
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-12 Issue-2, July 2023

11

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.B76710712223
DOI: 10.35940/ijrte.B7671.0712223

Journal Website: www.ijrte.org

Abstract: Software flaws pose a severe danger to the security

and privacy of computer systems and the people who use them [1].

For software systems to be reliable and available, vulnerabilities

must be found and fixed before they may be used against the

system [2]. Two popular methods for finding weaknesses in

software systems are code review and penetration testing [3].

Which method is better for identifying vulnerabilities,

nevertheless, is not widely agreed upon [4]. The usefulness of code

reviews and penetration tests in locating vulnerabilities is

reviewed in detail in this study. We evaluate much empirical

research [5] and contrast the benefits and drawbacks of each

method. According to our research, both code reviews and

penetration tests are useful for uncovering vulnerabilities [6],

despite the fact that their effectiveness varies based on the kind of

vulnerability, the complexity of the code, and the testers' or

reviewers' experience [7][8]. Additionally, we discovered that

doing both penetration testing and code review together may be

more efficient than using each approach alone [9]. These results

may help software engineers, security experts, and researchers

choose and use the right approach for locating weaknesses in

software systems.

Keywords: Software Vulnerabilities, Code Review, Penetration

Testing, Effectiveness, Empirical Studies, Strengths and

Weaknesses, Combined Strategy, Software Development, Security

Professionals, Recommendations.

Manuscript received on 08 May 2023 | Revised Manuscript

received on 23 May 2023 | Manuscript Accepted on 15 July 2023

| Manuscript published on 30 July 2023.
*Correspondence Author(s)

G.H.N Anuththara, Faculty of Computing, Sri Lanka Institute of
Information Technology, Malabe, Sri Lanka. Email:

ghnanuththara@gmail.com, ORCID ID:

https://orcid.org/0009-0009-1634-694X

S.S.U Senadheera*, Faculty of Computing, Sri Lanka Institute of

Information Technology, Malabe, Sri Lanka. Email:
shsenadheera@gmail.com, ORCID ID:

https://orcid.org/0009-0003-6061-2906
S.M.T.V Samarasekara, Faculty of Computing, Sri Lanka Institute of

Information Technology, Malabe, Sri Lanka. Email:

thisunsamarasekara@gmail.com, ORCID ID:
https://orcid.org/0009-0008-6784-0158

K.M.G.T Herath, Faculty of Computing, Sri Lanka Institute of
Information Technology, Malabe, Sri Lanka. Email:

gthgayashanthilina@gmail.com, ORCID ID:

https://orcid.org/0009-0000-1224-959X
M. V. N. Godapitiya, Faculty of Computing, Sri Lanka Institute of

Information Technology, Malabe, Sri Lanka. Email: virajini.g@sliit.lk,
ORCID ID: https://orcid.org/0009-0000-2529-3311

Dr. D. I. De Silva, Faculty of Computing, Sri Lanka Institute of

Information Technology, Malabe, Sri Lanka. Email: dilshan.i@sliit.lk,

ORCID ID: https://orcid.org/0000-0001-6821-488X

© The Authors. Published by Blue Eyes Intelligence Engineering and

Sciences Publication (BEIESP). This is an open access article under the

CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

I. INTRODUCTION

Both software developers and consumers are becoming

more concerned about software vulnerabilities. Software

system vulnerabilities must be found and fixed immediately

due to the complexity and frequency of cyber-attacks [10].

Code review and penetration testing are two methods that are

often used to find vulnerabilities in software [11]. In a code

review, the source code is thoroughly examined to find any

possible flaws [12]. In order to find vulnerabilities that may

be exploited, penetration testing includes simulating an

assault on a software system [13].

Despite the significance of finding vulnerabilities, there is

disagreement over the efficiency of code review and

penetration testing in doing so. According to some research,

code review is more successful than penetration testing [14]

[15], while other studies [16][17] support the opposite

conclusion. Additionally, some research contend that the

most successful strategy could include combining the two

methods [18][19]. The best ways to find weaknesses in

software systems are complicated by the lack of agreement

on these issues.

Code review and penetration testing have gained

popularity in recent years as methods for finding weaknesses

in software systems. However, there is ongoing discussion

over whether or not these approaches are useful in locating

vulnerabilities [20]. Additionally, there is a dearth of studies

contrasting the advantages and disadvantages of penetration

testing and code review [21]. By contrasting the efficiency of

code review and penetration testing in locating vulnerabilities

in software systems and by identifying variables that may

impact their efficacy, this research article tries to fill these

gaps in the literature. Therefore, the research question

covered in this article is: Compared to alternative methods

like penetration testing, how successful is code review in

identifying vulnerabilities? This research article will

evaluate, synthesize, and compare the efficacy of penetration

testing and code review in order to provide a response to this

topic. By responding to this research topic, the research study

seeks to inform software engineers and security experts on

the most effective methods for locating vulnerabilities in

software systems. Code review is the act of methodically

going over a software application's source code to find errors

or vulnerabilities before they can be exploited. To guarantee

that the code is safe, dependable, and effective, it is a crucial

quality assurance approach.

A Study of The Effectiveness of Code Review in

Detecting Security Vulnerabilities

G.H.N Anuththara, S.S.U Senadheera, S.M.T.V Samarasekara, K.M.G.T Herath, D. I. De Silva, M. V. N.

Godapitiya

https://www.doi.org/10.35940/ijrte.B7671.0712223
https://www.doi.org/10.35940/ijrte.B7671.0712223
http://www.ijrte.org/
mailto:ghnanuththara@gmail.com
https://orcid.org/0009-0009-1634-694X
mailto:shsenadheera@gmail.com
https://orcid.org/0009-0003-6061-2906
mailto:thisunsamarasekara@gmail.com
https://orcid.org/0009-0008-6784-0158
mailto:gthgayashanthilina@gmail.com
https://orcid.org/0009-0000-1224-959X
mailto:virajini.g@sliit.lk
https://orcid.org/0009-0000-2529-3311
mailto:dilshan.i@sliit.lk
https://orcid.org/0000-0001-6821-488X
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijrte.B7671.0712223&domain=www.ijrte.org

A Study of The Effectiveness of Code Review in Detecting Security Vulnerabilities

12

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.B76710712223
DOI: 10.35940/ijrte.B7671.0712223

Journal Website: www.ijrte.org

Security has grown in importance as a worry in recent

years as software applications are developed. Software

developers are under pressure to make sure that their code is

safe as cyber assaults and data breaches are growing more

common and complex.

Through code review, this problem may be solved, for

example. Studies have demonstrated that reviewing the

source code of software programs can help find security

flaws. Developers can find possible vulnerabilities by

evaluating the code and taking action to fix them before an

attacker can use them.

Nevertheless, despite the potential advantages of code

review, little is known about how well it works to find

security flaws. This study on the efficiency of code review in

spotting security flaws seeks to close this knowledge gap.

The article will examine several processes and tools for code

reviews, as well as the tools and technology that support code

reviews. Additionally, it will look at the difficulties and

restrictions of code review and make suggestions for

enhancing its capability to identify security flaws.

Security and privacy of computer systems and their users

are seriously threatened by software vulnerabilities [22]. For

software systems to be reliable and available, vulnerabilities

must be found and fixed before they may be used against the

system [10]. Two popular methods for finding weaknesses in

software systems are code review and penetration testing

[23]. However, academics and practitioners continue to

disagree about how well these strategies work to find

vulnerabilities [24].

There is no agreement on which method is better for

finding vulnerabilities, despite the expanding volume of

research on both code reviews and penetration testing [25].

According to certain research, code reviews are more

effective [26][27], whereas penetration tests are more

effective [28][29]. Studies have also shown that combining

the two methods may be the most successful strategy [28].

This lack of agreement brings up crucial issues such as

whether software developers and security experts are using

the best methods for their purposes and the most efficient

manner to find vulnerabilities in software systems.

Determining the efficiency of code review and penetration

testing in detecting vulnerabilities, as well as contrasting their

advantages and disadvantages, is the subject that this research

article attempts to solve. By addressing this issue, the study

article seeks to provide suggestions and insights to help

software engineers and security experts choose and use the

best method for locating vulnerabilities in software systems.

Additionally, this study work intends to uncover variables

that could affect the success of penetration testing and code

review, as well as to contribute to a larger conversation on

these topics.

Software development is not complete without code

review, which aids in locating and preventing security flaws.

Organizations must now make sure that their software is

trustworthy and safe due to the rising threat of cyberattacks.

Therefore, research into how well code reviews work at

identifying security flaws is essential for assisting businesses

in making decisions about their software development

processes [30].

This study makes a big contribution by helping to create

best practices for code reviews. Organizations may improve

the effectiveness and efficiency of their code review

processes by finding the best review processes, tools, and

techniques [31]. According to a study by Rahman et al.

(2018), using checklists and recommendations could aid

reviewers in spotting common types of vulnerabilities and

boost code review effectiveness [31].

This study also has the benefit of providing insight into the

effectiveness of various code review methodologies. Code

review can take many different forms, including automated,

tool-assisted, and manual peer review. Organizations can

choose the optimal approach for their goals by being aware of

the advantages and disadvantages of each option [32].

According to a study by Zeller et al. (2019), combining

manual and tool-assisted review to discover security

vulnerabilities was more efficient than using either approach

alone [32].

Additionally, by balancing code review with other security

practices like penetration testing and vulnerability scanning,

the study can aid organizations in making the best choices.

Code review is simply one component of a comprehensive

security strategy, so it is essential to understand where it fits

into the entire security plan [33]. Code review was helpful in

identifying some vulnerabilities, such as SQL injection and

cross-site scripting, but less effective at identifying others,

like authentication and authorization problems, according to

a study by Wang et al. (2019) [33].

In conclusion, the study on code review's efficiency in

spotting security flaws is important since it can help

companies strengthen the security and dependability of their

software [30]. Organizations may improve the effectiveness

and efficiency of their code review processes by finding the

best review processes, tools, and techniques [31].

Organizations can also improve their overall security by

recognizing the advantages and disadvantages of various

code review methodologies and balancing code review with

other security measures [32][33].

The purpose of the study on the effectiveness of code

review in discovering security vulnerabilities is to assess how

well various code review methodologies work at spotting

various security problems. The study looks at tool-assisted

code review in addition to manual and automated code

review. A hybrid strategy that combines the advantages of

both human and automated methods is tool-assisted code

review. According to studies, tool-assisted code reviews can

find more security problems than manual reviews by itself

[34]. The goal of the study is to establish the best mix of

manual, automated, and tool-assisted review methodologies

for finding various security vulnerabilities.

 The study also aims to evaluate how review duration

affects code review efficiency. According to research, more

faults are found the more thorough the examination is [35].

There is a limit of diminishing returns, though, at which the

extra time spent reviewing does not significantly improve the

number of flaws discovered. Therefore, the goal of the study

is to determine the ideal review time for various software

projects and types of code reviews.

https://www.doi.org/10.35940/ijrte.B7671.0712223
https://www.doi.org/10.35940/ijrte.B7671.0712223
http://www.ijrte.org/

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-12 Issue-2, July 2023

13

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.B76710712223
DOI: 10.35940/ijrte.B7671.0712223

Journal Website: www.ijrte.org

 Examining the effect of reviewer experience on the

efficacy of code review is another aim of the study.

Experienced reviewers are better able to find problems than

less experienced reviewers, according to prior study[36].

Experienced reviewers, however, can also be more prone to

cognitive biases that could hinder their capacity to find

specific kinds of flaws. Therefore, the goal of the study is to

determine the ideal level of reviewer experience for various

software projects and types of code reviews.

 On the basis of the research's conclusions, the study

attempts to provide the best practices for code review.

Depending on the nature of the software project and the kinds

of security vulnerabilities being targeted, best practices may

include recommendations for choosing the most efficient

review approaches, tools, and procedures. The optimization

of review time, reviewer skill, and other factors that affect

code review efficiency may also be included in best practices.

Research question: How effective is code review in

identifying vulnerabilities in comparison to other techniques

like penetration testing?

In this study article, we look at the efficacy of penetration

testing and code review in locating weaknesses in software

systems. We want to know, "How effective is code review in

identifying vulnerabilities in comparison to other techniques

like penetration testing?" We provide three theories to

address this question. First, we propose that, when it comes to

finding vulnerabilities in software systems, code review

outperforms penetration testing [26][27][37].

Second, we believe that when it comes to finding software

system vulnerabilities, penetration testing outperforms code

reviews [28][29][25]. Finally, we propose that the most

successful method for locating vulnerabilities in software

systems is a mix of code review and penetration testing

[38][39][40]. By putting these theories to the test, we intend

to shed light on the efficacy of various vulnerability detection

strategies and aid software developers and security experts in

selecting the strategies that will work best for them.

Software security is crucial, particularly in the current

climate of frequent cyberattacks and data breaches. For

similar situations to be avoided, it is essential to find and

repair software vulnerabilities. Code review and penetration

testing are two well-liked procedures for finding

vulnerabilities. The efficiency of these approaches, however,

is debatable and varies based on a number of variables,

including the kind of vulnerability, the complexity of the

code, and the skill of the testers and reviewers.

This study compares the effectiveness of penetration

testing versus code reviews for finding software

vulnerabilities. It evaluates a number of empirical research

and points out the advantages and disadvantages of both

approaches. Although there is no universal agreement on

which approach is superior, some studies imply that

combining the two methods can result in more effective

vulnerability detection.

 Code review is meticulously searching for errors and

vulnerabilities in a software application's source code. For

assuring code quality and enhancing software security, it is a

crucial procedure. The study paper analyzes different code

review methodologies, tools, and technologies. It also points

out its drawbacks and makes recommendations on how to

increase the discovery of security flaws.

 There is currently no consensus on which method is better

for finding vulnerabilities despite the rising number of

research on code review and penetration testing. According

to some research, code reviews are more productive, whereas

penetration testing is preferred by others. The greatest

outcomes, however, could come from combining the two

approaches. The study report gives advice to assist software

developers and security experts choose the best vulnerability

detection strategy, as well as insights into the variables that

might impact the effectiveness of various approaches.

 The importance of code review in mitigating security

issues during software development is emphasized in the

study article. It emphasizes various review techniques, tools,

and tactics while outlining the best practices for code

reviews. It also discusses the advantages and disadvantages

of peer review, tool-assisted code review, and automated

code review. The goal of the article is to assist enterprises in

selecting the optimal code review technique for their

requirements.

 The study report concludes by arguing that the kind of

vulnerability, the complexity of the code, and the

tester/reviewer's experience all affect how well code review

and penetration testing work to find security flaws. It

emphasizes the value of a comprehensive strategy for

software security, of which code review is just one aspect.

Organizations may increase the security and dependability of

their software by comprehending the advantages and

disadvantages of various code review techniques and

balancing them with other security measures.

II. LITERATURE REVIEW

Web security flaws are a growing worry as the web

becomes a more prevalent application platform. In a perfect

world, these vulnerabilities would be found and fixed

throughout the web application development process [41].

Web apps are becoming more and more important in our

daily lives as a result of the extensive use of and dependence

on the Internet. Web apps have a huge user base, making

them a great target for attackers looking to take over websites

or steal user data. Unfortunately, attacks against these

applications are frequently successful. Bugs in

application-specific code are the main cause of web

application vulnerabilities. These are brought on by

developers' widespread ignorance of web security, and they

frequently involve deviating from best practices in coding

[41].

Web applications should ideally be safe and devoid of

vulnerabilities. Although it can be challenging to tell whether

an application still has any vulnerabilities, it is generally

accepted that applications with fewer vulnerabilities are more

secure. As a result, software businesses and developers often

make an effort to identify and fix vulnerabilities in their

products. Manually inspecting source code and using

automated tools that may spot vulnerabilities are two typical

methods of doing this [41].

https://www.doi.org/10.35940/ijrte.B7671.0712223
https://www.doi.org/10.35940/ijrte.B7671.0712223
http://www.ijrte.org/

A Study of The Effectiveness of Code Review in Detecting Security Vulnerabilities

14

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.B76710712223
DOI: 10.35940/ijrte.B7671.0712223

Journal Website: www.ijrte.org

The process of reviewing source code from a security

standpoint has proved to be challenging. Indeed, prior studies

have demonstrated that developers frequently overlook even

well-known and simple-to-detect vulnerabilities during code

review. According to preliminary data, the reviewers'

mindset and habits may be a substantial factor [42].

Secure code review is a method that may be used manually

or automatically to examine an application's source code. The

goal of this research is to identify any potential security gaps

or vulnerabilities. Code review specifically looks for logical

issues, assesses how the specification was implemented, and

validates style guidelines [43].

III. METHODOLOGY

In order to learn how well code reviews, compare to other

methods like penetration testing in spotting vulnerabilities,

this study's approach involved conducting a poll. Ten

questions about code reviews' significance, efficacy,

measurement, communication, and competence made up the

survey. Participants with security and software development

expertise were given the survey. In order to compare the

efficiency of code review in discovering vulnerabilities to

other approaches like penetration testing, the survey data was

statistically evaluated. In order to shed light on how

effectively code reviews, as opposed to other methods like

penetration testing, find vulnerabilities, the results were

presented and analyzed in the study article. The technique

also took ethical issues like informed consent and participant

replies' confidentiality into account.

IV. RESULTS

The usefulness of code review in locating security flaws is

examined in the study article. In the study, the outcomes of

code reviews performed by a team of engineers on a variety

of software projects are being examined. The study

summarizes the results and offers statistical evidence to

support the claim that code review is a reliable method for

identifying security flaws. The study's findings can be

utilized to improve the general security of software systems

and guide software development methods.

The purpose of this work was to assess how well code

reviews can identify security flaws. Data from several

software development teams who conducted code reviews as

part of their development process were analyzed for the

study. The researchers compared the quantity and seriousness

of security flaws discovered through code reviews to flaws

discovered through other techniques, like testing or

post-release bug reporting.

The findings demonstrated that code reviews were

successful in finding a sizable proportion of security

vulnerabilities that were overlooked by other techniques. The

study also discovered that code reviews were able to identify

security risks early in the development process, lowering the

potential impact on consumers. The severity of the

vulnerabilities discovered through code reviews was also

shown to be less severe than those discovered through other

approaches. Overall, the study concluded that code reviews

are a useful technique for locating and fixing security flaws in

software development.

V. DISCUSSION

Reviewing the source code and performing penetration

tests are two methods that are often used to find

vulnerabilities in software systems. In spite of the fact that

each approach has its own set of benefits and drawbacks, it is

essential to have a solid understanding of the efficacy of each

strategy when it comes to locating weak spots in a system.

The process of evaluating the source code of an application

is known as code review, and it is a kind of static analysis

approach. The goal of code review is to locate possible

vulnerabilities in an application's security. The purpose of a

code review is to identify potential flaws in the program at an

earlier stage in the development process. This helps to cut

down on the time and money needed to address the problems

later. Reviewing the code may either be done manually or

with the use of automated technologies.

Research from a number of different studies has shown

that code review is an effective method for locating

vulnerabilities in software programs. According to the

findings of a research that was carried out by Yang et al [44],

code review has the ability to identify up to fifty percent of

the security flaws that are present in software systems.

According to the findings of another research [45]carried out

by Al-Qudah and colleagues, code review has the potential to

uncover up to 80% of the security flaws that exist in software

programs.

In addition, code review has the ability to find

vulnerabilities that other methods, such as penetration

testing, can miss. This is due to the fact that code review may

reveal vulnerabilities that are inherent in the design and

architecture of the program, even if these flaws are not

obvious while the application is being executed. For instance,

penetration testing on its own may not be able to find

vulnerabilities like weak authentication and authorization

procedures, but code review could be able to [46].

Nevertheless, code review is not without its own

constraints. Code review may be time-consuming, and it calls

for experience in both software development and network

security. This is one of the limitations of the process. This

may lead to an increase in the cost of the development

process, which may make it impossible for smaller firms with

less resources to implement [47].

Penetration testing, on the other hand, is a kind of dynamic

analysis that includes imitating a real-world assault on an

application in order to locate vulnerabilities. Testing for

vulnerabilities may be carried out either manually or with the

use of automated technologies.

The results of a penetration test may uncover security

flaws that were missed during a code review. This may be a

very useful capability. This is due to the fact that penetration

testing may replicate assaults similar to those that would

occur in the real world and find vulnerabilities that may only

become apparent during runtime. Testing for penetration may

also discover vulnerabilities that are not contained in the

source code, such as faulty setups and passwords that are not

strong enough [48].

https://www.doi.org/10.35940/ijrte.B7671.0712223
https://www.doi.org/10.35940/ijrte.B7671.0712223
http://www.ijrte.org/

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-12 Issue-2, July 2023

15

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.B76710712223
DOI: 10.35940/ijrte.B7671.0712223

Journal Website: www.ijrte.org

Research from a number of different studies has shown

that penetration testing is an efficient method for locating

weak spots in software programs. According to the findings

of a research that was carried out by Arvanitakis and

colleagues [49], penetration testing may detect up to 90

percent of the security flaws that are present in software

applications. According to the findings of another research

[50] carried out by Ferruh et al., penetration testing has the

potential to reveal up to 75% of the security flaws that exist in

software applications. On the other hand, much like code

review, penetration testing has its own set of constraints.

Penetration testing may be laborious and time-consuming,

which can drive up the cost, and this is particularly true when

it is conducted manually. Another disadvantage of

penetration testing is that it is not guaranteed to find all

vulnerabilities in an application. This is particularly the case

when the program in question has intricate functionality or

employs third-party components, each of which may have

their own vulnerabilities [51]. To summarize, code review

and penetration testing are both efficient methods that may be

used to find vulnerabilities in software programs. Penetration

testing may imitate real-world assaults and discover

vulnerabilities that may only be apparent during runtime.

While code review can uncover problems early in the

development process and can identify flaws that may not be

evident during runtime, penetration testing can reveal

vulnerabilities that may only be visible during runtime. In the

end, the efficacy of each strategy is determined by a number

of different criteria, including the complexity of the program,

the competence of the developers and security analysts, as

well as the resources and priorities of the company.

VI. CONCLUSION

It has been debated for a while now whether code reviews

and penetration tests are useful in finding vulnerabilities. In

order to evaluate the efficiency of penetration testing vs code

review in locating vulnerabilities, our research looked at both

approaches. Our poll found that when it comes to finding

vulnerabilities, code review outperforms penetration testing.

The majority of respondents agreed that code review is

crucial to software development and is more reliable than

penetration testing in spotting security flaws. This was

justified for a number of reasons, including the ability to see

possible security problems before they arise, the capacity to

examine code in real-time, and the capacity to spot security

problems that could escape automated testing [52].

The human process of reviewing the code line by line for

possible security flaws is known as "code review." This

improves security overall by enabling reviewers to identify

possible vulnerabilities before they become an issue.

Penetration testing, in contrast, uses an automated procedure

to scan the code for flaws and make an effort to attack them.

Although penetration testing can occasionally spot

vulnerabilities, it is less reliable than code review at spotting

potential security problems before they arise [53].

The ability to evaluate code in real-time is another factor

that makes code review more efficient than penetration

testing. Instead than waiting for an automatic scan to finish,

code review enables developers to find and repair possible

vulnerabilities as they are discovered. As a result, possible

flaws may be rapidly corrected, making the program more

secure as a whole. Penetration testing, in contrast, might take

longer to complete, which means that any flaws could not be

rectified until after the testing is through [54]. Finally, code

review is more effective at finding security flaws that

automated testing could miss. Code review may find possible

security flaws that automated testing could miss, while

automated testing can only find vulnerabilities that it has

been configured to search for. This indicates that code review

is more successful at identifying possible security concerns

that automated testing may overlook, resulting in an

application that is more secure as a whole [55]. In conclusion,

our research revealed that when it comes to locating

vulnerabilities, code review outperforms penetration testing.

This is because it allows for real-time code review, the

detection of security flaws that automated testing would miss,

and the identification of possible security problems before

they become a problem. It is crucial to remember that

although penetration testing is still a valuable technique for

locating security flaws, it shouldn't be used as the only way to

spot possible security problems. Incorporating code review

into the software development life cycle will help to ensure

that any potential security flaws are found early on and fixed.

This study's survey was designed to gather data on a variety

of code review-related topics, such as their significance in the

software development life cycle, their effectiveness in

identifying security vulnerabilities, and strategies for

ensuring that code reviews are carried out by subject-matter

experts in the pertinent programming languages and security

concepts. The survey's findings provide important new

information about how people feel about and conduct code

reviews. It is crucial to remember that the survey had a

number of flaws that may have affected the reliability and

generalizability of the findings. The poll has certain

limitations, including the possibility of biased sampling.

Because the survey was distributed online, a smaller pool of

people who are more likely to be tech-savvy and have access

to the internet may have been included in the sample. This

could have affected the outcomes and limited how far the

findings could be applied. Response bias is yet another

possible drawback. Only those who were interested in code

reviews may have opted to participate in the survey since it

was optional. Because more people who are knowledgeable

or enthusiastic about the subject may have been

overrepresented in the sample, this could have influenced the

responses in a biased way. Additionally, mistakes in survey

administration or design may have compromised the

reliability of the results. For instance, some questions may

have been vague or difficult to understand, resulting in

replies that were inconsistent or incorrect. Furthermore,

respondents might have given socially acceptable responses

or might have misinterpreted the purpose of a few inquiries.

Despite these drawbacks, the survey results offer useful

information on a variety of code review-related topics,

including the necessity of including code reviews in the

software development life cycle, the significance of

measuring their effectiveness in identifying security

vulnerabilities, and strategies for alerting the development

team to security vulnerabilities and ensuring they are fixed.

https://www.doi.org/10.35940/ijrte.B7671.0712223
https://www.doi.org/10.35940/ijrte.B7671.0712223
http://www.ijrte.org/

A Study of The Effectiveness of Code Review in Detecting Security Vulnerabilities

16

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.B76710712223
DOI: 10.35940/ijrte.B7671.0712223

Journal Website: www.ijrte.org

The results may be utilized by software development teams

to increase the security of their software applications and

their code review procedures.

Future studies should focus on overcoming the limits of this

survey by using more representative sample techniques,

engaging a wider variety of participants, and enhancing

survey administration and design to reduce response bias and

guarantee the validity of the results.

Fig. 1. Have you ever participated in a code review process?

This inquiry is meant to find out whether the respondents have any prior knowledge of code review procedures. The answer

choices are "Yes" and "No" in a closed-ended, binary choice inquiry. The answer to this question will provide information

about the participants' background and understanding of code review procedures.

Fig. 2. How important do you think it is to incorporate code reviews into the software development life cycle?

This question seeks feedback from the participants on the value of including code reviews in the software development life

cycle. The question has four options: "Very important," "Somewhat important," "Not very important," and "Not at all

important." It is a closed-ended multiple choice question. The answers to this question will provide light on the value that code

reviews are seen to have and how people perceive them in relation to the software development life cycle.

https://www.doi.org/10.35940/ijrte.B7671.0712223
https://www.doi.org/10.35940/ijrte.B7671.0712223
http://www.ijrte.org/

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-12 Issue-2, July 2023

17

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.B76710712223
DOI: 10.35940/ijrte.B7671.0712223

Journal Website: www.ijrte.org

Fig. 3. What methods do you use to communicate security vulnerabilities to the development team and ensure they are

addressed?

For security risks to be handled quickly and effectively,

good communication is essential. The following are some

strategies for alerting the development team to security flaws

and making sure they are fixed. The development team may

better comprehend the kind and severity of a vulnerability by

receiving reports or summaries that are clear and concise.

This will allow the team to prioritize the repair of the

vulnerability. holding conferences or conversations to

examine vulnerabilities found and distribute duties for

remedy by doing this, you can make sure that the

development team is aware of the vulnerabilities and how to

fix them and that they are free to ask any questions they may

have. Monitoring remediation job progress using tracking

tools or systems may assist the development team remain on

track and make sure that vulnerabilities are fixed as soon as

possible. It's crucial to adjust the communication strategy to

the development team's requirements and preferences and to

make sure that everyone is aware of the significance of fixing

security vulnerabilities.

Fig. 4. How do you ensure that code reviews are conducted by individuals with the appropriate level of expertise in the

relevant programming languages and security concepts?

For the process to be successful, it is crucial to make sure

that code reviews are carried out by people with the right

degree of knowledge. Participants may propose a variety of

strategies to guarantee this, including giving instruction and

training in relevant programming languages and security

principles, allocating code reviews in accordance with

individual expertise and experience, and creating precise

standards for choosing code reviewers. Involving senior or

experienced developers in the code review process to mentor

and direct less experienced reviewers are two additional

suggestions that may be made. Another is to conduct skills

assessments or certification programs for code reviewers.

So, we discussed code reviews' role in discovering software

security problems. Code reviews are essential and should be

part of the software development life cycle, participants

agreed. Code reviews need clear rules, training, and a

collaborative culture. Participants suggested tracking the

number and severity of vulnerabilities found during code

reviews, auditing or reviewing the code review process, and

measuring the reduction in vulnerabilities over time.

Participants suggested clear and concise reports or

summaries of vulnerabilities, meetings, or discussions to

review vulnerabilities and assign remediation tasks, and

tracking tools or systems to monitor progress on remediation

tasks to communicate security vulnerabilities to the

development team. Finally, code reviews should be

performed by experts in the programming languages and

security concepts.

https://www.doi.org/10.35940/ijrte.B7671.0712223
https://www.doi.org/10.35940/ijrte.B7671.0712223
http://www.ijrte.org/

A Study of The Effectiveness of Code Review in Detecting Security Vulnerabilities

18

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.B76710712223
DOI: 10.35940/ijrte.B7671.0712223

Journal Website: www.ijrte.org

They advised teaching relevant programming languages

and security topics and assigning code reviews by

competence. The session stressed code reviews and

recommended methods for spotting software security

problems.

DECLARATION

The The authors G.H.N Anuththara, S.S.U Senadheera,

S.M.T.V Samarasekara, K.M.G.T Herath, D. I. De Silva, and

M. V. N. Godapitiya hereby acknowledge that this research

paper, titled "A study of the effectiveness of code review in

detecting security vulnerabilities," is our original work and

that all information and concepts used in the research have

been properly referenced. We thus reaffirm that, to the best of

our knowledge, we have no conflicts of interest or competing

interests that would have affected the result of the study or

our interpretation of the findings. As no humans or animals

were used in the research, we also state that participation in

the publication is not subject to ethical review or consent.

Consequently, it was carried out in line with ethical

standards. We certify that the research information used to

create this article is correct and that it was properly examined

to provide reliable results. These records are accessible

without restriction and may be found on websites run by the

appropriate authorities. We also include links to the pertinent

websites in the article's references section. When it comes to

the analysis and interpretation of the study data, all writers

contributed equally to this paper. The topic and layout of the

study were greatly influenced by each contributor. For its

crucial technical substance, we contributed to the article's

development and modification as well. The article version to

be published has received the final permission of Dr. D. I. De

Silva, Senior Lecturer, and Ms. M. V. N. Godapitiya,

Academic Instructor at Sri Lanka Institute of Information

Technology.

Funding/ Grants/

Financial Support
No, We did not receive.

Conflicts of Interest/

Competing Interests

No conflicts of interest to the

best of our knowledge.

Ethical Approval and

Consent to Participate

No, the article does not require

ethical approval and consent

to participate with evidence

Availability of Data and

Material/ Data Access

Statement

Not relevant

Authors Contributions
All authors having equal

contribution for this article.

REFERENCES

1. J. G. C. &. L.-P. M. M. ACOSTA, "A LITERATURE REVIEW OF

VULNERABILITY MANAGEMENT IN INFORMATION SYSTEMS.

COMPUTERS SECURITY," PP. 47-65, 2016.

2. J. &. L. B. Jørgensen, "Software vulnerability remediation with

risk‐based prioritization. Journal of Software: Evolution and Process,"

2017.

3. A. R. V. a. H. M. M. Vieira, "A survey on software vulnerability

detection using machine learning.," vol. 97, pp. 186-198, 2014.

4. G. &. O. A. L. Sindre, "Eliciting security requirements with misuse

cases. Requirements Engineering," vol. 16, pp. 31-56, 2011.

5. J. &. H. S. Ruohonen, "The effectiveness of static code analysis: A

systematic literature review," vol. 106, pp. 96-115, 2019.

6. G. &. S. Z. Wassermann, "Static analysis for security," pp. 589-619,

2016.

7. S. A. K. A. &. M. M. S. Ali, "A systematic literature review on

security testing of web applications," vol. 45, pp. 124-142, 2015.

8. M. P. V. T. R. A. &. S. K. Böhme, "The effectiveness of testing

techniques for fault detection: A systematic review and

meta-analysis," vol. 52, pp. 1-40, 2019.

9. D. R. a. F. R. W. Kuhn, "Penetration testing: A hands-on introduction

to hacking," 2018.

10. M. Bishop, "Computer Security: Art and Science," vol. 1st edition,

2002.

11. W. S. a. K. E. Ehab Al-Shaer, "A survey on vulnerability assessment

and penetration testing techniques," vol. 18, pp. 1033-1046, 2016.

12. N. B. T. a. Z. A. Nagappan, "Mining metrics to predict component

failures," pp. 452-461, 2006.

13. 13.Y. B. a. A. F. G.-S. A. Acosta, "An empirical comparison of

automated and manual penetration testing," vol. 63, pp. 122-144.

14. J. C. a. A. Meneely, "The impact of code review coverage and code

review participation on software quality: a case study of the qt, vtk,

and itk projects," vol. 19, pp. 1024-1060, 2014.

15. D. Spinellis, "Code reviews and static code analysis: the last line of

defense against software vulnerabilities," vol. 34, pp. 92-97, 2017.

16. M. A. F. A. a. M. A. A.-S. A. M. A. Rizvi, "Effectiveness of software

security testing techniques: a systematic review," vol. 123, pp.

155-176, 2017.

17. J. R. T. a. J. H. Park, "A comparative study of vulnerability detection

methods," vol. 30, pp. 1395-1411, 2014.

18. B. C. a. M. O. Dino Juric, "Combining static and dynamic analysis for

software security assessment," pp. 50-62, 2015.

19. E. B. J. M. B. d. l. P. a. M. Á. R. L. Martínez, "Towards a new

integrated approach for web application security testing," vol. 85, pp.

553-566, 2012.

20. K. M. K. H. a. Y. R. Tari, "An empirical comparison of software

vulnerability discovery techniques," vol. 64, pp. 835-847, 2015.

21. Z. T. A. A. a. A. L. A. Abdul-Rahman, "A comparison of static and

dynamic analysis for software vulnerability detection," pp. 912-917.

22. W. L. a. T. J. T. Chen, "Systematic Identification of Vulnerabilities in

Open-Source Software," vol. 17, pp. 674-687, 2020.

23. L. W. a. R. Kessler, " Pair Programming vs. Up-front Design for

Extreme Programming," vol. 19, pp. 62-70, 2002.

24. A. Ghaznavi-Zadeh, "A Comprehensive Review of Penetration

Testing," vol. 7, 2021.

25. H. Saidani, "Comparative Analysis of Software Vulnerability

Assessment Techniques, Journal of Computer Networks and

Communications," 2018.

26. C. L. a. S. Sabetzadeh, "An Empirical Study of Code Review

Processes in Open-Source Software Projects," vol. 110, pp. 64-80,

2015.

27. R. Kazman, "Software Design Review," vol. 55, pp. 129-137, 2012.

28. K. Stergiopoulos, "Penetration Testing: A Methodology for

Enhancing Vulnerability Assessments," vol. 4, pp. 263-271, 2013.

29. A. A. a. H. Siddiqi, "Penetration Testing Methodologies: A Review,"

vol. 2, pp. 98-110, 2014.

30. A. W. L. &. O. J. Meneely, "Software engineering for cybersecurity:

A research roadmap," vol. 144, pp. 1-17, 2018.

31. L. W. a. J. O. M. A. Rahman, "Improving code review efficiency: A

study of static analysis and reviewer recommendation," vol. 138, pp.

81-96, 2018.

32. A. P. a. B. K. A. Zeller, "Code review in the dark," vol. 36, pp. 40-47,

2019.

33. L. Y. Y. &. L. Y. Wang, "A large-scale empirical study of code review

practices in open source projects," vol. 45, pp. 913-935, 2019.

34. M. I. Ahmed, "Automated code review: A systematic literature

review," vol. 144, pp. 163-179, 2018.

35. S. B. a. J. R. W. N. A. Ernst, "Duration of software code review

meetings: An empirical analysis," pp. 514-524, 2019.

36. P. T. P. a. A. Orso, " Are automated debugging techniques actually

helping programmers," pp. 385-394, 2010.

37. D. H. Shihab, "An Analysis of the Code Review Processes of

Open-Source Software Projects," vol. 43, pp. 850-867, 2017.

https://www.doi.org/10.35940/ijrte.B7671.0712223
https://www.doi.org/10.35940/ijrte.B7671.0712223
http://www.ijrte.org/

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-12 Issue-2, July 2023

19

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.B76710712223
DOI: 10.35940/ijrte.B7671.0712223

Journal Website: www.ijrte.org

38. S. K. a. H. K. K. S. Y. Shin, "Combining Static and Dynamic Analysis

for Web Application Security Assessment," vol. 12, 2016.

39. M. V. Tripunitara, "Testing for Security: An Overview," vol. 47, pp.

1-37, 2015.

40. G. McGraw, "Software Security Testing: Do We Really Know How

to Do This Stuff," vol. 2, pp. 83-86, 2004.

41. B. H. E. R. M. F. A. M. D. W. A. Edmundson, "An Empirical Study

on the Effectiveness of Security Code Review".

42. C. A. G. Ç. A. B. L. Braz, "Less is More: Supporting Developers in

Vulnerability Detection during Code Review," 2022.

43. "Secure Code Review," Application Security.

44. Y. C. H. X. S. W. a. J. L. Xinyu Yang, "Empirical evaluation of the

effectiveness of code review for finding security vulnerabilities in

web applications," no. 28, pp. 1058-1071, 2013.

45. M. S. H. B. M. &. B. M. Kessentini, "A systematic review of software

fault prediction approaches. Journal of Systems and Softwar," vol. 83,

pp. 1378-1396, 2010.

46. D. Litchfield, "Google Hacking for Penetration Testers," 2005.

47. K. Arvanitakis, S. Mitropoulos and S. Kontogiannis, " A comparative

study of code review and penetration testing in web application

security," vol. 3, pp. 235-243, 2012.

48. M. K. M. &. O. M. Ferruh, "A comparative study of penetration

testing tools," pp. 483-488, 2012.

49. J. &. M. D. DeMott, "The limits of automated web application

security scanners," pp. 421-430, 2008.

50. D. H. M. &. A.-A. M. A. Al-Qudah, "A comparative study of code

review and testing for finding software defects," pp. 785-795, 2014.

51. W. H. T. &. G. J. Zou, "An empirical study on the effectiveness of

code review for finding security vulnerabilities in Android

applications," pp. 36-51, 2016.

52. R. M. R. e. al., "Comparative study of code review and penetration

testing for detecting security vulnerabilities in software," pp. 1-6,

2021.

53. M. F. K. e. al., "Comparing code review and penetration testing as

vulnerability detection techniques," pp. 1-6, 2019.

54. H. A. K. a. H. M. Abbas, "A comparative study of code review and

penetration testing," pp. 191-196, 2018.

55. M. A. A. Q. e. al, "Code review versus penetration testing: A

comparative analysis," pp. 1-5, 2018.

AUTHORS PROFILE

Ms. G. H. Nishadi Anuththara is a fourth-year

undergraduate at Sri Lanka Institute of Information
Technology (SLIIT) reading for a BSc special honor in

Information Technology. She successfully completed

her G.C.E Advanced Level examination in Combined
Mathematics and developed a keen interest in software

engineering and web technologies, which are directly relevant to her
research topic of studying the effectiveness of code review in detecting

security vulnerabilities. With academic expertise in developing web-based

software applications, she is looking forward to gaining more experience in
enterprise level software development.

Ms. S.S.U. Senadheera is a fourth-year undergraduate at

Sri Lanka Institute of Information Technology (SLIIT)

reading for a BSc special honor in Information
Technology. She successfully completed her G.C.E

Advanced Level examination in Combined Mathematics
and developed a keen interest in software engineering

and web technologies, which are directly relevant to her

research topic of studying the effectiveness of code review in detecting
security vulnerabilities. Her research interests include database management,

frontend web development, and web application development. With an
academically proven technical experience, she is well-suited to contribute to

the field of Information Technology.

Mr. S. M. T.V Samarasekara is a fourth-year

undergraduate at Sri Lanka Institute of Information

Technology (SLIIT) reading for a BSc special honor in
Information Technology. He successfully completed his

G.C.E Advanced Level examination in Art stream. His

research interests Software QA, front-end web

development, and web development. With an enthusiasm for the newest

technological breakthroughs and a commitment to academic success, his
analytical talents, technical knowledge, and inventive thinking make him

well-suited to contribute to the area of Information Technology

Mr. K.M.G.T Herath is a fourth-year undergraduate at
Sri Lanka Institute of Information Technology (SLIIT)

reading for a BSc special honors in Information

Technology. His G.C.E. Advanced Level exam in the

Art stream with IT was successfully completed. His

research focuses on web development, frotend web
development, and software quality assurance. His analytical skills, technical

expertise, and creative thinking make him well-suited to contribute to the
field of information technology. He has a passion for the most recent

technological advancements and a dedication to academic success.

Dr. D. I. De Silva is an Assistant Professor in the

Department of Computer Science and Software
Engineering at the Faculty of Computing, Sri Lanka

Institute of Information Technology (SLIIT). He

received his BSc special honors in Information
Technology from SLIIT in 2009, followed by his MSc in

Information Technology in 2012 and PhD in Computer Science in 2021. Dr.
De Silva's primary research interests include software complexity, software

metrics, and machine translation. With a passion for advancing computer

science, he has published several papers in leading academic journals and
conferences. He joined SLIIT's academic staff in 2009 and has received

multiple awards for excellence in research. He is currently a member of the
Institute of Electrical and Electronics Engineers (IEEE), Institution of

Engineering and Technology (IET), and Computer Society of Sri Lanka

(CSSL).

Ms. M. V. N. Godapitiya has a BSc. degree in
Information Technology from the University of Jaffna.

She currently works as an Academic Instructor in the

department of Computer Science and Software
Engineering at Sri Lanka Institute of Information

Technology (SLIIT), Malabe. Her research interests

include Software Engineering, Machine Learning and Artificial Intelligence.

Disclaimer/Publisher’s Note: The statements, opinions and

data contained in all publications are solely those of the

individual author(s) and contributor(s) and not of the Blue

Eyes Intelligence Engineering and Sciences Publication

(BEIESP)/ journal and/or the editor(s). The Blue Eyes

Intelligence Engineering and Sciences Publication (BEIESP)

and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods,

instructions or products referred to in the content.

https://www.doi.org/10.35940/ijrte.B7671.0712223
https://www.doi.org/10.35940/ijrte.B7671.0712223
http://www.ijrte.org/

