P0y
P0x

2.9290 2.2028 32.7822 15.0000 1.6695 1.5764 0.90041

With the combined tables the ratios can be easily calculated. Note that hand calculations re-

quires endless time looking up graphical representation of the solution. Utilizing the POTTO–

GDC which provides a solution in just a few clicks.

P1
P3

=
P1
P2

P2
P3

= 1.7985× 1.6695 = 3.0026 (15.11.a)

T1
T3

=
T1
T2

T2
T3

= 1.7344× 1.5764 = 2.632 (15.11.b)

Example 15.12: Another Angle Mach Level: Simple
A similar example as before but here Mach angle is 29◦ and Mach number is 2.85.

Again calculate the downstream ratios after the second shock and the deflection an-

gle.

Solution
Here the Mach number and the Mach angle are given. With these pieces of information by
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End of Ex. 15.12

utilizing the Potto-GDC the following is obtained:

Mx Mys Myw θsθsθs θwθwθw δδδ
P0y
P0x

2.8500 0.48469 2.3575 0.0 29.00 10.51 0.96263

and the additional information by utilizing the minimal info button in GDC provides

Mx Myw θwθwθw δδδ
Py
Px

Ty
Tx

P0y
P0x

2.8500 2.3575 29.0000 10.5131 1.4089 1.3582 0.96263

With the deflection angle of δ = 10.51 the so called reflective shock gives the following infor-
mation

Mx Mys Myw θsθsθs θwθwθw δδδ
P0y
P0x

2.3575 0.54894 1.9419 84.9398 34.0590 10.5100 0.97569

and the additional information of

Mx Myw θwθwθw δδδ
Py
Px

Ty
Tx

P0y
P0x

2.3575 1.9419 34.0590 10.5100 1.3984 1.3268 0.97569

P1
P3

=
P1
P2

P2
P3

= 1.4089× 1.3984 ∼ 1.97 (15.12.a)

T1
T3

=
T1
T2

T2
T3

= 1.3582× 1.3268 ∼ 1.8021 (15.12.b)

Example 15.13: Direct Normal Shock Level: Intermediate
Compare a direct normal shock to oblique shock. Where will the total pressure loss

(entropy) be larger? Assume that upstream Mach number is 5 and the first oblique

shock has Mach angle of 30◦. What is the deflection angle in this case?

Solution
For the normal shock the results are

Mx My
Ty
Tx

ρy

ρx

ρy

ρx

ρy

ρx

Py
Px

P0y
P0x

5.0000 0.41523 5.8000 5.0000 29.0000 0.06172
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End of Ex. 15.13
While the results for the oblique shock are

Mx Mys Myw θsθsθs θwθwθw δδδ
P0y
P0x

5.0000 0.41523 3.0058 0.0 30.00 20.17 0.49901

And the additional information is

Mx Myw θwθwθw δδδ
Py
Px

Ty
Tx

P0y
P0x

5.0000 3.0058 30.0000 20.1736 2.6375 2.5141 0.49901

The normal shock that follows this oblique is

Mx My
Ty
Tx

ρy

ρx

ρy

ρx

ρy

ρx

Py
Px

P0y
P0x

3.0058 0.47485 2.6858 3.8625 10.3740 0.32671

The pressure ratios of the oblique shock with normal shock is the total shock in the second

case.

P1
P3

=
P1
P2

P2
P3

= 2.6375× 10.374 ∼ 27.36 (15.13.a)

T1
T3

=
T1
T2

T2
T3

= 2.5141× 2.6858 ∼ 6.75 (15.13.b)

Note the static pressure raised is less than the combination shocks as compared to the normal

shock but the total pressure has the opposite result.

Example 15.14: Tunnel Deflection Level: Intermediate
A flow in a tunnel ends up with two

deflection angles from both sides (see

the following Figure 15.14). For up-

stream Mach number of 5 and deflec-

tion angle of 12◦ and 15◦, calculate the
pressure at zones 3 and 4 based on the

assumption that the slip plane is half

of the difference between the two de-

flection angles. Based on these calcu-

lations, explain whether the slip angle

is larger or smaller than the difference

of the deflection angle.

stream line

0

2

1

slip plane

stream line

3

4

A

B

C

D

F

δ1

θ1

θ2

δ2

φ

Fig. 15.18 – Illustration for Example (15.14).
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continue Ex. 15.14

Solution
The first two zones immediately after are computed using the same techniques that were de-

veloped and discussed earlier.

For the first direction of 15◦ and Mach number =5.

Mx Mys Myw θsθsθs θwθwθw ‹ P0y
P0x

5.0000 0.43914 3.5040 86.0739 24.3217 15.0000 0.69317

And the additional conditions are

Mx Myw θwθwθw δδδ
Py
Px

Ty
Tx

P0y
P0x

5.0000 3.5040 24.3217 15.0000 1.9791 1.9238 0.69317

For the second direction of 12◦ and Mach number =5.

Mx Mys Myw θsθsθs θwθwθw ‹ P0y
P0x

5.0000 0.43016 3.8006 86.9122 21.2845 12.0000 0.80600

And the additional conditions are

Mx Myw θwθwθw δδδ
Py
Px

Ty
Tx

P0y
P0x

5.0000 3.8006 21.2845 12.0000 1.6963 1.6625 0.80600

The conditions in zone 4 and zone 3 have two things that are equal. They are the pressure and

the velocity direction. It has to be noticed that the velocity magnitudes in zone 3 and 4 do not

have to be equal. This non–continuous velocity profile can occur in our model because it is

assumed that fluid is non–viscous.

If the two sides were equal because of symmetry the slip angle is also zero. It is to say, for the

analysis, that only one deflection angle exist. For the two different deflection angles, the slip

angle has two extreme cases. The first case is wherematch lower deflection angle and second is

to match the higher deflection angle. In this case, it is assumed that the slip angle moves half of

the angle to satisfy both of the deflection angles (first approximation). Under this assumption

the conditions in zone 3 are solved by looking at the deflection angle of 12◦ + 1.5◦ = 13.5◦

which results in

Mx Mys Myw θsθsθs θwθwθw δδδ
P0y
P0x

3.5040 0.47413 2.6986 85.6819 27.6668 13.5000 0.88496
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End of Ex. 15.14
with the additional information

Mx Myw θwθwθw δδδ
Py
Px

Ty
Tx

P0y
P0x

3.5040 2.6986 27.6668 13.5000 1.6247 1.5656 0.88496

And in zone 4 the conditions are due to deflection angle of 13.5◦ and Mach number 3.8006.

Mx Mys Myw θsθsθs θwθwθw δδδ
P0y
P0x

3.8006 0.46259 2.9035 85.9316 26.3226 13.5000 0.86179

with the additional information

Mx Myw θwθwθw δδδ
Py
Px

Ty
Tx

P0y
P0x

3.8006 2.9035 26.3226 13.5000 1.6577 1.6038 0.86179

From these tables the pressure ratio at zone 3 and 4 can be calculated

P3
P4

=
P3
P2

P2
P0

P0
P1

P1
P4

= 1.6247× 1.9791 1

1.6963
1

1.6038
∼ 1.18192 (15.14.a)

To reduce the pressure ratio the deflection angle has to be reduced (remember that at weak

weak shock almost no pressure change). Thus, the pressure at zone 3 has to be reduced. To

reduce the pressure the angle of slip plane has to increase from 1.5◦ to a larger number.

Example 15.15: Entropy Order Level: Advance
The previous example gave rise to another question on the order of the deflection

angles. Consider the same values as previous analysis, will the oblique shock with

first angle of 15◦ and then 12◦ or opposite order make a difference (M = 5)? If

not, what order will make a bigger entropy production or pressure loss? (No general

proof is needed).

Solution
Waiting for the solution
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15.2.3.1 Retouch of Shock Drag or Wave Drag

Since it was established that the common ex-

planation is erroneous and the steam lines are

bending/changing direction when they touch-

ing the oblique shock (compare with Figure

(14.15)). The correct explanation is that increase

of themomentum into control volume is either

requires increase of the force and/or results in

acceleration of gas. So, what is the effects of the

oblique shock on the Shock Drag? Figure 15.19

exhibits schematic of the oblique shock which

show clearly that stream lines are bended.

stream lines

moving 

object

stationary control 

volume

ρ1
ρ2

U1 = 0 U1 6= 0

P1

A1 A2
P2

Fig. 15.19 – The diagram that explains the
shock drag effects of a moving shock
considering the oblique shock effects.

There two main points that should be discussed in this context are the additional effects and

infinite/final structure. The additional effects are the mass start to have a vertical component.

The vertical component one hand increase the energy needed and thus increase need to move

the body (larger shock drag) (note the there is a zero momentum net change for symmetrical

bodies.). However, the oblique shock reduces the normal component that undergoes the

shock and hence the total shock drag is reduced. The oblique shock creates a finite amount of

drag (momentum and energy lost) while a normal shock as indirectly implied in the common

explanation creates de facto situation where the shock grows to be infinite which of course

impossible. It should be noted that, oblique shock becomes less “oblique” and more parallel

when other effects start to kick in.

15.3 Prandtl-Meyer Function
15.3.1 Introduction

As discussed in Section 15.2 when the deflection turns to the opposite direction of

the flow, the flow accelerates to match the boundary conditions. The transition,

as opposed to the oblique shock, is smooth,

without any jump in properties. Here be-

cause of the tradition, the deflection angle

is denoted as a positive when it is away

from the flow (see Figure 15.20). In a some-

what a similar concept to oblique shock

there exists a “detachment” point above which

this model breaks and another model has

to be implemented. Yet, when this model

breaks down, the flow becomes compli-

cated, flow separation occurs, and no known

simple model can describe the situation.

positive
angle

m
ax

im
um

 a
ng

le

Flow
direction

Fig. 15.20 – The definition of the angle for the
Prandtl–Meyer function.

As opposed to the oblique shock, there is no limitation for the Prandtl–Meyer function
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to approach zero. Yet, for very small angles, because of imperfections of the wall and the

boundary layer, it has to be assumed to be insignificant.
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Fig. 15.21 – The relationship between the shockwave angle,θ and deflection angle, δ, andMach num-
ber for k=1.4. This figure was generate with GDC under command ./obliqueFigure 1.4. Variety
of these figures can be found in the biggest gas tables in the world provided separately in Potto
Project.
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Supersonic expansion and isentropic compression

(Prandtl-Meyer function), are an extension of the Mach

line concept. TheMach line shows that a disturbance in

a field of supersonic flow moves in an angle of µ, which

is defined as (as shown in Figure 15.22)

µ = sin−1

(
1

M

)
(15.60)

or

µ = tan−1 1√
M1 − 1

(15.61)

M

√
M2 − 1

µ

1

c
Uµ

Fig. 15.22 – The angles of the Mach
line triangle.

A Mach line results because of a small disturbance in the wall contour. This Mach line

is assumed to be a result of the positive angle. The reason that a “negative” angle is not

applicable is that the coalescing of the small Mach wave which results in a shock wave.

However, no shock is created from many small positive angles.

The Mach line is the chief line in the analysis because of the wall contour shape in-

formation propagates along this line. Once the contour is changed, the flow direction will

change to fit the wall. This direction change results in a change of the flow properties, and it

is assumed here to be isotropic for a positive angle. This assumption, as it turns out, is close

to reality. In this chapter, a discussion on the relationship between the flow properties and

the flow direction is presented.

15.3.2 Geometrical Explanation
The change in the flow direction is assume

to be result of the change in the tangential

component. Hence, the total Mach num-

ber increases. Therefore, the Mach angle

increase and result in a change in the di-

rection of the flow. The velocity compo-

nent in the direction of the Mach line is as-

sumed to be constant to satisfy the assump-

tion that the change is a result of the contour

only. Later, this assumption will be examined.

M
a
c
h
 l
in

e

x

(90−µ)

µ
µdν dyU+dU

U
y+dU

yU

Uy
Ux

(U+dU) cos(dµ)−U

dx=dUy cos(90−µ)

Fig. 15.23 –The schematic of the turningflow.

The typical simplifications for geometrical functions are used:

dν ∼ sin(dν);

cos(dν) ∼ 1

(15.62)

These simplifications are the core reasons why the change occurs only in the perpendicular

direction (dν << 1). The change of the velocity in the flow direction, dx is

dx = (U+ dU) cosν−U = dU (15.63)
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In the same manner, the velocity perpendicular to the flow, dy, is

dy = (U+ dU) sin(dν) = Udν (15.64)

The tanµ is the ratio of dy/dx (see Figure (15.23))

tanµ =
dx

dy
=

dU

Udν
(15.65)

The ratio dU/U was shown to be

dU

U
=

dM2

2M2
(
1+

k− 1

2
M2
) (15.66)

Combining equations (15.65) and (15.66) transforms it into

dν = −

√
M2 − 1dM2

2M2
(
1+

k− 1

2
M2
) (15.67)

After integration of equation (15.67) becomes

ν(M) = −

√
k+ 1

k− 1
tan−1

√
k− 1

k+ 1

(
M2 − 1

)

+ tan−1
√(
M2 − 1

)
+ constant

Turnning Angle

(15.68)

The constant can be chosen in a such a way that ν = 0 atM = 1.

15.3.3 Alternative Approach to Governing Equations
In the previous section, a simplified version

was derived based on geometrical arguments.

In this section, a more rigorous explanation is

provided. It must be recognized that here the

cylindrical coordinates are advantageous be-

cause the flow turns around a single point.

For this coordinate system, themass conserva-

tion can be written as

∂ (ρ rUr)

∂r
+
∂ (ρUθ)

∂θ
= 0 (15.69)

The momentum equations are expressed as

back

Mach

line
Front

Mach

lineθ

r Ur

Uθ

Fig. 15.24 – The schematic of the coordinate
based on the mathematical description.

Ur
∂Ur

∂r
+
Uθ
r

∂Ur

∂θ
−
Uθ
2

r
= −

1

ρ

∂P

∂r
= −

c2

ρ

∂ρ

∂r
(15.70)
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and

Ur
∂Uθ
∂r

+
Uθ
r

∂Uθ
∂θ

−
UθUr

r
= −

1

r ρ

∂P

∂θ
= −

c2

r ρ

∂ρ

∂θ
(15.71)

If the assumption is that the flow isn’t a function of the radius, r, then all the derivatives with

respect to the radius will vanish. One has to remember that when r enters to the function,

like the first term in the mass equation, the derivative isn’t zero. Hence, the mass equation is

reduced to

ρUr +
∂ (ρUθ)

∂θ
= 0 (15.72)

Equation (15.72) can be rearranged as transformed into

−
1

Uθ

(
Ur +

∂Uθ
∂θ

)
=
1

ρ

∂ρ

∂θ
(15.73)

The momentum equations now obtain the form of

Uθ
r

∂Ur

∂θ
−
Uθ
2

r
= 0

Uθ

(
∂Ur

∂θ
−Uθ

)
= 0

(15.74)

Uθ
r

∂Uθ
∂θ

−
UθUr

r
= −

c2

rρ

∂ρ

∂θ

Uθ

(
∂Uθ
∂θ

−Ur

)
= −

c2

ρ

∂ρ

∂θ

(15.75)

Substituting the term
1
ρ
∂ρ
∂θ from equation (15.73) into equation (15.75) results in

Uθ

(
∂Uθ
∂θ

−Ur

)
=
c2

Uθ

(
Ur +

∂Uθ
∂θ

)
(15.76)

or

Uθ
2

(
Ur +

∂Uθ
∂θ

)
= c2

(
Ur +

∂Uθ
∂θ

)
(15.77)

And an additional rearrangement results in

(
c2 −Uθ

2
)(
Ur +

∂Uθ
∂θ

)
= 0 (15.78)

From equation (15.78) it follows that

Uθ = c (15.79)



15.3. PRANDTL-MEYER FUNCTION 687

It is remarkable that the tangential velocity at every turn is at the speed of sound! It must be

pointed out that the total velocity isn’t at the speed of sound, but only the tangential com-

ponent. In fact, based on the definition of the Mach angle, the component shown in Figure

(15.23) under Uy is equal to the speed of sound,M = 1.

After some additional rearrangement, equation (15.74) becomes

Uθ
r

(
∂Ur

∂θ
−Uθ

)
= 0 (15.80)

If r isn’t approaching infinity,∞ and since Uθ ̸= 0 leads to
∂Ur

∂θ
= Uθ (15.81)

In the literature, these results are associated with the characteristic line. This analysis can be

also applied to the same equation when they are normalized by Mach number. However, the

non–dimensionalization can be applied at this stage as well.

The energy equation for any point on a stream line is

h(θ) +
Uθ
2 +Ur

2

2
= h0 (15.82)

Enthalpy in perfect gas with a constant specific heat, k, is

h(θ) = Cp T = Cp
R

R
T =

1

(k− 1)

c(θ)2︷ ︸︸ ︷
Cp

Cv︸︷︷︸
k

R T =
c2

k− 1
(15.83)

and substituting this equality, equation (15.83), into equation (15.82) results in

c2

k− 1
+
Uθ
2 +Ur

2

2
= h0 (15.84)

Utilizing equation (15.79) for the speed of sound and substituting equation (15.81) which is the

radial velocity transforms equation (15.84) into

(
∂Ur

∂θ

)2

k− 1
+

(
∂Ur

∂θ

)2
+Ur

2

2
= h0 (15.85)

After some rearrangement, equation (15.85) becomes

k+ 1

k− 1

(
∂Ur

∂θ

)2
+Ur

2 = 2h0 (15.86)

Note that Ur must be positive. The solution of the differential equation (15.86) incorporating

the constant becomes

Ur =
√
2h0 sin

(
θ

√
k− 1

k+ 1

)
(15.87)
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which satisfies equation (15.86) because sin2 θ+ cos2 θ = 1. The arbitrary constant in equa-

tion (15.87) is chosen such that Ur(θ = 0) = 0. The tangential velocity obtains the form

Uθ = c =
∂Ur

∂θ
=

√
k− 1

k+ 1

√
2 h0 cos

(
θ

√
k− 1

k+ 1

)
(15.88)

The Mach number in the turning area is

M2 =
Uθ
2 +Ur

2

c2
=
Uθ
2 +Ur

2

Uθ
2

= 1+

(
Ur

Uθ

)2
(15.89)

Now utilizing the expression that was obtained for Ur and Uθ equations (15.88) and (15.87)

results for the Mach number is

M2 = 1+
k+ 1

k− 1
tan2

(
θ

√
k− 1

k+ 1

)
(15.90)

or the reverse function for θ is

θ =

√
k+ 1

k− 1
tan−1

(√
k− 1

k+ 1

(
M2 − 1

))
Reversed Angle

(15.91)

What happens when the upstreamMach number is not 1? That is when the initial con-

dition for the turning angle doesn’t start withM = 1 but is already at a different angle. The

upstream Mach number is denoted in this segment asMstarting. For this upstream Mach

number (see Figure (15.22))

tanν =

√
Mstarting

2 − 1 (15.92)

The deflection angle ν, has to match to the definition of the angle that is chosen here (θ = 0

whenM = 1), so

ν(M) = θ(M) − θ(Mstarting) (15.93)

ν(M) =

√
k+ 1

k− 1
tan−1

(√
k− 1

k+ 1

√
M2 − 1

)
− tan−1

√
M2 − 1

Deflection Angle

(15.94)

These relationships are plotted in Figure 15.26.

15.3.4 Comparison And Limitations Between the Two Approaches
The two models produce exactly the same results, but the assumptions for the construction

of these models are different. In the geometrical model, the assumption is that the velocity



15.4. THE MAXIMUM TURNING ANGLE 689

change in the radial direction is zero. In the rigorous model, it was assumed that radial veloc-

ity is only a function of θ. The statement for the construction of the geometrical model can

be improved by assuming that the frame of reference is moving radially in a constant velocity.

Regardless of the assumptions that were used in the construction of these models, the

fact remains that there is a radial velocity at Ur(r = 0) = constant. At this point (r = 0)

thesemodels fail to satisfy the boundary conditions and something else happens there. On top

of the complication of the turning point, the question of boundary layer arises. For example,

how did the gas accelerate to above the speed of sound when there is no nozzle (where is

the nozzle?)? These questions are of interest in engineering but are beyond the scope of this

book (at least at this stage). Normally, the author recommends that this function be used

everywhere beyond 2-4 the thickness of the boundary layer based on the upstream length.

In fact, analysis of design commonly used in the industry and even questions posted

to students show that many assume that the turning point can be sharp. At a small Mach

number, (1+ ϵ) the radial velocity is small ϵ. However, an increase in the Mach number can

result in a very significant radial velocity. The radial velocity is “fed” through the reduction

of the density. Aside from its close proximity to turning point, mass balance is maintained by

the reduction of the density. Thus, some researchers recommend that, in many instances, the

sharp point should be replaced by a smoother transition.

15.4 The Maximum Turning Angle
The maximum turning angle is obtained when

the starting Mach number is 1 and the end

Mach number approaches infinity. In this case,

Prandtl–Meyer function becomes

ν∞ =
π

2

[√
k+ 1

k− 1
− 1

]
Maximum Turning Angle

(15.95)

The maximum of the de-

flection point and the maximum

Maximum
turning

slip line

Fig. 15.25 – Expansion of Prandtl-Meyer
function when it exceeds the maximum
angle.

turning point are only a function of the specific heat ratios. However, the maximum turning

angle is much larger than the maximum deflection point because the process is isentropic.

What happens when the deflection angel exceeds the maximum angle? The flow in this

case behaves as if there is almost a maximum angle and in that region beyond the flow will

became vortex street see Figure 15.25
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15.5 The Working Equations for the Prandtl–Meyer Function
The change in the deflection angle is calculated by

ν2 − ν1 = ν(M2) − ν(M1) (15.96)
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Fig. 15.26 – The angle as a function of the Mach number and spesfic heat.

15.6 d’Alembert’s Paradox

In ideal inviscid incompressible flows, the move-

ment of body does not encounter any resistance.

This result is known as d’Alembert’s Paradox, and

this paradox is examined here.

Supposed that a two–dimensional diamond–

shape body is stationed in a supersonic flow as

shown in Figure 15.27. Again, it is assumed that the

fluid is inviscid. The net force in flow direction, the

drag, is

D = 2
(w
2
(P2 − P4)

)
= w (P2 − P4) (15.97)

1 2

3

4

1 2

3

4

θ1

θ1

θ2
θ2

W

Fig. 15.27 – A simplified diamond
shape to illustrate the supersonic
d’Alembert’s Paradox.

It can be observed that only the area that “seems” to be by the flow was used in ex-

pressing equation (15.97). The relation between P2 and P4 is such that the flow depends on the

upstream Mach number,M1, and the specific heat, k. Regardless in the equation of the state
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of the gas, the pressure at zone 2, P2, is larger than the pressure at zone 4, P4. Thus, there is

always drag when the flow is supersonic which depends on the upstreamMach number,M1,

specific heat, k, and the “visible” area of the object. This drag is known in the literature as

(shock) wave drag.

15.7 Flat Body with an Angle of Attack

Slip plane

7
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6

4

3

2
1

α

ℓ
e

Fig. 15.28 – The definition of attack angle
for the Prandtl–Meyer function.

Previously, the thickness of a body was shown to have

a drag. Now, a body with zero thickness but with an

angle of attack will be examined. As opposed to the

thickness of the body, in addition to the drag, the body

also obtains lift. Again, the slip condition is such that

the pressure in region 555 and 777 are the same, and addi-

tionally the direction of the velocity must be the same.

As before, the magnitude of the velocity will be differ-

ent between the two regions.

15.8 Examples For Prandtl–Meyer Function
Example 15.16: P–MMach and Angle Level: Basic

A wall is included with 20.0◦ an inclina-
tion. A flow of air with a temperature

of 20◦C and a speed of U = 450m/sec

flows (see Figure 15.29). Calculate the

pressure reduction ratio, and the Mach

number after the bending point. If the air

flows in an imaginary two–dimensional

tunnel with width of 0.1[m]what will the

width of this imaginary tunnel after the

bend? Calculate the “fan” angle. Assume

the specific heat ratio is k = 1.4.

U=450 [m/sec]

T=20◦C
µ1

x1=0.1 [m]

µ2

x1=?
M=?

∆ν=20◦

Fig. 15.29 – Schematic for Example 15.5.

Solution
First, the initial Mach number has to be calculated (the initial speed of sound).

c =
√
kR T =

√
1.4 ∗ 287 ∗ 293 = 343.1m/sec (15.16.a)

The Mach number is then

M =
450

343.1
= 1.31 (15.16.b)

this Mach number is associated with
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End of Ex. 15.16

M ννν P
P0

T
T0

ρ
ρ0

ρ
ρ0

ρ
ρ0

µµµ

1.3100 6.4449 0.35603 0.74448 0.47822 52.6434

The “new” angle should be

ν2 = 6.4449+ 20 = 26.4449◦ (15.16.c)

and results in

M ννν P
P0

T
T0

ρ
ρ0

ρ
ρ0

ρ
ρ0

µµµ

2.0024 26.4449 0.12734 0.55497 0.22944 63.4620

Note that P01 = P02
P2
P1

=
P01
P1

P2
P02

=
0.12734
0.35603

= 0.35766 (15.16.d)

The “new” width can be calculated from the mass conservation equation.

ρ1x1M1c1 = ρ2x2M2c2 =⇒ x2 = x1
ρ1
ρ2

M1
M2

√
T1
T2

(15.16.e)

x2 = 0.1× 0.47822
0.22944

× 1.31
2.0024

√
0.74448
0.55497

= 0.1579[m] (15.16.f)

Note that the compression “fan” stream lines are note and their function can be obtain either

by numerical method of going over small angle increments. The other alternative is using the

exact solution
a
. The expansion “fan” angle changes in the Mach angle between the two sides

of the bend

fan angle = 63.4+ 20.0− 52.6 = 30.8◦ (15.16.g)

a
It isn’t really different from this explanation but shown in a more mathematical form, due to Landau

and friends. It will be presented in the future version. It isn’t present now because of the low priority to

this issue.

Reverse the example, and this time the pressure on both sides are given and the angle

has to be obtained
18
.

18
This example is provided for academic understanding. There is very little to do with practicality in this kind of

problem.
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Example 15.17: Reverse P–M flow Level: Intermediate

Gas with k = 1.67 flows over

bend (see Figure 15.17). The gas

flow with Mach 1.4 and Pressure

1.2[Bar]. It is given that the pres-

sure after the turning is 1[Bar].

Compute the Mach number after

the bend, and the bend angle.

P=1.2[Bar]

µ1
µ2

M= 1.4?

P=1.0[Bar]

Fig. 15.30 – Schematic for Example 15.5.

Solution
TheMach number is determined by satisfying the condition that the pressure downstream and

the Mach are given. The relative pressure downstream can be calculated by the relationship

P2
P02

=
P2
P1

P1
P01

=
1

1.2
× 0.31424 = 0.2619 (15.17.a)

M ννν P
P0

T
T0

ρ
ρ0

ρ
ρ0

ρ
ρ0

µµµ

1.4000 7.7720 0.28418 0.60365 0.47077 54.4623

With this pressure ratio P̄ = 0.2619 require either locking in the table or using the enclosed

program.

M ννν P
P0

T
T0

ρ
ρ0

ρ
ρ0

ρ
ρ0

µµµ

1.4576 9.1719 0.26190 0.58419 0.44831 55.5479

For the rest of the calculation the initial condition is used. The Mach number after the bend is

M = 1.4576. It should be noted that specific heat isn’t k = 1.4 but k = 1.67. The bend angle is

∆ν = 9.1719− 7.7720 ∼ 1.4◦ (15.17.b)

∆µ = 55.5479− 54.4623 = 1.0◦ (15.17.c)
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15.9 Combination of the Oblique Shock and Isentropic Expansion
Example 15.18: Flat Thin Plate Level: Advance

Consider two–dimensional flat thin plate at an angle of attack of 4◦ and a Mach

number of 3.3. Assume that the specific heat ratio at stage is k = 1.3, calculate the
drag coefficient and lift coefficient.

Solution
ForM = 3.3, the following table can be obtained:

M ννν P
P0

T
T0

ρ
ρ0

ρ
ρ0

ρ
ρ0

µµµ

3.3000 62.3113 0.01506 0.37972 0.03965 73.1416

With the angle of attack the region 3 will be at ν ∼ 62.31+ 4 for which the following table can
be obtained (Potto-GDC)

M ννν P
P0

T
T0

ρ
ρ0

ρ
ρ0

ρ
ρ0

µµµ

3.4996 66.3100 0.01090 0.35248 0.03093 74.0528

On the other side, the oblique shock (assuming weak shock) results in

Mx Mys Myw θsθsθs θwθwθw δδδ
P0y
P0x

3.3000 0.43534 3.1115 88.9313 20.3467 4.0000 0.99676

and the additional information, by clicking on the minimal button, provides

Mx Myw θwθwθw δδδ
Py
Px

Ty
Tx

P0y
P0x

3.3000 3.1115 20.3467 4.0000 1.1157 1.1066 0.99676

The pressure ratio at point 3 is

P3
P1

=
P3
P03

P03
P01

P01
P1

= 0.0109× 1× 1

0.01506
∼ 0.7238 (15.18.a)

The pressure ratio at point 4 is

P3
P1

= 1.1157 (15.18.b)

dL =
2

kP1M1
2
(P4 − P3) cosα =

2

kM1
2

(
P4
P1

−
P3
P1

)
cosα (15.18.c)

dL =
2

1.33.32
(1.1157− 0.7238) cos 4◦ ∼ .054 (15.18.d)
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End of Ex. 15.18

dd =
2

kM1
2

(
P4
P1

−
P3
P1

)
sinα =

2

1.3 3.32
(1.1157− 0.7238) sin 4◦ ∼ .0039 (15.18.e)

This shows that on the expense of a small drag, a large lift can be obtained. Discussion on the

optimum design is left for the next versions.

Example 15.19: combination of P–M Oblique Level: Advance
To understand the flow after a nozzle consider a flow in a nozzle shown in Fig-

ure 15.31. The flow is choked and additionally the flow pressure reaches the nozzle

exit above the surrounding pressure.

Assume that there is an isentropic ex-

pansion (Prandtl–Meyer expansion)

after the nozzle with slip lines in

which there is a theoretical angle of

expansion to match the surround-

ings pressure with the exit. The ra-

tio of exit area to throat area ratio is

1.4. The stagnation pressure is 1000

[kPa]. The surroundings pressure is

100[kPa]. Assume that the specific

heat, k = 1.3. Estimate the Mach

number after the expansion.

Slip lines

expenssion
lines

A∗ Aexit β

β

Mjet1

Psurroundings

Fig. 15.31 – Schematic of the nozzle and
Prandtl–Meyer expansion.

Solution
The Mach number a the nozzle exit can be calculated using Potto-GDC which provides

M T
T0

ρ
ρ0

ρ
ρ0

ρ
ρ0

A
A⋆

P
P0

A×P
A∗×P0

F
F∗

1.7285 0.69052 0.29102 1.4000 0.20096 0.28134 0.59745

Thus, the exit Mach number is 1.7285 and the pressure at the exit is

Pexit = P0
Pexit
P0

= 1000× 0.20096 = 200.96[kPa] (15.19.a)

This pressure is higher than the surroundings pressure and an expansion must occur. This

pressure ratio is associated with a expansion angle that Potto-GDC provide as

M ννν P
P0

T
T0

ρ
ρ0

ρ
ρ0

ρ
ρ0

µµµ

1.7285 20.0641 0.20097 0.69053 0.29104 59.9491
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End of Ex. 15.19

The final pressure ratio ultimately has to be

P
surroundings

P0
=
100

1000
= .1 (15.19.b)

Hence the information for this pressure ratio can be provided by Potto-GDC as

M ννν P
P0

T
T0

ρ
ρ0

ρ
ρ0

ρ
ρ0

µµµ

2.1572 30.6147 0.10000 0.51795 0.19307 65.1292

The change of the angle is

∆angle = 30.6147− 20.0641 = 10.5506 (15.19.c)

Thus the angle, β is

β = 90− 10.5506 ∼ 79.45 (15.19.d)

The pressure at this point is as the surroundings. However, the stagnation pressure is the

same as originally was enter the nozzle! This stagnation pressure has to go through serious of

oblique shocks and Prandtl–Meyer expansion to match the surroundings stagnation pressure.
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16
Multi–Phase Flow

16.1 Introduction
Traditionally, the topic of multi–phase flow is ignored in an introductory class on fluid me-

chanics. For many engineers, this class will be the only opportunity to be exposed to this

topic. The knowledge in this topic without any doubts, is required for many engineering

problems. Calculations of many kinds of flow deals with more than one phase or material

flow
1
.The author believes that the trends and effects of multiphase flow could and should be

introduced and considered by engineers. In the past, books on multiphase flow were written

more as a literature review or heavy on the mathematics. It is recognized that multiphase

flow is still evolving. In fact, there is not a consensus to the exact map of many flow regimes.

This book attempts to describe these issues as a fundamentals of physical aspects and less as a

literature review. This chapter provides information that is more or less in consensus
2
. Addi-

tionally, the nature of multiphase flow requires solvingmany equations. Thus, in many books

the representations is by writing the whole set governing equations. Here, it is believed that

the interactions/calculations requires a full year class and hence, only the trends and simple

calculations are described.

1
An example, there was a Ph.D. working for the government who analyzed filing cavity with liquid metal (alu-

minum), who did not consider the flow as two–phase flow and ignoring the air. As result, his analysis is in the twilight

zone not in the real world.

2
Or when the scientific principles simply dictate.

699
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16.2 History
The study of multi–phase flow started for practical purposes after World War II. Initially the

models were using simple assumptions. For simple models,there are two possibilities (1) the

fluids/materials are flowing in well homogeneous mixed (where the main problem to find the

viscosity), (2) the fluids/materials are flowing separately where the actual total loss pressure

can be correlated based on the separate pressure loss of each of the material. If the pressure

loss was linear then the total loss will be the summation of the two pressure losses (of the

lighter liquid (gas) and the heavy liquid). Under this assumption the total is not linear and

experimental correlation was made. The flow patterns or regimes were not considered. This

was suggested by Lockhart and Martinelli who use a model where the flow of the two fluids

are independent of each other. They postulate that there is a relationship between the pressure

loss of a single phase and combine phases pressure loss as a function of the pressure loss of

the other phase. It turned out this idea provides a good crude results in some cases.

Researchers that followed Lockhart and Martinelli looked for a different map for dif-

ferent combination of phases. When it became apparent that specific models were needed

for different situations, researchers started to look for different flow regimes and provided

different models. Also the researchers looked at the situation when the different regimes are

applicable. Which leads to the concept of flow regime maps. Taitle and Duckler suggested

a map based on five dimensionless groups which are considered as the most useful today.

However, Taitle and Duckler’s map is not universal and it is only applied to certain liquid–

gas conditions. For example, Taitle–Duckler’s map is not applicable for microgravity.

16.3 What to Expect From This Chapter
As oppose to the tradition of the other chapters in this book and all other Potto project books,

a description of what to expect in this chapter is provided. It is an attempt to explain and

convince all the readers that the multi–phase flow must be included in introductory class on

fluid mechanics
3
. Hence, this chapter will explain the core concepts of the multiphase flow

and their relationship, and importance to real world.

This chapter will provide: a category of combination of phases, the concept of

flow regimes, multi–phase flow parameters definitions, flow parameters effects on the flow

regimes, partial discussion on speed of sound of different regimes, double choking phe-

nomenon (hopefully), and calculation of pressure drop of simple homogeneous model. This

chapter will introduce these concepts so that the engineer not only be able to understand

a conversation on multi-phase but also, and more importantly, will know and understand

the trends. However, this chapter will not provide a discussion of transient problems, phase

change or transfer processes during flow, and actual calculation of pressure of the different

3
This author feels that he is in an unique position to influence many in the field of fluid mechanics. This fact is

due to the shear number of the downloaded Potto books. The number of the downloads of the book on Fundamental

of compressible flow has exceed more than 100,000 in about two and half years. It also provides an opportunity to

bring the latest advances in the fields since this author does not need to “sell” the book to a publisher or convince a

“committee.”
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Solid
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Fig. 16.1 – Different fields of multi phase flow.

regimes.

16.4 Classification of Multi-Phase Flow
All the flows are a form of multiphase flow. The discussion in the previous chapters is only

as approximation when multiphase can be “reduced” into a single phase flow. For example,

consider air flow that was discussed and presented earlier as a single phase flow. Air is not a

pure material but a mixture of many gases. In fact, many proprieties of air are calculated as if

the air is made of well mixed gases of Nitrogen and Oxygen. The results of the calculations

of a mixture do not change much if it is assumed that the air flow as stratified flow
4
of many

concentration layers (thus, many layers (infinite) of different materials). Practically for many

cases, the homogeneous assumption is enough and suitable. However, this assumption will

not be appropriate when the air is stratified because of large body forces, or a large accelera-

tion. Adopting this assumption might lead to a larger error. Hence, there are situations when

air flow has to be considered as multiphase flow and this effect has to be taken into account.

In our calculation, it is assumed that air is made of only gases. The creation of clean

room is a proof that air contains small particles. In almost all situations, the cleanness of the

4
Different concentration of oxygen as a function of the height. While the difference of the concentration between

the top to button is insignificant, nonetheless it exists.
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air or the fact that air is a mixture is ignored. The engineering accuracy is enough to totally

ignore it. Yet, there are situations where cleanness of the air can affect the flow. For example,

the cleanness of air can reduce the speed of sound. In the past, the breaks in long trains

were activated by reduction of the compressed line (a patent no. 360070 issued to George

Westinghouse, Jr., March 29, 1887). In a four (4) miles long train, the breaks would started to

work after about 20 seconds in the last wagon. Thus, a 10% change of the speed of sound due

to dust particles in air could reduce the stopping time by 2 seconds (50 meter difference in

stopping) and can cause an accident.

Oneway to categorize themultiphase is by thematerials flows. For example, the flowof

oil andwater in one pipe is amultiphase flow. This flow is used by engineers to reduce the cost

of moving crude oil through a long pipes system. The “average” viscosity is meaningless since

in many cases the water follows around the oil. The water flow is the source of the friction.

However, it is more common to categorize the flow by the distinct phases that flow in the

tube. Since there are three phases, they can be solid–liquid, solid–gas, liquid–gas and solid–

liquid–gas flow. This notion eliminates many other flow categories that can and should be

included in multiphase flow. This category should include any distinction of phase/material.

There are many more categories, for example, sand and grain (which are “solids”) flow with

rocks and is referred to solid–solid flow. The category of liquid–gas should be really viewed

as the extreme case of liquid-liquid where the density ratio is extremely large. The same can

be said for gas–gas flow. For the gas, the density is a strong function of the temperature and

pressure. Open Channel flow is, although important, is only an extreme case of liquid-gas

flow and is a sub category of the multiphase flow.

Themultiphase is an important part ofmany processes. Themultiphase can be found in

nature, living bodies (bio–fluids), and industries. Gas–solid can be found in sand storms, and

avalanches. The body inhales solid particle with breathing air. Many industries are involved

with this flow category such as dust collection, fluidized bed, solid propellant rocket, paint

spray, spray casting, plasma and river flow with live creatures (small organisms to large fish)

flow of ice berg, mud flow etc. The liquid–solid, in nature can be blood flow, and river flow.

This flow also appears in any industrial process that are involved in solidification (for example

die casting) and in moving solid particles. Liquid–liquid flow is probably the most common

flow in the nature. Flow of air is actually the flow of several light liquids (gases). Many natural

phenomenon are multiphase flow, for an example, rain. Many industrial process also include

liquid-liquid such as painting, hydraulic with two or more kind of liquids.

16.5 Classification of Liquid-Liquid Flow Regimes
The general discussion on liquid–liquid will be provided and the gas–liquid flow will be dis-

cussed as a special case. Generally, there are two possibilities for two different materials to

flow (it is also correct for solid–liquid and any other combination). The materials can flow

in the same direction and it is referred as co–current flow. When the materials flow in the

opposite direction, it is referred as counter–current. In general, the co-current is the more

common. Additionally, the counter–current flow must have special configurations of long
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length of flow. Generally, the counter–current flow has a limited length window of possi-

bility in a vertical flow in conduits with the exception of magnetohydrodynamics. The flow

regimes are referred to the arrangement of the fluids.

Themain difference between the liquid–liquid flow to gas-liquid flow is that gas density

is extremely lighter than the liquid density. For example, water and air flow as oppose towater

and oil flow. The other characteristic that is different between the gas flow and the liquid flow

is the variation of the density. For example, a reduction of the pressure by half will double

the gas volumetric flow rate while the change in the liquid is negligible. Thus, the flow of

gas–liquid can have several flow regimes in one situation while the flow of liquid–liquid will

(probably) have only one flow regime.

16.5.1 Co–Current Flow
In Co–Current flow, two liquids can have three main categories: vertical, horizontal, and

what ever between them. The vertical configuration has two cases, up or down. It is common

to differentiate between the vertical (and near vertical) and horizontal (and near horizontal).

There is no exact meaning to the word “near vertical” or “near horizontal” and there is no

consensus on the limiting angles (not to mention to have limits as a function with any pa-

rameter that determine the limiting angle). The flow in inclined angle (that not covered by

the word “near”) exhibits flow regimes not much different from the other two. Yet, the limits

between the flow regimes are considerably different. This issue of incline flow will not be

covered in this chapter.

16.5.1.1 Horizontal Flow

Light LiquidLight LiquidLight Liquid

Heavy LiquidHeavy LiquidHeavy Liquid

Fig. 16.2 – Stratified flow in horizontal tubes when the
liquids flow is very slow.

The typical regimes for horizontal flow are

stratified flow (open channel flow, and non

open channel flow), dispersed bubble flow,

plug flow, and annular flow. For low ve-

locity (low flow rate) of the two liquids,

the heavy liquid flows on the bottom and

lighter liquid flows on the top
5
as depicted

in Figure 16.2. This kind of flow regime is

referred to as horizontal flow. When the flow rate of the lighter liquid is almost zero, the flow

is referred to as open channel flow. This definition (open channel flow) continues for small

amount of lighter liquid as long as the heavier flow can be calculated as open channel flow

(ignoring the lighter liquid). The geometries (even the boundaries) of open channel flow are

very diverse. Open channel flow appears in many nature (river) as well in industrial process

such as the die casting process where liquid metal is injected into a cylinder (tube) shape. The

channel flow will be discussed in a greater detail in Open Channel Flow chapter.

As the lighter liquid (or the gas phase) flow rate increases (superficial velocity), the fric-

tion between the phases increase. The superficial velocity is referred to as the velocity that

5
With the exception of the extremely smaller diameter where Rayleigh–Taylor instability is an important issue.
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any phase will have if the other phase was not exist. This friction is one of the cause for the

instability which manifested itself as waves and changing the surface from straight line to a

different configuration (see Figure 16.3). The wave shape is created to keep the gas and the

liquid velocity equal and at the same time to have shear stress to be balance by surface ten-

sion. The configuration of the cross section not only depend on the surface tension, and other

physical properties of the fluids but also on the material of the conduit.

Light Liquid

Heavy Liquid

Light Liquid Light Liquid

Heavy Liquid

Fig. 16.3 – Kind of Stratified flow in hori-
zontal tubes.

As the lighter liquid velocity increases two

things can happen (1) wave size increase, and (2) the

shape of cross section continue to deform. Some re-

ferred to this regime as wavy stratified flow but this

definition is not accepted by all as a category by itself.

In fact, all the two phase flow are categorized by wavy

flow which will proven later. There are two paths that

can occur on the heavier liquid flow rate. If the heav-

ier flow rate is small, then the wave cannot reach to

the crown and the shape is deformed to the point that all the heavier liquid is around the

periphery. This kind of flow regime is referred to as annular flow. If the heavier liquid flow

rate is larger
6
than the distance, for the wave to reach the conduit crown is smaller. At some

point, when the lighter liquid flow increases, the heavier liquid wave reaches to the crown

of the pipe. At this stage, the flow pattern is referred to as slug flow or plug flow. Plug flow

is characterized by regions of lighter liquid filled with drops of the heavier liquid with Plug

(or Slug) of the heavier liquid (with bubble of the lighter liquid). These plugs are separated by

large “chunks” that almost fill the entire tube. The plugs are flowing in a succession (see Figure

16.4). The pressure drop of this kind of regime is significantly larger than the stratified flow.

The slug flow cannot be assumed to be as homogeneous flow nor it can exhibit some average

viscosity. The “average” viscosity depends on the flow and thus making it as insignificant way

to do the calculations. Further increase of the lighter liquid flow rate move the flow regime

into annular flow. Thus, the possibility to go through slug flow regime depends on if there is

enough liquid flow rate.

Heavy LiquidHeavy LiquidHeavy Liquid

Light LiquidLight LiquidLight Liquid Light LiquidLight LiquidLight Liquid

Fig. 16.4 – Plug flow in horizontal tubes when the liq-
uids flow is faster.

Choking occurs in compressible

flow when the flow rate is above a cer-

tain point. All liquids are compressible

to some degree. For liquid which the

density is a strong and primary function

of the pressure, choking occurs relatively

closer/sooner. Thus, the flow that starts

as a stratified flow will turned into a slug

flow or stratified wavy
7
flow after a certain distance depends on the heavy flow rate (if

this category is accepted). After a certain distance, the flow become annular or the flow

will choke. The choking can occur before the annular flow regime is obtained depending

6
The liquid level is higher.

7
Well, all the flow is wavy, thus it is arbitrary definition.
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Fig. 16.5 – Modified Mandhane map for flow regime in horizontal tubes.

on the velocity and compressibility of the lighter liquid. Hence, as in compressible flow,

liquid–liquid flow has a maximum combined of the flow rate (both phases). This maximum

is known as double choking phenomenon.

The reverse way is referred to the process where the starting point is high flow rate and

the flow rate is decreasing. As in many fluid mechanics and magnetic fields, the return path is

not move the exact same way. There is even a possibility to return on different flow regime.

For example, flow that had slug flow in its path can be returned as stratified wavy flow. This

phenomenon is refer to as hysteresis.

Flow that is under small angle from the horizontal will be similar to the horizontal flow.

However, there is no consensus how far is the “near” means. Qualitatively, the “near” angle

depends on the length of the pipe. The angle decreases with the length of the pipe. Besides

the length, other parameters can affect the “near.”

The results of the above discussion are depicted in Figure 16.5. As many things in mul-

tiphase, this map is only characteristics of the “normal” conditions, e.g. in normal gravitation,

weak to strong surface tension effects (air/water in “normal” gravity), etc.

16.5.1.2 Vertical Flow

The vertical flow has two possibilities, with the gravity or against it. In engineering applica-

tion, the vertical flow against the gravity is more common used. There is a difference between

flowing with the gravity and flowing against the gravity. The buoyancy is acting in two dif-

ferent directions for these two flow regimes. For the flow against gravity, the lighter liquid
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Bubble
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Fig. 16.6 – Gas and liquid in Flow in vertical tube against the gravity.

has a buoyancy that acts as an “extra force” to move it faster and this effect is opposite for

the heavier liquid. The opposite is for the flow with gravity. Thus, there are different flow

regimes for these two situations. Themain reason that causes the difference is that the heavier

liquid is more dominated by gravity (body forces) while the lighter liquid is dominated by the

pressure driving forces.

Flow Against Gravity
For vertical flow against gravity, the flow cannot start as a stratified flow. The heavier

liquid has to occupy almost the entire cross section before it can flow because of the gravity

forces. Thus, the flow starts as a bubble flow. The increase of the lighter liquid flow rate

will increase the number of bubbles until some bubbles start to collide. When many bubbles

collide, they create a large bubble and the flow is referred to as slug flow or plug flow (see

Figure 16.6). Notice, the different mechanism in creating the plug flow in horizontal flow

compared to the vertical flow.

Further increase of lighter liquid flow rate will increase the slug size as more bubbles

collide to create “super slug”; the flow regime is referred as elongated bubble flow. The flow

is less stable as more turbulent flow and several “super slug” or churn flow appears in more

chaotic way, see Figure 16.6. After additional increase of “super slug” , all these “elongated

slug” unite to become an annular flow. Again, it can be noted the difference in the mechanism

that create annular flow for vertical and horizontal flow. Any further increase transforms the

outer liquid layer into bubbles in the inner liquid. Flow of near vertical against the gravity in

two–phase does not deviate from vertical. The choking can occur at any point depends on

the fluids and temperature and pressure.

16.5.1.3 Vertical Flow Under Micro Gravity
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Fig. 16.7 – A dimensional vertical flow map under
very low gravity against the gravity.

The above discussion mostly explained the

flow in a vertical configuration when the sur-

face tension can be neglected. In cases where

the surface tension is very important. For ex-

ample, out in space between gas and liquid

(large density difference) the situation is dif-

ferent. The flow starts as dispersed bubble

(some call it as “gas continuous”) because the

gas phase occupies most of column. The liq-

uid flows through a trickle or channeled flow

that only partially wets part of the tube. The

interaction between the phases is minimal and

can be considered as the “open channel flow”

of the vertical configuration. As the gas flow

increases, the liquid becomesmore turbulent and some parts enter into the gas phase as drops.

When the flow rate of the gas increases further, all the gas phase change into tiny drops of

liquid and this kind of regime referred to as mist flow. At a higher rate of liquid flow and a

low flow rate of gas, the regime liquid fills the entire void and the gas is in small bubble and

this flow referred to as bubbly flow. In the medium range of the flow rate of gas and liquid,

there is pulse flow in which liquid is moving in frequent pulses. The common map is based

on dimensionless parameters. Here, it is presented in a dimension form to explain the trends

(see Figure 16.7). In the literature, Figure 16.7 presented in dimensionless coordinates. The

abscissa is a function of combination of Froude ,Reynolds, andWeber numbers. The ordinate

is a combination of flow rate ratio and density ratio.

FlowWith The Gravity
As opposed to the flow against gravity, this flow can starts with stratified flow. A good

example for this flow regime is a water fall. The initial part for this flow is more signifi-

cant. Since the heavy liquid can be supplied from the “wrong” point/side, the initial part has

a larger section compared to the flow against the gravity flow. After the flow has settled, the

flow continues in a stratified configuration. The transitions between the flow regimes is simi-

lar to stratified flow. However, the points where these transitions occur are different from the

horizontal flow. While this author is not aware of an actual model, it must be possible to con-

struct a model that connects this configuration with the stratified flow where the transitions

will be dependent on the angle of inclinations.

16.6 Emptying and Filling Pipes
In many industrial and in nature where there is a conduit is full of gas and a liquid entering

it and it refers to as filling process. On the other hand there is a situation where the conduit

is full of liquid and gas enter it and it is refers as emptying process. In both processes there is

a similar mixing process which lead to multiphase flow.

In die casting provide example of such situationwhere liquidmetal under high pressure
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is injected into a mold (cavity) and it has to flow trough a conduit (it is called the runner) full

of air. While the liquidmetal flow in the runner has at least two flow reigns. This initial where

the flow start with a sharp interface and later part is continuous. In this discussion the initial

part determines how much liquid has to be wasted and flush out. This situation is common

when hose is fill with water to irrigate the fields. The liquid flow enters to conduit full with

gas (mostly air) is analyzed here.

Andritsos et al (?) experimentally observed

three types of instabilities which they cate-

gorized them as regular 2–D waves are as-

sociated with pressure variations in phase

with thewave slope, irregular large–amplitude

waves and atomization of the liquid are as-

sociated with pressure variations in phase

with the wave height. Shevtsova et al (?)
study the several effects numerically and sug-

gested instabilities affected by the temperature.

t1t1t1 t2t2t2 t3t3t3

Fig. 16.8 – Interface instability interface of
liquid into gas exhibits new location at
three different time. Flowshouldbe ver-
tical and not horizontal as shown.

In the typical numerical simulation the flow enters into conduit and the boundary condition

is assumed to be of “no slip”. Under this assumption, the velocity of at the wall is zero.

While the instabilities due to the temperature might be significant, here the focus is the

hydrodynamics and hence are ignored for this analysis.

The purpose in this section is to demonstrate that a sharp interface is not possible and

actuality has to be two phase flow. Assume that the velocity profile in the runner is parabolic

(or similar). The liquid can be considered incompressible material and hence the parabolic

profile is the same in the conduit in any cross section before the interface. After sometime

for the flow downstream the interface moves to another cross section yet the velocity profile

remains the same even though the samematerial is not at the new cross section. What happens

to the cross section at the interface. At time, t1 the interfaced is assumed to be a straight line.

In this case, the flow velocity (actually the mass of liquid) and the interface at t1 will be the

same line exhibited in Fig. 16.8. After some time the interface moves to t2 line. However

the cross section at the distance equals to average velocity times the time has some gas (air).

For continuous interface, the velocity profile should be the same. Yet, at this case part of the

cross section has mix fluids: liquid on the inside and gas on the outer layer. If the flow is one

dimensional than the parabolic profile cannot coexist with no–slip boundary conditions for

flow with interface. The contradiction created by the coexist is that at t2 location part of the

surface is air. A control volume is build around the pipe starting from point t1 to point t2
leads to a mass balance conflicts with the keeping the velocity profile. The averaged velocity

at the pipe is the standard definition of

Uave =
1

A

∫
A
UdA (16.1)

This velocity is calculated at t1. At t2 the velocity should be calculated in the same fashion but

here the area is smaller since part of cross section “became” air (gas). According the definition
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of the location t2 the amount of material enter into the control volume should be original

Uave times the area. This conflicting the two assumptions which leads to the conclusion that

velocity at t2 has to be higher. Additional point must be examine is the control volume on

the air (gas) between point t1 and t2. The flow in is zero while the flow out is positive to

keep with no–slip condition at t2 point. To maintain this situation, the control volume must

shrink. However, according the common logic the control volume increases (see the common

logic at point t3). This conflict suggest these assumption are conflict with the reality.

This enjoyable explanation, did not considered the issue of the compressibility of the

air (gas). Essentially, the Mach number suggests that there might be situation that gas flow

into liquid. This author is not aware of this explanation in the literature dealing with the

physical with the interface. The experimental observations shows that the liquid interface

indeed increases the speed and some gas bubbles in certain ranges. Furthermore, how long

the sharp interface transition is converted into a interface zone is not settled. The personal

observation of this author suggests that this range is about 1 to 5 times the pipe diameter. It

has to emphases that this statement is not conclusive and not clear under what conditions

and it should be treated as a educated guess. Nevertheless, all the numerical works in the area

which assuming sharp interface are simply wrong.

16.7 Multi–Phase Flow Variables Definitions
Since the gas–liquid system is a specific case of the liquid–liquid system, both will be united

in this discussion. However, for the convenience of the terms “gas and liquid” will be used

to signify the lighter and heavier liquid, respectively. The liquid–liquid (also gas–liquid) flow

is an extremely complex three–dimensional transient problem since the flow conditions in

a pipe may vary along its length, over its cross section, and with time. To simplify the de-

scriptions of the problem and yet to retain the important features of the flow, some variables

are defined so that the flow can be described as a one-dimensional flow. This method is the

most common and important to analyze two-phase flow pressure drop and other parameters.

Perhaps, the only serious missing point in this discussion is the change of the flow along the

distance of the tube.

16.7.1 Multi–Phase Averaged Variables Definitions

The total mass flow rate through the tube is the sum of the mass flow rates of the two phases

ṁ = ṁG + ṁL (16.2)

It is common to define the mass velocity instead of the regular velocity because the “regular”

velocity changes along the length of the pipe. The gas mass velocity is

GG =
ṁG
A

(16.3)
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WhereA is the entire area of the tube. It has to be noted that this mass velocity does not exist

in reality. The liquid mass velocity is

GL =
ṁL
A

(16.4)

The mass flow of the tube is then

G =
ṁ

A
(16.5)

It has to be emphasized that this mass velocity is the actual velocity.

The volumetric flow rate is not constant (since the density is not constant) along the

flow rate and it is defined as

QG =
GG
ρG

= UsG (16.6)

and for the liquid

QL =
GL
ρL

(16.7)

For liquid with very high bulk modulus (almost constant density), the volumetric flow rate

can be considered as constant. The total volumetric volume vary along the tube length and is

Q = QL +QG (16.8)

Ratio of the gas flow rate to the total flow rate is called the ’quality’ or the “dryness fraction”

and is given by

X =
ṁG
ṁ

=
GG
G

(16.9)

In a similar fashion, the value of (1 − X) is referred to as the “wetness fraction.” The last

two factions remain constant along the tube length as long the gas and liquid masses remain

constant. The ratio of the gas flow cross sectional area to the total cross sectional area is

referred as the void fraction and defined as

α =
AG
A

(16.10)

This fraction is vary along tube length since the gas density is not constant along the tube

length. The liquid fraction or liquid holdup is

LH = 1−α =
AL
A

(16.11)

It must be noted that Liquid holdup, LH is not constant for the same reasons the void fraction

is not constant.
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The actual velocities depend on the other phase since the actual cross section the phase

flows is dependent on the other phase. Thus, a superficial velocity is commonly defined in

which if only one phase is using the entire tube. The gas superficial velocity is therefore

defined as

UsG =
GG
ρG

=
Xṁ

ρGA
= QG (16.12)

The liquid superficial velocity is

UsL =
GL
ρL

=
(1−X) ṁ

ρLA
= QL (16.13)

Since UsL = QL and similarly for the gas then

Um = UsG +UsL (16.14)

WhereUm is the averaged velocity. It can be noticed thatUm is not constant along the tube.

The average superficial velocity of the gas and liquid are different. Thus, the ratio of

these velocities is referred to as the slip velocity and is defined as the following

SLP =
UG
UL

(16.15)

Slip ratio is usually greater than unity. Also, it can be noted that the slip velocity is not constant

along the tube.

For the same velocity of phases (SLP = 1), the mixture density is defined as

ρm = αρG + (1−α) ρL (16.16)

This density represents the density taken at the “frozen” cross section (assume the volume is

the cross section times infinitesimal thickness of dx).

The average density of the material flowing in the tube can be evaluated by looking at

the definition of density. The density of any material is defined as ρ = m/V and thus, for the

flowing material it is

ρ =
ṁ

Q
(16.17)

Where Q is the volumetric flow rate. Substituting equations (16.2) and (16.8) into equation

(16.17) results in

ρaverage =

ṁG︷︸︸︷
Xṁ+

ṁL︷ ︸︸ ︷
(1−X) ṁ

QG +QL
=

Xṁ+ (1−X) ṁ

X m̈

ρG︸︷︷︸
QG

+
(1−X) ṁ

ρL︸ ︷︷ ︸
QL

(16.18)
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Equation (16.18) can be simplified by canceling the ṁ and noticing the (1 − X) + X = 1 to

become

ρaverage =
1

X

ρG
+

(1−X)

ρL

Averaged Density

(16.19)

The average specific volume of the flow is then

vaverage =
1

ρaverage
=
X

ρG
+

(1−X)

ρL
= XvG + (1−X) vL (16.20)

The relationship between X and α is

X =
ṁG

ṁG + ṁL
=

ρGUG

AG︷︸︸︷
Aα

ρLULA(1−α)︸ ︷︷ ︸
AL

+ρGUGAα
=

ρGUG α

ρLUL (1−α) + ρGUG α
(16.21)

If the slip is one SLP = 1, thus equation (16.21) becomes

X =
ρG α

ρL (1−α) + ρG α
(16.22)

16.8 Homogeneous Models
Before discussing the homogeneous models, it is worthwhile to appreciate the complexity of

the flow. For the construction of fluid basic equations, it was assumed that the flow is contin-

uous. Now, this assumption has to be broken, and the flow is continuous only inmany chunks

(small segments). Furthermore, these segments are not defined but results of the conditions

imposed on the flow. In fact, the different flow regimes are examples of typical configuration

of segments of continuous flow. Initially, it was assumed that the different flow regimes can

be neglected at least for the pressure loss (not correct for the heat transfer). The single phase

was studied earlier in this book and there is a considerable amount of information about it.

Thus, the simplest is to used it for approximation.

The average velocity (see also equation (16.14)) is

Um =
QL +QG

A
= UsL +UsG = Um (16.23)

It can be noted that the continuity equation is satisfied as

ṁ = ρmUmA

Averaged Mass Rate

(16.24)
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Example 16.1: ρM Level: Advance
Under what conditions equation (16.24) is correct?

Solution

Solution

Under construction

End Solution

The governing momentum equation can be approximated as

ṁ
dUm

dx
= −A

dP

dx
− S τw −Aρm g sin θ (16.25)

or modifying equation (16.25) as

−
dP

dx
= −

S

A
τw −

ṁ

A

dUm

dx
+ ρm g sin θ

Averaged Momentum

(16.26)

The energy equation can be approximated as

dq

dx
−
dw

dx
= ṁ

d

dx

(
hm +

Um
2

2
+ g x sin θ

)Averaged Energy

(16.27)

16.8.1 Pressure Loss Components
In a tube flowing upward in incline angle θ, the pressure loss is affected by friction loss,

acceleration, and body force(gravitation). These losses are non-linear and depend on each

other. For example, the gravitation pressure loss reduce the pressure and thus the density

must change and hence, acceleration must occur. However, for small distances (dx) and some

situations, this dependency can be neglected. In that case, from equation (16.26), the total

pressure loss can be written as

dP

dx
=

friction︷ ︸︸ ︷
dP

dx

∣∣∣∣
f

+

acceleration︷ ︸︸ ︷
dP

dx

∣∣∣∣
a

+

gravity︷ ︸︸ ︷
dP

dx

∣∣∣∣
g

Pressure Loss

(16.28)

Every part of the total pressure loss will be discussed in the following section.
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16.8.1.1 Friction Pressure Loss

The frictional pressure loss for a conduit can be calculated as

−
dP

dx

∣∣∣∣
f

=
S

A
τw (16.29)

Where S is the perimeter of the fluid. For calculating the frictional pressure loss in the pipe is

−
dP

dx

∣∣∣∣
f

=
4 τw

D
(16.30)

The wall shear stress can be estimated by

τw = f
ρmUm

2

2
(16.31)

The friction factor is measured for a single phase flow where the average velocity is directly

related to the wall shear stress. There is not available experimental data for the relationship

of the averaged velocity of the two (or more) phases and wall shear stress. In fact, this friction

factor was not measured for the “averaged” viscosity of the two phase flow. Yet, since there

isn’t anything better, the experimental data that was developed and measured for single flow

is used.

The friction factor is obtained by using the correlation

f = C

(
ρmUmD

µm

)−n

(16.32)

Where C and n are constants which depend on the flow regimes (turbulent or laminar flow).

For laminar flow C = 16 and n = 1. For turbulent flow C = 0.079 and n = 0.25. There are
several suggestions for the average viscosity. For example, Duckler suggest the following

µm =
µGQG
QG +QL

+
µLQL
QG +QL

(16.33)

Duckler linear formula does not provide always good approximation and Cichilli suggest

similar to equation (16.19) average viscosity as

µaverage =
1

X

µG
+

(1−X)

µL

(16.34)

Or simply make the average viscosity depends on the mass fraction as

µm = XµG + (1−X)µL (16.35)

Using this formula, the friction loss can be estimated.
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16.8.1.2 Acceleration Pressure Loss

The acceleration pressure loss can be estimated by

−
dP

dx

∣∣∣∣
a

= ṁ
dUm

dx
(16.36)

The acceleration pressure loss (can be positive or negative) results from change of density and

the change of cross section. Equation (16.36) can be written as

−
dP

dx

∣∣∣∣
a

= ṁ
d

dx

(
ṁ

Aρm

)
(16.37)

Or in an explicit way equation (16.37) becomes

−
dP

dx

∣∣∣∣
a

= ṁ2




pressure loss due to

density change︷ ︸︸ ︷
1

A

d

dx

(
1

ρm

)
+

pressure loss due to

area change︷ ︸︸ ︷
1

ρmA2
dA

dx




(16.38)

There are several special cases. The first case where the cross section is constant,

dA/dx = 0. In second case is where the mass flow rates of gas and liquid is constant in

which the derivative of X is zero, dX/dx = 0. The third special case is for constant density

of one phase only, dρL/ dx = 0. For the last point, the private case is where densities are

constant for both phases.

16.8.1.3 Gravity Pressure Loss

Gravity was discussed in Chapter 4 and is

dP

dx

∣∣∣∣
g

= gρm sin θ (16.39)

The density change during the flow can be represented as a function of density. The density

in equation (16.39) is the density without the “movement” (the “static” density).

16.8.1.4 Total Pressure Loss

The total pressure between two points, (a and b) can be calculated with integration as

∆Pab =

∫b
a

dP

dx
dx (16.40)

and therefore

∆Pab =

friction︷ ︸︸ ︷
∆Pabf +

acceleration︷ ︸︸ ︷
∆Paba +

gravity︷ ︸︸ ︷
∆Pabg (16.41)
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16.8.2 Lockhart Martinelli Model

The second method is by assumption that every phase flow separately One such popular

model by Lockhart and Martinelli
8
. Lockhart and Martinelli built model based on the as-

sumption that the separated pressure loss are independent from each other. Lockhart Mar-

tinelli parameters are defined as the ratio of the pressure loss of two phases and pressure of a

single phase. Thus, there are two parameters as shown below.

ϕ
G

=

√
dP

dx

∣∣∣∣
TP

/
dP

dx

∣∣∣∣
SG

∣∣∣∣∣
f

(16.42)

Where the TP denotes the two phases and SG denotes the pressure loss for the single gas

phase. Equivalent definition for the liquid side is

ϕ
L
=

√
dP

dx

∣∣∣∣
TP

/
dP

dx

∣∣∣∣
SL

∣∣∣∣∣
f

(16.43)

Where the SL denotes the pressure loss for the single liquid phase.

The ratio of the pressure loss for a single liquid phase and the pressure loss for a single

gas phase is

Ξ =

√
dP

dx

∣∣∣∣
SL

/
dP

dx

∣∣∣∣
SG

∣∣∣∣∣
f

(16.44)

where Ξ is Martinelli parameter.

It is assumed that the pressure loss for both phases are equal.

dP

dx

∣∣∣∣
SG

=
dP

dx

∣∣∣∣
SL

(16.45)

The pressure loss for the liquid phase is

dP

dx

∣∣∣∣
L

=
2 fLUL

2 ρl
DL

(16.46)

For the gas phase, the pressure loss is

dP

dx

∣∣∣∣
G

=
2 fGUG

2 ρl
DG

(16.47)

Simplified model is when there is no interaction between the two phases.

To insert the Diagram.

8
This method was considered a military secret, private communication with Y., Taitle
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16.9 Solid–Liquid Flow
Solid–liquid system is simpler to analyze than the liquid-liquid system. In solid–liquid, the

effect of the surface tension are very minimal and can be ignored. Thus, in this discussion,

it is assumed that the surface tension is insignificant compared to the gravity forces. The

word “solid” is not really mean solid but a combination of many solid particles. Different

combination of solid particle creates different “liquid.” Therefor,there will be a discussion

about different particle size and different geometry (round, cubic, etc). The uniformity is

categorizing the particle sizes, distribution, and geometry. For example, analysis of small

coal particles in water is different from large coal particles in water.

The density of the solid can be above or below the liquid. Consider the case where

the solid is heavier than the liquid phase. It is also assumed that the “liquids” density does not

change significantly and it is far from the choking point. In that case there are four possibilities

for vertical flow:

1. The flow with the gravity and lighter density solid particles.

2. The flow with the gravity and heavier density solid particles.

3. The flow against the gravity and lighter density solid particles.

4. The flow against the gravity and heavier density solid particles.

All these possibilities are different. However, there are two sets of similar characteris-

tics, possibility, 1 and 4 and the second set is 2 and 3. The first set is similar because the solid

particles are moving faster than the liquid velocity and vice versa for the second set (slower

than the liquid). The discussion here is about the last case (4) because very little is known

about the other cases.

16.9.1 Solid Particles with Heavier Density ρS > ρL
Solid–liquid flow has several combination flow regimes.

When the liquid velocity is very small, the liquid cannot carry the solid particles because

there is not enough resistance to lift up the solid particles. A particle in amiddle of the vertical

liquid flow experience several forces. The force balance of spherical particle in field viscous

fluid (creeping flow) is

gravity and buoyancy

forces︷ ︸︸ ︷
πD3 g (ρS − ρL)

6
=

drag forces︷ ︸︸ ︷
CD∞ πD2 ρLUL2

8
(16.48)

Where CD∞ is the drag coefficient and is a function of Reynolds number, Re, and D is the

equivalent radius of the particles. The Reynolds number defined as

Re =
ULDρL
µL

(16.49)
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Inserting equating (16.49) into equation (16.48) become

CD∞(UL)︷ ︸︸ ︷
f(Re) UL

2 =
4Dg (ρS − ρL)

3 ρL
(16.50)

Equation (16.50) relates the liquid velocity that needed to maintain the particle “floating” to

the liquid and particles properties. The drag coefficient, CD∞ is complicated function of the

Reynolds number. However, it can be approximated for several regimes. The first regime is

for Re < 1 where Stokes’ Law can be approximated as

CD∞ =
24

Re
(16.51)

In transitional region 1<Re<1000

CD∞ =
24

Re

(
1+

1

6
Re2/3

)
(16.52)

For larger Reynolds numbers, the Newton’s Law region, CD∞, is nearly constant as

CD∞ = 0.44 (16.53)

In most cases of solid-liquid system, the Reynolds number is in the second range
9
. For the

first region, the velocity is small to lift the particle unless the density difference is very small

(that very small force can lift the particles). In very large range (especially for gas) the choking

might be approached. Thus, in many cases the middle region is applicable.

So far the discussion was about single particle. When there are more than one particle

in the cross section, then the actual velocity that every particle experience depends on the

void fraction. The simplest assumption that the change of the cross section of the fluid create

a parameter that multiply the single particle as

CD∞|α = CD∞ f(α) (16.54)

When the subscript α is indicating the void, the function f(α) is not a linear function. In the

literature there are many functions for various conditions.

9
It be wonderful if flow was in the last range? The critical velocity could be found immediately.
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Minimum velocity is the velocity when the

particle is “floating”. If the velocity is larger,

the particle will drift with the liquid. When

the velocity is lower, the particle will sink

into the liquid. When the velocity of liquid

is higher than the minimum velocity many

particles will be floating. It has to remember

that not all the particle are uniform in size or

shape. Consequently, the minimum velocity

is a range of velocity rather than a sharp tran-

sition point.

As the solid particles are not pushed by

a pump but moved by the forces the fluid ap-

plies to them. Thus, the only velocity that can

Packed
partially
solid

particles
flow

Packed
partially
solid

particles
flow

Packed
partially
solid

particles
flow

Fully
fluidized
Fully

fluidized
Fully

fluidized

TransitionTransitionTransition

∆Ptube∆Ptube∆Ptube

U
s
| a
v
er

a
g
e

U
s
| a
v
er

a
g
e

U
s
| a
v
er

a
g
e

Fig. 16.9 – The terminal velocity that left the
solid particles.

be applied is the fluid velocity. Yet, the solid particles can be supplied at different rate. Thus,

the discussion will be focus on the fluid velocity. For small gas/liquid velocity, the particles

are what some call fixed fluidized bed. Increasing the fluid velocity beyond a minimum will

move the particles and it is referred to as mix fluidized bed. Additional increase of the fluid

velocity will move all the particles and this is referred to as fully fluidized bed. For the case

of liquid, further increase will create a slug flow. This slug flow is when slug shape (domes)

are almost empty of the solid particle. For the case of gas, additional increase create “tunnels”

of empty almost from solid particles. Additional increase in the fluid velocity causes large

turbulence and the ordinary domes are replaced by churn type flow or large bubbles that are

almost empty of the solid particles. Further increase of the fluid flow increases the empty

spots to the whole flow. In that case, the sparse solid particles are dispersed all over. This

regimes is referred to as Pneumatic conveying (see Figure 16.10).

One of the main difference between the liquid and gas flow in this category is the speed

of sound. In the gas phase, the speed of sound is reduced dramatically with increase of the

solid particles concentration (further reading Fundamentals of Compressible Flow” chapter

on Fanno Flow by this author is recommended). Thus, the velocity of gas is limited when

reaching the Mach somewhere between 1/
√
k and 1 since the gas will be choked (neglecting

the double choking phenomenon). Hence, the length of conduit is very limited. The speed of

sound of the liquid does not change much. Hence, this limitation does not (effectively) exist

for most cases of solid–liquid flow.

16.9.2 Solid With Lighter Density ρS < ρ and With Gravity
This situation is minimal and very few cases exist. However, it must be pointed out that even

in solid–gas, the fluid density can be higher than the solid (especially with micro gravity).

There was very little investigations and known about the solid–liquid flowing down (with

the gravity). Furthermore, there is very little knowledge about the solid–liquid when the

solid density is smaller than the liquid density. There is no known flow map for this kind of

flow that this author is aware of.
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Fig. 16.10 – The flow patterns in solid-liquid flow.

Nevertheless, several conclusions and/or expectations can be drawn. The issue of min-

imum terminal velocity is not exist and therefor there is no fixed or mixed fluidized bed. The

flow is fully fluidized for any liquid flow rate. The flow can have slug flow but more likely will

be in fast Fluidization regime. The forces that act on the spherical particle are the buoyancy

force and drag force. The buoyancy is accelerating the particle and drag force are reducing

the speed as

πD3 g(ρS − ρL)

6
=
CD∞ πD2ρL (US −UL)2

8
(16.55)

From equation 16.55, it can observed that increase of the liquid velocity will increase the

solid particle velocity at the same amount. Thus, for large velocity of the fluid it can be ob-

served that UL/US → 1. However, for a small fluid velocity the velocity ratio is very large,

UL/US → 0. The affective body force “seems” by the particles can be in some cases larger

than the gravity. The flow regimes will be similar but the transition will be in different points.

The solid–liquid horizontal flow has some similarity to horizontal gas–liquid flow. Ini-

tially the solid particles will be carried by the liquid to the top. When the liquid velocity in-

crease and became turbulent, some of the particles enter into the liquid core. Further increase

of the liquid velocity appear as somewhat similar to slug flow. However, this author have not

seen any evidence that show the annular flow does not appear in solid–liquid flow.

16.10 Counter–Current Flow
This discussionwill be only on liquid–liquid systems (which also includes liquid-gas systems).

This kind of flow is probably the most common to be realized by the masses. For example,
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Fig. 16.12 – Counter–current flow in a can (the left figure) has only one hole thus pulse flow and a
flow with two holes (right picture).

opening a can of milk or juice. Typically if only one hole is opened on the top of the can, the

liquid will flow in pulse regime. Most people know that two holes are needed to empty the

can easily and continuously. Otherwise, the flow will be in a pulse regime.
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Fig. 16.11 – Counter–flow in vertical tubes map.

In most cases, the possibility to have

counter–current flow is limited to having

short length of tubes. In only certain con-

figurations of the infinite long pipes the

counter–current flow can exist. In that

case, the pressure difference and gravity

(body forces) dominates the flow. The iner-

tia components of the flow, for long tubes,

cannot compensate for the pressure gradi-

ent. In short tube, the pressure difference

in one phase can be positive while the pres-

sure difference in the other phase can be

negative. The pressure difference in the in-

terface must be finite. Hence, the counter–

current flow can have opposite pressure

gradient for short conduit. But in most

cases, the heavy phase (liquid) is pushed by the gravity and lighter phase (gas) is driven by

the pressure difference.

The counter-current flow occurs, for example, when cavity is filled or emptied with a

liquid. The two phase regimes “occurs” mainly in entrance to the cavity. For example, Figure

?? depicts emptying of can filled with liquid. The air is “attempting” to enter the cavity to fill

the vacuum created thus forcing pulse flow. If there are two holes, in some cases, liquid flows

through one hole and the air through the second hole and the flow will be continuous. It also

can be noticed that if there is one hole (orifice) and a long and narrow tube, the liquid will

stay in the cavity (neglecting other phenomena such as dripping flow.).

There are three flow regimes
10
that have been observed. The first flow pattern is pulse

10
Caution! this statement should be considered as “so far found”. There must be other flow regimes that were

not observed or defined. For example, elongated pulse flow was observed but measured. This field hasn’t been well

explored. There are more things to be examined and to be studied.
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Fig. 16.13 – Picture of Counter-current flow in liquid–gas and solid–gas configurations. The con-
tainer is made of two compartments. The upper compartment is filled with the heavy phase
(liquid, water solution, or small wood particles) by rotating the container. Even though the
solid–gas ratio is smaller, it can be noticed that the solid–gas is faster than the liquid–gas flow.

flow regime. In this flow regime, the phases flow turns into different direction (see Figure

16.13). The name pulse flow is used to signify that the flow is flowing in pulses that occurs

in a certain frequency. This is opposed to counter–current solid–gas flow when almost no

pulse was observed. Initially, due to the gravity, the heavy liquid is leaving the can. Then the

pressure in the can is reduced compared to the outside and some lighter liquid (gas)entered

into the can. Then, the pressure in the can increase, and some heavy liquid will starts to

flow. This process continue until almost the liquid is evacuated (some liquid stay due the

surface tension). In many situations, the volume flow rate of the two phase is almost equal.

The duration the cycle depends on several factors. The cycle duration can be replaced by

frequency. The analysis of the frequency is much more complex issue and will not be dealt

here.

Annular Flow in Counter–current flow

WaterWaterWater
FlowFlowFlow

SteamSteamSteam
FlowFlowFlow

Fig. 16.14 – Flood in vertical pipe.

The other flow regime is annular flow in

which the heavier phase is on the periphery of

the conduit (In the literature, there are someone

who claims that heavy liquid will be inside). The

analysis is provided, but somehow it contradicts

with the experimental evidence. Probably, one or

more of the assumptions that the analysis based is

erroneous). In very small diameters of tubes the

counter–current flow is not possible because of

the surface tension (see section 4.7). The ratio of

the diameter to the length with some combinations of the physical properties (surface tension

etc) determines the point where the counter flow can start. At this point, the pulsing flowwill

start and larger diameter will increase the flow and turn the flow into annular flow. Addi-
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tional increase of the diameter will change the flow regime into extended open channel flow.

Extended open channel flow retains the characteristic of open channel that the lighter liquid

(almost) does not effect the heavier liquid flow. Example of such flow in the nature is water

falls in which water flows down and air (wind) flows up.

The driving force is the second parameter which effects the flow existence. When the

driving (body) force is very small, no counter–current flow is possible. Consider the can

in zero gravity field, no counter–current flow possible. However, if the can was on the sun

(ignoring the heat transfer issue), the flow regime in the canmoves from pulse to annular flow.

Further increase of the body force will move the flow to be in the extended “open channel

flow.”

In the vertical co–current flow there are twopossibilities, flowwith gravity or against it.

As opposed to the co–current flow, the counter–current flow has no possibility for these two

cases. The heavy liquid will flow with the body forces (gravity). Thus it should be considered

as non existent flow.

16.10.1 Horizontal Counter–Current Flow

Up to this point, the discussion was fo-

cused on the vertical tubes. In horizontal

tubes, there is an additional flow regime

which is stratified . Horizontal flow is dif-

ferent from vertical flow from the stabil-

ity issues. A heavier liquid layer can flow

above a lighter liquid. This situation is un-

stable for large diameter but as in static

(see section 4.7 page 169) it can be consid-

ered stable for small diameters. A flow in

a very narrow tube with heavy fluid above

the lighter fluid should be considered as a

separate issue.
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Fig. 16.15 – A flow map to explain the horizontal
counter–current flow.

When the flow rate of both fluids is very small, the flow will be stratified counter–

current flow. The flow will change to pulse flow when the heavy liquid flow rate increases.

Further increase of the flowwill result in a single phase flow regime. Thus, closing thewindow

of this kind of flow. Thus, this increase terminates the two phase flow possibility. The flow

map of the horizontal flow is different from the vertical flow and is shown in Figure 16.15. A

flow in an angle of inclination is closer to vertical flow unless the angle of inclination is very

small. The stratified counter flow has a lower pressure loss (for the liquid side). The change

to pulse flow increases the pressure loss dramatically.
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16.10.2 Flooding and Reversal Flow

The limits of one kind the counter–current

flow regimes, that is stratified flow are dis-

cussed here. This problem appears in nuclear

engineering (or boiler engineering) where

there is a need to make sure that liquid

(water) inserted into the pipe reaching the

heating zone. When there is no water (in

liquid phase), the fire could melt or dam-

age the boiler. In some situations, the fire

can be too large or/and the water supply

failed below a critical value the water turn

into steam. The steam will flow in the op-

posite direction. To analyze this situation

consider a two dimensional conduit with a

ξξξ

Liquid

Flow Gas

Flow

xxxyyy

hhh

DDD

WWW

LLL

Fig. 16.16 – A diagram to explain the flood in
a two dimension geometry.

liquid inserted in the left side as depicted in Figure 16.14. The liquid velocity at very low gas

velocity is constant but not uniform. Further increase of the gas velocity will reduce the

average liquid velocity. Additional increase of the gas velocity will bring it to a point where

the liquid will flow in a reverse direction and/or disappear (dried out).

A simplified model for this situation is for a two dimensional configuration where the

liquid is flowing down and the gas is flowing up as shown in Figure 16.16. It is assumed that

both fluids are flowing in a laminar regime and steady state. Additionally, it is assumed that

the entrance effects can be neglected. The liquid flow rate, QL, is unknown. However, the

pressure difference in the (x direction) is known and equal to zero. The boundary condi-

tions for the liquid is that velocity at the wall is zero and the velocity at the interface is the

same for both phases UG = UL or τi|G = τi|L. As it will be shown later, both condi-

tions cannot coexist. The model can be improved by considering turbulence, mass transfer,

wavy interface, etc
11
. This model is presented to exhibits the trends and the special features

of counter-current flow. Assuming the pressure difference in the flow direction for the gas is

constant and uniform. It is assumed that the last assumption does not contribute or change

significantly the results. The underline rational for this assumption is that gas density does not

change significantly for short pipes (for more information look for the book “Fundamentals

of Compressible Flow” in Potto book series in the Fanno flow chapter.).

The liquid film thickness is unknown and can be expressed as a function of the above

boundary conditions. Thus, the liquid flow rate is a function of the boundary conditions. On

the liquid side, the gravitational force has to be balanced by the shear forces as

dτxy

dx
= ρL g (16.56)

11
The circular configuration is under construction and will be appeared as a separated article momentarily.
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The integration of equation (16.56) results in

τxy = ρL g x+C1 (16.57)

The integration constant, C1, can be found from the boundary condition where τxy(x =

h) = τi. Hence,

τi = ρL gh+C1 (16.58)

The integration constant is then Ci = τi − ρL gh which leads to

τxy = ρL g (x− h) + τi (16.59)

Substituting the Newtonian fluid relationship into equation (16.59) to obtained

µL
dUy

dx
= ρL g (x− h) + τi (16.60)

or in a simplified form as

dUy

dx
=
ρL g (x− h)

µL
+
τi
µL

(16.61)

Equation (16.61) can be integrate to yield

Uy =
ρL g

µL

(
x2

2
− hx

)
+
τi x

µL
+C2 (16.62)

The liquid velocity at the wall, [U(x = 0) = 0], is zero and the integration coefficient can be

found to be

C2 = 0 (16.63)

The liquid velocity profile is then

Uy = d
ρL g

µL

(
x2

2
− hx

)
+
τi x

µL

Liquid Velocity

(16.64)

The velocity at the liquid–gas interface is

Uy(x = h) =
τi h

µL
−
ρL gh

2

2µL
(16.65)

The velocity can vanish (zero) inside the film in another point which can be obtained

from

0 =
ρL g

µL

(
x2

2
− hx

)
+
τi x

µL
(16.66)
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The solution for equation (16.66) is

x |@UL=0 = 2h−
2 τi

µL gρL
(16.67)

The maximum x value is limited by the liquid film thickness, h. The minimum shear stress

that start to create reversible velocity is obtained when x = h which is

0 =
ρL g

µL

(
h2

2
− hh

)
+
τi h

µL
(16.68)

↪→ τi0 =
hgρL
2

If the shear stress is below this critical shear stress τi0 then no part of the liquid will have

a reversed velocity. The notation of τi0 denotes the special value at which a starting shear

stress value is obtained to have reversed flow. The point where the liquid flow rate is zero is

important and it is referred to as initial flashing point.

The flow rate can be calculated by integrating the velocity across the entire liquid thick-

ness of the film.

Q

w
=

∫h
0
Uydx =

∫h
0

[
ρL g

µL

(
x2

2
− hx

)
+
τi x

µL

]
dx (16.69)

Wherew is the thickness of the conduit (see Figure 16.16). Integration equation (16.69) results

in

Q

w
=
h2 (3 τi − 2 ghρL)

6µL
(16.70)

It is interesting to find the point where the liquid mass flow rate is zero. This point can be

obtained when equation (16.70) is equated to zero. There are three solutions for equation

(16.70). The first two solutions are identical in which the film height is h = 0 and the liquid

flow rate is zero. But, also, the flow rate is zero when 3 τi = 2 ghρL. This request is identical

to the demand in which

τi
critical

=
2 ghρL
3

Shear Stress

(16.71)

This critical shear stress, for a given film thickness, reduces the flow rate to zero or effectively

“drying” the liquid (which is different then equation (16.68)).

For this shear stress, the critical upward interface velocity is

Ucritical|interface =

( 23−
1
2 )︷︸︸︷
1

6

(
ρL gh

2

µL

)

Critical Velocity

(16.72)
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The wall shear stress is the last thing that will be done on the liquid side. The wall shear stress

is

τL|@wall = µL
dU

dx

∣∣∣∣
x=0

= µL



ρL g

µL

(
��*

0
2 x− h

)
+

τi︷ ︸︸ ︷
2 ghρL
3

1

µL



x=0

(16.73)

Simplifying equation (16.73)
12
becomes (notice the change of the sign accounting for the direc-

tion)

τL|@wall =
ghρL
3

(16.74)

Again, the gas is assumed to be in a laminar flow as well. The shear stress on gas side is

balanced by the pressure gradient in the y direction. The momentum balance on element in

the gas side is

dτxyG
dx

=
dP

dy
(16.75)

The pressure gradient is a function of the gas compressibility. For simplicity, it is assumed that

pressure gradient is linear. This assumption means or implies that the gas is incompressible

flow. If the gas was compressible with an ideal gas equation of state then the pressure gradient

is logarithmic. Here, for simplicity reasons, the linear equation is used. In reality the logarith-

mic equation should be used ( a discussion can be found in “Fundamentals of Compressible

Flow” a Potto project book). Thus, equation (16.75) can be rewritten as

dτxyG
dx

=
∆P

∆y
=
∆P

L
(16.76)

Where ∆y = L is the entire length of the flow and ∆P is the pressure difference of the entire

length. Utilizing the Newtonian relationship, the differential equation is

d2UG
dx2

=
∆P

µG L
(16.77)

Equation (16.77) can be integrated twice to yield

UG =
∆P

µG L
x2 +C1 x+C2 (16.78)

This velocity profile must satisfy zero velocity at the right wall. The velocity at the interface

is the same as the liquid phase velocity or the shear stress are equal. Mathematically these

boundary conditions are

UG(x = D) = 0 (16.79)

12
Also noticing that equation (16.71) has to be equal ghρL to support the weight of the liquid.
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and

UG(x = h) = UL(x = h) (a) or

τG(x = h) = τL(x = h) (b)

(16.80)

Applying B.C. (16.79) into equation (16.78) results in

UG = 0 =
∆P

µG L
D2 +C1D+C2 =⇒ C2 = −

∆P

µG L
D2 +C1D (16.81)

Which leads to

UG =
∆P

µG L

(
x2 −D2

)
+C1 (x−D) (16.82)

At the other boundary condition, equation (16.80)(a), becomes

ρL gh
2

6µL
=

∆P

µG L

(
h2 −D2

)
+C1 (h−D) (16.83)

The last integration constant, C1 can be evaluated as

C1 =
ρL gh

2

6µL (h−D)
−
∆P (h+D)

µG L
(16.84)

With the integration constants evaluated, the gas velocity profile is

UG =
∆P

µG L

(
x2 −D2

)
+
ρL gh

2 (x−D)

6µL (h−D)
−
∆P (h+D) (x−D)

µG L
(16.85)

The velocity in equation (16.85) is equal to the velocity equation (16.65) when (x = h). However,

in that case, it is easy to show that the gas shear stress is not equal to the liquid shear stress at

the interface (when the velocities are assumed to be the equal). The difference in shear stresses

at the interface due to this assumption, of the equal velocities, cause this assumption to be not

physical.

The second choice is to use the equal shear stresses at the interface, condition (16.80)(b).

This condition requires that

µG
dUG
dx

= µL
dUL
dx

(16.86)

The expressions for the derivatives are

gas side︷ ︸︸ ︷
2h∆P

L
+ µG C1 =

liquid side︷ ︸︸ ︷
2 ghρL
3

(16.87)

As result, the integration constant is

C1 =
2 ghρL
3µG

−
2h∆P

µG L
(16.88)
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The gas velocity profile is then

UG =
∆P

µG L

(
x2 −D2

)
+

(
2 ghρL
3µG

−
2h∆P

µG L

)
(x−D) (16.89)

The gas velocity at the interface is then

UG|@x=h =
∆P

µG L

(
h2 −D2

)
+

(
2 ghρL
3µG

−
2h∆P

µG L

)
(h−D) (16.90)

This gas interface velocity is different than the velocity of the liquid side. The velocity

at interface can have a “slip” in very low density and for short distances. The shear stress at

the interface must be equal, if no special effects occurs. Since there no possibility to have both

the shear stress and velocity on both sides of the interface, different thing(s) must happen. It

was assumed that the interface is straight but is impossible. Then if the interface becomes

wavy, the two conditions can co–exist.

The wall shear stress is

τG|@wall = µG
dUG
dx

∣∣∣∣
x=D

= µG

(
∆P 2 x

µG L
+

(
2 ghρL
3µG

−
2h∆P

µG L

))

x=D

(16.91)

or in a simplified form as

τG|@wall =
2∆P (D− h)

L
+
2 ghρL
3

(16.92)

The Required Pressure Difference
The pressure difference to create the flooding

(drying) has to take into account the fact that

the surface is wavy. However, as first estimate

the waviness of the surface can be neglected.

The estimation of the pressure difference un-

der the assumption of equal shear stress can be

applied. In the same fashion the pressure dif-

ference under the assumption the equal veloc-

ity can be calculated. The actual pressure dif-

ference can be between these two assumptions

but notmust be between them. Thismodel and

its assumptions are too simplistic and the ac-

tual pressure difference is larger. However, this

explanation is to show magnitudes and trends

and hence it provided here.

Wh

D

y
x

D∆P

L
Lτw|L

Lτw|G

ρ g Lh

Fig. 16.17 – General forces diagram to calcu-
lated the in a two dimension geometry.

To calculate the required pressure that cause the liquid to dry, the total balance is

needed. The control volume include the gas and liquid volumes. Figure 16.17 describes the
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general forces that acts on the control volume. There are two forces that act against the grav-

ity and two forces with the gravity. The gravity force on the gas can be neglected in most

cases. The gravity force on the liquid is the liquid volume times the liquid volume as

FgL = ρg

Volme
w︷︸︸︷
hL (16.93)

The total momentum balance is (see Figure 16.17)

FgL +

A/w︷︸︸︷
L τw

G

=

A/w︷︸︸︷
L τw

L

+

force due to pressure︷ ︸︸ ︷
D∆P (16.94)

Substituting the different terms into (16.94) result in

ρgLh+ L

(
2∆P (D− h)

L
+
2 ghρL
3

)
= L

ghρL
3

+D∆P (16.95)

Simplifying equation (16.95) results in

4 ρ g Lh

3
= (2h−D)∆P (16.96)

or

∆P =
4 ρ g Lh

3 (2h−D)
(16.97)

This analysis shows far more reaching conclusion that initial anticipation expected.

The interface between the two liquid flowing together is wavy. Unless the derivations or

assumptions are wrong, this analysis equation (16.97) indicates that whenD > 2h is a special

case (extend open channel flow).

16.11 Multi–Phase Conclusion
For the first time multi–phase is included in a standard introductory textbook on fluid me-

chanics. There are several points that should be noticed in this chapter. There are many flow

regimes in multi–phase flow that “regular” fluid cannot be used to solve it such as flooding. In

that case, the appropriate model for the flow regime should be employed. The homogeneous

models or combined models like Lockhart–Martinelli can be employed in some cases. In

other case where more accurate measurement are needed a specific model is required. Per-

haps as a side conclusion but important, the assumption of straight line is not appropriate

when two liquid with different viscosity are flowing.
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Open Channel Flow

17.1 What is Open Channel Flow?
17.1.1 Introduction

Open channel flow is a branch of multi phase flow. Traditionally, open channel flow is con-

sidered as a direct branch of fluid machines because it was studied much earlier. However,

one can view the open channel flow as (almost) horizontal two phase flow with extremely

large ratio of gas flow to liquid flow. In that case, the flow is stratified flow (as can be ob-

served from the two phase flow regime map). Furthermore, the gas phase can be assumed

almost unchanged, and therefore, the liquid upper surface can be assumed to be under con-

stant pressure.

The open channel flow and the pipe flow move liquids from one place to another.

Yet, themain different between these twoflows

is that, in pipe flow, the shape of the pipe de-

termines the flow cross section shape while

in open channel flow the shape of the flow is

determined by the flow. The secondary dif-

ference is that in pipe flow the pressure de-

termined from the flow while in open chan-

nel flow, the pressure is determined from the

gas phase (through the free surface). In plain

English, in the pipe flow, the resistance in

the pipe determines the pressure down stream

PouringPouringPouring
holeholehole

coldcoldcold
chamberchamberchamber

gategategate

runnerrunnerrunner

diediedie

liquid metalliquid metalliquid metal

ventsventsvents

Fig. 17.1 – Open Channel flow in die casting.
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while for open channel flow, the surroundings pressure (atmosphere) at channel interface

determines the pressure in the flow down stream. In the limiting case, the pressure remains

constant. This limiting case is what will be discussed mostly in this chapter.

The open channel flow occurs in nature as can be observed in river flow (and many

water running systems). Open channel flow occurs in many man made situations like sewer

systems and many water supply systems. While the open channel flow was traditionally dealt

with mostly water (or water base) as the substance it also can be applied to many kind of sub-

stances, oil, methanol, liquidmetal etc. It also can appear in situations that one does not expect

it. For example, in die casting process (see Fig. 17.1), where a liquid metal is injected into the

cavity, creates open channel flow a situation which determines major operating parameters.

Another word on the classification of

this flow. Open channel flows are bound by the

boundaries on lower part and top is exposed to

the atmosphere or other gaseous medium (see

Fig. 17.2). According to this definition, the flow

in the pipe in Fig. 17.2 also will be considered

to be open flow yet some will consider it to

be two phase flow. For any kind flow with a

free surface, the flow boundary is can be de-

formed in contrast to solid boundary (almost).

FlowF lowF low
partialpartialpartial

pipepipepipe
ininin

Fig. 17.2 – What is open channel flow? Some
limitations on the definition.

The conditions at boundary for true open channel are different from the multi–phase which

the shear stress is zero and the pressure is atmospheric. The flow in pipe sometimes referred

as a stratified flow. In this chapter only true open channel is discussed. If one is particular

about the definition, the flow in rivers and other channel is not a open channel flow according

to this definition. However, the effect is not that significant and hence it is considered to be

open channel flow.

All the equations and principles developed

earlier still can be applied to new situations. In ad-

dition to the flow that was dealt before, the open

channel flow and in particular the issue of the top

boundary is focus here. As opposed to the flow in

closed conduit, the boundary has to be determine

and cross area is depend on the flow. This new

UUU 222

111

Fig. 17.3 – Change of the height of the
bottom has two possibilities 1 and
2.

complexity is one of the main topics in the chapter. The change of the boundary also affect

the kind of flow in open channel flow. As oppose to the close conduit flow, the open channel

flow is strongly affected by the gravity. Additional difference, the waves can be generated on

the free surface regardless to the movement of the liquid.

17.1.2 Open Channel “Intuition’

As in compressible flow, the open channel flow, one has to gain new intuition. Supposed

that flow exposed to a change of the height of the channel bottom as shown in Fig. 17.3. The
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change can be also negative, in other words the bottom located in lower position. Assume

the flow is a two dimensional case (other limitations such as surface tension are insignifi-

cant.). What the height of the liquid will be after the obstacle? There is two possibilities, one,

the liquid level increases, and two, the liquid level

decreases.

To consider what direction the height takes,

one has to get information from the familiar. In-

stinctively as the situation described in A is some-

thing that most readers (if not all) familiar with.

When looking at the situation from a rotated co-

ordinate system it is clear that free surface height

increases. In this case the height increase un-

boundedly (without a limit). when the change

is limited the height is limited. In the figure,

the change is shown as a gradual transition from

one height to another. This change is only for

AAA

BBB

Fig. 17.4 – Flow on an include plane to
changes the bottom direction. Fig-
ure A shows the actual flow and B
shows the same flow in a rotated
coordinate system.

illustration and this change in most cases not correct. A more refined analysis is required for

the change describe the change.

17.1.3 Energy Line

As usual engineers do, first build and defined a reference situation which is used later as a base

for further analysis can be carried out. That is, a flow with an angle inclination is assumed

to be free of the three dimensional effects. It

further assumed that a steady state is achieved.

The transition length is not part of the discus-

sion here. It is further assumed that the ve-

locity profile in any cross section is the same.

In other words, the flow or the velocity pro-

file in “A” is the same as in “B”. That is, the ini-

tial condition does not affect the flow at this

point. This situation in nature can be closed to

reality and in a laboratory the flow can be even

closer.

AAA
BBB

hhh

xxx

LLL

θθθ yyy

Fig. 17.5 – Uniform flow on include plane as-
sume no change from section A to sec-
tion B

The x and the y are defined in the Fig. 17.5 and y = 0 is at the bottom. It

is assumed that no–slip condition exist at the bottom (y = 0). The velocity (as it

will be shown) reaches its maximum at the interface (at the conclusion of the analysis).
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The flow is uniform, hence the velocity is

in the x direction only. The control vol-

ume is shown in Fig. 17.5 and Fig. 17.6 from

the front. Assuming that the resistance to

the flow at the edge can be considered uni-

formed. The force balance in the x direc-

tion has only the liquid weight and shear

stress. It can be noticed that as stated, the

velocity in and out canceled out and the

bbb

Fig. 17.6 – Control volume from the front.

pressure on both surfaces is the same. At this stage, it is assumed that the shear stresses at

the wall are the same as the bottom shear stresses. Under these assumptions, the balance (see

17.7) reads

ρg sin θ

volume︷ ︸︸ ︷
b ALh =

τ0



bottom︷︸︸︷
ALb +

walls︷︸︸︷
2h AL


 (17.1)

The averaged shear stress is than

τ0 =
ρg sin θh
b+ 2h

(17.2)

LLLUUU

τbτbτb τwτwτw
τwτwτw

hhh

θθθ

mgmgmg

mg sin θmg sin θmg sin θ
bbb

Fig. 17.7 – Force balance in the flowdirection
open channel. Notice that in this case
τw = τb = τ0.

In general as shown in Fig. 17.8, any cross sec-

tion can have a similar expression for the av-

eraged shear stress. Yet, the only limitation is

that the same cross section remains the same in

the channel. The cross area defined in illustra-

tion as A (cross section) and the P the wetted

edge (perimeter).

τ0 =
ρg sin θA

PPP
(17.3)

The shear stresses in the general case is more

uniform as compared to the rectangle case.

AAA PPP

Fig. 17.8 – Constant cross section in gen-
eral. Orange is the perimeter, PPP , and
the area,A, is the cross section.

The averaged shear stress for the rectangle, which was obtained earlier, can be used to

obtain an expression for two dimensional flow. In that case, Eq. (17.2) reduces to

τ0 ∼=
ρg sin θh

b
(17.4)

The shear stress in the rectangle case changes with the height of the liquid.
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Consider the control volume shown in Fig. 17.9 in which forces are similar to previ-

ous. For the same reasons as before, the net momentum flux is zero as well as the

net pressure difference on both side. The net

shear stress (force) balance reads

τ = ρg sin θ (h− y) (17.5)

The shear stress is a linear function of y and its

maximum is aty = 0 and zero at the surface (as

expected). As it can be recalled, the shear stress

is linearly related to the velocity derivative for

a laminar flow with respect to y.

hhh

LLL

θθθ
yyy

τττ
τττ

Fig. 17.9 – Small control volume to ascertain
shear stress.

dU

dy
=
τ

µ
=
ρg sin θ (h− y)

µ
(17.6)

After the substitution, a very simple ordinary

differential equation is defined for the velocity.

Eq. (17.6) can be integrated to yield

U =
ρg sin θ
µ

(
hy−

y2

2

)
+C (17.7)

with the no-slip boundary condition ofU(y =

0) = 0 then C = 0 and/or no shear stress at

the interface.

UUU
dU
dy
dU
dy
dU
dy

hhh
xxxθθθ

yyyτ0τ0τ0

τ(y)τ(y)τ(y)

H0H0H0

Fig. 17.10 – to explain the transition from
Shear stress to velocity function.

U =
ρg sin θ
µ

(
hy−

y2

2

)
(17.8)

Note, Eq. (17.8) is correct only in the case where no slip is appeared (not always!). All the

relevant equations are actually plotted on Fig. 17.10. The solution was for rectangular shape

and only for laminar flow the assumption of the shear stress). The flow rate per width can be

derived for this velocity profile

q =

∫h
0

ρg sin θ
µ

(
hy−

y2

2

)
dy =

ρg sin θh3

3µ
(17.9)

In real application, the flow is not laminar even for relatively small Reynolds num-

bers. For extremely small Reynolds number (and high viscosity) there is a good agreement

between the theory and the experiments. Please note that there is Reynolds below which no

2-dimensional flow can exist. The change is that information passes from a layer to another

later. The shear stress (viscosity) can be viewed as a transfer of momentum like a transfer of

heat or mass across layers. Another view of the thickness of the liquid essentially depends on
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the shear stress at the wall. Larger forces (shear stress) at the bottom can carry more weight.

Alternatively, the velocity is reduced because the shear force at the bottom overcome it and

to compensate for larger resistance by the liquid height has to increase.

Some empirical equations describes the shear stress such as Chézy coefficient (Man-

ning, Griffith, Pigot, and Vernon-Harcourt 1890) as

τ0 =
f ρU2

8
(17.10)

With this shear stress, the flow rate can be obtained. A better coefficient is Manning coeffi-

cient. Regardless to specific (it not turbulence book) the reader should be aware of the topic.

17.2 Energy conservation
The energy is conserved as long there is no energy loss (by definition) significant. Hence, the

energy equation has to be developed. The energy at every cross section has to include the ki-

netic and potential, as they changed from a cross section to a cross section. Bernoulli equation

per unit volume of fluid moving along a streamline, ρU2/2+ P + ρgh and is constant. Or

it can be written for dividing by gwhich the energy per unit weight of fluid (as ρg is weight).

Ew =
U2

2 g
+
P

ρg
+H (17.11)

where H is liquid height from arbitrary point (not the bottom of the channel). This equation

(17.11) is exact for on the same stream line. In order to generalize this equation two assumptions

have to be made. One, the acceleration perpendicular to the flow is insignificant thus the

pressure is basically the hydrostatic pressure, almost the actual pressure P ∼= ρg (h − y).

Two, the sum of the height and the pressure can be written as

H+
P

ρg
=

H︷ ︸︸ ︷
H0 + y+

P

ρg
= H0 + y+

HHρg (h− y)

HHρg
= h+H0 (17.12)

whereH0 is height from arbitrary datum to channel bottom shown in Fig. 17.10. Eq. (17.11) can

be written as

Ew =
U2

2 g
+ h+H0 (17.13)

The energy Ew plot as a function of horizontal line is referred to as the energy grade

line. For any kind of the open channel which was discussed here, the energy line decreases

with the horizontal (in the flow direction). The reason for the decrease is because the pressure

remains the same and the liquid height is the same while the elevation (H) is lower with the

downstream progression. The head loss is defined as

Ew2 − Ew1 =

( H2︷ ︸︸ ︷
U2
2

2
+ h2+H02

)
−

( H1︷ ︸︸ ︷
U1
2

2
+ h1+H01

)

Head Loss Rec

(17.14)
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While technically this equation is not appropriate for the rapid acceleration still for a quick

result, Eq. (17.12) can be used for a quick calculation.

For this uniform flow, the pressure remains the same on a stream line and the velocity

as well, while the potential energy decreases downstream. The energy loss is actually the

change in elevation or in another view, the rate loss is the slop of the channel bottom. When

the change in bottom are relatively small, the loss is negligible and energy (head) Eq. (17.14)

reads

H02 +H2 = H01 +H1 −−→ H2 = H01 −H02 +H1 (17.15)

An energy specific variable is defined as

H = h+
U2

2 g

Specific Energy Rec

(17.16)

which presents the energy for unit width.

Using the mass flow rate per unit width q = Uh hence the energy

H = h+
q2

2 gh2

Specific Energy Rec q

(17.17)
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(a) Height lines for open channel as a function
of the energy for various constant flow rate
lines.

hh h

HHH∆H∆H∆H

b1b1b1
b2b2b2

p2p2p2 p1p1p1CCC

(b) Energy line with the effects of elevation change
showing the two possibilities.

Fig. 17.11 – The energy lines in general and specific case The reduction of inH result in two possibil-
ities depending if the flow in the “high” speed or the “low” speed. Points b1 and b2 are denoted
the point on subcritical flow and points p1 and p2 supercritical flow see fig. (b).

This quantify remains the same (constant) for uniform flow at steady state. This equation,

Eq. (17.15), can be used to evaluate the height of the channel for a given flow rate, q. The value

ofH is defined from the slope of the channel which determines the velocity of the liquid. That

is, for a given sloop the energy (velocity) is determined by it. For a specific energy and fixed
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flow rate there is a height that correspond to these data. Eq. (17.17) is a cubic equation which

means that there are three possible solutions. This equation can be solved analytically and the

solution of quadratic equation is given in (Bar-Meir 2021b). Yet the expressions are very long

and thus not presented here. For a small range ofH, there is only one real negative solution

and two imaginary solutions. For larger values ofH, the solution has two positive roots and

one negative root. The negative root is rejected as it is not physically possible (no negative

height). The solution (actually the governing equation) becomes a parabola (two roots) since

one of the root was rejected. In other words, the cubic equation is reduced to a quadratic

equation. The solution is plotted on the diagram Fig. 17.11 (part a). These two roots represent
the two different regimes for flow. Similar to compressible flow, one) branch with the smaller

height,h thuswith larger velocity and two) branchwith the larger height thus smaller velocity.

Fig. 17.3 exhibits a situation of the flow in a open channel for which the bottom is ele-

vated. The value of ∆H0 = H02 −H01 is positive. That is according to Eq. (17.15) the value

of H decreases (note the order in the equation). The flow rate is a constant (the flow rate

did not change for the different height). The H reduced is exhibited in Fig. 17.11b. There

is two possibilities either the “high” speed and “low” speed. For the “high speed” (the lower

branch), the height increase and therefore the velocity reduces. The opposite occurs on the

“low” speed branch. Again it is similar to compressible flow. The points where the “high” and

“low” heights are the same is refers as the critical height. The speed that correspond to this

height is the critical speed. At this stage the upper branch can be referred to subcritical flow

and the lower branch is referred as the supercritical critical flow.

The reverse situation occurs when the bottom elevation is lowered. In this case, the∆H

is negative, and thus the newH is larger. For flow that is in the supercritical branch, the ve-

locity increases while on the subcritical branch the velocity describes. As oppose earlier case,

step up (obstacle), there is a critical height above which the flow upstream become affected.

In this case there is no such a limiting case (at least not obvious).

The critical point can be found by taking the derivative of Eq. (17.17) with respect to h

and equating to zero.

0 =
−A2 q

2

A2 gh3
+ 1 (17.18)

q2 = ghc
3

Critical Height Rec

(17.19)

The notation of subscript c is to indicate that it refers to the critical height. Using this value

for hc, the critical specific energy is obtained by substituting the value in Eq. (17.17) to get

Hc = hc +
ghc

3

2 ghc
2
=
3

2
hc (17.20)

Note this value is correct (only? maybe) to the rectangular shape.

Equation Eq. (17.20) demonstrates that the critical energy linearly depends on the crit-

ical height with as a slope of 2/3. This line is shown in Fig. 17.11a. Flow that is above this line
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is subcritical and flow below this line is supercritical. As in compressible flow, is possible to

move from one branch to another? In other words, it possible to move from supercritical

to subcritical flow or from supercritical to subcritical? The answer is yes from subcritical to

subcritical but requires a step up change (or similar) and it will remains subcritical for a short

distance (unless there is a steeper slop). It can be noticed that Eq. (17.18) can be rearranged by

substituting q = hU into Eq. (17.18)

(Uh)2 = gh3 −−→ U2��h
2 = g���

h

h3 (17.21)

to be

Fr =
U2

gh

Froude Definition Rec

(17.22)

Froude number for critical flow is Fr = 1. This definition of Froude number is at the critical

condition which equals to one. This situation is similar to situation that occurs at at com-

pressible flow forMach = 1. Supercritical flows occur for Froude numbers greater than one

while subcritical flows occur at Froude number < 1. The difference in the behavior of the

flow for different regimes is important in analyzing the flow.

The open channel flow has mostly hyperbolic character which is the downstream flow

does not affect the flow upstream. In Fig. 17.3 the bottom was raised and the subcritical the

height was lower (and opposite for the supercritical branch). The larger change in bottom

height, the larger the effect is. When the change in the bottom reach to the point that the

liquid reached the critical condition. Any increase of further creates a local dam situation.

In other words, the flow upstream has to increase. The flow rate does not change because

the dam and it remains as before. The nature fixes the situation by changing the height of the

liquid (upstream) approaching the step (the bottom raised to about the critical point). The flow

in this case over the step must be at critical condition. That is, the reason the word mostly
was used in the beginning of this paragraph. As long as the raise is below the critical point

no effect upstream occurs. How far upstream the effect taking place? At this stage, without

doing analysis it cannot be answered precisely. However, a rough estimate can be made. The

distance should be in a magnitude of such that the channel bottom raised as the critical step

(the critical step is the amount needed to get the flow to be at the critical conditions).

A flow approaches a step that goes up

and down as shown in Fig. 17.12. Assuming

that the flow is such that the height of the

step forces a critical condition at the step.

The flow after the step becomes supercriti-

cal but with the same specific energy. On

the diagram Fig. 17.10b the liquid goes from

point bi through point c to point pi. The

symbol i denotes the corresponding point

that is, i = 1 or i = 2. For smooth

critical
flow

critical
flow

critical
flow

subcritical
flow

subcritical
flow

subcritical
flow supercritical

flow

supercritical
flow

supercritical
flow

sss

Fig. 17.12 – Transition from subcritical to su-
percritical. The curves are not to scale.



740 CHAPTER 17. OPEN CHANNEL FLOW

transition and gradual enough no significant energy loss and hence energy remains constant

along the path. Rephrasing the statement: the energy in b and p is the same. Physically, the

flow at the end of the step accelerates and there no sufficient mechanism to elevate the liquid

level. This situation is similar to a nozzle in compressible flow. This situation is not difficult

to achieve by making the step higher even than necessary. In that case, the flow upstream

will be higher. The flow changes to subcritical shortly after the conversion to supercritical

downstream after step for the same slope or smaller.

To summarized the transition from subcritical to supercritical flow, the Smooth erect-

ed/created. Up to certain step height the flow return to its original heigh and velocity. After

the critical height, the liquid height is recessed but with the same energy.

Example 17.1: Increasing the Step Level: Intermediate
The step height (s) as shown in Fig. 17.12. Assume that the step can be raised slowly

from zero without creating any energy losses. Quantitatively describe the height of

the flow downstream the step. The initial height of the subcritical flow is ξ0. At what

stage the critical condition start to occur?

Solution
The height downstream is constant until the critical condition is attained. At the critical con-

dition, the downstream regimes change to supercritical flow. After this stage and continue, the

flow at the step flow is critical. However,Hc increases because overcome the obstacle to keep

the same flow rate. The Fr number is one (the flow is sat the critical conditions). Hence,

Fr = 1 =
U2

gh
(17.1.a)

Multiplying by the height, h2 and dividing by h2 right hand side provides

1 =
U2 h2

gh3
−−→ 1 =

q2

gh3
(17.1.b)

Notice that q = hU and the second part of equation Eq. (17.1.b) could be written. Thus h3 is

a function of flow rate, q, which is constant. Hence, the height about the step is constant and

the same argument the velocity is constant at (if h and q are constantUmust be constant. The

increase about the critical point cause increase ofH. As it was pointed out increase inH push

the flow point to the left on Fig. 17.10b.
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End of Ex. 17.1

sss

h2h2h2

criticalcriticalcritical

Fig. 17.13 – Downstream flow height as a function of the step height.

Example 17.2: Given Step what Upstream Height Level: Advance
The flow rate in a wide channel is 10[m2/sec] (notice the units arem2 and notm3

because it is flow rate per width). Before the insertion of the step, the water level

was 2.5[m]. A step with a height of 0.5[m] is inserted. What is water height above

the step? Assume no energy loss occurs. Is the flow immediately downstream the

step subcritical or supercritical? Estimate the height immediately upstream of the

step? What is the velocity immediately upstream the step? Estimate the water height

immediately downstream the step? If the step is 1.2[m] what will be the velocity at

the step? Estimate the height of the water just upstream the step.

Solution
The critical height can be obtained from

Eq. (17.18) as

hc =
3

√
q2

g
−−→ hc ∼

3

√
102

9.81
∼ 2.17[m] (17.2.a)

The critical velocity is, Uc = q/hc and hence,

Uc = 10/2.17 = 4.61[m/sec]. The flow at up-

stream is subcritical because 2.5[m] > 2.17[m].

At the critical conditions H = 1.5 × 2.17 ∼

3.25[m]. The velocity before the step was in-

serted is U = q/h = 10/2.5 = 4m/sec. The

specific energy remains constant and according

to Eq. (17.16) can be calculated as

0
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H
[m

]
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h[m]

q = 10[m2/sec]

(2.17[m], 3.25[m])

Fig. 17.14 – ]

Energy Diagram q=10[m2] for Example

Ex. 17.2. It exhibits the critical coordinate in

red.

H = h+U2/2 g = 2.5+
42

2× 9.8 = 4.25[m] (17.2.b)

The new value ofH1 = H2 − 0.5 = 3.75 (green dash line). The solution of equation between
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End of Ex. 17.2

hc < h <∞ is govern by

3.75− h−
102

2 gh2
= 0. (17.2.c)

Equation Eq. (17.2.c) can be solved by several methods which include numerical, analytical,

graphical. Here, the emphasize is on the conceptual understanding. Hence, from the graph

the value is obtained h ∼ 3.4[m]. The velocity upstream the step is the same velocity. The

downstream the velocity remain the same as upstream and the same as the height (no change

because no dam effect).

If the height of the step increases than velocity at step is the critical velocity and the

upstream H is 3.25+ 1.2 = 4.45. The corresponding height is h = 4.2[m] with the velocity

of 10/4.45 = 2.25[m/sec]. The water will raise upstream the step about 4.2− 2.5 = 1.7[m]

much more than the step itself.

Example 17.3: Max Step Level: Intermediate
An open channel flow with velocity of 1.5 [m/sec] with height of 2.0[m]. A step of 0.1

[m] is introduced to the flow. Calculate the velocity and height over the step. What is

the maximum before the dam’s effect appears.

Solution
The energy diagram of the to be computed and

drawn. The flow rate is

q = Uh = 1.5× 2.0 = 3.0[m2/sec] (17.3.a)

The critical values are obtained as

hc =
3

√
q2

g
−−→ hc ∼

3

√
3.02

9.81
∼ 0.97[m] (17.3.b)

The critical velocity is then

0.6

0.8
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H
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

h[m]

q = 3[m2/sec]

(0.97[m], 1.46[m]) available

Fig. 17.15 – Energy line for flow rate 1.5.

Uc = q/h −−→ Uc ∼ 3.0/0.97 ∼ 3.09[m/sec] (17.3.c)

The energy at the critical condition is

Hc = h+
U2

2 g
= 0.97+

3.092

2× 9.81 ∼ 1.46 (17.23)

The maximum is at the point critical point. The current situation is on subcritical branch. The

difference between ∆H is possible available. AtH at 2[m] (U = 1.5[m]) is

H =

(
2+

1.52

2× 9.81

)
− 1.46 = 0.65 (17.3.d)

This value can also be observed from the diagram in thick Magenta.
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17.2.1 Some Design Considerations
When engineers designing channels one of the

question that the engineer has to look at the

optimal flow rate. Obviously, if one exam-

ine diagram Fig. 17.10b it can be observed for

given H there can be many heights of liquid

in channel. Discussion on how change height

or velocity is left to later part it is only state

that it partially related to sloop. Assuming that

it is possible, what the flow rate for different

height. It was hinted that on the flow rate in di-

agram Fig. 17.10a that there is a maximum. For

givenH Eq. (17.16) provides that

qqq

HHH

qmaxqmaxqmax

subcritical
flow

supercritical
flow

qqq

(h)(h)(h)

hchchc

Fig. 17.16 – Flow rate as a function of the en-
ergy or the height.

U =
√
2 g (H− h)

Velocity–Energy

(17.24)

The flow rate can be written

q = h
√
2 g (H− h)

Flow Rate–Energy R

(17.25)

It can be notice that liquid (water) height can be only between zero (0) and H. Obviously,

height can not be below zero. The height can not be higher thanH.

dq

dh
=
√
2 g (H− h) −

gh√
2 g (H− h)

= 0 (17.26)

or

2 Ag (H− h) = Agh −−→ h =
2H

3
(17.27)

The maximum flow rate occurs at the critical conditions. Thus, design should be such that

flow will be at condition close to the critical conditions.

The following two figures show the flow rate for different specific energy,H.
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Fig. 17.17 – Flow Rate as Function of height, h, for various,H in the range of .1 to 1

Flow Rate as Function of height, h, for various,H in the range of 1.0 to 10.0

Alternatively, all the graphs can be summarized into dimensionless equation as

q

H
√
2 gH

=
h

H

√
1−

h

H

Dimensionless Flow Rate Height

(17.28)

It can be noticed in the case, the height ratio is really single value function (only one value

between zero and one) for given flow rate. The maximum occurs at h/H = 2/3 and the

maximum value is 4/27. The meaning of the last statement is if the calculations show that

if the value of left hand side of Eq. (17.28) greater than 4/27 the flow is chocked. The value

of H has to be adjusted so that the value of the dimensionless quantity is equal to 4/27. As

approximate value height ratio can assumed (small perturbation analysis) to be

h

H
∼

q

H
√
2 gH

(17.29)

The accuracy is greater for supercritical flow. Nevertheless, it acceptable for first approxima-

tion.

17.2.2 Expansion and Contraction
Up to his point, the discussion was limited

to the same cross section mostly rectangu-

lar with only a change in the bottom height

(step or hump). At this stage, a limit ex-

ploration on what happen when the cross

section is changed by changing the width.

The change can be either expansion or con-

traction. The change can be symmetrical

or non–symmetrical. This discussion mostly

limited to symmetrical (or close to it to

avoid non–symmetrical issues and other com-

plications). Fig. 17.18 depicts four possible

Sudden ContrationSudden ContrationSudden Contration Sudden ExpansionSudden ExpansionSudden Expansion

Gradual ContrationGradual ContrationGradual Contration Gradual ExpansionGradual ExpansionGradual Expansion

TOP V IEWTOP V IEWTOP V IEW

b1b1b1 b2b2b2

Fig. 17.18 – expansion and contraction top
view in gradual and abrupt.

situations: gradual and abrupt and for these two also contraction and expansion. Due to the

complications with the energy losses, the abrupt changes are out of the scope of this book.

Also as in the step change, the acceleration effects and 3-dimensional effects are neglected.

The first issue that stare at this topic is the flow rate. In the regular rectangular cross

section the flow rate q andQ are constant. In the present situation, only the total flow rate,Q

is constant, The flow rate per width is at the cross section 1 is q1 = Q/b1 and same for cross 2

which is q2 = Q/b2. It turned out there are four possible regimes that have to be considered:

contraction/expansion and subcritical/supercritical. The emphasis will be on the subcritical

flow as it more common. The choked flow will be briefly considered for this version. The
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heavy lifting for chocking flow will be in future versions. The heavy lifting for chocking flow

will be in future versions.

17.2.2.1 Subcritical Regime; Contraction

The first case is of flow that undergoes contraction arriving with subcritical flow (Fr < 1).

For contraction b1 > b2 hence q2 > q1 (b1 q1 = b2 q2). If the 3-dimensional effects are

ignored then the energy is conserved and can be expressed as

H = H1 = H2 (17.30)

The energy assumed to be constant through out the channel. Hence, it is reasonable to exam-

ine the flow in constant specific energy.

∆q∆q∆q

qmaxqmaxqmaxqqq

(h)(h)(h)

q1q1q1

q2q2q2 H = 3H = 3H = 3

Fig. 17.19 – Flow in contraction subcritical flow. The specific energy in diagram isH = 3

The flow at section 1 with q1 increase the flow rate per width to section 2. At section 2 now

the flow rate is given andwith specific energyH all the parameters can be found. For example

in

∆q∆q∆q

HHH

hhh

qqq
444
333
222

Fig. 17.20 – Flow in contraction subcritical energy Diagram exhibiting three flow rates to demon-
strate∆q effect.

What happen when the flow rate at section 2 is greater than the maximum flow rate.

The flow rate is chocked and maximum flow rate is at section 2 is the maximum possible and

energy has to change as it was discussed just before Eq. (17.29). The flow downstream with
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a change area is similar to the flow with a step. Yet there some differences, quantities that

remains constant in each case are different (see the question at the end of the chapter).

Example 17.4: Simple Contraction Level: Intermediate
The water enters to a wide side of contracted section at averaged velocity of

0.3[m/sec] and the water height is 2.0[m]. The ratio of the wide to narrow cross sec-

tion is 3.0 for this rectangular shape channel. What is the height and velocity at the

exit of the contracted section?

Solution
The specific energy is

H = h+
U1
2

2 g
= 1.5+

0.32

2× 9.81 ∼ 1.52[m] (17.4.a)

The flow rate is

q1 = Uh = 0.3× 1.5 = 0.45[m2/sec] (17.4.b)

Froude number is Fr = .3/
√
9.81× 1.5 = 0.078 so the flow is subcritical. Thus procedure

outlined earlier can be used. The flow rate at section 2 is

q2 =
q1 b1
b2

= 0.45 ∗ 3.0 = 1.325[m2/sec] (17.4.c)

which means that Eq. (17.25) can be plotted for this situation. The equation can be solved ana-

lytically or graphically. Here the graphical solution show that h2 ∼ 1.48 and h1 = 1.517 if the
flow rate at 1 was the same as at 2.

qqq

hhh

0.450.450.45

1.351.351.35

1.4751.4751.475

1.451.451.45

1.51.51.5

1.5251.5251.525

1.551.551.55

1.01.01.0 1.61.61.6

Fig. 17.21 – The Flow Rate for Contraction Exercise. Ex. 17.4. Note that h1 is not the actual
height but rather height if the flow rate was same based on section 2.

Notice, the solution can be obtained analytically and numerically in many methods. With

knowledge of the height, the velocity can be calculated as

U2 =
q2
h2

=
1.325
1.48

= 0.8953[m/sec] (17.4.d)
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17.2.2.2 Supercritical Regime; Contraction

In this cases the supercritical flow approaches a contraction is dealt in a similar logic to the

previous case. The flow rate increases and thus the “left” side of the graph is controlling the

phenomenon. As oppose to the previous case the increase in the flow rate actually reduce the

velocity was it will shown in the following Ex. 17.5. The

Example 17.5: Simple Contraction Supercritical Level: Intermediate
A flow enters a channel with a contraction with ratio of b1/b2 = 1.5 with velocity

of 7[m/sec]. The height at section 1 is 0.8[m]. What is the velocity and height at the

exit?

Solution
The specific energy that appear at section 1 is

H = h1 +
U2

2 g
= 0.8+

72

2× 9.81 ∼ 3.3[m] (17.5.a)

The flow rate at section 2 is q2 = q1 b1/b2. The flow rate at section 1 is

q1 = h1U1 = 0.8× 7 = 5.6[m2/sec] (17.31)

The flow rate per width at section 2 is

q2 = 5.6× 1.5 = 8.4[m/sec] (17.32)

with this information a diagram can be drawn as

qqq

hhh
8.08.08.0

8.18.18.1

8.28.28.2

8.38.38.3

8.48.48.4

1.301.301.30 1.311.311.31 1.321.321.32 1.331.331.33 1.341.341.34 1.351.351.35 1.361.361.36 1.371.371.37

8.48.48.4

111

222

Fig. 17.22 – Flow in Contraction Supercritical Energy Diagram.
The diagram shows that at q2 = 8.4 at h ∼ 1.363 which is displayed on the zoom part of

Fig. 17.22. Notice that un–zoom part of the diagram is displayed on the bottom right corner.

The velocity is

U2 =
q2
h2

=
8.4
1.363

∼ 6.163[m/sec] (17.5.b)
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17.2.3 Summery

Fr = U/
√
gh has good representation

when the flow is for wide rectangular

channel. If Fr = 1 that is U =
√
gh,

flow is critical. If Fr < 1 that is. U <√
gh, flow is sub-critical (some refer to it

as tranquil flow). If Fr > 1, flow is super-

critical( and some refer to it as torrential

flow). Adding a new point to the discus-

sion while not expanding it. The terms

(H1 − H2)/L = So and loss hL/L =

Sw = Sf are commonly used when en-

ergy is lost and large scale calculation are

needed.

U1
2

2 g
U1

2

2 g
U1

2

2 g

DotumDotumDotum

Channel
ChannelChannel

Surface
Surface
Surface

bottombottombottom

h1h1h1

111 222

H1H1H1
H2H2H2

h2h2h2

U2
2

2 g
U2

2

2 g
U2

2

2 g
Water
WaterWater

EnergyEnergyEnergy LineLineLine
hLhLhL

LLL

Fig. 17.23 – The energy line and liquid surface line
with the energy lost. As can be observed the
flow is subcritical.

Example 17.6: Sub and Supper Heights Level: Advance
For a rectangular channel the height of flow was observed to have value, h1 = 2[m].

A hump or step was inserted and downstream the flow was observed to height of

h2 = 0.8[m]. Assume that there was no energy lost by inserting the step and the flow

at after insertion of the step is supercritical (this should a conclusion). What is the

critical height? What is the specific energy? what is the critical velocity? (this part left

as a challenge).

Solution

H = Hc = H1 = H2 (17.6.a)

Hence,

H = h1 +
U1
2

2 g
= h2 +

U2
2

2 g
(17.6.b)

or utilizing the flow rate

h1 +
q2

2 gh1
2
= h2 +

q2

2 gy2
2

(17.6.c)

Using critical relationship for rectangular, hc
3 = q2

g provides

hc
3

2

(
1

h1
2
−

1

h2
2

)
= h2 − h1 (17.33)

hc =
3

√
2h1

2 h2
2

h1 + h2
(17.6.d)
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End of Ex. 17.6
In this case, h1 = 2[m] and h2 = 0.8[m] thus

hc =
3

√
22 × 0.82
2+ 0.8

∼ 0.9706[m] (17.6.e)

The specific energy

H = h1 +
hc
3

2h1
2

(17.6.f)

H = h1 +
2h1

2 h2
2

2h1
2 (h1 + h2)

(17.6.g)

H =
h1 (h1 + h2) + h2

2

h1 + h2
(17.6.h)

H =
h1
2 + h2

2 + h1 h2
h1 + h2

=
h1
2 + h2

2 + 2h1 h2 − h1 h2
h1 + h2

=

(h1 + h2)
2 − h1 h2

h1 + h2
= (h1 + h2) −

h1 h2
h1 + h2

(17.6.i)

H = (2+ 0.8) +
0.8× 2
2.8

∼ 3.37[m] (17.6.j)

17.3 Hydraulic Jump
One of the most common phenomenon which

most people observed every day, is the hy-

draulic jump. When pouring water (either

from your faucet or otherwise) into the sink,

there is a hydraulic jump
1
. One can no-

tice that water hits the sink and a thin wa-

ter layer spreads in all angles. At some

point, the thin layer suddenly changes to

DirectionDirectionDirection

F lowF lowF low
h1h1h1

h2h2h2

222

PPP

PPP

111

Fig. 17.24 – Schematic of hydraulic jump.

thicker layer. This change is the hydraulic jump. Generally, there are several classifications

of hydraulic jump such as stationary, moving. Additionally the jump also classified by the

geometry such radial or two dimensional (there are more). The hydraulic jump also classified

as uniform density (or material) or mixing or chemical interaction also involve. No mater

how complicated the situation considered, it is assumed the jump occurs at very narrow

width. The flow changes from supercritical to subcritical flow. The hydraulic jump is

depicted in Fig. 17.24.

The mixing processes at the surface and additionally the mixing inside the jump are

1
This example apparently is used by many to demonstrate hydraulic jump not an original example by this author.

This example in suitable for modern world for which the assumption the reader is use sink. A more general use is

pouring water to a glass (for drinking).
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very substantial hence the energy is not conserved. Someof the energy dissipates in these eddy

in the turbulent processes. Only some of the energy converted into heat and some for other

form of energy like sound energy (slightly compressed air) and other energies. The amount

of lost energy is unknown and hence cannot be used to solve the problem. Another quantity

is needed to solve the problem. Under the assumption that jump occurs at very narrow space,

the shear stress can be assumed to negligible (similar assumption to shock wave). The same

argument can be made for the upper surface. Furthermore, at the upper surface, the air is a

light gas (relatively) and hence the shear force is small
2
. There are several methods to analyze

this situation. A simple control volume is used for this analysis. The assumption taken here

are: the height of the flow is uniform (2D assumption) on both sides of the jump, (initially) the

rectangular cross section is assumed, a plug flow (or averaged velocity is assumed). It is further

assumed that the jump occurs at short distance and hence the shear stress at the bottom and

air are negligible.

The mass conservation of the control volume show that control volume itself is not

moving and there is only one stream in and one stream out.∫
A1

ρU(y)dA =

∫
A2

ρU(y)dA (17.34)

If plug flow is assumed (or averaged velocity)

Ur1 h1 = U2 h2 (17.35)

It is assumed that the streamlines are parallel pressure made mostly from the hydro-

static. The pressure at stations 1 and 2 the average hydrostatic pressure is given byPa = gh/2.

The momentum conservation can be expressed as

U2
2 h2 −U1

2 h1 =
g

2

(
h1
2 − h2

2
)

(17.36)

Substituting Eq. (17.35) into Eq. (17.36) provides

U1
2

(
h1
2

h2
− h1

)
=
g

2

(
h1
2 − h2

2
)
=
g

2
(h1 − h2) (h1 + h2) (17.37)

which can be reduced to

U1
2 h1
h2

XXXXX(h1 − h2) =
g

2

XXXXX(h1 − h2) (h1 + h2) (17.38)

Which be expressed as

U1
2 =

gh2
2h1

(h1 + h2)

Hydraulic Jump U1

(17.39)

2
Why the term light gas is used? Because, the force is related to mass.
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Under the symmetry argument Eq. (17.39) can bewritten for the other velocity. In other words

1 and 2 and can be interchanged and there is nothing significant about their location yet.

U2
2 =

gh1
2h2

(h1 + h2)

Hydraulic Jump U2

(17.40)

If the momentum is conserved that indirectly imply that some energy is lost (elemen-

tary physics which shows no energy lost only when U1 = U2. This situation is similar to

collision of the two balls from the equations point of view.). The total head (energy per unit

weight) change in the transition is

hL = h2 +
U2
2

2 g
−

(
h1 +

U1
2

2 g

)
(17.41)

which can be rearranged as

hL = h2 − h1 +
U2
2

2 g
−
U1
2

2 g
(17.42)

Utilizing Eq. (17.39) and Eq. (17.40) Eq. (17.42) can be written as

hL = h2 − h1 +
1

2 Ag
Agh2
2h1

(h1 + h2) −
1

2 Ag
Agh1
2h2

(h1 + h2) (17.43)

which can be also written as

hL =
4h2

2 h1 − 4h1
2 h2

4h1 h2
+
h2 (h1 + h2)

4h1
−
h1 (h1 + h2)

4h2
(17.44)

which can be also written as

hL =
4h2

2 h1 − 4h1
2 h2

4h1 h2
+
h2
2 (h1 + h2)

4h1 h2
−
h1
2 (h1 + h2)

4h2 h1
(17.45)

The numerator is simply quadric equation (a − b)3 (Notice that coefficient 4 changes to 3

for both terms and the last two terms produce are in the third power.) and Eq. (17.45) can be

written as

hL =
(h1 − h2)

3

4h2 h1

Hydraulic Energy Loss

(17.46)

The conclusion from Eq. (17.46) is that hL < 0 must be negative (thermo second law). The

above statement means that h1 < h2. The jump must be from a shallow flow to a deep flow;

In plain English, the energy loss is a strong function of the hydrostatic sides heights. Note

that while the hydraulic jump goes from subcritical to subcritical, it does not mean that it a

proof that subcritical is the preferred flow.
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17.3.1 Poor Man Dimensional Analysis

The topic of open channel started long before the dimensional analysis become popular (about

150 years difference). Thus, the serious usage of the dimensional analysis started to appear only

after world war two. Here a simple dimensional analysis is offered. The Froude number is

defined as

Fr1
2 =

U1
2

gh1
(17.47)

Dividing Eq. (17.39) by gh1 and utilizing the definition r = h2/h1 to reads

U1
2

gh1
=
h2
2h1

(
1+

h2
h1

)
−−→ Fr1 = 2 r (1− r) (17.48)

Similar equation can be written for Fr2. It is common to solve for r as function of Fr. There

are two solutions for the equation of

r2 + r− 2 Fr1
2 = 0 (17.49)

The positive solution (no negative height possible)

r =
h2
h1

=
−1+

√
1+ 8 Fr1

2

2

Heights Ratio Froude

(17.50)

On arguments of symmetry, the reverse equation can be written as

1

r
=
h2
h1

=
−1+

√
1+ 8 Fr2

2

2
(17.51)

For completeness, the reverse relationship is

Fr1 =

√
r(1+ r)

2

Fr for h1/h2

(17.52)

The energy loss in theH as

H1 −H2
h1

=
(r− 1)3

4 r
(17.53)

The power loss is ρgq(H1 −H2)
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Example 17.7: Simple Hydraulic Jump Level: Basic
Flow in channel has hydraulic jump from height of 0.4[m] to 0.8[m]. What are the

upstream and downstream velocities, the volumetric flow rate and the rate of energy

loss at the jump?

Solution
height ratio is r = 2 The upstream Froude number is

Fr1 =

√
r(1+ r)

2

√
2(1+ 3)

2
=

√
3 (17.7.a)

Since Froude was calculated the velocity can be obtained according to Eq. (17.47) as

U1 = Fr1
2 gh1 = 3× 9.81× 0.4 ∼ 11.8[m/sec] (17.7.b)

The velocity on the other side can be ascertained from r height ratio as

U2 = U1/2 = 11.8/2 ∼ 5.89[m/sec] (17.7.c)

The flow rate is

q = h1 ∗U1 = 0.4× 11.8 ∼ 4.72[m2/sec] (17.7.d)

The energy lost in the hydraulic jump is

EL =
(r− 1)3

4 r
=
13

8
= 1/8 (17.7.e)

Example 17.8: Hydrostatic Pressure Level: Basic
A hydraulic jump occurs in rectangular channel with upstream velocity of U1 =

1.2[m/sec] and h1 = .1[m]. The density of the liquid (water) is about 1000[kg/m3]

Calculate the difference in the hydrostatic pressure in both sides.

Solution
The pressure on both sides of the jump is based on the height of the water (liquid). In this case,

first the height has to be calculated on the downstream side. The upstream Froude number is

Fr1
2 =

U1
2

gh1
=

1.22

9.81× 0.1 = 1.46 (17.8.a)

h2 = h1
1+

√
1+ 8 Fr1

2

2
= 0.1×

(
1+

√
1+ 8× 1.46
2

)
∼= 0.23[m] (17.8.b)

The pressure on upstream is

P1 =
0.2
2

× 9.81× 1000 ∼ 981[N/m2] (17.8.c)

The force per width is also very small since the height is very small. F1 = P h1.
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17.3.2 Velocity Profile
The flow regime (code name for the velocity profile) is important factor in the flow. Up this

point it was assume that there is some kind overage representing the velocity. Intuitively,

it can be observed that the velocity has effect on the flow. In this section while still dealing

with rectangular shape the velocity profile is arbitrary. In this section the velocity profile is

assumed to be known and there is no attempt to solve for it. The question in focus, given a

profile what is the change in the momentum equation and energy equation. It suggested to

isolate the velocity profile from the calculations and to make it as a coefficient.

In order to carry these calculations, themass conservation has to be solved. The velocity

profile can be any kind of function. Assuming that flow is stationary and 2D, the mass flow is

given by

ṁ

∫h1
0
ρU(y)dy (17.54)

In this stage, the complication of the air entrainment and similar effects are neglected. Thus,

a good approximation is to assume that the density is constant. Hence, equation can be read

ṁ

ρ
= q =

∫h1
0
U(y)dy (17.55)

The averaged velocity is U1 = q/h1.

The momentum conservation required that∫h1
0

[
P1 + ρU1

2
]
dy =

∫h2
0

[
P2 + ρU2

2
]
dy (17.56)

The pressure, under the assumptions that used in this discussion is actually linearly related

to the pressure. Again, the hydrostatic assumption is employed. Thus the first part of the

integral (for any height) is

∫h
0
ρg (h− ξ)dξ = ρg

[
hξ−

ξ2

2

]h

0

=
ρgh2

2
(17.57)

The part above is almost trivial. Next part is more complicated as∫h
0
ρU2(ξ)dξ =

∫h
0
ρ
U2(ξ)

U
2
U
2
dξ = ρU

2
∫h
0

U2(ξ)

U
2
dξ (17.58)

The combination of the integral is basically a function of velocity profile and is defined as

gamma momentum

γ =
1

h

∫h
0

U2(ξ)

U
2
dξ

Gamma Momentum

(17.59)
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The gamma function is a dimensionless function. Notice, that for energy gamma function is

defined a bit different. Using the definition Eq. (17.59) Eq. (17.56) to read∫h
0

[
P+ ρU(y)2

]
dy ∼=

gh2

2
+ γρ

(q
h

)2
(17.60)

Now γ can be calculated from various velocity profiles. For example, consider the plug

flow which preferred to uniform velocity.

Example 17.9: Gamma for Plug Flow Level: Intermediate
Calculate profile factor γ for two profiles: plug, laminar flow.

Solution
The calculations are straight forward for plug flow U(y) = q/h = constant. For the plug

flow

γ =

(
h

q

)2 1
h

∫h
0

(q
h

)2
dy = 1 (17.9.a)

For the laminar velocity it was shown earlier that velocity profile is parabola. The averaged

velocity is

U =
1

h

∫h
0

ρg sin θ
µ

(
hy−

y2

2

)
dy =

ρg sin θ
µh

[
hy2

2
−
y3

6

]h

0

(17.61)

which result in averaged velocity

U =
ρg sin θh2

3µ
≡ Ah2

3
(17.62)

The profile factor can be calculated as

γ =

(
3

ZAh2

)2 ∫h
0

(
ZA
(
hy−

y2

2

))2
dy (17.63)

which can be rewritten, if ξ = y/h and dξ = dy/h, as

γ = 9h

∫1
0

(
ξ−

ξ2

2

)2
dξ =

9h

30
(17.64)

17.4 Cross Section Area
17.4.1 Introduction

Before considering different cross sections, so far the discussion was focus on the rectangular

shape. At this stage, no discussionwas offered on the best ratio of rectangular sides. Now here

it is postulated that reducing of the wetted area can reduced the resistance. To some degree,

it is a valid but it is not universally correct. Regardless to the accuracy of the idea, it will be
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examined here. The rectangular cross section has width of b and two sides with height of h.

The wetted perimeter length is

PPP = b+ 2h =
A

h
+ 2h (17.65)

wherePPP denotes thewetted perimeter. Theminimumwetted perimeterwill at the derivative

equal zero.

dPPP

dh
= −

A

h2
+ 2 = − Ahb

hA2
+ 2 = −

b

h
+ 2 (17.66)

Which is h = b/2. This analysis suggests that the closer to the optimal channel is when the

liquid height is designed for width is double height. This design will minimizes the resistance

area and hopefully reduces the construction cost.

One of the concept when discussing non–circular shape is the hydraulic radius which

represents a similarity to circular conduit. In the context of the open channel flow it is defined

as

RH =
A

PPP

Hydraulic Radius

(17.67)

The analysis of the optimal rectangular suggest that shapes that are closer to circle are

more optimal. For example, the trapezoidal cross section can be used as an example. The

closest trapezoidal shape to the circle is the shape that all the three sides are equable which is

a half of hexagon. Another example is triangular channel (see the next example).

Example 17.10: Optimal Triangle for OC Level: Basic
A triangular open channel depicted in Fig. 17.25 the angle θ is half of the total angle.

For given amount of area find the optimal angle.

Solution
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End of Ex. 17.10
The area of the triangle is

A = 2

(
hh tan θ

2

)
(17.10.a)

From geometry the wetted perimeter is

PPP =
2
√
A sec θ√
tan θ

(17.10.b)

1

2
√
A

dPPP

dθ
= sec (θ)

√
tan (θ)−

sec (θ)3

2 tan (θ)
3
2

(17.10.c)

ααα hhhααα

Fig. 17.25 – Optimal angle for triangular
cross section.

Equating Eq. (17.10.c) to zero yields

sec (θ)
√

tan (θ) =
sec (θ)3

2 tan (θ)
3
2

(17.10.d)

After some manipulations θ = 45◦.

17.5 Energy For Non–Rectangular Cross–Section
In this section a discussion on the energy line

for non–rectangular is offered. The critical

conditions can be found by generalizing the

energy equation. Eq. (17.16) defines the specific

energy for rectangular shape. In that equation

the averages velocity was used and it will be

modified to bemore general. Notice thatqwas

replaced byQ to denote that there is no possi-

bility to have a flow rate per width. Notice the

plug flow is returned for simplification and γ

hhh

HHH

ccc
hchchc

Uc
2

2
Uc

2

2
Uc

2

2

b dhb dhb dh

ccc
scscsc

Fig. 17.26 – Specific energy lines for non–
rectangular channel.

can be used when velocity profile is accounted. The velocity is replaced by U = Q/A to be

H = h+
U2

2 g
= h+

Q2

2 gA2
(17.68)

The head loss is

Ew2 − Ew1 =

( H2︷ ︸︸ ︷
Q2
2

2A2
+ h2+H02

)
−

( H1︷ ︸︸ ︷
Q1
2

2A2
+ h1+H01

)
(17.69)
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While geometry of the cross section was not provided yet, the specific energy is a function of

flow depthH = f(h). If the cross section geometry is provided and for known flow rate,Q,

the specific energy can be calculated. The derivative of Eq. (17.68) yield

dH

dh
= 1−

2Q2

2 gA3

(
dA

dt

)
(17.70)

As opposed the rectangular case, another term was added. It can be noticed that ratio of

dA/dh can be only positive. The area cannot decrease with the increase of the height at most

it can be zero if the width is zero. At the surface, the differential infinitesimal element is the

width times the change of the height, bdh. Thus,

dA

dh
=
bHHdh
HHdh

= b(h) ̸= constant (17.71)

The value of b, in this case, refers to the value at the free surface width at the cross section.

Hence Eq. (17.70) reads now

dH

dh
= 1− A2Q

2 b

A2 gA3
(17.72)

Or

Q2

g
=
A3

b

Critical Conditions General

(17.73)

Or Eq. (17.73) can be rearranged as

U2︷︸︸︷
Q2

A2
=
gA

b
(17.74)

It is common to define the hydraulic diameter as

hD =
A

b

Hydraulic diameter, hD

(17.75)

With this definition, Eq. (17.75), Eq. (17.74) becomes

U2 = ghD −→ U =
√
ghD (17.76)

Thus similar to the rectangular case, using the definition of hydraulic diameter Fr at the crit-

ical condition is one.

Frc =
Uc√
ghD

= 1

Critical Fr number NR

(17.77)
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The maximum flow rate can be obtained when H is constant. In other words, finding the

maximum flow for a fix specific energy is done similarly as before. Eq. (17.68) can be written

as

Q =
√
2 gA2 (H− h) =

√
2 gA

√
H− h (17.78)

The derivative of Eq. (17.78) is

dQ

dh
=
√
2 g

(
dA

dh

√
H− h−

A

2
√
H− h

= 0

)
(17.79)

Equating Eq. (17.79) to zero (to get the maximum) and using the value of dA/dh = b provides

b
√
H− h =

A

2
√
H− h

−→ H− h =
A

2b
(17.80)

This results is the critical condition substitute into Eq. (17.78) and can be written as

Q2 =
2 gA3

2 b
=
gA3

b
−→ Q2

g
=
A3

b(h)

Critical Flow Rate

(17.81)

It should be noted that b is unknown but if it is obtained or known, there is a critical and

maximum flow rate at that location. Eq. (17.81) is not linear equation because b is not a con-

stant, the line representing this phenomenon not necessarily a straight line for all geometry.

For instance b = ah2 is parabolic is more common that one expect and in that case it not a

linear equation. In general it can be written as

Q2 b

gA3
= 1 −→ Q2b

g(bhc)3
= 1 −→ hc

3 =
Q2

gb2
(17.82)

For the rectangular shape the specific energy is

H = hc +
U2c
2 g

(17.83)

in general the specific energy is

Hc = hc +
Q2

2 gA2
(17.84)

Substituting Eq. (17.82) into Eq. (17.84)

Hc = hc +
Q2

2 gh2c
(17.85)
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17.5.1 Triangle Channel

One the common shape of open channel is the

triangle or the trapezoid.

Q2 b

gA3
= 1 (17.86)

Definingm = tan θ and assuming that there is

hc relating b = 2m tan θ, same for the area,

A = mhc
2
one gets

θθθ

hhh

h tan θh tan θh tan θ

Fig. 17.27 –Open channel flow in an isosceles
triangular shape.

Q2(2mhc)

g(mh2c)
3

= 1 (17.87)

After simplification Eq. (17.86)

2Q2

g ·m2 h5c
= 1 (17.88)

Changing the subject of a Eq. (17.88) it becomes

hc =
5

√
2Q2

gm2
(17.89)

Specific energy at the critical condition is

Hc = hc +
Q2

2 gA2
(17.90)

According to Eq. (17.86)Q2/g can be replaced by A3/b and thus Eq. (17.90) becomes

Hc = hc +

(
A3

b

)

2A2
−→ Hc = hc +

A

2b
(17.91)

Again using the value form the geometry i.e. A = mhc
2/2 and b = 2m tan θ to be

Hc = hc +
mh2c
2 2mhc

−→ Hc = hc +
hc

4
−→ Hc =

5hc

4
(17.92)

Froude number for triangular channel will be

√
2Uc√
ghc

= 1 (17.93)
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17.5.1.1 Section Factor Z

The generalize the treatment and to have general equations that can be used in a general way

(as possible) the following is offered. The expression

√
A/b is a function of the depth h for a

given channel geometry. It is convenient to define

Z = A

√
A

b
(17.94)

It also can be defined for the critical conditions

Zc = Ac

√
Ac

b
(17.95)

Squaring both sides results of Eq. (17.95) results in

Zc
2 =

Ac
3

b
(17.96)

For critical conditions Eq. (17.73) is valid and can be used with Eq. (17.96)

Z2c =
Qc
2

g
−→ Qc = Zc

√
g (17.97)

This can be used for general geometry (check also in (Bakhmeteff 1912) (Bakhmeteff 1912)).

Meta
There are several parameters that should be defined for this flow.

depth of the flow denoted as y, and is the vertical distance between the surface of the

flow and the lowest point channel.

stage the elevation (vertical distance) of the free surface to datum (or the lower point

of the channel).

wetted perimeter the length, in the cross section, of the liquid touching the solid, P

top width The length of the free surface, T .

hydraulic radius the ratio of the cross section area to wetted perimeter

RH = R =
A

P
(17.98)

hydraulic depth Denoted asDD and is the ratio of cross section area to to top width

DD =
A

T
(17.99)

section factor (for critical–flow) the product of the cross section and the square

root of the hydraulic depth

Z = A
√
DD =

√
A3

T
(17.100)

Meta End
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17.5.2 General Points that Needed to be Mentioned

The friction coefficient was mentioned earlier with minimal discussion. without break the

flow of the presentation in this chapter has to be included which several point like flow

regimes.

17.5.2.1 Flow Regimes

It is commonly believe that Reynolds number determine the flow regime. To large extend

is correct but the reader should be surprised that it is not exact and also other factors affect

the flow regimes. As the rule of thumb, the Reynolds number, as first approximation the

determining factor. The Reynolds commonly defined as

Re =
ρUR

µ
=
UR

ν
(17.101)

where ρ = density of liquid (water),U averaged velocity of liquid (water), R ∼ A/PPP , µ is liquid

viscosity, ν is kinematic viscosity.

Re ⩽ 500, the flow is laminar

500 > Re < 2000, the flow is transitional.

Re > 2000, the flow is turbulent.

The Reynolds also have two additional limits. The upper limits for open channels nor-

mally refer to large river like the amazon and perhaps it is the larger in some sense. At this

size some of the models described are not applicable because sheer size which introduce ad-

ditional issue like 3–dimensional flow etc. Can the Amazon be considered as an open channel

flow? in very limited sense. Additionally, when Reynolds number is very small a new pa-

rameter has stronger influence which is the surface tension. There are papers that dealing

Reynolds number approaching zero, These paper are example of prime fantasy. There is no

such thing, as every can observe the streaks in the windshield in a rainy days.

17.6 Qualitative Questions
• There is the quantity that remains in both step change of height and change of width

in open channel. Is the quantity is the same and if not what is the difference?

• WhyH is assumed to be constant under certain conditions. why and when?

• What is the reason that many shapes better records to move liquid in open channel as

compared to rectangular?
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17.7 Additional Examples

Example 17.11: Given Specific Energy Level: Simple
A specific energy of a channel is given as 2.4[m]. The rectangular channel has width

of 6[m]. What is the maximum total flow rate that is possible for this conditions.

Solution
It was the relationship for rectangular channel for the maximum flow rate is

yc =
2H

3
= 2.4× 2/3 = 1.8[m] (17.11.a)

The flow rate per width is related to critical

q =

√
yc3 g =

√
1.83 ∗ 9.81 ∼ 7.56[m2/sec] (17.11.b)

The total flow rate is then

Q = qb = 7.56× 6 ∼ 45.4[m3/sec] (17.11.c)

Example 17.12: Flow in Parabola Level: Intermediate
Open channel with parabolic section that obey the law b = h2. It was observed

that the critical height for certain energy condition to be 1.4[m]. Calculate the total

discharge in the channel.

Solution
The given height also provides the width at point as

b = h2 = 1.42 = 1.96[m] (17.12.a)

The area can be calculated using simple integration as

A =

∫hc

0
h2 dh =

∫1.4

0
h2 dh =

h3

3

∣∣∣∣
1

0

.4 ∼ 0.915 (17.12.b)

According Eq. (17.81)

Q =

√
gA3b =

√
9.81× 0.91531.98 ∼ 1.95[m3/sec] (17.12.c)

Example 17.13: Froude Number of Trapezoid Level: GATE 2001CV
A trapezoidal channel with bottom width of 3 [m] and side slope of 1V: 1.5 H carries a

discharge of 8.0 [m3/sec] with the flow depth of 1.5 [m]. The Froude Number of the

flow is
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End of Ex. 17.13

(a) 0.066 (b) 0.132

(c) 0.528 (d) 0.316

Solution
In Fig. 17.28 the channel is drawn to scale. With

given flow rate and information to get the area,

the question is the find Froude number. The

flow rate is given asQ = 8 [m3/s]. The Froude

number is defined as

Fr =
U√
ghD

(17.13.a)

Thus the hydraulic diameter has to found and

it is defined as Eq. (17.75)

3[m]3[m]3[m]

1.5[m]1.5[m]1.5[m]

1.51.51.5

1.01.01.0

Fig. 17.28 – Trapezoidal channel with
given bottom and slop drawn to
scale.

hD =
A

b
(17.13.b)

Where b is the free surface. The top will be 3+ 2×
1.5×1.5︷︸︸︷
2.25 = 7.5[m] area is

A =
3+ 7.5
2

× 1.5 = 7.875[m2] (17.13.c)

The free surface is 7.5[m]. The hydraulic diameter is

hD =
A

b
=
7.875
7.5

= 1.05[m] (17.13.d)

The velocity is

U =
Q

A
=

8

7.875
= 1.015[m/s] (17.13.e)

The Froude number is then

Fr =
U√
ghD

=
1.015√
9.8× 1.05 ∼ 0.316 (17.13.f)

The answer is (d).



A
The Mathematics Backgrounds for Fluid

Mechanics

In this appendix a review of selected topics in mathematics related to fluid mechanics is pre-

sented. These topics are present so that one with some minimal background could deal with

the mathematics that encompass within basic fluid mechanics. Hence without additional

reading, this book on fluid mechanics issues could be read by most readers. This appendix

condenses material that spread in many various textbooks some of which are advance. Fur-

thermore, some of the material appears in specialty books such as third order differential

equations (and thus it is expected that the student is not familiar with this material.). There is

very minimal original material which appears without proofs. The material is not presented

in “educational” order but in importance order.

A.1 Vectors

U

Uy

Ux

Uz

x

y

z

Fig. A.1 – Vector in Cartesian coordinates
system.

Vector is a quantity with direction as oppose to scalar.

The length of the vector in Cartesian coordinates (the

coordinates system is relevant) is

∥UUU∥ =

√
Ux
2 +Uy

2 +Uz
2

(A.1)

Vector can be normalized and in Cartesian coordinates

depicted in Figure A.1 where Ux is the vector compo-

nent in the x direction, Uy is the vector component in

765
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the y direction, and Uz is the vector component in the z direction. Thus, the unit vector is

ÛUU =
UUU

∥U∥ =
Ux

∥UUU∥ îii+
Uy

∥UUU∥ ĵjj+
Uz

∥UUU∥k̂kk (A.2)

and general orthogonal coordinates

ÛUU =
UUU

∥U∥ =
U1
∥UUU∥h1 +

U2
∥UUU∥h2 +

U3
∥UUU∥h3 (A.3)

Vectors have some what similar rules to scalars which will be discussed in the next

section.

A.1.1 Vector Algebra
Vectors obey several standard mathematical operations which are applicable to scalars. The

following are vectors, UUU, VVV , andWWW and for in this discussion a and b are scalars. Then the

following can be said

1. (UUU+VVV) +WWW = (UUU+VVV +WWW) = UUU+ (VVV +WWW)

2. UUU+VVV = VVV +UUU

3. Zero vector is such thatUUU+000 = UUU

4. Additive inverseUUU−UUU = 0

5. a (UUU+VVV) = aUUU+ aVVV

6. a (bUUU) = abUUU

U

V
W

Fig. A.2 – The right hand rule, multiplica-
tion ofUUU×VVV results inWWW.

The multiplications and the divisions have

somewhat different meaning in a scalar operations.

There are twokinds ofmultiplications for vectors. The

first multiplication is the “dot” product which is de-

fined by equation (A.4). The results of this multiplica-

tion is scalar but has no negative value as in regular

scalar multiplication.

UUU ·VVV =

regular scalar

multiplication︷ ︸︸ ︷
|UUU| · |VVV | cos

angle

between

vectors︷ ︸︸ ︷
(∠(UUU,VVV)) (A.4)

The second multiplication is the “cross” product which in vector as opposed to a scalar

as in the “dot” product. The “cross” product is defined in an orthogonal coordinate (ĥ1, ĥ2,

and ĥ3) as

UUU×VVV = |UUU| · |VVV | sin

angle︷ ︸︸ ︷
(∠(UUU,VVV)) n̂nn (A.5)
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where θ is the angle betweenUUU andVVV , and n̂nn is a unit vector perpendicular to bothUUU andVVV

which obeys the right hand rule. The right hand rule is referred to the direction of resulting

vector. Note that UUU and VVV are not necessarily orthogonal. Additionally note that order of

multiplication is significant. This multiplication has a negative value which means that it is a

change of the direction.

One of the consequence of this definitions in Cartesian coordinates is

îii
2
= ĵjj
2
= k̂kk

2
= 0 (A.6)

In general for orthogonal coordinates this condition is written as

ĥ1h1h1 × ĥ1h1h1 = ĥ1h1h1
2
= ĥ2h2h2

2
= ĥ3h3h3

2
= 0 (A.7)

where hihihi is the unit vector in the orthogonal system.

In right hand orthogonal coordinate system

ĥ1h1h1 × ĥ2h2h2 = ĥ3h3h3

ĥ2h2h2 × ĥ3h3h3 = ĥ1h1h1

ĥ3h3h3 × ĥ1h1h1 = ĥ2h2h2

ĥ2h2h2 × ĥ1h1h1 = −ĥ3h3h3

ĥ3h3h3 × ĥ2h2h2 = −ĥ1h1h1

ĥ1h1h1 × ĥ3h3h3 = −ĥ2h2h2

(A.8)

The “cross” product can be written as

UUU×VVV = (U2 V3 −U3 V2) ĥ1h1h1 + (U3 V1 −U1 V3) ĥ2h2h2 + (U1 V2 −U2 V1) ĥ3h3h3 (A.9)

Equation (A.9) in matrix form as

UUU×VVV =




ĥ1h1h1 ĥ2h2h2 ĥ3h3h3

U2 U2 U3

V2 V2 V3


 (A.10)

The most complex of all these algebraic operations is the division. The multiplication

in vector world have two definition one which results in a scalar and one which results in a

vector. Multiplication combinations shows that there are at least four possibilities of combin-

ing the angle with scalar and vector. The reason that these current combinations, that is scalar

associatedwith cos θ vectors is associatedwith sin θ, is that these combinations have physical

meaning. The previous experience is that help to define multiplication help to definition the

division. The number of the possible combinations of the division is very large. For example,

the result of the division can be a scalar combined or associated with the angle (with cos or
sin), or vector with the angle, etc. However, these above four combinations are not the only

possibilities (not including the left hand system). It turn out that these combinations have

very little
1
physical meaning. Additional possibility is that every combination of one vector

1
This author did find any physical meaning these combinations but there could be and those the word “little” is

used.
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element is divided by the other vector element. Since every vector element has three possible

elements the total combination is 9 = 3× 3. There at least are two possibilities how to treat

these elements. It turned out that combination of three vectors has a physical meaning. The

three vectors have a need for additional notation such of vector of vector which is referred

to as a tensor. The following combination is commonly suggested

UUU

VVV
=




U1
V1

U2
V1

U3
V1

U1
V2

U2
V2

U3
V2

U1
V3

U2
V3

U3
V3




(A.11)

One such example of this division is the pressure which the explanation is commonality

avoided or eliminated from the fluid mechanics books including the direct approach in this

book.

This tenser or the matrix can undergo regular linear algebra operations such as finding

the eigenvalue values and the eigen “vectors.” Also note the multiplying matrices and inverse

matrix are also available operation to these tensors.

A.1.2 Differential Operators of Vectors
Differential operations can act on scalar functions as well on vector and vector functions.

More differential operations can on scalar function can results in vector or vector function. In

multivariate calculus, derivatives of different directions can represented as a vector or vector

function. A compact presentation is a commonway to handle themathematicswhich simplify

the calculations and explanations. One of these operations is nabla operator sometimes also

called the “del operator.” This operator is a differential vector. For example, in Cartesian

coordinates the operation is

∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
(A.12)

Where î, ĵ, and k̂ are denoting unit vectors in the x,y, and z directions, respectively. Many of

the operations of vector world, such as, the gradient, divergence, the curl, and the Laplacian

are based or could be constructed from this single operator.

Gradient
This operation acts on a scalar function and results in a vector whose components are

derivatives in the principle directions of a coordinate system. A scalar function is a function

that provide a valued based on the coordinates (in Cartesian coordinates x,y,z). For example,

the temperature of the domain might be expressed as a scalar field.

∇ = î
∂T

∂x
+ ĵ
∂T

∂y
+ k̂

∂T

∂z
(A.13)
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Divergence
The same idea that was discussed in vector section there are two kinds ofmultiplication

in the vectorworld and twowill be for the differential operators. The divergence is the similar

to “dot” product which results in scalar. A vector domain (function) assigns a vector to each

point such as velocity for example,N, for Cartesian coordinates is

N(x,y, z) = Nx(x,y, z)î +Ny(x,y, z)ĵ +Nz(x,y, z)k̂ (A.14)

The dot product of these two vectors, in Cartesian coordinate is results in

div N = ∇ · N =
∂Nx

∂x
+
∂Ny

∂y
+
∂Nz

∂z
(A.15)

The divergence results in a scalar function which similar to the concept of the vectors mul-

tiplication of the vectors magnitude by the cosine of the angle between the vectors.

Curl
Similar to the “cross product” a similar operation can be defined for the nabla (note the

“right hand rule” notation) for Cartesian coordinate as

curlNNN = ∇×NNN =

(
∂Nz

∂y
−
∂Ny

∂z

)
î+

(
∂Nx

∂z
−
∂Nz

∂x

)
ĵ+

(
∂Ny

∂x
−
∂Nx

∂y

)
k̂

(A.16)

Note that the result is a vector.

Laplacian
The new operation can be constructed from “dot” multiplication of the nabla. A gradi-

ent acting on a scalar field creates a vector field. Applying a divergence on the result creates

a scalar field again. This combined operations is known as the “div grad” which is given in

Cartesian coordinates by

∇ ·∇ =
∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
(A.17)

This combination is commonality denoted as∇2. This operator also referred as the Laplacian
operator, in honor of Pierre-Simon Laplace (23 March 1749 – 5 March 1827).

d‘Alembertian
As a super–set for four coordinates (very minimal used in fluid mechanics) and it reffed

to as d’Alembertian or the wave operator, and it defined as

□2 = ∇2 − 1

c2
∂2

∂2t
(A.18)

Divergence Theorem
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Mathematicians call to or refer to a subset of The Reynolds Transport Theorem as the

Divergence Theorem, or called it Gauss’ Theorem (Carl Friedrich Gauss 30 April 1777 – 23

February 1855), In Gauss notation it is written as

y

V

(∇ ·NNN)dV =
{

A

NNN ·nnndA (A.19)

In Gauss-Ostrogradsky Theorem (Mikhail Vasilievich Ostrogradsky (September 24,

1801 – January 1, 1862). The notation is a bit different from Gauss and it is written in Os-

trogradsky notation as∫
V

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dxdydz =

∫∫
Σ
(Pp+Qq+ Rr)dΣ (A.20)

Note the strange notation of “Σ” which refers to the area. This theorem is applicable for

a fix control volume and the derivative can enters into the integral. Many engineering class

present this theorem as a theorem on its merit without realizing that it is a subset of Reynolds

Transport Theorem. This subset can further produces several interesting identities. IfNNN is a

gradient of a scalar field Π(x,y, z) then it can insert into identity to produce

y

V

(∇ · (∇Φ))dV =
y

V

(
∇2Φ

)
dV =

{

A

∇Φ ·nnndA (A.21)

Since the definition of∇Φ =NNN.

Special case of equation (A.21) for harmonic function (solutions Laplace equation see
2

Harmonic functions) then the left side vanishes which is useful identity for ideal flow analysis.

This results reduces equation, normally for steady state, to a balance of the fluxes through the

surface. Thus, the harmonic functions can be added or subtracted because inside the volume

these functions contributions is eliminated throughout the volume.

A.1.3 Differentiation of the Vector Operations
The vector operation sometime fell under (time or other) derivative. The basic of these rela-

tionships is explored. A vector is made of the several scalar functions such as

R⃗RR = f1(x1, x2, x3, · · · )êee1 + f2(x1, x2, x3, · · · )êee2 + f3(x1, x2, x3, · · · )êee3 + · · · (A.22)

where êeei is the unit vector in the i direction. The cross and dot products when the come

under differentiation can be look as scalar. For example, the dot product of operationRRR ·SSS =

(xî+ y2 ĵ) · (sin xî+ exp(y)ĵ) can be written as

d (RRR ·SSS)
dt

=
d

dt

((
xî+ y2 ĵ

)
·
(

sin xî+ exp(y)ĵ
))

2
for more information

http://math.fullerton.edu/mathews/c2003/HarmonicFunctionMod.html

http://math.fullerton.edu/mathews/c2003/HarmonicFunctionMod.html
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It can be noticed that

d (RRR ·SSS)
dt

=
d
(
x sin x+ y2 exp(y)

)

dt
=

dx

dt
sin x+

d sin x
dt

+
dy2

dt
exp(y) +

dy2

dt
exp(y)

It can be noticed that the manipulation of the simple above example obeys the regular chain

role. Similarly, it can done for the cross product. The results of operations of two vectors

is similar to regular multiplication since the vectors operation obey “regular” addition and

multiplication roles, the chain role is applicable. Hence, the chain role apply for dot operation,

d

dt
(RRR ·SSS) = dRRR

dt
·SSS+ dSSS

dt
·RRR (A.23)

And the chain role for the cross operation is

d

dt
(RRR×SSS) = dRRR

dt
×SSS+ dSSS

dt
×RRR (A.24)

It follows that derivative (notice the similarity to scalar operations) of

d

dt
(RRR ·RRR) = 2RRRdRRR

at

There are several identities that related to location, velocity, and acceleration. As in operation

on scalar time derivative of dot or cross of constant velocity is zero. Yet, the most interesting

is

d

dt
(RRR×UUU) = UUU×UUU+RRR× dUUU

dt
(A.25)

The first part is zero because the cross product with itself is zero. The second part is zero

because Newton law (acceleration is along the path of R).

A.1.3.1 Orthogonal Coordinates

These vectors operations can appear in different orthogonal coordinates system. There are

several orthogonal coordinateswhich appears in fluidmechanics operationwhich include this

list: Cartesian coordinates, Cylindrical coordinates, Spherical coordinates, Parabolic coordi-

nates, Parabolic cylindrical coordinates Paraboloidal coordinates, Oblate spheroidal coordi-

nates, Prolate spheroidal coordinates, Ellipsoidal coordinates, Elliptic cylindrical coordinates,

Toroidal coordinates, Bispherical coordinates, Bipolar cylindrical coordinates Conical coor-

dinates, Flat-ring cyclide coordinates, Flat-disk cyclide coordinates, Bi-cyclide coordinates

and Cap-cyclide coordinates. Because there are so many coordinates system is reasonable to

develop these operations for any for any coordinates system. Three common systems typical

to fluid mechanics will be presented and followed by a table and methods to present all the

above equations.

Cylindrical Coordinates
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e1

̂
θ

x

y

z

r
r̂θx

y

Fig. A.3 – Cylindrical Coordinate System.

The cylindrical coordinates are commonal-

ity used in situations where there is line of sym-

metry or kind of symmetry. This kind situations

occur in pipe flow even if the pipe is not ex-

actly symmetrical. These coordinates reduced the

work, in most cases, because problem is reduced

a two dimensions. Historically, these coordinate

were introduced for geometrical problems about

2000 years ago
3
. The cylindrical coordinates are

shown in Figure A.3. In the figure shows that the

coordinates are r, θ, and z. Note that unite coordi-

nates are denoted as r̂, θ̂, and ẑ. Themeaning of
−→r and r̂ are different. The first one represents

the vector that is the direction of r̂ while the second is the unit vector in the direction of the

coordinate r. These three different rs are some what similar to any of the Cartesian coordi-

nate. The second coordinate θ has unite coordinate θ̂. The new concept here is the length

factor. The coordinate θ is angle. In this book the dimensional chapter shows that in physics

that derivatives have to have same units in order to compare them or use them. Conversation

of the angel to units of length is done by length factor which is, in this case, r. The conversion

between the Cartesian coordinate and the Cylindrical is

r =
√
x2 + y2 θ = arctan

y

x
z = z (A.26)

The reverse transformation is

x = r cos θ y = r sin θ z = z (A.27)

The line element and volume element are

ds =

√
dr2 + (r dθ)2 + dz2 dr r dθdz (A.28)

The gradient in cylindrical coordinates is given by

∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ ẑ

∂

∂z
(A.29)

The curl is written

∇×NNN =

(
1

r

∂Nz

∂θ
−
∂Nθ
∂z

)
r̂+

(
∂Nr

∂z
−
∂Nz

∂r

)
θ̂+ (A.30)

1

r

(
∂ (rNθ)

∂r
−
∂Nθ
∂θ

)
ẑ (A.31)

3
Coolidge, Julian (1952). "The Origin of Polar Coordinates". American Mathematical Monthly 59: 78–85. http://

www-history.mcs.st-and.ac.uk/Extras/Coolidge_Polars.html. Note the advantage of cylindrical (polar)
coordinates in description of geometry or location relative to a center point.

http://www-history.mcs.st-and.ac.uk/Extras/Coolidge_Polars.html
http://www-history.mcs.st-and.ac.uk/Extras/Coolidge_Polars.html
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The Laplacian is defined by

∇ ·∇ =
1

r

∂

∂r

(
r
∂

∂r

)
+
1

r2
∂2

∂θ2
+
∂2

∂z2
(A.32)

Spherical Coordinates

θ̂

x

y

z

r

r̂

θx

y

φ̂

φ
z

Fig. A.4 – Spherical Coordinate System.

The spherical coordinates system is a three-

dimensional coordinates which is improvement

or further modifications of the cylindrical coor-

dinates. Spherical system used for cases where

spherical symmetry exist. In fluidmechanics such

situations exist in bubble dynamics, boom explo-

sion, sound wave propagation etc. A location is

represented by a radius and two angles. Note that

the first angle (azimuth or longitude) θ range is

between 0 < θ < 2π while the second angle (co-

latitude) is only 0 < ϕ < π. The radius is the

distance between the origin and the location. The first angle between projection on x − y

plane and the positive x–axis. The second angle is between the positive y–axis and the vector

as shown in Figure A.4.

The conversion between Cartesian coordinates to Spherical coordinates

x = r sinϕ cos θ y = r sinϕ sin θ z = r cosϕ (A.33)

The reversed transformation is

r =
√
x2 + y2 + z2 ϕ = arccos

(z
r

)
(A.34)

Line element and element volume are

ds =

√
dr2 + (r cos θdθ)2 + (r sin θdϕ)2 dV = r2 sin θdrdθdϕ (A.35)

The gradient is

∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ ϕ̂

1

r sin θ
∂

∂ϕ
(A.36)

The divergence in spherical coordinate is

∇ ·NNN =
1

r2
∂
(
r2Nr

)

∂r
+

1

r sin θ
∂ (Nθ sin θ)

∂θ
+

1

r sin θ
∂Nϕ

∂ϕ
(A.37)

The curl in spherical coordinates is

∇×NNN =
1

r sin θ

(
∂
(
Nϕ sin θ

)

∂θ
−
∂Nθ
∂ϕ

)
r̂+

1

r

(
1

sin θ
∂Nr

∂ϕ
−
∂
(
rNϕ

)

∂r

)
θ̂ +

1

r

(
∂ (rNθ)

∂r
−
∂Nr

∂θ

)
ϕ̂

(A.38)



774 APPENDIX A. MATHEMATICS FOR FLUID MECHANICS

The Laplacian in spherical coordinates is

∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2θ
∂2

∂ϕ2
(A.39)

General Orthogonal Coordinates

e1

e2

q
1

increase in

Fig. A.5 – The general Orthogonal with
unit vectors.

There are several orthogonal system and gen-

eral form is needed. The notation for the presentation

is required general notation of the units vectors is êi
and coordinates distance coefficient is hi where i is

1,2,3. The coordinates distance coefficient is the change

the differential to the actual distance. For example in

cylindrical coordinates, the unit vectors are: r̂, θ̂, and ẑ.

The units r̂ and ẑ are units with length. However, θ̂ is

lengthens unit vector and the coordinate distance co-

efficient in this case is r. As in almost all cases, there is

disputewhat the proper notation for these coefficients.

In mathematics it is denoted as q while in engineering is denotes h. Since it is engineering

book the h is adapted. Also note that the derivative of the coordinate in the case of cylindri-

cal coordinate is ∂θ and unit vector is θ̂. While the θ is the same the meaning is different and

different notations need. The derivative quantity will be denoted by q superscript.

The length of

dℓ2 =

d∑
i=1

(
hkdq

k
)2

(A.40)

The nabla operator in general orthogonal coordinates is

∇ =
ê1
h1

∂

∂q1
+
ê2
h2

∂

∂q2
+
ê3
h3

∂

∂q3
(A.41)

Gradient

The gradient in general coordinate for a scalar function TTT is the nabla operator in gen-

eral orthogonal coordinates as

∇TTT =
ê1
h1

∂TTT

∂q1
+
ê2
h2

∂TTT

∂q2
+
ê3
h3

∂TTT

∂q3
(A.42)

The divergence of a vector equals

∇ ·NNN =
1

h1h2h3

[
∂

∂q1
(N1h2h3) +

∂

∂q2
(N2h3h1) +

∂

∂q3
(N3h1h2)

]
. (A.43)
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Fig. A.6 – Parabolic coordinates by user WillowW using Blender.

For general orthogonal coordinate system the curl is

∇×NNN =
ê1
h2 h3

[
∂

∂q2
(h3N3) −

∂

∂q3
(h2N2)

]
+

ê2
h3 h1

[
∂

∂q3
(h1N1) −

∂

∂q1
(h3N3)

]
+

ê3
h1 h2

[
∂

∂q1
(h2N2) −

∂

∂q2
(h1N1)

] (A.44)

The Laplacian of a scalar equals

∇2ϕ =
1

h1h2h3

[
∂

∂q1

(
h2h3
h1

∂ϕ

∂q1

)
+

∂

∂q2

(
h3h1
h2

∂ϕ

∂q2

)
+

∂

∂q3

(
h1h2
h3

∂ϕ

∂q3

)]

(A.45)

The following table showing the different values for selected orthogonal system.

Table A.1 – Orthogonal coordinates systems (under construction please ignore)

Orthogonal
coordinates
systems

Remarks h q

name 1 2 3 1 2 3

Cartesian standard 1 1 1 x y z

Cylindrical common 1 r 1 r θ z

Spherical common 1 r r cos θ r θ φ
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Table A.1 – Orthogonal coordinates systems (continue)

Orthogonal
coordinates
systems

Remarks h q

name 1 2 3 1 2 3

Paraboloidal ?

√
u2 + v2

√
u2 + v2 uv u v θ

Ellipsoidal ? λ µ ν

A.2 Ordinary Differential Equations (ODE)
In this section a brief summary of ODE is presented. It is not intent to be a replacement

to a standard textbook but as a quick reference. It is suggested that the reader interested

in depth information should read “Differential Equations and Boundary Value Problems” by

Boyce de–Prima or any other book in this area. Ordinary differential equations are defined

by the order of the highest derivative. If the highest derivative is first order the equation is

referred as first order differential equation etc. Note that the derivatives are integers e.g. first

derivative, second derivative etc
4
. ODE are categorized into linear and non-linear equations.

The meaning of linear equation is that the operation is such that

aL (u1) + bL (u2) = L (au1 + bu2) (A.46)

An example of such linear operation L = d
dt + 1 acting on y is

dy1
dt + y1. Or this operation

on y2 is
dy2
dt + y2 and the summation of operation the sum operation of L(y1 + y2) =

y1+y2
dt + y1 + y2.

A.2.1 First Order Differential Equations

As expect, the first ODEs are easier to solve and they are the base for equations of higher order

equation. The first order equations have several forms and there is no one solution fit all but

families of solutions. The most general form is

f

(
u,
du

dt
, t
)

= 0 (A.47)

Sometimes equation (A.47) can be simplified to the first form as

du

dt
= F(t,u) (A.48)

4
Note that mathematically, it is possible to define fraction of derivative. However, there is no physical meaning

to such a product according to this author believe.
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A.2.2 Variables Separation or Segregation

In some cases equation (A.48) can be written as F(t,u) = X(t)U(u). In that case it is said that
F is spreadable and then equation (A.48) can be written as

du

U(u)
= X(t)dt (A.49)

Equation can be integrated either analytically or numerically and the solution is

∫
du

U(u)
=

∫
X(t)dt (A.50)

The limits of the integral is (are) the initial condition(s). The initial condition is the value the

function has at some points. The name initial condition is used because the values are given

commonly at initial time.

Example A.1:
Solve the following equation

du

dt
= u t (1.I.a)

with the initial condition u(t = 0) = u0.

Solution

The solution can be obtained by the variable separation method. The separation yields

du

u
= t dt (1.I.b)

The integration of equation (1.I.b) becomes∫
du

u
=

∫
t dt =⇒ ln (u) + ln (c) =

t2

2
(1.I.c)

Equation (1.I.c) can be transferred to

u = c et
2

(1.I.d)

For the initial condition of u(0) = u0 then

u = u0 e
t2

(1.I.e)

End Solution
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A.2.2.1 The Integral Factor Equations

Another method is referred to as integration factor which deals with a limited but very im-

portant class of equations. This family is part of a linear equations. The general form of the

equation is

dy

dx
+ g(x)y = m(x) (A.51)

Multiplying equation (A.51) by unknown functionN(x) transformed it to

N(x)
dy

dx
+N(x)g(x)y = N(x)m(x) (A.52)

What is needed fromN(x) is to provide a full differential such as

N(x)
dy

dx
+N(x)g(x)y =

d [N(x)g(x)y]

dx
(A.53)

This condition (note that the previous methods is employed here) requires that

dN(x)

dx
= N(x)g(x) =⇒ dN(x)

N(x)
= g(x)dx (A.54)

Equation (A.54) is integrated to be

ln (N(x)) =

∫
g(x)dx =⇒ N(x) = e

∫
g(x)dx

(A.55)

Using the differentiation chain rule provides

dN(x)

dx
=

dv
du︷ ︸︸ ︷

e

∫
g(x)dx

du
dx︷︸︸︷
g(x) (A.56)

which indeed satisfy equation (A.53). Thus equation (A.52) becomes

d [N(x)g(x)y]

dx
= N(x)m(x) (A.57)

Multiplying equation (A.57) by dx and integrating results in

N(x)g(x)y =

∫
N(x)m(x)dx (A.58)

The solution is then

y =

∫
N(x)m(x)dx

g(x) e
∫
g(x)dx︸ ︷︷ ︸
N(x)

(A.59)

A special case of g(t) = constant is shown next.
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Example A.2:
Find the solution for a typical problem in fluidmechanics (the problem of Stoke flow or the parachute
problem) of

dy

dx
+ y = 1

Solution

Substitutingm(x) = 1 and g(x) = 1 into equation (A.59) provides

y = e−x (ex + c) = 1+ ce−x

End Solution

A.2.3 Non–Linear Equations
Non-Linear equations are equations that the power of the function or the function derivative

is not equal to one or their combination. Many non linear equations can be transformed

into linear equations and then solved with the linear equation techniques. One such equation

family is referred in the literature as the Bernoulli Equations
5
. This equation is

du

dt
+m(t)u = n(t)

non–linear

part︷︸︸︷
up (A.60)

The transformation v = u1−p turns equation (A.60) into a linear equation which is

dv

dt
+ (1− p)m(t) v = (1− p)n(t) (A.61)

The linearized equation can be solved using the linear methods. The actual solution is ob-

tained by reversed equation which transferred solution to

u = v(p−1) (A.62)

Example A.3:
Solve the following Bernoulli equation

du

dt
+ t2 u = sin(t)u3 (1.III.a)

Solution

The transformation is

v = u2 (1.III.b)

5
Not to be confused with the Bernoulli equation without the s that referred to the energy equation.
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Using the definition (1.III.b) equation (1.III.a) becomes

dv

dt

1−p︷︸︸︷
−2 t2 v =

1−p︷︸︸︷
−2 sin(t) (1.III.c)

The homogeneous solution of equation (1.III.c) is

u(t) = ce
−t3

3 (1.III.d)

And the general solution is

u = e
−
t3

3




private solution︷ ︸︸ ︷∫
e

t3

3 sin (t) dt+c


 (1.III.e)

End Solution

A.2.3.1 Homogeneous Equations

Homogeneous function is given as

du

dt
= f(u, t) = f(au,a t) (A.63)

for any real positive a. For this case, the transformation ofu = v t transforms equation (A.63)

into

t
dv

dt
+ v = f(1, v) (A.64)

In another words if the substitution u = v t is inserted the function f become a function

of only v it is homogeneous function. Example of such case u′ =
(
u3 − t3

)
/t3 becomes

u′ =
(
v3 + 1

)
. The solution is then

ln |t| =

∫
dv

f(1, v) − v
+ c (A.65)

Example A.4:
Solve the equation

du

dt
= sin

(u
t

)
+

(
u4 − t4

t4

)
(1.IV.a)

Solution

Substituting u = v T yields
du

dt
= sin (v) + v4 − 1 (1.IV.b)
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or

t
dv

dt
+ v = sin (v) + v4 − 1 =⇒ t

dv

dt
= sin (v) + v4 − 1− v (1.IV.c)

Now equation (1.IV.c) can be solved by variable separation as

dv

sin (v) + v4 − 1− v
= t dt (1.IV.d)

Integrating equation (1.IV.d) results in∫
dv

sin (v) + v4 − 1− v
=
t2

2
+ c (1.IV.e)

The initial condition can be inserted via the boundary of the integral.

End Solution

A.2.3.2 Variables Separable Equations

In fluid mechanics and many other fields there are differential equations that referred to vari-

ables separable equations. In fact, this kind of class of equations appears all over this book.

For this sort equations, it can be written that

du

dt
= f(t)g(u) (A.66)

Themain point is that f(t) and be segregated from g(u). The solution of this kind of equation

is ∫
du

g(u)
=

∫
f(t)dt (A.67)

Example A.5:
Solve the following ODE

du

dt
= −u2 t2 (1.V.a)

Solution

Segregating the variables to be ∫
du

u2
=

∫
t2 dt (1.V.b)

Integrating equation (1.V.b) transformed into

−
1

u
=
t3

3
+ c1 (1.V.c)

Rearranging equation (1.V.c) becomes

u =
−3

t3 + c
(1.V.d)

End Solution
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A.2.3.3 Other Equations

There are equations or methods that were not covered by the above methods. There are

additionalmethods such numerical analysis, transformation (like Laplace transform), variable

substitutions, and perturbation methods. Many of these methods will be eventually covered

by this appendix.

A.2.4 Second Order Differential Equations
The general idea of solving second order ODE is by converting them into first order ODE.

One such case is the second order ODE with constant coefficients.

The simplest equations are with constant coefficients such as

a
d2u

dt2
+ b

du

dt
+ cu = 0 (A.68)

In a way, the second order ODE is transferred to first order by substituting the one linear

operator to two first linear operators. Practically, it is done by substituting est where s is

characteristic constant and results in the quadratic equation

a s2 + b s+ s = 0 (A.69)

If b2 > 4a c then there are two unique solutions for the quadratic equation and the general

solution form is

u = c1 e
s1 t + c2 e

s2 t
(A.70)

For the case of b2 = 4 a c the general solution is

u = c1 e
s1 t + c2 t e

s1 t
(A.71)

In the case of b2 > 4a c, the solution of the quadratic equation is a complex number which

means that the solution has exponential and trigonometric functions as

u = c1e
αt cos(βt) + c2eαt sin(βt) (A.72)

Where the real part is

α =
−b

2a
(A.73)

and the imaginary number is

β =

√
4 a c− b2

2 a
(A.74)

Example A.6:
Solve the following ODE

d2u

dt2
+ 7

du

dt
+ 10u = 0 (1.VI.a)
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Solution

The characteristic equation is

s2 + 7 s+ 10 = 0 (1.VI.b)

The solution of equation (1.VI.b) are −2, and −5. Thus, the solution is

u = k1 e
−2t + k2 e

−5t
(1.VI.c)

End Solution

A.2.4.1 Non–Homogeneous Second ODE

Homogeneous equation are equations that equal to zero. This fact can be used to solve non-

homogeneous equation. Equations that not equal to zero in this form

a
d2u

dt2
+ b

du

dt
+ cu = l(x) (A.75)

The solution of the homogeneous equation is zero that is the operation L(uh) = 0, where L

is Linear operator. The additional solution of L(up) is the total solution as

L (utotal) =

=0︷ ︸︸ ︷
L (uh)+L (up) =⇒ utotal = uh + up (A.76)

Where the solution uh is the solution of the homogeneous solution and up is the solution

of the particular function l(x). If the function on the right hand side is polynomial than the

solution is will

utotal = uh +

n∑
i=1

upi (A.77)

The linearity of the operation creates the possibility of adding the solutions.

Example A.7:
Solve the non-homogeneous equation

d2u

dt2
− 5

du

dt
+ 6u = t+ t2

Solution

The homogeneous solution is

u(t) = c1 e
2t + c1 e

3t
(1.VII.a)

the particular solution for t is

u(t) =
6 t+ 5

36
(1.VII.b)
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and the particular solution of the t2 is

u(t) =
18 t2 + 30 t+ 19

108
(1.VII.c)

The total solution is

u(t) = c1 e
2t + c1 e

3t +
9 t2 + 24 t+ 17

54
(1.VII.d)

End Solution

A.2.5 Non–Linear Second Order Equations
Some of the techniques that were discussed in the previous section (first order ODE) can be

used for the second order ODE such as the variable separation.

A.2.5.1 Segregation of Derivatives

If the second order equation

f(u, u̇, ü) = 0

can be written or presented in the form

f1(u)u̇ = f2 (u̇) ü (A.78)

then the equation (A.78) is referred to as a separable equation (some called it segregated equa-

tions). The derivative of u̇ can be treated as a new function v and v̇ = ü. Hence, equation

(A.78) can be integrated ∫u
u0

f1(u)u̇ =

∫ u̇
u̇0

f2 (u̇) ü =

∫v
v0

f2 (u) v̇ (A.79)

The integration results in a first order differential equation which should be dealt with the

previous methods. It can be noticed that the function initial condition is used twice; first with

initial integration and second with the second integration. Note that the derivative initial

condition is used once. The physical reason is that the equation represents a strong effect of

the function at a certain point such surface tension problems. This equation family is not well

discussed in mathematical textbooks
6
.

Example A.8:
Solve the equation

√
u
du

dt
− sin

(
du

dt

)
d2u

dt2
= 0

With the initial condition of u(0) = 0 and dudt (t = 0) = 0What happen to the extra “dt”?
6
This author worked (better word toyed) in (with) this area during his master but to his shame he did not produce

any papers on this issue. The papers are still his drawer and waiting to a spare time.
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Solution

Rearranging the ODE to be

√
u
du

��dt
= sin

(
du

dt

)
d

��dt

(
du

dt

)
(1.VIII.a)

Thus the extra dt is disappeared and equation (1.VIII.a) becomes∫ √
udu =

∫
sin
(
du

dt

)
d

(
du

dt

)
(1.VIII.b)

and transformation to v is ∫ √
udu =

∫
sin (v)dv (1.VIII.c)

After the integration equation (1.VIII.c) becomes

2

3

(
u
3
2 − u0

3
2

)
= cos (v0) − cos (v) = cos

(
du0
dt

)
− cos

(
du

dt

)
(1.VIII.d)

Equation (1.VIII.d) can be rearranged as

du

dt
= arcsin

(
2

3

(
u0

3
2 − u

3
2

)
+ cos (v0)

)
(A.80)

Using the first order separation method yields∫t
0
dt =

∫u
u0

du

arcsin


2
3


u0

3
2︸︷︷︸

=0

−u
3
2


+ cos (v0)︸ ︷︷ ︸

=1




(A.81)

The solution (A.81) shows that initial condition of the function is used twice while the initial

of the derivative is used only once.

End Solution

A.2.5.2 Full Derivative Case Equations

Another example of special case or families of second order differential equations which is

results of the energy integral equation derivations as

u− au

(
du

d t

) (
d2u

d t2

)
= 0 (A.82)

where a is constant. One solution is u = k1 and the second solution is obtained by solving

1

a
=

(
du

d t

) (
d2u

d t2

)
(A.83)
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The transform of v = du
dt results in

1

a
= v

dv

dt
=⇒ dt

a
= v dv (A.84)

which can be solved with the previous methods.

Bifurcation to two solutions leads

t

a
+ c = 1

2 v
2 =⇒ du

dt
= ±

√
2 t

a
+ c1 (A.85)

which can be integrated as

u =

∫
±
√
2 t

a
+ c1 dt = ±a

3

(
2 t

a
+ c1

) 3
2

+ c2 (A.86)

A.2.5.3 Energy Equation ODE

It is non–linear because the second derivative is square and the function multiply the second

derivative.

u

(
d2u

d t2

)
+

(
du

d t

)2
= 0 (A.87)

It can be noticed that that c2 is actually two different constants because the plus minus signs.

d

dt

(
u
du

d t

)
= 0 (A.88)

after integration

u
du

d t
= k1 (A.89)

Further rearrangement and integration leads to the solution which is

u2

2 k1
= t+ k2 (A.90)

For non–homogeneous equation they can be integrated as well.

Example A.9:
Show that the solution of

u

(
d2u

d t2

)
+

(
du

d t

)2
+ u = 0 (1.IX.a)

is

−

√
3

∫
u√

3 k1 − u3
du

√
2

= t+ k2
(1.IX.b)

√
3

∫
u√

3 k1 − u3
du

√
2

= t+ k2
(1.IX.c)
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A.2.6 Third Order Differential Equation
There are situations where fluid mechanics

7
leads to third order differential equation. This

kind of differential equation has been studied in the last 30 years to some degree. The solution

to constant coefficients is relatively simple and will be presented here. Solution to more com-

plicate linear equations with non constant coefficient (function of t) can be solved sometimes

by Laplace transform or reduction of the equation to second order Olivier Vallee
8
.

The general form for constant coefficient is

d3u

dt3
+ a

d2u

dt2
+ b

du

dt
+ cu = 0 (A.91)

The solution is assumed to be of the form of est which general third order polonium. Thus,

the general solution is depend on the solution of third order polonium. Third order polonium

has always one real solution. Thus, derivation of the leading equation (results of the ode) is

reduced into quadratic equation and thus the same situation exist.

s3 + a1 s
2 + a2 s+ a3 = 0 (A.92)

The solution is

s1 = −
1

3
a1 + (S+ T) (A.93)

s2 = −
1

3
a1 −

1
2 (S+ T) +

1
2 i
√
3(S− T) (A.94)

and

s3 = −
1

3
a1 −

1
2 (S+ T) −

1
2 i
√
3(S− T) (A.95)

Where

S =
3

√
R+

√
D, (A.96)

T =
3

√
R−

√
D (A.97)

and where theD is defined as

D = Q3 + R2 (A.98)

7
The unsteady energy equation in accelerated coordinate leads to a third order differential equation.

8
“On the linear third-order differential equation” Springer Berlin Heidelberg, 1999. Solving Third Order Linear

Differential Equations in Terms of Second Order Equations Mark van Hoeij
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and where the definitions ofQ and R are

Q =
3a2 − a1

2

9
(A.99)

and

R =
9a1a2 − 27a3 − 2a1

3

54
(A.100)

Only three roots can exist for theMach angle, θ. From amathematical point of view, ifD > 0,

one root is real and two roots are complex. For the case D = 0, all the roots are real and at

least two are identical. In the last case whereD < 0, all the roots are real and unequal.

When the characteristic equation solution has three different real roots the solution of

the differential equation is

u = c1 e
s1 t + c2 e

s2 t + c3 e
s3 t

(A.101)

In the case the solution to the characteristic has two identical real roots

u = (c1 + c2 t) e
s1 t + c3 e

s2 t
(A.102)

Similarly derivations for the case of three identical real roots. For the case of only one real

root, the solution is

u = (c1 sinb1 + c2 cosb1) ea1t + c3es3t (A.103)

Where a1 is the real part of the complex root and b1 imaginary part of the root.

A.2.7 Forth and Higher Order ODE
The ODE and partial differential equations (PDE) can be of any integer order. Sometimes

the ODE is fourth order or higher the general solution is based in idea that equation is re-

duced into a lower order. Generally, for constant coefficients ODE can be transformed into

multiplication of smaller order linear operations. For example, the equation

d4u

dt4
− u = 0 =⇒

(
d4

dt4
− 1

)
u = 0 (A.104)

can be written as combination of

(
d2

dt2
− 1

) (
d2

dt2
+ 1

)
u = 0 or

(
d2

dt2
+ 1

) (
d2

dt2
− 1

)
u = 0 (A.105)

The order of operation is irrelevant as shown in equation (A.105). Thus the solution of

(
d2

dt2
+ 1

)
u = 0 (A.106)
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with the solution of

(
d2

dt2
− 1

)
u = 0 (A.107)

are the solutions of (A.104). The solution of equation (A.106) and equation (A.107) was dis-

cussed earlier.

The general procedure is based on the above concept but is some what simpler. Insert-

ing est into the ODE

an u
(n) + an−1 u

(n−1) + an−2 u
(n−2) + · · ·+ a1 u′ + a0 u = 0 (A.108)

yields characteristic equation

an s
n + an−1 s

n−1 + an−2 s
n−2 + · · ·+ a1 s+ a0 = 0 (A.109)

If The Solution of
Characteristic Equation

The Solution of
Differential Equation Is

all roots are real and different

e.g. s1 ̸= s2 ̸= s3 ̸= s4 · · · ≠ sn
u = c1 e

s1t + c2 e
s2t + · · · +

cn e
snt

all roots are real but some are

identical e.g. s1 = s2 = · · · = sk
and some different

e.g. sk+1 ̸= sk+2 ̸= sk+3 · · · ≠ sn

u =
(
c1 + c2 t+ · · ·+ ck tk−1

)
es1t+

ck+1 e
sk+1t+ ck+2 e

sk+2t+ · · ·+ cn esnt

k/2 roots, are pairs of conjugate

complex numbers of si = ai ± bi
and some real and different

e.g. sk+1 ̸= sk+2 ̸= sk+3 · · · ≠ sn

u = (cos(b1 t) + sin(b1 t)) ea1t+
· · ·+ (cos(bi t) + sin(bi t)) eait+
· · ·+ (cos(bk t) + sin(bk t)) eakt+
ck+1 e

sk+1t+ ck+2 e
sk+2t+ · · ·+ cn esnt

k/2 roots, are pairs of conjugate

complex numbers of si = ai ± bi,
ℓ roots are similar and some real and

different

e.g. sk+1 ̸= sk+2 ̸= sk+3 · · · ≠ sn

u = (cos(b1 t) + sin(b1 t)) ea1t+
· · ·+ (cos(bi t) + sin(bi t)) eait+
· · ·+ (cos(bk t) + sin(bk t)) eakt+(
ck+1 + ck+2 t+ · · ·+ ck+ℓ tℓ−1

)
esk+1t+

ck+2 e
sk+2t+ ck+3 e

sk+3t+ · · ·+ cn esnt

Example A.10:
Solve the fifth order ODE

d5u

dt5
− 11

d4u

dt4
+ 57

d3u

dt3
− 149

d2u

dt2
+ 192

du

dt
− 90u = 0 (1.X.a)

Solution

The characteristic equation is

s5 − 11 s4 + 57 s3 − 149 s2 + 192 s− 90 = 0 (1.X.b)
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With the roots of the equation (1.X.b) (these roots can be found using numerical methods or

Descartes’ Rule) are

s1,2 = 3± 3 i
s3,4 = 2± i
s5 = 1

(1.X.c)

The roots are two pairs of complex numbers and one real number. Thus the solution is

u = c1 e
t + e2t (c2 sin (t) + c3 cos (t)) + e3t (c4 sin (3 t) + c5 cos (3 t)) (1.X.d)

End Solution

A.2.8 A general Form of the Homogeneous Equation
The homogeneous equation can be generalized to

k0 t
n d

nu

dtn
+ k1 t

n−1 d
n−1u

dtn−1
+ · · ·+ kn−1 t

du

dt
+ kn u = ax (A.110)

To be continue

A.3 Partial Differential Equations
Partial Differential Equations (PDE) are differential equationswhich include function includes

the partial derivatives of two or more variables. Example of such equation is

F(ut,ux, . . .) = 0 (A.111)

Where subscripts refers to derivative based on it. For example, ux = ∂u
∂x . Note that partial

derivative also include mix of derivatives such as uxy. As one might expect PDE are harder

to solve.

Many situations in fluid mechanics can be described by PDE equations. Generally,

the PDE solution is done by transforming the PDE to one or more ODE. Partial differential

equations are categorized by the order of highest derivative. The nature of the solution is

based whether the equation is elliptic parabolic and hyperbolic. Normally, this characteriza-

tion is done for for second order. However, sometimes similar definition can be applied for

other order. The physical meaning of the these definition is that these equations have differ-

ent characterizations. The solution of elliptic equations depends on the boundary conditions

The solution of parabolic equations depends on the boundary conditions but as well on the

initial conditions. The hyperbolic equations are associated with method of characteristics

because physical situations depends only on the initial conditions. The meaning for initial

conditions is that of solution depends on some early points of the flow (the solution). The

general second-order PDE in two independent variables has the form
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axx uxx + 2axy uxy + ayy uyy + · · · = 0 (A.112)

The coefficients axx, axy, ayy might depend upon ”x” and ”y”. Equation (A.112) is similar to

the equations for a conic geometry:

axx x
2 + axy xy+ ayy y

2 + · · · = 0 (A.113)

In the samemanner that conic geometry equations are classified are based on the discriminant

a2xy − 4 axx ayy, the same can be done for a second-order PDE. The discriminant can be

function of the x and y and thus can change sign and thus the characteristic of the equation.

Generally, when the discriminant is zero the equation are called parabolic. One example of

such equation is heat equation. When the discriminant is larger then zero the equation is

referred as hyperbolic equations. In fluid mechanics this kind equation appear in supersonic

flow or in supper critical flow in open channel flow. The equations that not mentioned above

are elliptic which appear in ideal flow and subsonic flow and sub critical open channel flow.

A.3.1 First-order equations
First order equation can be written as

u = ax
∂u

∂x
+ ay

∂u

∂x
+ . . . (A.114)

The interpretation the equation characteristic is complicated. However, the physics dictates

this character and will be used in the book.

An example of first order equation is

∂u

∂x
+
∂u

∂y
= 0 (A.115)

The solution is assume to be u = Y(y)X(x) and substitute into the (A.115) results in

Y(y)
∂X(x)

∂x
+X(x)

∂Y(y)

∂y
= 0 (A.116)

Rearranging equation (A.116) yields

1

X(x)

∂X(x)

∂x
+

1

Y(y)

∂Y(y)

∂y
= 0 (A.117)

A possible way the equation (A.117) can exist is that these two term equal to a constant. Is it

possible that these terms not equal to a constant? The answer is no if the assumption of the

solution is correct. If it turned that assumption is wrong the ratio is not constant. Hence, the

constant is denoted as λ and with this definition the PDE is reduced into two ODE. The first

equation is X function

1

X(x)

∂X(x)

∂x
= λ (A.118)
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The second ODE is for Y

1

Y(y)

∂Y(y)

∂y
= −λ (A.119)

Equations (A.119) and (A.118) are ODE that can be solved with the methods described before

for certain boundary condition.

A.4 Trigonometry
These trigonometrical identities were set up by Keone Hon with slight modification

1. sin(α+β) = sinα cosβ+ sinβ cosα

2. sin(α−β) = sinα cosβ− sinβ cosα

3. cos(α+β) = cosα cosβ− sinα sinβ

4. cos(α−β) = cosα cosβ+ sinα sinβ

5. tan(α+β) =
tanα+ tanβ
1− tanα tanβ

6. tan(α−β) =
tanα− tanβ
1+ tanα tanβ

1. sin 2α = 2 sinα cosα

2. cos 2α = cos2 x− sin2 x = 2 cos2 x− 1 = 1− 2 sin2 x

3. tan 2α =
2 tanα
1− tan2 α

4. sin
α

2
= ±

√
1− cosα

2
(determine whether it is + or - by finding the quadrant that

α

2
lies in)

5. cos
α

2
= ±

√
1+ cosα

2
(same as above)

6. tan
α

2
=
1− cosα

sinα
=

sinα
1+ cosα

γ

β

b

a

α

c

Fig. A.7 – The tringle angles sides.

for formulas 3-6, consider the trianglewith sides

of length a, b, and c, and opposite angles α, β, and γ,

respectively

1. sin2 α =
1− 2 cos(2α)

2

2. cos2 α =
1+ 2 cos(2α)

2
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3.

sinα
a

=
sinβ
b

=
sinγ
c

(Law of Sines)

4. c2 = a2 + b2 − 2 ab cosγ (Law of Cosines)

5. Area of triangle = 1
2ab sinγ

6. Area of triangle =
√
s(s− a)(s− b)(s− c),

where s =
a+ b+ c

2
(Heron’s Formula)
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Void Fraction, 710

Wetness fraction, 710

Uniform Flow, 459

Unstable condition, 104

Unsteady State Momentum, 222

Upsteam Mach number, 662

Vapor pressure, 91

Variables Separation

1st equation, 781

Varignon Theorem, 61

Vectors, 765



INDEX OF SUBJECTS 805

Vectors Algebra, 766

Velocity profile, 754

Venturi Meter, 504

Vertical counter–current flow, 721

Vertical flow, 703

Viscosity, 9

Viscosity Kinetic Theory, 12

Volterra integral equation, 83

von Karman vortex street, 380

Vortexes, 4

Vorticity, 445

Watson’s method, 19

Wave Operator, 769

weak solution, 654

Weber number, 380, 382

Westinghouse patent, 702

Young modulus, 380

Young’s Modulus, 544

zero deflection angle, 661

Zhukovsky, see also Joukowski



806 INDEX OF SUBJECTS



Index of Authors

(Manning, 736

Andritsos, N, 708

Bhuckingham, 4

Blasius, 4

Bossut, 4

Brahms, 4

Buckingham, 337, 339

Chezy, 4

Cichilli, 714

Coulomb, 4

d’Aubisson, 4

Da Vinci, Leonardo, 3

Darcy, 4

de Saint Venant, Barré, 281

Dubuat, 4

Duckler, 700, 714

Dupuit, 4

Euler, 3

Euler, Leonahard, 382

Evangelista Torricelli, 261

Fabre, 4

Fanning, 4

Fourier Jean B. J., 338

France, William N, 524

Froude, William, 4, 338

Galileo, di Vincenzo Bonaiuti de’ Galilei ,

3

Ganguillet, 4

Gaponenko, YA, 708

Gauss, Carl Friedrich, 770

Griffith, 736

Hagen, 4

Hanratty, TJ, 708

Helmholtz, Hermann von, 3, 4

Henderson, 670

Kelvin, 3

Kirchhoff, 3

Kutta, Martin Wilhelm, 486

Kutta-Joukowski, 4

La Grange, 3

Leibniz, 190

Lockhart, 700

Manning, 4

Martinelli, 338, 700

Maxwell, 338

Menikoff, 670

Meyer, 4

Mikhail Vasilievich Ostrogradsky, 770

Navier, Claude–Louis, 281

Nepomnyashchy, Alexander, 708

Newton, 338

Nikuradse, 4

Nusselt, Ernst Kraft

Nusselt, Ernst Kraft Wilhelm, 324, 339

Olivier Vallee, 787

807



808 INDEX OF AUTHORS

Pierre-Simon Laplace, 770

Pigot, 736

Poiseuille, 4

Poiseuille, Jean Louis, 320

Poisson, Siméon-Denis, 281

Prandtl, 4

Rankine, 3

Rayleigh, 3, 4, 169, 339

Reiner, M., 380

Reynolds, Osborne, 190, 339

Riabouchunsky, 339

Rose, 4

Schmidt, 337

Shevtsova, Valentina, 708

Shin, Young S, 524

Smeaton, John, 338

Stanton, 4

Stokes, George Gabriel, 281

Strouhal, Vincenz, 395

Taitle, 700

Taylor, G.I., 169

Thompson, 652

Torricelli, Evangelista, 261

Van Laarhoven, BJH, 524

Varignon, Pierre, 61

Vaschy, Aiméem, 339

Vernon-Harcourt, 736

Von Karman, 4, 380

Weisbach, 4

Westinghouse, 702

Zhukovsky, Nikolay Yegorovich, 486


	Please Update 
	Abstract 
	Why Abstract
	Short Abstract
	Long Abstract

	Prologue For This Book
	Version 0.7.0 June 21, 2023
	pages (893 pages, size 15M)

	Version 0.6.9 May 31, 2023
	pages (873 pages, size 15M)

	Version 0.6.7 July 5, 2022
	pages 831 size 13.3M

	Version 0.6.2 April 13, 2022
	pages 795 size 12.0M

	Version 0.6.0 March 22, 2022
	pages 773 size 11.8M

	Version 0.5.5 March 17, 2022
	pages 767 size 12M

	Version 0.5.2 July 11, 2021
	pages 743 size 11M

	Version 0.4 April 6, 2020
	pages 749 size 11M

	Version 0.3.2.0 March 18, 2013
	pages 617 size 4.8M

	Version 0.3.0.5 March 1, 2011
	pages 400 size 3.5M

	Version 0.1.8 August 6, 2008
	pages 189 size 2.6M

	Version 0.1 April 22, 2008
	pages 151 size 1.3M

	How to contribute to this book
	Credits
	 Steven from artofproblemsolving.com 
	Dan H. Olson
	Richard Hackbarth
	John Herbolenes
	Eliezer Bar-Meir
	Henry Schoumertate
	Dmitry Kolomenskiy
	Xu Mengfan 
	 Your name here
	 Typo corrections and other "minor" contributions


	Change Log
	Nomenclature
	GNU Free Documentation License
	APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	ADDENDUM: How to use this License for your documents


	How This Book Was Written
	2023 Version
	2022 Version
	2021 Version
	Initial
	Properties
	Turbulence
	Inviscid Flow
	Machinery
	Internal Viscous Flow
	Open Channel Flow


	Introduction to Fluid Mechanics 
	What is Fluid Mechanics? 
	Brief History 
	Kinds of Fluids
	Shear Stress
	Viscosity
	General Discussion
	Non–Newtonian Fluids 
	Kinematic Viscosity 
	Estimation of The Viscosity 

	Fluid Properties
	Fluid Density
	Bulk Modulus

	Surface Tension 
	Wetting of Surfaces


	Review of Thermodynamics 
	Introductory Remarks 
	Basic Definitions 
	Thermodynamics First Law 
	Thermodynamics Second Law 

	Review of Mechanics 
	Introductory Remarks 
	Kinematics of of Point Body 
	Forces and Moments

	Center of Mass  
	Actual Center of Mass
	Approximate Center of Area 
	Change of Centroid Location Due to Added/Subtracted Area
	Change of Mass Centroid Due to Addition or Subtraction of Mass in 3D
	Centroid of Segment

	Moment of Inertia 
	Moment of Inertia for Mass
	Moment of Inertia for Area 
	Examples of Moment of Inertia
	Product of Inertia
	Principal Axes of Inertia

	Newton's Laws of Motion 
	Angular Momentum and Torque 
	Tables of geometries  

	Multiple Choice Questions
	Multiple Solution


	Fluids Statics 
	Introduction 
	The Hydrostatic Equation 
	Pressure and Density in a Gravitational Field 
	Constant Density in Gravitational Field 
	Pressure Measurement 
	Varying Density in a Gravity Field 
	The Pressure Effects Due To Temperature Variations 
	Gravity Variations Effects on Pressure and Density 
	Liquid Phase 

	Fluid in a Accelerated System 
	Fluid in a Linearly Accelerated System 
	Angular Acceleration Systems: Constant Density 
	Fluid Statics in Geological System 

	Fluid Forces on Surfaces 
	Fluid Forces on Straight Surfaces 
	Forces on Curved Surfaces 

	Buoyancy and Stability 
	Stability 
	Application of GM-.4
	Surface Tension 

	Rayleigh–Taylor Instability 
	Qualitative questions 

	I Integral Analysis
	Mass Conservation
	Introduction 
	Control Volume 
	Continuity Equation 
	Non Deformable Control Volume 
	Constant Density Fluids 

	Reynolds Transport Theorem 
	Examples For Mass Conservation 
	The Details Picture – Velocity Area Relationship 
	More Examples for Mass Conservation 

	Momentum Conservation
	Momentum Governing Equation 
	Introduction to Continuous 
	External Forces 
	Momentum Governing Equation 
	Momentum Equation in Acceleration System 
	Momentum Equation For Steady State and Uniform Flow 

	Momentum Equation Application 
	Momentum for Unsteady State and Uniform Flow 
	Momentum Application to Unsteady State 

	Machinery Unitizing Momentum 
	Conservation Moment Of Momentum 
	More Examples on Momentum Conservation 
	Qualitative Questions 


	Energy Conservation
	The First Law of Thermodynamics 
	Limitation of Integral Approach 
	Approximation of Energy Equation 
	Energy Equation in Steady State 
	Energy Equation in Frictionless Flow and Steady State 

	Energy Equation in Accelerated System 
	Energy in Linear Acceleration Coordinate 
	Linear Accelerated System 
	Energy Equation in Rotating Coordinate System 
	Simplified Energy Equation in Accelerated Coordinate 
	Energy Losses in Incompressible Flow 

	Examples of Integral Energy Conservation 
	Qualitative Questions 


	II Differential Analysis
	Differential Analysis
	Introduction 
	Mass Conservation  
	Mass Conservation Examples 
	Simplified Continuity Equation 

	Conservation of General Quantity 
	Generalization of Mathematical Approach for Derivations 
	Examples of Several Quantities 

	Momentum Conservation 
	Derivations of the Momentum Equation 
	Boundary Conditions and Driving Forces 
	Boundary Conditions Categories 

	Examples for Differential Equation (Navier-Stokes) 
	Interfacial Instability 
	Extra Questions


	Dimensional Analysis 
	Introductory Remarks 
	Brief History 
	Theory Behind Dimensional Analysis 
	Dimensional Parameters Application for Experimental Study 
	The Pendulum Class Problem 

	Buckingham—-Theorem 
	Construction of the Dimensionless Parameters 
	Basic Units Blocks 
	Implementation of Construction of Dimensionless Parameters 
	Similarity and Similitude 

	Nusselt's Technique 
	Summary of Dimensionless Numbers 
	The Significance of these Dimensionless Numbers 
	Relationship Between Dimensionless Numbers 
	Examples for Dimensional Analysis 

	Abuse of Dimensional Analysis
	Summary 
	Appendix summary of Dimensionless Form of Navier–Stokes Equations 
	Supplemental Problems 

	External Flow
	Introduction  
	Boundary Layer Theory 
	Non–Circular Shape Effect
	Examples


	Internal Flow
	Introduction 
	Colebrook-White equation for Friction Factor, f  

	Entry Problem  
	Non–Circular Shape Effect

	Losses in Conduits Connections and Other Devices
	Minor Loss
	Flow Meters (Flow Measurements)
	Nozzle Flow Meter

	Flow Network
	Series Conduits Systems
	Parallel Pipe Line Systems
	Additional Questions


	Potential Flow
	Introduction 
	Inviscid Momentum Equations 

	Potential Flow Function
	Streamline and Stream function 
	Compressible Flow Stream Function 
	The Connection Between the Stream Function and the Potential Function 

	Potential Flow Functions Inventory 
	Flow Around a Circular Cylinder 

	Complex Potential 
	Complex Potential and Complex Velocity 

	Blasius's Integral Laws  
	Forces and Moment Acting on Circular Cylinder.
	Conformal Transformation or Mapping

	Unsteady State Bernoulli in Accelerated Coordinates 
	Qualitative questions 
	Additional Example  

	Added Mass and Transfer Properties 
	Introduction 
	History
	What is the Added Mass?
	The Added Mass Matrix of a Body
	Added Moment of Inertia Coefficients

	Calculations of the Added Mass 
	Transfer Mechanisms and Transfer Properties 
	History of Transfer Properties
	Introduction
	Transfer Linear Motion to Rotating Motion
	The Parallel Axes Theorem for Added Mass 
	Experimental Observation

	 Added Mass and Transfer Properties 
	 Added Moment of Inertia
	Introduction


	III Compressible Flow
	Compressible Flow One Dimensional 
	What is Compressible Flow? 
	Why Compressible Flow is Important? 
	Speed of Sound 
	Introduction  
	Speed of Sound in Ideal and Perfect Gases 
	Speed of Sound in Almost Incompressible Liquid 
	Speed of Sound in Solids 
	The Dimensional Effect of the Speed of Sound 

	Isentropic Flow 
	Stagnation State for Ideal Gas Model 
	Isentropic Converging–Diverging Flow in Cross Section 
	The Properties in the Adiabatic Nozzle 
	Isentropic Flow Examples 
	Mass Flow Rate (Number) 
	Isentropic Tables 
	The Impulse Function 

	Normal Shock  
	Solution of the Governing Equations  
	Prandtl's Condition 
	Operating Equations and Analysis  
	The Moving Shocks 
	Shock or Wave Drag Result from a Moving Shock 
	Qualitative questions 
	Tables of Normal Shocks, k=1.4 Ideal Gas 

	Isothermal Flow  
	The Control Volume Analysis/Governing equations  
	Dimensionless Representation 
	The Entrance Limitation of Supersonic Branch 
	Supersonic Branch  
	Figures and Tables 
	Isothermal Flow Examples 

	 Fanno Flow 
	Introduction 
	Non–Dimensionalization of the Equations 
	The Mechanics and Why the Flow is Choked? 
	The Working Equations  
	Examples of Fanno Flow 
	Working Conditions 
	The Pressure Ratio, .P2 / P1, effects 
	Practical Examples for Subsonic Flow
	Subsonic Fanno Flow for Given 4fLD and Pressure Ratio  
	Subsonic Fanno Flow for a Given M1 and Pressure Ratio  
	 More Examples of Fanno Flow

	 The Table for Fanno Flow
	Rayleigh Flow 
	Introduction 
	Governing Equations 
	Rayleigh Flow Tables and Figures 
	Examples For Rayleigh Flow 


	Compressible Flow 2–Dimensional 
	Introduction 
	Preface to Oblique Shock  

	Oblique Shock  
	Solution of Mach Angle  
	When No Oblique Shock Exist or the case of D>0 
	Application of Oblique Shock  

	Prandtl-Meyer Function  
	Introduction  
	Geometrical Explanation 
	Alternative Approach to Governing Equations  
	Comparison And Limitations Between the Two Approaches  

	The Maximum Turning Angle  
	The Working Equations for the Prandtl–Meyer Function  
	d'Alembert's Paradox  
	Flat Body with an Angle of Attack  
	Examples For Prandtl–Meyer Function  
	Combination of the Oblique Shock and Isentropic Expansion  


	IV Special Topics
	Multi–Phase Flow  
	Introduction  
	History  
	What to Expect From This Chapter  
	Classification of Multi-Phase Flow  
	Classification of Liquid-Liquid Flow Regimes  
	Co–Current Flow 

	Emptying and Filling Pipes
	Multi–Phase Flow Variables Definitions  
	Multi–Phase Averaged Variables Definitions  

	Homogeneous Models  
	Pressure Loss Components  
	Lockhart Martinelli Model 

	Solid–Liquid Flow 
	Solid Particles with Heavier Density S>L  
	Solid With Lighter Density S<  and With Gravity 

	Counter–Current Flow  
	Horizontal Counter–Current Flow  
	Flooding and Reversal Flow  

	Multi–Phase Conclusion

	Open Channel Flow
	What is Open Channel Flow?
	Introduction
	Open Channel ``Intuition'
	Energy Line

	Energy conservation
	Some Design Considerations
	Expansion and Contraction
	Summery

	Hydraulic Jump
	Poor Man Dimensional Analysis
	Velocity Profile

	Cross Section Area
	Introduction

	Energy For Non–Rectangular Cross–Section
	Triangle Channel
	General Points that Needed to be Mentioned

	Qualitative Questions
	Additional Examples

	Mathematics For Fluid Mechanics
	Vectors
	Vector Algebra
	Differential Operators of Vectors
	Differentiation of the Vector Operations

	Ordinary Differential Equations (ODE)
	First Order Differential Equations
	Variables Separation or Segregation
	Non–Linear Equations
	Second Order Differential Equations
	Non–Linear Second Order Equations
	Third Order Differential Equation
	Forth and Higher Order ODE
	A general Form of the Homogeneous Equation

	Partial Differential Equations
	First-order equations

	Trigonometry

	Index
	Bibliography


