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Abstract—As one of the key components of electric vehicles, 

the Li-ion Battery Management System (BMS) is crucial to the 

industrialization and marketization of electric vehicles. 

Developing advanced and intelligent BMSs has been gathering 

the research interest. However, the internal states of the battery 

are affected by several factors, thus making the application of 

predictive analytics algorithms a challenging task. With the 

recent advances in modelling tools and diagnostics, there is an 

opportunity to fuse this knowledge with emerging ML 

techniques towards creating a battery digital twin. In this paper, 

we propose a data-driven digital twin of EV batteries in order to 

support the implementation of predictive analytics algorithms. 

The architecture has been modelled according to the RAMI 4.0 

principles in order to provide a systematic way of modelling and 

development data-driven digital twins for supporting predictive 

analytics of battery states. 

Keywords—digital twin, Li-ion battery, electric vehicle, RAMI 

4.0, data analytics, machine learning. 

I. INTRODUCTION 

Lithium-Ion (Li-Ion) batteries have been widely applied as 
energy storage systems, such as electric vehicles (EVs) and 
Hybrid Electric Vehicles (HEVs) [1]. “Batteries are a key 
enabler for European  competitiveness  and  decarbonization”  
as  stated  in  the  strategic  agenda  of  the European Battery 
Partnership and will be  one  necessary  tool  to  make  Europe  
“fit  for 55 within 2030” [2]. 

As one of the key components of electric vehicles, the Li-
ion Battery Management System (BMS) is crucial to the 
industrialization and marketization of electric vehicles. 
Developing advanced and intelligent BMSs for the Li-Ion 
battery packs has been gathering the research interest. 
However, the internal states of the battery are affected by 
several factors, thus making the application of predictive 
analytics algorithms a challenging task [3]. Battery modeling 
and state estimation are key functions of the advanced BMS. 
Accurate modeling and state estimation can ensure reliable 
operation, optimize the battery system and provide a basis for 
safety management [4]. 

Battery management is critical to enhancing the safety, 
reliability, and performance of the battery systems [5][6]. 
Effective management of lithium-ion batteries is a key enabler 
for a low carbon future, with applications including electric 
vehicles and grid scale energy storage [7]. The lifetime of 
these devices depends greatly on the materials used, the 

system design and the operating conditions. To this end, there 
is an increasing research interest on Machine Learning (ML) 
models and algorithms dealing with lifetime prognostics 
[8][9]. These research works develop and test ML algorithms 
using a variety of input parameters in order to achieve various 
objectives, such as: End Of Life (EOL) prediction, Remaining 
Useful Life (RUL) estimation, State Of Health (SOH) 
estimation, State Of Charge (SOC) estimation, etc. With the 
recent advances in understanding battery degradation, 
modelling tools and diagnostics, there is an opportunity to fuse 
this knowledge with emerging ML techniques towards 
creating a battery digital twin [7].  

Modelling the digital twin needs to follow the principles 
of the Reference Architectural Model Industrie 4.0 (RAMI 
4.0). Overall, in the literature, there are only a few case studies 
that follow the RAMI 4.0 model, and even fewer not requiring 
much effort to reach the level of practical implementation 
[10]. However, the key issue of any design and system 
development in the context of Industry 4.0 is the proper 
implementation of RAMI 4.0 in various operations [10]. To 
this end, there is the need for architectural frameworks that 
will enable the systematic design and development of digital 
twins so that they tackle the big data-rich, complex, and 
uncertain environments in a holistic way.  

In this paper, we propose a data-driven digital twin of EV 
batteries in order to support the implementation of predictive 
analytics algorithms aiming at addressing the aforementioned 
objectives. The proposed architecture aims at supporting 
several and dynamic predictive analytics processes, 
employing data from the heterogeneous data sources. To this 
end, the various objectives can be addressed dynamically and 
bootstrapped into a single software instance following the 
specific use case requirements and the available data. The 
architecture has been modelled according to the RAMI 4.0 
principles and guidelines in order to provide a systematic way 
of modelling and development data-driven digital twins for 
supporting predictive analytics of battery states. 

The rest of the paper is organized as follows: Section II 
presents the related works on Li-Ion battery digital twins. 
Section III outlines the RAMI 4.0 guidelines guiding the 
design and development of digital twins and then, models the 
proposed data-driven digital twin for EV batteries. Section IV 
demonstrates the implementation and applicability of the 
proposed digital twin to a real-life use case. Section V 
concludes the paper and presents our plans for future work. 
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II. RELATED WORK 

Battery management is critical to enhancing the safety, 
reliability, and performance of the battery systems [5][6]. 
Effective management of lithium-ion batteries is a key enabler 
for a low carbon future, with applications including electric 
vehicles and grid scale energy storage [7]. The lifetime of 
these devices depends greatly on the materials used, the 
system design and the operating conditions. With the recent 
advances in understanding battery degradation, modelling 
tools and diagnostics, there is an opportunity to fuse this 
knowledge with emerging machine learning techniques 
towards creating a battery digital twin [7]. 

Reference [11] provided an overview of the opportunities 
provided by the digital twin technology for the EVs. They 
classified the applications of digital twin in the following 
categories: intelligent driver assistance, autonomous 
navigation, converters and inverters, consumer-centered 
development, digital design and manufacturing, health 
monitoring, BMSs. Reference [6] presented a cloud battery 
management system to improve the computational power and 
data storage capability. The application of equivalent circuit 
models in the digital twin for battery systems is explored with 
the development of cloud-suited state-of-charge and state-of-
health estimation approaches. Furthermore, a state-of-health 
estimation algorithm with particle swarm optimization is 
innovatively exploited to monitor both capacity fade and 
power fade of the battery during aging.  

Reference [5] proposed a digital twin architecture for 
automotive battery systems, on which digital services for 
various stakeholders along the manufacturing and product life 
cycle of a battery system can be established. The results 
feature an UML meta model as a first step toward 
implementing of a digital twin for battery systems. Reference 
[7] presented the state-of-the-art in battery modelling, in-
vehicle diagnostic tools, data driven modelling approaches, 
and how these elements can be combined in a framework for 
creating a battery digital twin.  

Reference [12] presented the development history, basic 
concepts and key technologies of the digital twin, and 
summarized current research methods and challenges in 
battery modeling, state estimation, remaining useful life 
prediction, battery safety and control. Furthermore, based on 
digital twin, they described the solutions for battery digital 
modeling, real-time state estimation, dynamic charging 
control, dynamic thermal management, and dynamic 
equalization control in the intelligent battery management 
system. [13] set up a data pipeline and digital battery twin to 
track the battery state, including State of charge (SOC) and 
State of Health (SOH). Pushing this data into the cloud twin 
system using IoT-technology, they fit battery models to the 
data and infer for example, cell individual internal resistance 
from them. 

III. MODELLING DATA-DRIVEN DIGITAL TWINS OF EV 

BATTERIES 

In this Section, we outline the RAMI 4.0 background 
(Section III.A) and then, we describe the proposed data-driven 
digital twin of EV batteries (Section III.B) which follows the 
Industry 4.0 principles. Section III.C presents the data model 
that structures the related data and information and represents 
the connection between the different entities that take place in 
the battery data analytics. 

A. Background on RAMI 4.0 and Digital Twins 

The German Federal Ministry of Education and Research 
defines Industry 4.0 as “the flexibility that exists in value-
creating networks by the application of Cyber Physical 
Systems (CPS)” [14]. In this context, RAMI 4.0 is based on a 
three-dimensional model consisting of the Architecture 
Layers, Life Cycle and Value Stream, and Hierarchy Levels 
dimensions. RAMI 4.0 considers any technical asset as an 
entity that can be represented in the digital world to conform 
an I4.0 component. The main scope of each dimension is 
described below.  

Architecture Layers: The Architecture Layers enable the 
development of Industry 4.0 software solutions in a consistent 
way so that different operations are interconnected, taking into 
account the physical and the digital world. There are six (6) 
architecture layers, as shown in Fig. 1:  

 Asset Layer: It represents the reality, i.e. the physical 
assets and the users. 

 Integration Layer: It provides information related to the 
assets in the appropriate format by connecting elements and 
people with information systems. 

 Communication Layer: It provides standardization of 
communication by means of uniform data format and deals 
with the physical support of information processing. 

 Information Layer: It provides pre-processing of events 
and execution of event-related rules by enabling their formal 
description for the interpretation of the information. 

 Functional Layer: It enables the formal description of 
functions and creates the platform for horizontal integration of 
various functions. 

 Business Layer: It ensures the integrity of functions in the 
value stream and enables mapping business models and the 
outcomes of the overall process. 

 

Fig. 1. The Architecture Layers of RAMI 4.0. 

Life Cycle and Value Stream: The second axis in RAMI 
4.0 represents the lifecycle of products and systems and is 
taken from the IEC 62890 standard [15]. The product lifecycle 
model introduces a differentiation between product type and 
product instance. 

Hierarchy Levels: The third axis of RAMI 4.0 is the 
hierarchical representation of the different functional levels of 
the factory, based on the IEC 62264 [16] and IEC 61512 
standards. These hierarchy levels are: Connected World, 
Enterprise, Site, Area, Work Centers, Work Units or Station, 
Control Device, Field Device, and Product. 

In this context, a digital twin is the container for 
integrating information, executing operations, and producing 



data describing its activity which can be in different formats, 
from different software tools, and not necessarily deployed in 
one central repository [17]. Both the physical and the digital 
twins are equipped with networking devices to guarantee a 
seamless connection and a continuous data exchange between 
a generic physical system (or process) and its respective 
Digital Twin [14], while they are able to support predictive 
analytics [18][19]. The digital twin is implemented by the 
Asset Administration Shell (AAS). The AAS consists of a 
number of sub-models in which all the information and 
functionalities of a given asset - including its features, 
characteristics, properties, status, parameters, measurement 
data, and capabilities - are described [20]. To facilitate the 
design of these sub-models, there is the need of applying the 
RAMI 4.0 Architecture Layers in alignment to the AAS 
architecture, as depicted in Fig. 2. The Asset and the 
Integration Layer deal with the physical asset (“Thing”), while 
the rest of the Layers deal with the digital world 
(“Administration Shell”). 

 

Fig. 2. The physical architecture of a battery pack of an EV (Source: [14]). 

B. Modelling EV Battery Digital Twin according to RAMI 

4.0 

 In this Section, we present the modelling of the EV battery 
data-driven digital twin in the frame of RAMI 4.0. Fig. 3 
depicts the various components of the BMS and the respective 
software components of the digital world. The following sub-
sections describe each Architecture Layer out of those 
depicted in Fig. 1 for the Li-Ion batteries aiming at supporting 
predictive analytics. 

 

Fig. 3. The EV battery physical and software components in the context of 

the RAMI 4.0 Architecture Layers. 

1) Asset Layer: In the EV, the power for its operations is 

provided by a high voltage Battery Pack (BP) that is 

composed of different components, organized in levels. The 

first level consists of the cells, which are the smallest, 

packaged components in a BP. The cells are organized in 

modules, that constitute the second level. Accordingly, the 

modules compose the pack, the third level of a BP. The units 

of each level are connected in a parallel or serial 

configuration. The number of components that constitute its 

level is configurable and depends on the application that it is 

used for. In the Fig. 3, the elements of the physical 

architecture of the BP are categorized in the Asset Layer. 
In the same layer, the proposed approach includes the 

battery cycler. A battery cycler is an experimental instrument 
that can analyse battery function through charge and discharge 
cycles and measure the cells response over time. Cyclers are 
utilized in cycling ageing tests on cells. A cycler contains 
many channels that are attached to cells. Moreover, the cycler 
is wrapped in an environmental chamber in order to perform 
the cycling tests in a stable environmental temperature. The 
cyclers support the configuration of various specifications that 
can guide different test procedures and thus provide a 
controlled environment for testing [9]. During the defined 
tests, a cycler can measure several parameters such as 
capacity, efficiency and self-discharge. This layer also 
includes the users, i.e. the drivers, the automotive company 
and the technical service. 

2) Integration Layer: One of the key components of 

electric vehicles, the Li-ion Battery Management System 

(BMS) is crucial to the industrialization and marketization of 

electric vehicles [21]. BMS is a system designed to monitor 

and optimize battery behavior. It is also capable of handling 

different cell types and chemical compositions and managing 

various settings, including multiple packs. The main 

functions of the BMS include battery data acquisition, 

modeling and state estimations, charge and discharge control, 

fault diagnosis and alarm, thermal management, balance 

control, and communication [21]. Additionally, BMS can 

calculate the SoX and therefore increase the overall safety 

and performance of the system [9]. BMS software is designed 

to be accessed and updated remotely in order to provide 

remote maintenance functionality and anticipate faulty 

situations beyond the testing phase [9]. To this end, the 

Battery Management System represents the Integration 

Layer, as depicted in Fig. 3. This layer consists of the 

elements that control and monitor the components in each 

level of BP.  
Each level of BMS’s components is equipped with sensors 
that can record measurements. The integration of sensors in 
the interconnection at cell level can enable additional 
advanced functionalities of the system [IISA 2022]. Beyond 
the data that arise from sensors, additional data can be 
obtained from each level of the BP. As a result, data from 
sensors, parameters that describe the function of the 
component and aggregations of both categories of data can be 
available. Starting from the first layer of the BP, each cell is 
connected to a Smart Cell Manager (SCM) that can record its 
measurements and transmit data to a Slave BMS. 
Respectively,  the packs of the third level of a BP transmit data 
to a super Master BMS. 

Although the sensors integration advances the data 
availability and the data analysis capabilities, the installation 
of multiple sensors increases the wiring complexity in BPs and 
thus increases the manufacturing cost. BPs include special 
systems to damp oscillations and absorb vibrations providing 
high reliability for all physical connections among sensors, 
transmitters and receivers, but also having a strong impact on  



Fig. 4. The physical architecture of a battery pack of an EV. 

the final production cost. The approach of the Smart Cell 
Manager (SCM) consists of the implementation of a system 
that can be embedded directly into each individual cell. 

The slave BMS receives data from the module and sends 
them to an IoT gateway that can initiate the process of storing, 
processing and analyzing the data.. The captured data usually 
refer to sensor data, such as voltage, current and temperature 
but also calculated aggregations of these parameters, and 
parameters that describe the function of the module such as 
the total discharge and calculate additional features such as 
State of Charge (SoC). Moreover, the available aggregations 
depend on either the number components that compose the 
module or the time. For example, a slave can calculate the 
average value of the voltage of the cells that compose the 
module or the average value of a parameter during the 
aggregation time, which has been configured from the 
gateway. Additionally, a slave BMS transmits to the gateway 
the data that are available from the SCMs. 

Following a similar approach, the super Master BMS 
receives data from the pack and sends them to the IoT 
gateway. The Super Master BMS supports different 
functionalities from the slave BMS. In contrast to the  slave 
that handles data that characterize the state of the module and 
the respective cells, the Super Master BMS records data that 
describe the overall state of the pack. Consequently, the 
parameters that can be transmitted from a Super Master BMS 
are either aggregations of related parameters or variables that 
describe the overall state of the pack. 

3) Communication Layer: In order to provide the 

advanced data analytics capabilities of the Battery Digital 

Twin, data move from the physical elements of the BP to the 

higher layers through the Communication Layer. This layer 

consists of the technologies and enablers that facilitate the 

transmission of the data. Specifically, Bluetooth, Ethernet 

and Controller Area Network (CAN) bus are the technologies 

considered that among others enable the transmission of the 

cells’ data from several SCMs to a slave BMS and the 

transmission of the data to the gateway. The gateway receives 

the data, converts it into MQTT frames and sends them over 

the vehicle and public network to a MQTT broker. The latter 

is hosted on a server for storing data and performing data 

analysis. Message Queuing Telemetry Transport (MQTT) is 

a lightweight protocol for Internet of Things (IoT) 

applications to transfer data to and from a cloud following a 

publish-subscribe-methodology (see [3]). Communication is 

performed when the vehicle is online, e.g., while driving. The 

gateway establishes the connection to the MQTT broker, 

publishes data periodically and subscribes to results and 

firmware update topics. 

4) Information Layer: The data are communicated 

through the Communication Layer to the higher levels of the 

Digital Twin. Following RAMI 4.0, the Information Layer 

holds the total information upon which the proposed Digital 

Twin can be built. This information is encapsulated in the 

data that are available in the considered setup, the data 

generated by sensors, the additional source data that are 

generated by the EV or the cycler and any additional metadata 

related to these. In order to provide a short overview of these 

data, Fig. 5 and Fig. 6 present the parameters that can be 

measured and recorded from a slave and a Super Master 

BMS. These parameters refer to either sensor data or source 

data. As depicted in Fig. 5, the data that are recorded from a 

slave BMS can be sensor data such as voltage and 

temperature and they are measured by the SCM in the level 

of cells. Moreover, through the slave BMS additional features 

such as SoC and total discharge capacity of the module, 

which is an indicator for the State of Health (SoH) are 

calculated. Furthermore, additional aggregations of these 

parameters such as the minimum and the maximum value of 



voltage or the average value of SoC between the cells during 

the time elapsed between the calculations can be calculated. 

Finally, in this level the information provided can include 

parameters such as the balance number, which indicates the 

number of cells that take part in the procedure of balancing. 

All the above parameters refer to source data. 
In a similar way, sensor and source data are recorded from 

a Super Master BMS as shown in Fig. 6. The difference from 
the data of a slave BMS, is that the first ones describe the 
overall condition and functionality of the BMS while the 
latter, the data describe in more detail its condition. Another 
difference is the fact that from the BP additional metadata can 
be obtained, such as the firmware needed for the 
communication between the different elements of the BP.  

 

Fig. 5. Data produced by a module of a pack. 

 
Fig. 6. Data produced by a pack of a battery pack. 

In a similar manner, a plethora of data arises from the 
procedure of cycling through cyclers, with the difference that 
the data which arise from cycling refer only to cell level. 
Primarily, cycling can provide sensor data such as cell’s 
voltage, current, temperature, charge and discharge capacity, 
energy and power. Furthermore, cyclers provide source data. 
Additional features that can be obtained from these conditions 
are the internal resistance, the inclination of the voltage curve 
dV/dt and the function’s status, which describes if the cell 
operates through charging, discharging or resting. By the same 
token, further parameters can be calculated such as the cycle 
number, which participates in the analysis of the cell’s health. 
Moreover, metadata that refer to scalar values such as the 
temperature of the chamber and the charging protocol which 
has been applied to the test and the cycle life of the cell can be 
collected. According to the cycler’s functionality, it is feasible 
to predefine some parameters of the testing procedure and in 
this way, it is possible to approach more realistic driving 
conditions resulting in more representative data. In detail, the 
charging protocol can be defined by the value of the C-rate 
that is going to be applied and the number of different C-rates 
if it is desirable. Moreover, the temperature of the chamber 
can be designated in order to simulate the driving conditions 
in different locations. 

5) Functional Layer: The Information Layer represented 

by the three types of data mentioned above includes various 

datasets from several data sources that may follow different 

data models. Consequently, the procedure of data 

harmonization is crucial for any data analysis,. 

Harmonization refers to the action of gathering data with 

different types, from different sources, organizing and 

unifying them in a suitable way for the analysis. The main 

goal of this procedure is the unification of the data structure  

that will enable the processing of multiple datasets in a 

unified way. Additionally, the development of a 

harmonization process disassociates the analytics process 

from the specific dataset and its characteristics.  
In the same context, the inclusion of the minimum required 

variables for the implementation of the analysis can be 
ensured and the additional required features can be 
constructed independently from the format of the initial 
dataset. An important aspect of this procedure is the fact that 
the variables under examination should be based on the same 
hypothesis. For example, if the discharging phase of a battery 
is represented as a negative number in the majority of the 
available datasets, through the harmonization process, this 
constraint can be applied to all the datasets in a unified way, 
by implementing the corresponding transformations. Other 
aspects that harmonization can help refer to more technical 
challenges that are presented in the data processing steps. As 
an example, consider the datasets that contain useful data in 
an unreadable of unsuitable for further analysis format, i.e. 
objects or strings, or even some time-relevant information that 
is recorded in a different format per dataset. Finally, another 
critical aspect that harmonization can solve is the different 
sampling rates that the different datasets follow. 

Therefore, there are different data sources for battery data 
analytics and the datasets contain both, similar and different 
parameters, depending on the component from which they are 
collected. Under these circumstances, the need for a unified 
and suitable battery data model defining the entities that are 
able to describe most of the elements related to the battery data 
analytics in a common way, is clear. To this end, this present 
work proposes the battery data model described in Section C, 
that can facilitate the harmonization process and optimize the 
data fusion that will enable better data analysis results. 

The procedures of battery data modelling and data 
transforming play a key role to homogenizing the data. 
Consequently, the battery data predictive analytics can be 
independent of the characteristics of each dataset. In other 
words, the analytics can be flexible, dynamic and generalized 
by using and combining knowledge from different data 
sources. Another crucial procedure for the examination of the 
data is the Exploratory Data Analysis (EDA) of each dataset. 
Through this method the behavior of each variable and the 
relation among them can be mapped and defined. 
Furthermore, the correlations among the variables existed in a 
dataset can also be defined, while some fundamental statistical 
features can be calculated. Finally, additional useful 
characteristics of a dataset can be calculated, such as the 
lifecycle or the time duration of the battery that it describes. 

These methods are the interim steps between the data and 
predictive analytics. In a similar way, the analytics take place 
in a dynamic way using data from the different data sources 
and containing several algorithms and models that can be used 
for the desirable approaches. A variety of models can be 
employed for battery data analytics. Indicative examples that 
can be applied are Long-Short Term Memory neural networks  



Fig. 7. The battery data model. 

(LSTM), Feed Forward Neural Networks (FFNN), 
Convolutional Neural Networks (CNN), Linear Regression 
models (LR), Random Forest models (RF). Furthermore, the 
automated Machine Learning (autoML) methods can be 
applied to provide optimal models following a more structured 
experimental process. 

6) Business Layer: The results of the predictive analytics 

on battery data answer several objectives that are of interest 

of the end users of the digital twin. Some of these are depicted 

in the Business Layer of the Fig. 3. To begin with, the 

recipient of the analytics’ results can observe an overview of 

the variables in real time by monitoring their behavior 

through time. Moreover, the visualization of features and 

aggregations, as well as the advanced analytics results that 

have been calculated for a specific dataset can be available. 

An important focus of the battery data analytics is the state 

estimation, since it can describe in almost real time the 

condition of battery’s health. A common estimation for 

batteries in EVs is the State-of-Charge (SoC), which is 

critical to their safe and reliable operation since this quantity 

reflects a vehicle’s remaining driving range [22] as well as 

the remaining energy inside a battery during operation [23]. 

By definition, SoC refers to the capacity of the battery in its 

current state as a percentage of the capacity in its fully 

charged state [24]. As a consequence of this definition and 

due to the battery’s degradation, the SoC does not present a 

linear behavior through his entire lifetime. In a similar way, 

State-of-Health (SoH) is an essential indication that 

determines the battery aging and has a value ranging 

between  

0 and 100% [25]. It describes the capacity of the battery in its 

fully charged state compared to the nominal capacity [24], as 

it is defined by the constructor of the battery. It is a non-linear 

quantity and it is highly dependent on the volatility of the 

loading profiles, ambient temperature, depth of discharge and 

the way of discharge [25]. The long-term predictions for the 

batteries are presented by the lifetime prognostics. 

Specifically, the Remaining Useful Life (RUL) of the battery 

refers to the remaining cycles until its End Of Life (EOL). 

This feature is defined usually as the cycle in which the 

battery will reach the 80% of its nominal capacity. Finally, 

the detection of the degradation refers to the cycle that the 

battery will present a smaller amplitude of its nominal 

capacity. Both of these features do not present the same 

behavior in all the batteries since they depend on diverse 

aging mechanisms and their behavior, as well as on the initial 

condition of the battery.   

C. Battery Data Modelling 

Fig. 7 shows the aforementioned data model and 
represents the connection as also the relationship between the 
different entities that take place in the battery data analytics. 
This entity relationship diagram is designed to be read from 
left to right and in this way is indicated the relationship 
between two entities. The main components of this model are 
the Data Sources, the Battery, the Battery Data and the 
Analytics. Each component consists of several entities and 
each entity is described by several attributes. Every entity has 



a unique attribute about its identity (Id) and several others that 
describe it. 

As analysed in the physical architecture of the battery in a 
EV, a BMS consists of several battery packs, a battery pack 
consists of several modules and each module consists of 
several cells. Each of these components transmits data or are 
measured data from it by superMaster BMS, slave BMS and 
SCM, respectively. A superMaster BMS produces source data 
but also obtain data from sensors, so it produces and sensor 
data. Correspondingly, a slave BMS produce both source and 
sensor data. On the contrary, from SCM it can be obtained 
only sensor data. A cycler has cells in which are placed sensor 
and so can be produced sensor data. Moreover, a cycler 
produces source data and metadata. All the types of data are 
part of a dataset which is connected to the analytics 
component and used by it so to be performed the battery data 
analytics. Finally, a cycler has a cycler model that describes 
its specifications and the circumstances under which the 
cycling test has been performed. 

IV. IMPLEMENTATION AND DEPLOYMENT OF THE EV 

BATTERY DATA-DRIVEN DIGITAL TWIN 

The digital twin was implemented and deployed in an EV 
with a BP which was composed from two packs, each pack 
from sixteen modules and each module from six cells. In 
correspondence with the physical architecture of this BP, data 
were recorded from two superMaster BMSs, sixteen slave 
BMSs and six SCMs. The same cells were placed in two 
different cyclers for cycling.  

 Through the communication elements were obtained 
sensor data, source data and metadata from both BP and 
cyclers. The data from the cyclers had different structure and 
formulation since they came from different types of cyclers. 
The cycling tests were conducted with different charging 
protocols, so the tests would be more representative of real 
driving conditions. Moreover, the datasets that produced from 
these tests, contained both same and different variables. An 
important note here is that even the same variables were 
recorded in a different way. For example, the capacity of the 
cells in one case was recorded through two variables, the 
charge and the discharge capacity when in the second one, the 
capacity was recorded from one variable, the overall capacity. 
These conditions were taken into account in the data 
harmonization process and confirm the need for a common 
and sustainable way of data processing and exploitation. 
Finally, some variables were built during data processing 
since they were not contained in all the datasets, such as the 
cycle number.  

We used additional cycling data from open datasets in 
order to enhance the diversity of input data. These data also 
had to be processed by data harmonization procedure since 
they had different structure and content and they conducted in 
different test conditions. Likewise, the data that were obtained 
from each level of BP were in need of data harmonization 
since they referred to different levels of BP and contained 
aggregations or additional calculations. 

The data harmonization contains several sub-procedures. 
First, the baseline for these procedures is the battery data 
model, which points out the relation between the different 
components of battery data analytics and how they are 
described. Second, in the context of data harmonization and in 
conjunction with the data model, we implemented different 
functions of data transformation on each dataset. In more 

detail, the variable names were transformed into common 
ones and their structure was converted to readable dataframe, 
in which the first line contained the columns’ name and the 
identification number of measurements was defined to be the 
index. Some variables were constructed such as the cycle 
number or harmonized such as the capacity. Additionally, the 
datetime that was recorded, remodeled in a common way of 
presentation in order to be comparable and understandable in 
different plots of data. Furthermore, several datasets contained 
data in the form of objects and so they were not processable. 
For this reason, they converted into a numeric or character 
form depending on the variable that they present. Finally, the 
sampling rate in several datasets was not stable, so it had to be 
converted to a steady one or between datasets the rate was 
different so it had to be unified. 

We also conducted an EDA for each dataset in 
contemplation of visualizing and understanding the behavior 
of several variables through raw data as well as statistical 
features analysis. For the predictive analytics, we used several 
algorithms and models in a flexible way for the overview 
component, state estimation and lifetime prognostics. 

Fig. 8 presents an overview of the datasets that were used 
in battery data analytics and came from the cycling tests. It 
contains the number of analyses that have conducted as well 
as the number of datasets that have been used for the analytics. 
The following graphs describe the main characteristics of the 
datasets. The first graph refers to the lifetime of the dataset 
and depicts if the dataset contains data from the entire lifecycle 
of the battery, from a part of it or from a single cycle. 
Moreover, important parameters, which are expressed as 
metadata, are: the temperature in which is conducted the data 
collection, the C-rate that was implemented, and the duration 
of the experimental procedure. These parameters are 
presented in the overview graph. 

 

Fig. 8. Overview of battery data used in analytics. 

V. CONCLUSIONS AND FUTURE WORK 

Li-Ion batteries have been widely applied as energy 
storage systems, such as EVs. There is an increasing research 
interest on ML models and algorithms dealing with predictive 
analytics for SoC, SoH, and RUL predictions. With the recent 
advances in understanding battery degradation, modelling 
tools and diagnostics, there is an opportunity to fuse this 
knowledge with emerging ML techniques towards modelling 



a battery digital twin, following the principles of RAMI 4.0. 
In this paper, we modelled, designed, and developed an EV 
battery data-driven digital twin for supporting predictive 
analytics in order to tackle the big data-rich, complex, and 
uncertain Li-Ion batteries behaviour in a holistic way. 

During the last years, Transfer Learning (TL)  has evolved 
into an efficient and powerful data-driven tool for smarter 
battery management [26]. In our future work, we will extend 
the herein presented digital twin in order to develop TL 
approaches in order to take advantage of the multitude of data 
derived from cyclers so that they are used for training ML 
models that can provide predictions on BMSs, where typically 
the data availability is limited. 
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