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Abstract
Aims/hypothesis  Determining how high BMI at different time points influences the risk of developing type 2 diabetes and 
affects insulin secretion and insulin sensitivity is critical.
Methods  By estimating childhood BMI in 441,761 individuals in the UK Biobank, we identified which genetic variants had 
larger effects on adulthood BMI than on childhood BMI, and vice versa. All genome-wide significant genetic variants were 
then used to separate the independent genetic effects of high childhood BMI from those of high adulthood BMI on the risk 
of type 2 diabetes and insulin-related phenotypes using Mendelian randomisation. We performed two-sample MR using 
external studies of type 2 diabetes, and oral and intravenous measures of insulin secretion and sensitivity.
Results  We found that a childhood BMI that was one standard deviation (1.97 kg/m2) higher than the mean, corrected for 
the independent genetic liability to adulthood BMI, was associated with a protective effect for seven measures of insulin 
sensitivity and secretion, including increased insulin sensitivity index (β=0.15; 95% CI 0.067, 0.225; p=2.79×10−4) and 
reduced fasting glucose levels (β=−0.053; 95% CI −0.089, −0.017; p=4.31×10−3). However, there was little to no evidence 
of a direct protective effect on type 2 diabetes (OR 0.94; 95% CI 0.85, 1.04; p=0.228) independently of genetic liability to 
adulthood BMI.
Conclusions/interpretation  Our results provide evidence of the protective effect of higher childhood BMI on insulin secretion 
and sensitivity, which are crucial intermediate diabetes traits. However, we stress that our results should not currently lead 
to any change in public health or clinical practice, given the uncertainty regarding the biological pathway of these effects 
and the limitations of this type of study.
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Introduction

The increasing prevalence of obesity in childhood is 
assumed to lead to an increased prevalence of type 2 dia-
betes in adult life [1]. Previous observational studies have 
shown that changing from a relatively thin child to an over-
weight or obese adult provides an additional risk for type 2 
diabetes, compared with current adulthood BMI [2]. How-
ever, observational studies are subject to confounding, which 
is less likely to affect genetic studies [3]. For example, an 
unmeasured factor, such as smoking status, may confound 
the association between observed BMI and diabetes status, 
but cannot affect the genetic variants that an individual 
carries.

A previous study that used genetics to understand the 
causality of higher BMI at different time points on type 2 
diabetes found that the relationship between childhood BMI 
and type 2 diabetes was mediated through adulthood BMI 
[4]. The study used genetic variants with stronger effects 
on adulthood BMI than childhood BMI, and vice versa, to 
separately test the effects of high BMI in childhood and the 
effects of high BMI in adulthood. However, the study was 
limited to analysis of type 2 diabetes as a binary disease trait, 
and did not investigate potential intermediate mechanisms 
such as those involving insulin secretion and sensitivity; in 
addition, the genetic analysis was limited to lower-powered 
categorical BMI phenotypes. To understand more about the 
relationship between higher childhood BMI and type 2 dia-
betes, we generated a continuous measure of childhood BMI 

in the UK Biobank, validated using the 1958 National Child-
hood Development Study (1958NCDS) [5], which can be 
directly compared with continuous adulthood BMI, resulting 
in a more powerful genetic approach. We then tested a wide 
range of intermediate diabetes risk factors.

Using a combination of both previously identified instru-
ments and novel genetic instruments for childhood and 
adulthood BMI that resulted from our continuous pheno-
types, we assessed the causal relationships between BMI 
at different life stages and diabetes and related outcomes: 
type 2 diabetes, fasting insulin (FI) levels, fasting glucose 
(FG) levels, and several measures of insulin secretion and 
sensitivity based on oral and intravenous tests, using multi-
variable Mendelian randomisation [6].

Methods

Study population  We analysed 441,761 individuals of 
inferred European descent within the UK Biobank based 
on genetic principal component analysis, as previously 
described [7], using imputed genome-wide genetic variants, 
and both a baseline (adulthood) BMI measure (UKB Field 
21001) and a self-recall variable related to body size at age 
10 years (UKB Field 1687).

1958 National Child Development Study  The 1958NCDS is 
a longitudinal assessment of 17,415 individuals who were 
born within a single week in March 1958 [5]. Beginning at 
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the week of birth, mothers and their children were repeatedly 
assessed at irregular intervals, using a comprehensive set of 
measurements and assessments regarding many aspects of 
their lives. We analysed a subset of 5847 individuals who 
had undergone genome-wide array-based genotyping and 
imputation, and who were inferred to be of European descent 
(again using genetic principal component analysis). Of these 
5847 individuals, 4838 had measures of BMI at age 7 years, 
4704 at age 11 years, 4298 at age 16 years, 5013 at age 23 
years, and 5774 at age 44 years.

Measures of BMI  Individuals in the UK Biobank were asked 
whether they felt that they were ‘thinner’, ‘the same size 
as’ or ‘plumper’ than their peers when they were age 10 
years (UKB Field 1687). From this categorical variable, we 
generated a continuous simulation of childhood BMI in the 
UK Biobank based on summary statistics for BMI at age 11 
years from the 1958 National Child Development Study (see 
electronic supplementary material [ESM] Methods for full 
details, and ESM Figs 1–3, respectively). Briefly, the self-
recall value for each participant’s body size at age 10 years 
was used as an anchor to which we assigned a BMI at age 
10 years, after sub-sampling from a distribution that was an 
approximation of BMI at age 11 years in the 1958NCDS. 
Next, using the UK Biobank data, a genome-wide asso-
ciation study (GWAS) was performed for both adulthood 
and childhood BMI, from which we generated two genetic 
instruments. Adulthood BMI was taken directly from UKB 
Field 21001.

Genetic variants associated with BMI  We used the software 
REGENIE [8] to assess the association between each of 
65,433,624 imputed genetic variants and BMI at each of the 
two timepoints independently for 441,762 individuals. We 
then excluded genetic variants that were not SNPs, and those 
that did not have INFO >0.8 and minor allele frequency 
(MAF) of 0.01<MAF<0.99. REGENIE performs associa-
tion tests using a linear mixed-model approach, which takes 
account of the degree of genetic relationship between each 
pair of individuals. The BMI at both timepoints was rank 
inverse-normalised and residualised at run time: the covari-
ates adjusted for were sex, age at baseline, genotyping chip 
and UK Biobank assessment centre. Effect sizes are given 
in standard deviation units.

Based on the results of these GWAS, we used the clumping 
procedure in PLINK version 1.9 [9] to select independent 
and genome-level associated genetic variants. We used the 
following criteria to define an independent genetic associa-
tion: r2≤0.001 (correlation between independent signals), 
distance ≥250 kb (distance between independent signals), 
p≤5×10−8 and 0.01≤MAF≤0.99, using an unrelated quality-
controlled HapMap3 reference panel [10].

Validation of genetic scores  The independent genetic vari-
ants for childhood and adulthood BMI derived here were 
individually assessed against phenotypes available in 
the 1958NCDS. A genetic risk score for both adulthood 
BMI and BMI at age 10 years was calculated within the 
1958NCDS cohort using the variants identified from the 
relevant GWAS, and assessed against derived BMI for each 
individual at the age of 44 years and 11 years. To make a 
direct comparison between the predictive ability of the two 
genetic risk scores against the two phenotypes, we calculated 
the receiver–operator curves for the accuracy in predicting 
one of the two phenotypes being greater than one stand-
ard deviation from the standardised mean of the phenotype. 
We additionally calculated the percentage of the variance 
explained by the continuous genetic score against the phe-
notype of interest.

At a genome-wide level, we calculated the genetic cor-
relation of both adulthood and childhood BMI with both 
the most recent Early Growth Genetics (EGG) Consortium 
meta-analysis of childhood BMI [11] and adulthood BMI 
[12]. We used the R software package LDSC to calculate 
genetic correlation [13]. Finally, we calculated the total vari-
ance explained by the instruments for adulthood and child-
hood BMI separately using the following formula: 2 × β2 × 
MAF × (1 − MAF).

Mendelian randomisation  We used Mendelian randomisation 
(MR) to assess whether there is a causal link [14] between 
our BMI exposures and type 2 diabetes/insulin-related out-
comes. In an MR study, the effect sizes of independent genetic 
variants that are strongly associated with each exposure are 
regressed against the effect sizes of the same variants with the 
disease/outcome from a GWAS of a secondary non-overlap-
ping cohort (two-sample MR). Comparison at a genetic level 
bypasses some observational confounders, as genetic variant 
genotypes are determined at zygote formation [14]. As such, 
an association found using MR provides stronger evidence of 
causality than that derived from observational data, albeit with 
the possibility of residual confounding if there is, for example, 
residual population structure.

We calculated the MR causal effect estimates using an 
inverse-variance weighted model, where each variant–expo-
sure vs variant–outcome relationship is weighted by the 
inverse of the variance of the variant–outcome relationship. 
A sensitivity analysis was also performed in a lower-power 
MR–Egger framework, which is more robust to pleiotropy 
(an association between the variant and outcome that does 
not pass through the exposure, which is a violation of the 
MR assumptions). Additionally, we performed a sensitivity 
analysis with Steiger filtering applied [15]. This approach 
excludes genetic variants that have larger effects on the 
outcomes (such as insulin secretion and sensitivity meas-
ures) than the exposures (childhood or adulthood BMI). We 
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calculated effects using the formula used to compare instru-
ment strength in the previous section. We also calculated 
an F-statistic for each of our analyses as a measure of the 
quality of the variants as a genetic proxy for the observed 
exposure (typically F>10 is classified as sufficient).

Where the variant–outcome relationship was not available 
in the outcome GWAS, a variant proxy was chosen based 
on a high degree of correlation (r2>0.8) between the index 
variant and its proxy and a maximum distance between the 
index and proxy variant of 250 kbp. Effect sizes between the 
variant and outcome and variant–exposure were then either 
orientated to the matching alleles or matched based upon the 
reported allele frequencies.

Multivariable Mendelian randomisation (MVMR) is 
performed by conditioning the exposure–outcome relation-
ship for each genetic variant upon that of another exposure’s 
genetic effect size (for example, conditioning the exposure–
outcome relationship of childhood BMI upon that of adult-
hood BMI [6]). As such, the adjusted primary exposure–
outcome relationship is independent of the genetic effects 
associated with the secondary exposure; refer to Fig. 1 for a 
pictorial representation of the MVMR model.

Measures of type 2 diabetes and insulin‑related 
traits  Genetic variant effect sizes for type 2 diabetes were 
obtained from a previous study [16], which was a meta-
analysis of 71,124 cases and 824,006 controls of European 
ancestry, and from FinnGen (Freeze Six) [17] for ‘Type 

2 diabetes, strict (exclude DM1)’, which included 37,002 
cases and 215,160 controls. The MR results for each type 2 
diabetes-outcome GWAS were then meta-analysed.

Effect sizes relating to FG and FI levels were drawn from 
a previous study [18], in which FG levels were measured in 
151,188 individuals and FI levels were measured in 105,056 
individuals.

We also analysed seven measures of insulin sensitivity 
and response during and after an oral glucose tolerance 
test in a meta-analysis of results from a study of 26,037 
participants without diabetes [19] and the Metabolic Syn-
drome in Men (METSIM) study [20], which included male 
participants from Kuopio, a town in Finland. Specifically, 
we looked at the association of our BMI measures with the 
area under the insulin curve (AUC), the ratio of the AUCs 
for insulin and glucose (AUC ratio), an insulin sensitivity 
index, insulin after 30 min, insulin after 30 min adjusted for 
BMI, incremental insulin after 30 min and corrected insulin 
response, as defined previously [19].

Meta-analyses were performed, where applicable, using 
the R software package metafor, based on the assumption 
of a fixed effect between the exposure and outcome across 
studies.

Genetic

instruments for

adulthood BMI  

Genetic

instruments for

childhood BMI  

Childhood BMI

Adulthood BMI

Disease

Confounders

Fig. 1   Directed acyclic graph illustrating assumed causal relationship 
between childhood and adulthood BMI. Solid red and blue arrows 
indicate causality, unidirectional blue dashed arrows represent non-

causal effects, and the double-ended blue dashed arrows indicate a 
covariance structure
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Results

In our analysis of 441,762 adult individuals (aged 40–75 
years), we identified 306 (ESM Table 1) and 1127 (ESM 
Table 2) independent genetic variants (p<5×10−8, 250 kb 
distance) associated with continuous measures of child-
hood and adulthood BMI, respectively, in comparison with 
a previous study [4], in which 295 and 557 independent 
signals, respectively, were reported for categorical meas-
ures of the same outcomes. The exact parameters derived 
to describe the continuous measure of childhood BMI are 
given in the ESM Results. The variance explained by the 
genetic variants was 11.3% and 4.03% for adulthood and 
childhood BMI, respectively, compared with 2.78% and 
1.96% in the previous study [4], demonstrating that our 
genetic instruments have been strengthened by using con-
tinuous variables.

Using these variants, we generated polygenic scores for 
childhood and adulthood BMI, and validated them in the 
1958NCDS dataset and independent data from the EGG 
Consortium [11] and the Genetic Investigation of ANthro-
pometric Traits (GIANT) Consortium [12]. The adulthood 
BMI genetic risk score was a better predictor of stand-
ardised adulthood BMI at age 44 years in the 1958NCDS 
dataset (OR for being greater than one standard deviation 
from the mean 1.55; 95% CI 1.43, 1.67;p=1.29×10−16; 
variance 4.80%) than of standardised childhood BMI at 
age 11 years being more than one standard deviation from 
the mean in the same dataset (OR 1.32; 95% CI 1.20, 1.44; 
p=1.85×10−9; variance 0.995%), and explained more of 
the variance in the respective continuous traits (ESM 
Fig. 4). The childhood BMI genetic risk score was a bet-
ter predictor of childhood BMI (OR 1.32; 95% CI 1.21, 
1.44; p=1.32×10−16; variance 1.62%) than of adulthood 
BMI (OR 1.16; 95% CI 1.08, 1.25; p=3.73×10−5, vari-
ance 0.635%).

The genetic correlation between adulthood BMI 
measured in this UKBiobank study and childhood BMI 
measured directly by the EGG Consortium (n=35,668, 
ages 2–10 years) was 0.644 (95% CI 0.582, 0.705; 
p=3.22×10−95), which was less than that between our 
measure of childhood BMI and that of the EGG Consor-
tium, at 0.937 (95% CI 0.864, 1.01; p=1.29×10−145). The 
genetic correlation between adulthood BMI analysed by 
the GIANT Consortium [12] and adulthood BMI meas-
ured in this UK Biobank study was 0.943 (95% CI 0.925, 
0.960; p=1.31×10−210), and the genetic correlation with 
childhood BMI measured here was 0.645 (95% CI 0.591, 
0.680; p=1.28×10−173).

Childhood BMI  Using MR, we showed that higher BMI 
in childhood was associated with protective effects on 

diabetes-related traits after adjustment for the independent 
effects of higher adulthood BMI. Specifically, MR showed 
that higher childhood BMI, corrected for genetic liability 
to adulthood BMI, has protective effects on insulin secre-
tion and sensitivity traits, but that higher childhood BMI, 
corrected for genetic liability to adulthood BMI, was not 
protective for type 2 diabetes.

In a multivariable model that takes account of the inde-
pendent genetic effects of adulthood BMI, we found that a 
childhood BMI that was one standard deviation (1.97 kg/
m2) higher than the mean was associated with a protective 
effect on a range of insulin secretion and sensitivity traits: 
lower AUC, ratio of insulin and glucose curves (AUC ratio), 
insulin after 30 min adjusted for BMI, insulin change after 
30 min, and higher insulin sensitivity index . Higher child-
hood BMI was also weakly associated with lower FG levels 
(β=−0.0528; 95% CI −0.0893, −0.0163; p=4.21×10−3). 
There was no evidence of an effect on FI levels (β=−0.0109; 
95% CI −0.0564, 0.0346; p=0.638). These results, including 
a comparison with univariable models with no adjustment for 
adulthood BMI, are shown in Figs 2 and 3 and ESM Table 3.

In a multivariable model that corrects for the independ-
ent genetic liability to adulthood BMI, higher childhood 
BMI was not associated with the risk of type 2 diabetes 
(OR 0.941; 95% CI 0.851, 1.04; p=0.228), consistent with 
results derived from two meta-analysed studies [16, 17]. 
These results, including a comparison with the univariable 
model with no adjustment for adulthood BMI, are shown in 
Fig. 4 and ESM Table 3.

Adulthood BMI  Using MVMR, we showed that higher 
BMI in adulthood leads to a higher risk of type 2 diabetes, 
independently of the genetic effects of childhood BMI. We 
observed consistent effects on insulin and glycaemic traits 
intermediate to type 2 diabetes, with MVMR showing that 
higher adulthood BMI leads to lower insulin sensitivity and 
higher insulin secretion. The link between higher genetically 
derived adulthood BMI and higher insulin secretion in peo-
ple without type 2 diabetes is probably a response to lower 
insulin sensitivity. MR also showed that higher adulthood 
BMI was associated with an increased risk of type 2 diabetes.

In a multivariable model that corrects for the independ-
ent genetic liability to childhood BMI, an adulthood BMI 
that was one standard deviation (4.77 kg/m2) higher than the 
mean was associated with higher FG levels (β=0.0941; 95% 
CI 0.0683, 0.120; p=7.50×10−13) and FI levels (β=0.166; 
95% CI 0.134, 0.199; p=3.19×10−10). An increase in adult-
hood BMI in a multivariable model also showed evidence of 
a damaging effect on the remaining six insulin traits (ESM 
Table 3). These results, including a comparison with the 
univariable model with no adjustment for childhood BMI, 
are shown in Figs 2 and 3 and ESM Table 3.
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In a multivariable model that corrects for the independ-
ent genetic liability to childhood BMI, an adulthood BMI 
that was one standard deviation (4.77 kg/m2) higher than the 
mean was associated with an increased risk of type 2 dia-
betes (OR 2.47; 95% CI 2.31, 2.65; p=1.23×10−142). These 
results, including a comparison with the univariable model 
with no adjustment for childhood BMI, are shown in Fig. 4 
and ESM Table 3.

Sensitivity analyses  MR–Egger intercept analyses for 
each of the 57 MVMR models identified three statistical 
associations with p<0.01 for the following exposure–out-
come relationships: FI from the MAGIC Consortium [18] 
(β=1.40×10−3, p=9.44×10−4), and type 2 diabetes from 
both the study by Mahajan et al [16] and the FinnGen study 
[17] (β=(4.00×10−3 and 4.00×10−3; and p=5.00×10−3 and 
1.00×10−3, respectively; see ESM Table 4).

ISI
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b

Fig. 2   Univariable MR meta-analysis results (red lines and symbols) 
and MVMR meta-analysis results (blue lines and symbols) for (a) 
childhood BMI and (b) adulthood BMI vs oral glucose tolerance test 
traits: AUC; corrected insulin response (CIR); ratio of insulin and 

glucose AUCs (AUC ratio); insulin after 30 min adjusted for BMI 
[Ins 30 (BMI adj)]; insulin after 30 min (Ins 30); insulin change after 
30 min (incremental Ins 30); and insulin sensitivity index (ISI). Filled 
symbols indicate p<0.05
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Fig. 3   Univariable MR results (red lines and symbols) and MVMR results (blue lines and symbols) for the association between (a) childhood 
BMI and (b) adulthood BMI and FI and FG levels. Filled symbols indicate p<0.05
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A Steiger-filtered analysis resulted in consistently wider 
confidence intervals compared with those obtained without 
filtering (ESM Table 5), but the results were broadly con-
sistent. For example, we continued to observe evidence of 
a protective effect of higher childhood BMI, after adjust-
ing for the independent effects of adulthood BMI, on meas-
ures of AUC insulin (β−0.155; 95% CI −0.282, −0.0286; 
p=0.0163) and FG levels (β=−0.0730; 95% CI −0.128, 
−0.0184; p=8.77×10−3).

Discussion

We have performed genetic association analyses and MR to 
assess the independent causal relationships between BMI 
recalled from childhood and actual adulthood BMI and the 
risk of developing type 2 diabetes, as well as their effects on 
insulin-related traits measured in fasting oral glucose toler-
ance tests and intravenous glucose tolerance tests. Our meas-
ure of childhood BMI provided a more powerful genetic 
measure than previous work, based upon a combination of 
self-recall categories and known summary statistics from the 
1958NCDS for measured childhood BMI [5].

We found that a higher BMI in childhood, once separated 
from higher BMI in adulthood, was protective for measures 
of both insulin secretion and sensitivity, including FG lev-
els and an insulin sensitivity index. We note that associa-
tions with lower insulin secretion when not corrected for 
insulin sensitivity are consistent with a protective effect, 

because, in people without diabetes, a higher insulin sen-
sitivity results in a reduced need for insulin secretion. One 
possible explanation is that higher adiposity in childhood 
stimulates differentiation of cells that are important for 
insulin sensitivity and secretion, such as adipocytes and 
beta cells. There is evidence more adipocytes are present 
in people without diabetes compared to those with diabetes 
but having the same BMI [21], and that people with higher 
BMIs but without diabetes have more beta cells [22]. How-
ever, the evidence that higher childhood BMI has a protec-
tive effect on measures of insulin secretion and sensitivity 
was not reflected in a conclusive association with protec-
tion from type 2 diabetes. This difference may be due to 
differences in power between measures of continuous traits 
and binary disease traits, although the type 2 diabetes sam-
ple sizes were larger than those for the intermediate traits. 
Additionally, this effect is relative to other people who may 
have changed BMI between childhood and adulthood; for 
example, it may be that the change in BMI is the true risk 
factor, resulting in a higher BMI in childhood appearing 
less damaging than a lower BMI in childhood, the latter 
of which suggests a greater relative increase in adulthood, 
which is in keeping with observational studies [22, 23]. It is 
also possible that the genetic variants with stronger associa-
tions with childhood BMI result primarily in higher muscle 
or non-fat mass components of growth. Associations with 
higher muscle mass may result in higher insulin sensitivity 
and help explain our findings. However, recent work sug-
gests that the childhood genetic variants used in a previous 
study [4], which overlap strongly with the genetic variants 

Childhood BMI

Adulthood BMI

0.8 1.2 1.6 2.0 2.4 2.8

Risk of diabetes (OR)

Fig. 4   Univariable MR results (turquoise lines and symbols) and 
MVMR results (red/blue lines and symbols) for the association 
between childhood BMI and adulthood BMI and type  2 diabetes 

as measured in the present meta-analysis (diamonds), the study by 
Mahajan et  al [16] (squares) and the FinnGen study [17] (circles). 
Filled symbols indicate p<0.05
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we used, were good measures of fat mass in children at ages 
9–18 years [24]. Crucially, they found that the genetic vari-
ants were more strongly associated with adiposity than lean 
mass in childhood to the beginning of adulthood [24]. That 
study showed that the variants derived from the UK Biobank 
childhood BMI self-recall variable are more strongly asso-
ciated with adiposity than lean mass as measured by dual-
energy x-ray absorptiometry at ages 9, 13, 15 and 25 years. 
Their data showed convincingly that the higher childhood 
BMI genetic score consistently leads to higher adiposity at 
several time points in childhood after the adiposity rebound 
at age 4–5 years, and that these effects are stronger with 
fat mass than lean mass, although both are present. The 
associations were also consistent with trajectories of BMI 
in childhood. More precisely, the childhood BMI genetic 
instrument was associated with consistently stronger effects 
on the imaging-based measures than the adulthood genetic 
instrument at age 9, 13, 15 and 18 years, with a childhood 
BMI genetic risk score one standard deviation higher than 
the mean being associated with approximately 8% higher fat 
mass compared with 1–2% higher lean mass. The adulthood 
genetic instrument had a stronger effect on fat mass than 
the childhood instrument by the age of 25 years. It is pos-
sible that the likely insulin-sensitising effects of the 1–2% 
higher lean mass at several times points between the ages of 
9 and 18 years offset the insulin resistance effects of the 8% 
higher fat mass. However, we think this is unlikely because 
we know that a higher fat mass leads to slightly higher lean 
mass due to the load-bearing effects of the extra weight, as 
seen with the FTO variant [25]. Importantly, the adulthood 
BMI genetic instrument is associated with a proportionally 
similar increase in lean mass for each standard deviation 
increase in fat mass, and we know that this genetic instru-
ment is associated with lower insulin sensitivity. Whilst we 
cannot rule it out, we therefore think it unlikely that non-fat 
mass effects and different trajectories of growth are influenc-
ing our results. However, because of these uncertainties, we 
stress that our work should not lead to any change in clini-
cal practice during childhood, early life or adulthood, and 
more work is needed to identify the biological mechanisms 
that could be driving these associations. Nonetheless, adult-
hood BMI was found to have a consistently risk-increasing/
damaging effect on all traits studied, regardless of whether 
the independent genetic liability to childhood BMI was cor-
rected for, acting as a positive control.

There are a few notable limitations to this study. First, our 
measure for childhood BMI is derived from a categorical 
measure that was recalled many decades after the event. To 
attempt to overcome this limitation, we performed validation 
in both the 1958NCDS and against external GWAS of BMI 
measured in childhood, and found that our genetic measures 
are more strongly predictive of the chronologically relevant 
phenotypes. We were unable to independently certify that 

the genetic variants that we used as a proxy of childhood 
BMI were associated with early-life adiposity, as opposed 
to (for example) growth and lean mass. We also acknowl-
edge the limitations related to an MR study, in which fully 
satisfying the three fundamental assumptions (genetic rel-
evance and independence, and no horizontal pleiotropy) is 
rarely achieved. For example, an MR analysis assumes that 
the genetic variant does not affect the outcome other than 
via the exposure: this is unlikely to be consistently the case 
when considering genetic variants that increase the odds of 
having type 2 diabetes and BMI if the variant (for example) 
raised insulin sensitivity independently. There was also some 
evidence of pleiotropy for three of our analyses using the 
MR–Egger test.

In summary, our data provide initial evidence that 
higher fat mass in childhood leads to protective effects, i.e. 
improvements in insulin sensitivity and reduced need for 
insulin secretion, in adulthood. A potential explanation is 
the beneficial effects of exposure to the metabolic challenges 
of higher adiposity in early, more plastic, stages of life com-
pared with the likely damaging effects of large increases in 
adiposity between childhood and adulthood.
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