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1. SCOPE 
 
The purpose of this guideline is to provide guidance in how to estimate the uncertainty related 
to biofuels measurement.  
 

The guide considers measurement of water content and impurities in liquid and solid biofuels. 
Guidelines for estimating the uncertainty due to sampling is provided and the potential in using 
machine learning techniques for optimising calibration curves is discussed. 

2. INTRODUCTION 
 

This document provides guidance for interpreting the requirements of ISO 17025:2017 clause 
7.6 "Evaluation of measurement uncertainty" [1] and how they apply to the testing and 
calibration that is carried out in accredited laboratories. It also outlines the fundamental 
principles and potential methods for evaluating measurement uncertainty for quantitative 
testing.  

The guide considers measurement of water content and impurities in liquid and solid biofuels. 
The guide include advice in estimating uncertainty due to sampling and discuss the potential 
in using machine learning techniques for optimising calibration curves. 

The development of this document is made as part of the 19ENG09 BIOFMET project and 
the document provides information on the developed analytical methods for determination of 
impurities in selected liquid and solid biofuels with accent on on-line and laboratory methods 
for industrial application. Analytical methods developed, optimized, and validated within the 
course of the project have been defined in terms of the measuring principle and 
mathematical models used to generate data. The associated measurement uncertainties 
follow the developed models and consider all recognized uncertainty sources. 

3. TERMS AND DEFINITIONS 
 

• Analytical acceptance criteria: Performance criteria applied to results obtained from the 
analysis performed. These criteria are pre-defined and are dependent on the nature of the 
product, the analytical procedure and the specification limits given in the monograph or in 
the marketing authorisation.  
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• Bias (measurement bias): estimate of a systematic measurement error [2].  

• Combined standard uncertainty: standard uncertainty of the result of a measurement 
when the result is obtained from the values of several other quantities, equal to the positive 
square root of a sum of terms, the terms being the variances or covariances of these other 
quantities weighted according to how the measurement result varies with these quantities 
[3].   

• Coverage factor, k: numerical factor used as a multiplier of the combined standard 
uncertainty to obtain an expanded uncertainty, which is typically in the range 2 to 3. The 
choice of the factor k is based on the level of confidence required and on the set of data 
available. At the approximate level of confidence of 95 %, the k-value is usually set to 2, 
for normally distributed data. However, a correction factor (i.e. t-Student value) should be 
applied in the calculation of the standard uncertainty depending on the number of 
measurements [3, 4]. 

• Expanded uncertainty, U: quantity defining an interval around the result of a 
measurement that may be expected to encompass a large fraction of the values that could 
reasonably be attributed to the measurand. It is calculated from a combined standard 
uncertainty and a coverage factor k [3].  

• Level of confidence: a number expressing the degree of confidence in a quoted result, 
e.g. 95 %. It represents the probability that the value of the measurand lies within the 
quoted range of uncertainty [3].  

• Machine learning: the use and development of computer systems that are able to learn 
and adapt without following explicit instructions, by using algorithms and statistical models 
to analyse and draw inferences from patterns in data. 

• Measurand: quantity intended to be measured [2, 6].   

• Standard uncertainty: uncertainty of the result of a measurement, expressed as a 
standard deviation [3]. 

• Systematic error (Systematic measurement error): component of measurement error 
that in replicate measurements remains constant or varies in a predictable manner [2].  

• Type A evaluation (of uncertainty): method of evaluation of uncertainty by the statistical 
analysis of series of observations [3].   

• Type B evaluation (of uncertainty): method of evaluation of uncertainty by means other 
than the statistical analysis of series of observations [3]. 

• Measurement uncertainty (MU): a parameter associated with the result of a 
measurement that characterises the dispersion of the values that could be reasonably 
attributed to the measurand [6].  

• Uncertainty evaluation procedure: the procedure used for estimating the overall 
uncertainty [6]. 

• DUT: the Device under test, i.e. the device being calibrated. 

4. WATER CONTENT  
 

4.1 Systems for water-content measurements  

There exist several methods for measuring the water content in solid materials. 

• In-line measurement: Measurements taken within a process or system while it's 
operational. Provides continuous real-time data for monitoring and control purposes. 

• On-line measurement: Measurements made with an instrument that is connected to 
the process either continuously or in intervals, real-time or quasi-real-time monitoring 
and data collection. 

• Off-line measurement: Measurements conducted in a controlled environment, such as 
a laboratory, on samples taken from the process or system. 
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• At-line measurements: Measurements are taken close to the process using portable 
instruments, allowing real-time feedback and adjustments without interrupting the 
process. 

This report will mainly focus on inline and online measurements. Methods applicable to 
inline/online measurements of water includes infrared (IR), radiofrequency (RF), microwave 
(MW), and acoustic techniques.  

 
4.2 Uncertainty contributions related to the calibration of the measurement 

instrument 
 

Calibration of equipment for online measurements of the water content of solid biofuels 
requires that the equipment is compared with a reference method on appropriate test sample 
material.  

The calibration uncertainty includes the following contributions: 

• Uncertainty associated with the reference measurement (using a reference method or 
transfer standard) 

• Uncertainty associated with the in-homogeneity of the sample material (if only part of 
the test material is used for the reference measurements) 

• Uncertainty associated with the calibration curve, usually determined using regression 
techniques 

• Uncertainty due to short term stability of the DUT 

 
Reference measurements 
The reference values for the calibration are provided by either a transfer standard (e.g. an 
electromagnetic resonant cavity) or a reference method (e.g. based on the evolved water 
vapour technique). In either case, the method should have an uncertainty budget on its own. 
The combined uncertainty from this budget must be transferred here as 𝑢𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒. 

 

Inhomogeneity / Sampling 
The uncertainty of the water content, originating from the inhomogeneity in the material is 
found by extracting a number of samples, n, from the batch of biofuel. The water content of 
each sample is measured. Using the results, the average water content of the entire batch 
can be found, as well as the standard deviation of the water content.  

For this exercise, at least three samples must be taken, although more samples are 
recommended. The samples must be taken randomly throughout the batch, making the 
probability of extracting any particular volume of biofuel identical. 

The contribution from the inhomogeneity of the batch is found as the standard deviation of the 
measured values over the square root of the number of samples: 

𝑢𝑖𝑛ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = √
∑ (𝑥𝑖 − �̅�)𝑛

𝑖

(𝑛 − 1) ⋅ 𝑛
=

𝑠𝑖𝑛ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦

√𝑛
. (1) 

 
Calibration curve determined using regression techniques 

The relation between the reference values and the indication of the sensor being calibrated 
(DUT) is usually made using linear regression. The regression have an uncertainty 
contribution. The uncertainty of a linear regression is found as: 
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𝑢𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = √∑ (𝑓𝑥𝑖
− 𝑦𝑖)

2𝑛
𝑖=1

𝑛 − 2
, (2) 

where 𝑓𝑥𝑖
 is the value obtained from the DUT after correction, 𝑦𝑖 is the reference value, and 𝑛 

is the number of samples used during the calibration.  

Alternatively, if the average value of the readings using the working device is the measurand, 
rather than the individual value measured on a specific sample the uncertainty contribution is: 

𝑢𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =
1

√n
√∑ (𝑓𝑥𝑖

− 𝑦𝑖)
2𝑛

𝑖=1

𝑛 − 2
, (3) 

where 𝑛 is the number of calibration samples. 

 
Short Term Stability of DUT 

If the instrument does not show the same result, when measuring repeatedly on the same 
sample, an uncertainty component must be associated, which takes this repeatability into 
account. 

This uncertainty component can be minimized by measuring on the sample multiple times and 
taking the average value, where the uncertainty of this average value becomes: 

𝑢𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = √
∑ (𝑥𝑖 − �̅�)2𝑛

𝑖

(𝑛 − 1) ⋅ 𝑛
 =

𝑠𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦

√𝑛
, (4) 

where 𝑥𝑖 is the measurement result from a single measurement, �̅� is the average value of all 
the measurements, and 𝑛 is the number of measurements. 

 
4.3 Additional uncertainty contributions related to inline/online 

measurements 

Besides the calibration uncertainty, there will be additional uncertainty contributions in normal 
operation of the working device, which add to the total uncertainty of inline/online 
measurements.  

• Long-term stability of DUT 

• Type of biofuel 

• Purity of sample 

 
Long-term stability of DUT 

Often, a significant drift over time of a measurement device occurs, where it will slowly start 
giving different readings when measuring the same quantity. This effect, known as drifting, 
should be taken into account by regular calibrations of the device. 

If regular calibrations of the device are performed, the drift of the instrument can be determined 
as:  

𝑢𝑑𝑟𝑖𝑓𝑡 =
𝑒𝑖 − 𝑒𝑖−1

√3
, (5) 

where 𝑒𝑖 and 𝑒𝑖−1 are instrument errors (difference between instrument reading and reference 
value) on two succeeding calibrations. This uncertainty component needs to be updated after 
each calibration.  
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Type of biofuel and Purity of sample 

On top of the uncertainty components defined by the measurement equipment, the material 
analysed also adds to the final combined uncertainty. For example, additional uncertainty 
contributions may arise from different wood species or different concentration of impurities. 
Since most facilities will not have the possibility of changing settings for the measurement 
equipment whenever a new load of material is measured on, the variation on sensor readings, 
based on sample material must be included.  

The effect of sample type and purity is quantified by measuring several different test samples, 
which are analysed offline. The uncertainty component from the variability of the biofuel is 
found as  

𝑢𝑠𝑎𝑚𝑝𝑙𝑒 =  √
∑ (𝑥𝑖 − �̅�𝐷𝑈𝑇)2𝑛

𝑖

𝑛 − 1
= 𝑠𝑠𝑎𝑚𝑝𝑙𝑒 , 

where 𝑥𝑖 are the offline measurement results and �̅�𝐷𝑈𝑇 are the corresponding results of the 
working instrument.  

Ideally, the measurements result of the working instrument may be corrected for the average 

error, i.e. 
1

𝑛
∑ (𝑥𝑖 − 𝑥𝐷𝑈𝑇)𝑛

𝑖 , which will result in a smaller uncertainty, however it requires 

frequent test measurements whenever a new sample type occurs. 

 

4.4 Combined uncertainty 
 

Once all the uncertainty components have been found, the combined uncertainty is found 
according to JCGM 100:2008 [3] as  

𝑢𝑐𝑜𝑚𝑏 =  √∑𝑢𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙
2 (6) 

= √𝑢𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
2 + 𝑢𝑖𝑛ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦

2 + 𝑢𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛
2 + 𝑢𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦

2 +𝑢𝑑𝑟𝑖𝑓𝑡
2 + 𝑢𝑠𝑎𝑚𝑝𝑙𝑒

2 . 

The expanded uncertainty (k = 2 or approximately 95 % confidence) is consequently 

𝑈 = 2 ⋅ 𝑢𝑐𝑜𝑚𝑏. (7) 

5. SAMPLING 
5.1 Introduction 

To obtain a representative value during testing, it is necessary to test on a representative 
sample. Since biofuels are often highly inhomogeneous, multiple steps must be taken to gain 
a representative sample. A further complication is, that it usually only is possible to measure 
on a small fraction of the combined biomass bulk. This has the consequence, that material 
sampling must be performed, followed by a reduction of the sample to a volume, which can 
be handled by the test equipment. 

To obtain a representative sample, the following fundamental principles should be considered: 
1. Principle of statistical regularity 
2. Principle of inertia of large numbers 

 

The first principle states, that all samples should be equally probable. I.e. there can be no bias 
in how the samples are collected, be it from top or bottom of the batch, large or small particles, 
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etc. In other words, the sampling must be random. 

The second principle states, that the more samples are used, the more accurate the result is. 
Practically this means, that if one sample is obtained from a batch, then the result is less valid, 
than if a result is obtained as an average of 100 samples (given that the 100 samples follow 
the first principle). 

On top of that, sampling of biofuels should in general follow the standard “ISO 18135:2017: 
Solid Biofuels – Sampling”. The following considerations should mainly be seen as one 
possible implementation of this guideline, along with some best practices investigated in this 
project. 

 
5.2 Manual vs. Automatic sampling 

Sampling can be performed both manually and automatically. Both have advantages and 
disadvantages regarding establishing costs, safety, and representativeness. 

Representativeness: As stated in the first fundamental principle of sampling, all samples 
should be random, meaning that all parts of the batch should have equal probability in being 
sampled. While this can be achieved using manual sampling methods, humans do have a 
higher than zero probability towards taking “interesting” samples rather than random samples.  

Automatic sampling does not find specific parts of the batch to be more interesting than others. 
As such, it is easier to avoid a bias towards certain parts of the batch than others, as the 
locations at which the samples are extracted can be programmed to be random, after which 
the sample extractor/robot will use these locations, without asking questions. Although this 
might leave out volumes, which seem suspicious to a human, it will allow for an unbiased 
measurand.  

Safety: Batches of biofuels are often delivered by truck, where the sample is obtained from a 
falling stream of the back of the truck. Obtaining samples this way requires that the operator 
is secured by a harness and rope, as well as other safety measures. These safety measures 
are there for a reason, and things can still go bad in the sampling situation, resulting in serious 
injuries or death.  

Establishing costs: One area, where automatic sampling falls short of manual sampling is in 
the establishing costs. Where manual sampling principally only requires a shovel and a bucket 
(depending on how you extract the sample), automatic sampling requires a much bigger and 
more expensive setup. This might restrict some locations from ever being able to install 
automatic sampling, as the potential savings in determining the correct water content cannot 
justify the costs of installing an automatic sampling system.  
 

5.3 Sampling uncertainty 

The uncertainty of the batch can be found after the samples have been collected. The 
uncertainty in the estimation of the water content in a batch of biofuels is almost identical to 
the uncertainty estimation of the water content found in the previous section. The only 
difference between the expressions found here is the addition of a term taking the 
inhomogeneity of the batch, 𝑠𝑏𝑎𝑡𝑐ℎ into account.  

As such, the uncertainty for water content in a batch of biofuels is: 

𝑢𝑏𝑖𝑜𝑓𝑢𝑒𝑙 = √𝑢𝑐𝑜𝑚𝑏
2 +

𝑠𝑏𝑎𝑡𝑐ℎ
2

𝑛
(8) 

where 𝑢𝑐𝑜𝑚𝑏 is the uncertainty found in section 4, 𝑠𝑏𝑎𝑡𝑐ℎ is the standard deviation between 

samples extracted from the batch of biofuel, and 𝑛 is the number of extracted samples. 
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From the above equation it is seen that the uncertainty in the estimation of the water content 
of the batch decreases with the number of samples extracted.  
 

6. MACHINE LEARNING for water-content determination 

The technology of machine learning allows to extract the information from so-called big data. 
As an example of big data, the training data for water content measurements could be a set 
of data, giving the water content along with additional measurement data from different 
sensors. Using machine learning it is possible find and quantify the effect of correlations 
between different measurements (e.g. data from a near infrared sensor (NIR) or/and a 
microwave sensor (MW), local temperature, humidity etc.), which are not established in 
advance and would be difficult or impossible to find otherwise. Thus, machine learning makes 
it feasible to combine all the readings to determine the water content of biofuel with improved 
precision compared to using traditional analytic techniques. In addition, the sensor data from 
multiple sensors can be used to create an outlier detection model. In that case, the correlation 
between all the relevant measurements is found, and a probability distribution of the outcomes 
is created. If for some reason, measurements start falling outside of the probability distribution, 
it is a good indicator, that the reliability of the measurement is low (large uncertainty) and 
something needs to be checked, be it a sensor which is drifting or broken, or an extreme 
change in the material measured on. 

Machine-learning models do not necessarily learn to produce real physical functions, but just 
empirical approximations of the real relationship between the model input and its outcome. As 
an approximation, the accuracy of the model’s output is limited by the model’s parameters, 
hyperparameters, input variables, and available data points. There are many sources of 
uncertainty in a machine learning project, including variance in the specific data values, the 
sample of data collected from the domain, and the imperfect nature of any models developed 
from such data. 

 
6.1 Total uncertainty when using machine learning 

Typically, the machine-learning procedure will replace part of the traditional data-analysis 
procedure. Therefore, machine learning will add new uncertainty contributions that replaces 
some of the contributions resulting from a traditional analysis. The machine learning standard 
uncertainty contribution, 𝑢𝑀𝐿, can be expected to replace the contribution from repeatability, 
regression, and sample inhomogeneity. In that case, the resulting combined uncertainty can 
be determined by 

𝑢𝑐𝑜𝑚𝑏 =  √∑𝑢𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙
2  

= √𝑢𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
2 + 𝑢𝑖𝑛ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦

2 + 𝑢𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2 +𝑢𝑑𝑟𝑖𝑓𝑡

2 + 𝑢𝑀𝐿. (9) 

As above, the expanded uncertainty (95 % confidence) is determined by equation (7). 

 
6.2 Uncertainty contribution from machine learning 

The fact that machine-learning algorithms are not explicitly based on physical principles has 
significant impact on the performance of the algorithm and the uncertainty analysis. Usually, 
machine learning has an advantage over traditional data analysis when it comes to the ability 
of reproducing the learning data, i.e., reference dataset using for training the machine-learning 
algorithm. On the other hand, the ability to predict new results under different circumstances 
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is likely poor, due to the lack of link to physical principles. For the same reason, it is not 
possible to determine the uncertainty contribution from machine learning using the 
uncertainties of the model input parameters and sensitivity coefficients derived from the 
machine-learning model, and instead the method described below must be employed.  

To determine the uncertainty contribution related to a machine-learning as defined in the 
previous section the available dataset is divided into subsets. 

1. Training: Only data in this group are used for training (i.e., optimising) the machine-
learning model. 

2. Optimisation: The goal of this group is to optimise the machine-learning model, e.g., 
by adding additional (virtual?) parameters or correlations. 

3. Validation: This is the control group of data, that are used for the actual determination 
of the uncertainty contribution. 

If the optimisation subset is not relevant, the data are divided into only two subsets. It is 
important that the validation subset is sufficiently large to yield a reliable value for the 
uncertainty contribution. This can be tested by repeating the training of the model several 
times, with different random divisions of the dataset. As a guide, the training and validation 
subsets should have equal size in order to secure equal weight in the analysis. See Figure 1. 

 

The calculation of the standard uncertainty of the machine-learning model, 𝑢𝑀𝐿, is performed 
using the residuals, i.e. the difference between the results of the machine-learning model, 
𝑥𝑀𝐿,𝑖, and the corresponding reference values, 𝑥𝑅𝑒𝑓,𝑖, using  

𝑢𝑀𝐿 =  √∑ (𝑥𝑀𝐿,𝑖 − 𝑥𝑅𝑒𝑓,𝑖)
2𝑛

𝑖

𝑛 − 1
, (10) 

where 𝑛 is the number of reference measurements. 

The division into the subsets should be random (Monte Carlo). Furthermore, the reference 
data points should be distributed approximately equally over the tested parameter space (i.e., 
should cover the relevant water-content range approximately homogenously). If this is not the 
case data points should be omitted to obtain an equal distribution. 

Figure 1. Splitting the machine-learning data into several subsets to determine the 

uncertainty related to machine learning. Standard uncertainty of learning subset (fit): 

1.2 %; Standard uncertainty of validation subset (validation): 1.6 %. 
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7. INORGANIC IMPURITIES AND MAJOR COMPONENTS OF SOLID 
AND LIQUID BIOFUELS 

 

7.1 Atomic emission spectrometry  

The analytical method of atomic emission spectroscopy (AES) measures the intensity of light 
produced by the atoms in excited states and is used to quantify metal atoms. An excited atom 
produces radiation with a certain wavelength as it descends to the ground state. Excitation 
(radiation absorption) and de-excitation (radiation emission) of electrons are both involved in 
atomic emission spectroscopy. To excite electrons to greater energy levels, a certain 
wavelength must be absorbed when heated to a high temperature. When the excited species 
depart from the high-temperature zone, they emit radiation in the form of distinct wavelength 
packets as a means of cooling back down to the ground states. Before reaching the detectors, 
these emissions pass a monochromator or filter. 

For obtaining the best results, all instruments must be calibrated before analysis. Usually, a 
minimum of five standard solutions with the increasing concentration similar to those in the 
sample solutions and a with known concentration of the metals to be examined are required 
for calibration. These solutions are named “primary standards”.  

All data read from the calibration curves are further processed for their standard deviation 
under repeatability and reproducibility conditions and all dilutions and other manipulative 
activities samples undergone are taken into account.  

When the samples have a complex matrix and matrix reference materials are available, an 
empirical approach in estimating the measurement uncertainty is usually applied due to  its 
comprehensiveness and uniformity in application. 

An empirical method for the determination of the measurement uncertainty is based on the 
principle that reliability of results = precision + accuracy, and the overall combined 
measurement uncertainty can be expressed using the following equation: 

𝑢𝑐 = √𝑢𝑝𝑟𝑒𝑐
2 + 𝑢𝑏𝑖𝑎𝑠

2 (11) 

A critical concept for analytical chemists, precision, is described in VIM [2] as the degree of 
agreement between indications or measured quantity values acquired by repeat 
measurements on the same or comparable objects under prescribed conditions. Different 
conditions are utilized by analysts for various quality-related tasks, such as method validation, 
internal quality control, collaborative trials, time of measurement, measurement performer 
(analyst), etc. The variability of results can be assessed under repeatability and reproducibility 
conditions. Reproducibility in this context means that different variables/conditions under 
which the measurements were taken were applied on the same analytical sample(s). 

Bias on the other hand as a measure of systematic error can be estimated when optimized 
conditions of certain analytical methods are applied for the measurement of known amount of 
analyte my means of reference materials or interlaboratory studies, or by application of 
different but comparable analytical methods (one validated with prove of capability to generate 
accurate results).  

When assessing measurement uncertainty of selected elements in solid/liquid biofuels or 
resulting ash content the following sources should be taken into account: overall precision of 
a method as a reproducibility of data generated by different analysts, on different days and 
different subsamples and analytical calibration lines; linearity of calibration curves applied; 
bias – systematic error estimated by use of certified reference materials for both preparation 
of calibration curves and matrix CRM for the estimation of analytical results accuracy, as well 
as the sources from other measuring instruments such as balance and/or volumetric labware 
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and instruments (automated pipettes) if samples and calibration standards are prepared 
gravimetrically or based on accurate volume, respectively.  

 

𝑢𝑐 = √𝑆𝐷𝑝𝑜𝑜𝑙𝑒𝑑
2 + 𝑢𝐶𝑅𝑀 𝑐𝑎𝑙

2 + 𝑢𝑚𝑎𝑡𝑟𝑖𝑥 𝐶𝑅𝑀
2 + 𝑢𝑐𝑎𝑙

2 + 𝑢𝑚𝑎𝑠𝑠 𝑥𝑖
2 + 𝑢𝑣𝑜𝑙𝑢𝑚𝑒 𝑥𝑖

2 (12) 

 

The expanded measurement uncertainty is then calculated by multiplying the combined 
measurement uncertainty with the appropriate coverage factor that can be calculated from the 
effective degrees of freedom. A coverage factor close to 2 for 95 % confidence can be 
expected for large number of measurements (normal distribution). 

 
7.2 Fluorescence X-ray spectrometry (wavelength or energy dispersive) 

Atoms in a specimen are activated by primary photons from outside sources, such as an X-
ray tube, radioactive source, or synchrotron beam, to create primary fluorescence. This 
technique is known as direct excitation. An alternative method is indirect excitation, in which 
photons or particles (electrons) are generated by direct excitation or other secondary 
processes within the material, resulting in the observable fluorescence as a secondary 
process. The electromagnetic radiation known as X-rays is produced when atoms are struck 
by high-energy particles. Wave-particle duality characterizes this radiation. For material 
composition analysis and chemical state study, X-ray fluorescence (XRF) spectroscopy 
employs primary X-ray photons or other tiny particles to excite the atoms in the test sample 
and create secondary XRF. 

Two main techniques WD XRF and ED XRF can be applied to measure the elemental 
composition of solid and liquid samples. WD-XRF systems are based on Bragg’s law, which 
states that crystals will reflect X-rays of specific wavelengths and incident angles when the 
wavelengths of the scattered X-rays interfere constructively. While the sample position is fixed, 
the angles of the crystal and detector can be changed in compliance with Bragg’s law so that 
a particular wavelength can be measured. Only X-rays that satisfy Bragg’s law are reflected. 
Collimators further improve resolution by providing different angular divergences to restrict 
unwanted secondary X-rays from reaching the detector. Larger collimators can be used when 
high intensity is favoured over resolution. WD system delivers rapid quantitative determination 
of major and minor atomic elements, from beryllium (Be) through uranium (U), in a wide variety 
of sample types. WDXRF uses crystals to disperse the fluorescence spectrum into individual 
wavelengths of each element, providing high resolution and low background spectra for 
accurate determination of elemental concentrations. The types of crystals used in WDXRF 
include minerals, metallic, organic and synthetic multi-layers. Synthetic thin film multilayer 
crystals are increasing in popularity because they offer higher sensitivity and resolution for 
enhanced light element analysis. 

According to Moseley's law, the EDXRF spectrometer was created.  A power supply, a light 
path subsystem, a control circuit, and a personal computer (PC) make up the spectrometer. 
The X-ray tube receives high-voltage electricity to emit a primary X-ray, which irradiates the 
sample. The XRF is then detected by an XRF detector once the sample has been induced to 
emit it. The detector sorts the incoming photons into groups based on their energy and counts 
how many of each kind there are. The PC then completes the qualitative and quantitative 
analysis after receiving the findings from the detector. 

Empirical approach for estimating measurement uncertainty is proved to be very helpful for 
XRF methods as it provides possibility to assess bias and precision individually. Since no ILC 
or CRM for solid and liquid biofuels or ash material designed for XRF methods for 
determination of elements in such matrices, within the project the ref material were prepared 
and the values for selected elements together with measurement uncertainties were assigned. 
These materials were used to calibrate the XRF instruments and to assess the bias 
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component of the method uncertainty. Precision was estimated as reproducibility pooled 
standard deviation of measurements on the same sample (different subsamples) by different 
analysts and on different days. 

The following sources have been taken into account: overall precision of a method as a 
reproducibility of data generated by different analysts, on different days and different 
subsamples and analytical calibration lines; bias – systematic error estimated by use of 
assigned values and uncertainties for ash reference materials by means of primary method 
for the estimation of analytical results accuracy, as well as the sources from other measuring 
instruments such as balance since samples are prepared gravimetrically by mixing certain 
mass of sample and binding material.  

 

𝑢𝑐 = √𝑆𝐷𝑝𝑜𝑜𝑙𝑒𝑑
2 + 𝑢𝑚𝑎𝑡𝑟𝑖𝑥 𝐶𝑅𝑀 

2 + 𝑢𝑏𝑎𝑙𝑎𝑛𝑐𝑒
2 (13) 

 
The expanded measurement uncertainty is then calculated by multiplying the combined 
measurement uncertainty with the appropriate coverage factor that can be calculated from the 
effective degrees of freedom. A coverage factor close to 2 for 95 % confidence can be 
expected for large number of measurements (normal distribution). 
 

8. ORGANIC IMPURITIES AND MAJOR COMPONENTS OF LIQUID 
BIOFUELS 

The main organic impurities in liquid biofuels are total glycerol, free glycerol and residual 
mono-, di- and triglycerides contained by fatty acid methyl esters (FAME) resulting from the 
transesterification of mineral oils. 

Qualification and quantification of organic impurities can be made using the chromatographic 
method. The principle of the method consists in the transformation of free glycerol and mono-
, di- and triglycerides into much more volatile and stable derivatives in the presence of pyridine 
and N-methyl-N-trimethylsilylfluoroacetamide (MSTFA). After silanization, the samples are 
analysed by gas chromatography on a short capillary column with a low stationary phase 
deposition, with the introduction of the sample directly into the capillary column (on-column) 
and the detection of the compound with a flame ionization detector (FID).  

After a calibration procedure of the gas chromatograph equipped with an injector as allow the 
introduction of the sample directly into the chromatographic column, the quantification of free 
glycerol is performed in the presence of the internal standard 1,2,4-butanetriol and mono-, di- 
and triglycerides are directly quantified in the presence of internal standards for each category 
of glycerides.In the equations below the following standards are employed: 

• monononadecanoin (Mono C19) for monoglycerides 

• dinonadecanoin (Di C38) for diglycerides 

• trinonadecanoin (Tri C57) for triglycerides 
 
 

8.1 Measurement uncertainty for organic impurities: Glycerides 

The mass concentration of mono-, di- and triglycerides in % (m/m) is calculated using the 
following equations: 

𝑀 = (𝐴𝑀𝑜𝑛𝑜\𝐴𝑀𝑜𝑛𝑜𝐶19) ⋅ (𝑀𝑀𝑜𝑛𝑜𝐶19/𝑚) (14) 

𝐷 = (𝐴𝐷𝑖/𝐴𝐷𝑖𝐶38) ⋅ (𝑀𝐷𝑖𝐶38/𝑚) (15) 
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𝑇 = (𝐴𝑇𝑟𝑖/𝐴𝑇𝑟𝑖𝐶57) ⋅ (𝑀𝐷𝑖𝐶38/𝑚) (16) 

 

Explanation of symbols: 

• 𝑀, 𝐷, 𝑇 – the concentration of mono-, di- and triglycerides in the sample, in % (𝑚/𝑚) 

• 𝐴𝑀𝑜𝑛𝑜, 𝐴𝐷𝑖, 𝐴𝑡𝑟𝑖 – the sum of the areas corresponding to the peaks of mono-, di- and 
triglycerides in the sample 

• 𝐴𝑀𝑜𝑛𝑜𝐶19 – the peak area corresponding to the internal standard Mono C19 

• 𝑀𝑀𝑜𝑛𝑜𝐶19 – the mass corresponding to the internal standard Mono C19, in mg 

• 𝐴𝐷𝑖𝐶38 – the peak area corresponding to the internal standard Di C38 

• 𝑀𝐷𝑖𝐶38  –  the mass of the internal standard Di C38, in mg 

• 𝐴𝑇𝑟𝑖𝐶57  – the peak area corresponding to the internal standard Tri C57 

• 𝑀𝑇𝑟𝑖𝐶57 – the mass of the internal standard Tri C57, in mg 

• 𝑚 – the mass of the biodiesel sample 

 
8.1.1 Monoglycerides uncertainty 
According to equation (14), the standard uncertainty associated with the concentration of 
monoglycerides in the sample is: 
 

𝑢(𝑀) = 𝐶𝑀𝑜𝑛𝑜√(
𝑢(𝐴𝑀𝑜𝑛𝑜/𝐴𝑀𝑜𝑛𝑜𝐶19)

𝐴𝑀𝑜𝑛𝑜/𝐴𝑀𝑜𝑛𝑜𝐶19
)

2

+ (
𝑢(𝑚𝑀𝑜𝑛𝑜𝐶19)

𝑚𝑀𝑜𝑛𝑜𝐶19
)

2

+ (
𝑢(𝑚)

𝑚
)

2

, (17) 

with 

• 𝑢(𝐴𝑀𝑜𝑛𝑜/𝐴𝑀𝑜𝑛𝑜𝐶19) – the uncertainty of the ratio 𝐴𝑀𝑜𝑛𝑜/𝐴𝑀𝑜𝑛𝑜𝐶19 

• 𝑢(𝑚𝑀𝑜𝑛𝑜𝐶19) – the uncertainty of  the mass of the internal standard Mono C19 (mg) 

• 𝑢(𝑚) – the uncertainty of the mass of the biodiesel sample (mg) 

• 𝐶𝑀𝑜𝑛𝑜 – mass concentration of monoglycerides in biodiesel (%) 
 

8.1.2 Diglycerides uncertainty 
According to equation (15), the standard uncertainty associated with the concentration of 
diglycerides in the sample is: 
 

𝑢(𝐷) = 𝐶𝐷𝑖√(
𝑢(𝐴𝐷𝑖/𝐴𝐷𝑖𝐶38)

𝐴𝐷𝑖/𝐴𝐷𝑖𝐶38
)

2

+ (
𝑢(𝑚𝐷𝑖𝐶38)

𝑚𝐷𝑖𝐶38
)

2

+ (
𝑢(𝑚)

𝑚
)

2

, (18) 

with 

• 𝑢(𝐴𝐷𝑖/𝐴𝐷𝑖𝐶38) – the uncertainty of the ratio 𝐴𝐷𝑖/𝐴𝐷𝑖𝐶38 

• 𝑢(𝑚𝐷𝑖𝐶38) – the uncertainty of  the mass of the internal standard Di C38 (mg) 

• 𝑢(𝑚) – the uncertainty of the mass of the biodiesel sample (mg) 

• 𝐶𝐷𝑖 – the mass concetration of diglycerides in biodiesel (%) 

 
8.1.3 Triglycerides uncertainty 
 
According to equation (16), the standard uncertainty associated with the concentration of 
triglycerides in the sample is: 

𝑢(𝑇) = 𝐶𝑇𝑟𝑖√(
𝑢(𝐴𝑇𝑟𝑖/𝐴𝑇𝑟𝑖𝐶57)

𝐴𝑇𝑟𝑖/𝐴𝑇𝑟𝑖𝐶57
)

2

+ (
𝑢(𝑚𝑇𝑟𝑖𝐶57)

𝑚𝑇𝑟𝑖𝐶57
)

2

+ (
𝑢(𝑚)

𝑚
)

2

, (19) 

with 

• 𝑢(𝐴𝑇𝑟𝑖/𝐴𝑇𝑟𝑖𝐶57) – the uncertainty of the ratio 𝐴𝑇𝑟𝑖/𝐴𝑇𝑟𝑖𝐶57 

• 𝑢(𝑚𝑇𝑟𝑖𝐶57) – the uncertainty of  the mass of the internal standard Tri C57 (mg) 
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• 𝑢(𝑚) – the uncertainty of the mass of the biodiesel sample (mg) 

• 𝐶𝑇𝑟𝑖 – the mass concetration of triglycerides in biodiesel (%) 

 

 8.2 Free glycerol uncertainty 

The standard uncertainty, 𝑢, for determining the concentration of free glycerol is composed of 
a accuracy component, 𝑢𝑅, given by the internal repeatability of the method, a systematic 

error, 𝑢𝑏𝑖𝑎𝑠, highlighted by the bias (the difference between the reference value and the 
experimentally determined value) of the method, and the laboratory and a component resulting 
from chromatographic determination 𝑢𝑐ℎ𝑟, 

𝑢 = √𝑢𝑅
2 + 𝑢𝑏𝑖𝑎𝑠

2 + 𝑢𝑐ℎ𝑟
2 . (20) 

 

8.2.1 The uncertainty associated with the accuracy of the method (uR) 

The accuracy component, 𝑆𝑟,  was estimated by means of the standard deviation of the 
repeatability of the differences between the experimentally determined values for the same 
sample, 

𝑆𝑟 = √
∑ 𝑑2

2𝑛
, (21) 

where 

• 𝑆𝑟 – standard deviation of repeatability 

• 𝑑 – standard deviation of repeatability 

• 𝑛 – the number of determinations 

 

8.2.2 The uncertainty associated with the trueness of the method (bias) 

Systematic error, 𝑢𝑏𝑖𝑎𝑠, was determined from the experiments used to validate the trueness of 
the method as a combination of the difference between the concentrations of the analyzed 
standard solutions and the concentrations determined experimentally and the uncertainty of 
the preparation of the standard solutions, 

𝑢𝑏𝑖𝑎𝑠 = √𝑅𝑀𝑆𝑏𝑖𝑎𝑠
2 + 𝑢𝐶𝑠𝑠

2 , (22) 

where 

• 𝑅𝑀𝑆𝑏𝑖𝑎𝑠 – the difference between the glycerin concentration of the standard solutions and 
the glycerin concentration determined experimentally 

• 𝑢𝐶𝑠𝑠
 – the standard uncertainty of preparation of standard glycerin solutions 

 

8.2.3 The uncertainty associated with chromatographic analysis 

The uncertainty resulting from the chromatographic analysis, 𝑢𝑐ℎ𝑟, is due to the differences 
(residual values) between the concentration values used to express the linearity of the 
calibration curve and the concentration values obtained by calculation using the obtained 
linear regression equation, 

𝑢𝑐ℎ𝑟 = √𝑢𝐶0

2 + 𝑢𝐶𝐺.𝑠𝑜𝑙.𝑠𝑡𝑑.𝑐𝑎𝑙

2 , (23) 

 
where 

• 𝑢𝐶0
 – the standard uncertainty of determining the concentration of the analyte by direct 

reading on the calibration line 
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• 𝑢𝐶𝐺.𝑠𝑜𝑙.𝑠𝑡𝑑.𝑐𝑎𝑙
 – the standard uncertainty associated with the concentration of glycerin in the 

standard calibration solutions 
 

8.2.3.1 The standard uncertainty of determining the concentration of the analyte 
by direct reading on the calibration line 

The standard uncertainty, 𝑢𝐶0
, of determining the concentration of glycerine by direct reading 

on the calibration line represents the standard deviation of the concentration of glycerine 
calculated with the calibration data, 

𝑢𝐶0
= 𝑆𝑥0

. (24) 

The standard deviation of determining the concentration of glycerin by direct reading on the 
calibration line is calculated with the calibration data according to the equation: 

 

𝑆𝑥0
=

𝑆𝑦/𝑥

𝑏
{

1

𝑚
+

1

𝑛𝑘
+

(𝑦0 − �̅�)2

𝑏2 ∑(𝑥𝑖 − �̅�)2}

1/2

, (25) 

where 
 

• 𝑆𝑦/𝑥 – residual standard deviation 

• 𝑎 – the distance from the origin of the regression line 

• 𝑏 – the slope of the regression line 

• 𝑚 – the number of replicates for the sample 

• 𝑛 – the number of calibration points (𝑛 = 4) 
• 𝑘 – the number of replicates for standard calibration solutions (𝑘 = 3) 

• 𝑦0 – the signal corresponding to the analyte in the sample 

• �̅� – the average of the signals obtained for all calibration points 

• 𝑥𝑖 – the concentration of the analyte in the standard calibration solutions 

• �̅� – the average of the analyte concentrations from all standard calibration solutions 

• 𝑦𝑗 = 𝐴𝐺/𝐴𝑆𝐼, where 

• 𝐴𝐺 – the area corresponding to the glycerin peak 

• 𝐴𝑆𝐼 – the area corresponding to the internal standard peak; 
 

Furthermore, 

𝑦0 =
∑ 𝑦𝑠𝑗

𝑚
𝑗=1

𝑚
, (26) 

i.e. sum of all 𝑦𝑠𝑗 {(from 𝑗 = 1 to 𝑚 (the number of replicates of the samples)} presented 

(calculated) above divided by the number replicates of the sample (m). 
 

8.3 Total glycerol uncertainty 

The percentage of total glycerol in the sample, 𝐺𝑇, (in %, /𝑚) is calculated with the equation: 

𝐺𝑇 = 𝐺 + 0.255𝑀 + 0.164𝐷 + 0.130𝑇. (27) 
 
Thus, the standard uncertainty associated with the concentration of total glycerol in the sample 
is in accordance with: 
 

𝑢(𝐺𝑇) = √𝑢(𝐺)2 + (0.255𝑢(𝑀))
2

+ (0.164𝑢(𝐷))
2

+ (0.130𝑢(𝑇))
2

. (28) 
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