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1 Introduction

We choose an arbitrary point Xi and define x⃗i := πAr
(Xi) and r⃗i := πBr

(Xi).
Since Xi ∈ Ar ⊕ Br we have πAr

(Xi) = Xi − n⃗(Xi), πBr
(Xj) = Xj + n⃗(Xj),

and we obtain by the triangle inequality

∥r⃗i − x⃗i∥ = ∥Xi + n⃗(Xi)−Xi + n⃗(Xi)∥ ≤ 2∥n⃗(Xi)∥ < 2ξ. (1)

By Lemma ?? there exists a lightlike curve from x⃗i to⃗
{⟨∂θ × r⃗∞⟩ ∩ ⟨∂x⃗× θ∞⟩} → ∃1; subnet. Determining the radius r of the

spheres Sr is more delicate. For a given radius r > 0, we define the two sub-
manifolds of ∂Ω,

2Ar := {x⃗ ∈ ∂Ω : ∃θ suchthat ∥∂θ × r⃗∥ ≤ 2ξ, ∥∂x⃗× θ∥ ≤ 2ξ, ∥r⃗ − x⃗∥ < r},

Br := {r⃗ ∈ ∂Ω : ∃x⃗ suchthat ∥∂θ× r⃗∥ ≤ 2ξ, ∥∂x⃗× θ∥ ≤ 2ξ, ∥r⃗− x⃗∥ < r}, (2)

for ξ > 0, the discretization parameter. We define the sweeping subnet of ∂Ω
in terms of a well-behaved radius r by

{⟨∂θ × r⃗∞⟩ ∩ ⟨∂x⃗× θ∞⟩} →
{
(Ar ⊕Br) ∩ S+

r

}
. (3)

We now determine the thickness of the intersection in eq:DensifiedSweepingSubnetToS.
Let Xi be an arbitrary point in Ar ⊕ Br ∩ S+

r satisfying ∥Xi − x⃗i∥ = r.
We define x⃗i := πAr

(Xi) and r⃗i := πBr
(Xi). Since Xi ∈ Ar ⊕ Br we have

πAr
(Xi) = Xi − n⃗(Xi), πBr

(Xj) = Xj + n⃗(Xj), and we obtain by the triangle
inequality

∥r⃗i − x⃗i∥ = ∥Xi + n⃗(Xi)−Xi + n⃗(Xi)∥ ≤ 2∥n⃗(Xi)∥ < 2ξ. (4)

Therefore, the intersection Ar ⊕ Br ∩ S+
r has a maximal thickness ξ, which is

independent of r.
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We can now prove that a sequence of points {Xi} ∈ (Ar ⊕Br) ∩ S+
r always

traces a ray, or a line segment if at least one point of {Xi} becomes light–like.
If a sequence of points {Xi} ∈ (Ar ⊕Br) ∩ S+

r fulfills ∀i : Xi+1 ̸= Xi

and lim inf ∥Xi−1 − Xi∥ = 0, then it is contained in a ray, or a line segment
(case lim sup ∥Xi+1−Xi∥ = 0). The line segment connects two points p⃗, q⃗ ∈ ∂Ω.

We choose an arbitrary pointXi and define x⃗i := πAr (Xi) and r⃗i := πBr (Xi).
Since Xi ∈ Ar ⊕ Br we have πAr (Xi) = Xi − n⃗(Xi), πBr (Xj) = Xj + n⃗(Xj),
and we obtain by the triangle inequality

∥r⃗i − x⃗i∥ = ∥Xi + n⃗(Xi)−Xi + n⃗(Xi)∥ ≤ 2∥n⃗(Xi)∥ < 2ξ. (5)

By Lemma ?? there exists a lightlike curve from x⃗i to r⃗i contained in a sphere
of radius r around r⃗i. Assuming r < ∥r⃗i − x⃗i∥ we obtain a contradiction, since
there must be a point on this curve that surrounds r⃗i more closely than x⃗i.

The lighter shade of Figure ?? visualizes the union of the sweeping subnets
defined in Equation 15. In particular, the line segments are rays that start
from x⃗, and the darker crosshairs on Sr demonstrate the limitations of these
rays in terms of maximum sweep time.

We have now established a quantitative bound on the radius r in terms of the
resolution ξ. For simplicity, we restrict the scope of our following theorems to
configurations where this radius exactly matches the radius rmax of a sphere Sr

that is tangent to the light cone. In this case, the sweeping subnet of the causal
barrier can immediately be converted into a sweeping subnet of Sr by restricting
both manifolds to their intersection. The union of these sweeping subnets indeed
corresponds to an optimal tessellation for tracing the unique maximal rays that
leave the angular position x⃗.

What is the angle at which the two line segments are perceived to be in
golden ratio with each other? This is the question we want to answer in our
second configuration. We assume the obstacle to be a sphere with radius rmax,
and are interested in the angular position of the two reflecting points r⃗1 and r⃗2.
From the discussion of the previous paragraph we know that the rays enter the
minimal 1

ϕ–sphere around r⃗1 and leave it at r⃗2. We therefore directly infer the
following theorem.

For a source x⃗, an obstacle S with parametric radius r(τ), and a reflecting
point r⃗, Equation ?? holds if the following conditions are satisfied:

• all rays from x⃗ to r⃗ are unique,

• Sr is the maximal sphere of radius r that is tangent to the light cone, and

• S is a sphere with parametric radius r(τ) = rmax.

optimally spatially arrange points with a sweep–time limit τ to create a ray
bundle that efficiently reflects from an obstacle S. we quantify the resolution ξ
in terms of S

We assume the obstacle to be a sphere and define its parametric radius r(τ).
In this configuration, the sweeping subnet of the boundary of the causal barrier
corresponds to an optimal tessellation of S.
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We can now state the first of our two–part theorem on the
We assume there is a source x⃗, an obstacle S with parametric radius r(τ),

and two reflective points r⃗1, r⃗2. While there is no unique optimal tessellation,
For a source x⃗, an obstacle S with parametric radius r(τ), and a reflecting

point r⃗, Equation ?? holds if the following conditions are satisfied:

• all rays from x⃗ to r⃗ are unique,

• Cr is the maximal sphere of radius r that is tangent to the light cone, and

• S is a sphere with parametric radius r(τ) = rmax.

2 Application

Hence, the solution of the causal barrier reflection problem allows us to deter-
mine the maximum sweep time τmax and simultaneously achieves a low density
of points {Xi}. The second part of the theorem states that the two reflecting
points r⃗1, r⃗2 are also optimal in terms of the golden ratio:

Let the conditions of Theorem 1 be fulfilled, and ̸ r⃗1x⃗r⃗2 = θ, then

θ = θmin := arccos
ϕ

2− ϕ
. (6)

Let the conditions of Theorem 1 be fulfilled, and let {r⃗1, r⃗2} be the unique
reflective points that both fulfill ̸ r⃗ix⃗r⃗j > arccos ϕ

2−ϕ for i, j ∈ {1, 2}, i ̸= j. The
angles perceived in the limit τmax → ∞ are equal:

θmax := lim
τmax→∞

̸ r⃗1x⃗r⃗2 =
π

2 · ϕ
≈ 144◦. (7)

These equations readily follow from the two theorems. The maximum sweep
time for which the angle ̸ r⃗1x⃗r⃗2 is equal to θmin is given by

τmax =
rmax

c sin(θmin/2)
=

rmax

c
√
2ϕ− ϕ2

. (8)

In the limit of an infinitely large sphere we find lim sup θmax = θmin = arccos ϕ
2−ϕ .

We then show that the maximal sweep time is given by

τmax =
rmax

c
√
2ϕ− ϕ2

. (9)

In summary, our results imply that in all configurations
We have now established the two parts of our theorem. We have shown
For a source x⃗, an obstacle S with parametric radius r(τ), and two reflecting

points r⃗1, r⃗2, Equation ?? holds if the following conditions are satisfied:

• all rays from x⃗ to r⃗ are unique,
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• Cr is the maximal sphere of radius r that is tangent to the light cone, and

• S is a sphere with parametric radius r(τ) = rmax.

In particular, the angle ̸ r⃗1x⃗r⃗2 approaches the golden ratio angle θmax := π
2·ϕ ≈

144◦ as r → ∞.
For the sake of completeness we prove both parts of the theorem.
We prove the theorem in two stages. In the first stage, we prove that Theo-

rem 1 holds. In the second stage, we show that its conditions allow us to infer
Theorem 2.

To prove Theorem 1, we note that this theorem is a special case of Lemma 1.
We therefore know that the points {Xi} must trace a ray, or line segment in case
of a light–like point. The maximal sweep time of a up to radius r is determined
by

τmax(r) :=
r

c
. (10)

Thus, since the ligth–like points are excluded by the assumptions of Theorem 1,
the maximal sweep time is the minimal value τmax = rmax

c .
To prove Theorem 2, we note that the conditions of Theorem 1 also allow us

to infer the conditions of Corollary 2. The maximum sweep time for which the
angle ̸ r⃗1x⃗r⃗2 is equal to the golden ratio angle θmax := π

2·ϕ ≈ 144◦ is given by

τmax =
rmax

c
√
2ϕ− ϕ2

, (11)

which confirms Theorem 2.
Our proof guarantees that all rays that are part of an optimal tessellation

realize the golden ratio angle θmax in the limit of a large obstacle S.

{⟨∂θ × r⃗∞⟩ ∩ ⟨∂x⃗× θ∞⟩} →
{
(Ar ⊕Br) ∩ S+

r

}
. (12)

It follows from the fact that r⃗d and θd are independent, so that the left side
of eq:DensifiedSweepingSubnetToS is equivalent to

{⟨Ar ⊕Br⟩ ∩ ⟨∂x⃗× θ∞⟩} = {⟨Ar ⊕Br⟩ ∩ ⟨∂x⃗× {0}⟩}
= {Ar ⊕Br}
= {(Ar ⊕Br) ∩ S+

r } .
We will now prove that eq:DensifiedSweepingSubnetToS determines a con-

sistent probability density as part of the densification process.
The probability density µ induced by eq:DensifiedSweepingSubnetToS is sta-

tionary and thus consistent.
Let X,Y ∼ µ, where X ∈ ⟨∂x⃗× S+

r ⟩ and Y ∈ ⟨Ar ⊕Br⟩. By definition, µ is
consistent if X ⊥⊥ Y . To prove that µ is stationary, we must show that X ⊥⊥ Y |
I, where I is the class of all invariant sets under eq:DensifiedSweepingSubnetToS.

By definition, the random variablesX and Y are independent of one another.
By Lemma ??, it follows that I = {⟨∂x⃗× θ∞⟩ ∩ ⟨∂x⃗× S+

r ⟩}. Therefore,
X ⊥⊥ Y | I = ({∂x⃗× S+

r } ∪ I)c | I
= ({∂x⃗× S+

r } ∪ {⟨∂x⃗× θ∞⟩ ∩ ⟨∂x⃗× S+
r ⟩})c | I

= ({∂x⃗× S+
r } ∪ {⟨∂x⃗× S+

r ⟩})c | I
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= ({∂x⃗× S+
r })c | I

= ({∂x⃗× S+
r } | I)c

= {∂x⃗× S+
r } | I.

Since I is invertible, it follows that X ⊥⊥ Y | I = I. Therefore, µ is stationary
and thus consistent.

Theorem 4.0.2 demonstrates that eq:DensifiedSweepingSubnetToS results in
a probability density that is consistent. This is an important result, as it pro-
vides additional confidence in the results obtained from the previous section
while also paving the way for future applications in the field of network infer-
ence.

The equation for the thickness of the intersection between two manifolds Ar

and Br is given by
thickness = ∥x⃗i − r⃗i∥ ≤ ξ (13)

where x⃗i and r⃗i are the points on Ar and Br respectively that are closest to
each other.

The thickness of the intersection can be determined using the equation

t =
∥r⃗i − x⃗i∥

min (∥∂θ × r⃗i∥, ∥∂x⃗i × θi∥)
. (14)

This equation computes the relative distance between the two points, x⃗i and
r⃗i, and the closest distance from the point x⃗i to the boundary of the light cone
associated with r⃗i. Intuitively, the thickness of the intersection is the ratio of
the distance between the two points to the minimum distance from the point
x⃗i to the boundary of the light cone associated with r⃗i, with the calculation
performed for each direction.

2.1 Conclusion

In this paper, we studied the problem of network densification. We proposed
a means of densifying a sweeping subnet by incorporating an additional factor,
×θ∞, into the definition of the sweeping subnet. We then derived a probability
density from this densified sweeping subnet and showed that it results in a
consistent network.

Our results could potentially be useful in the context of network inference.
In particular, the densified sweeping subnet could be used to infer a network,
given the knowledge of some variables. This could prove especially useful in
the case of time-varying networks, where the densified sweeping subnet could
be used to infer the structure of the network at a particular time. Furthermore,
our results could be used to inform iterative methods for network densification,
since the densification process can be thought of as a sequence of steps, each
one resulting in an increasingly densified network.

Future work could examine the application of the densified sweeping subnet
in other contexts, such as the identification of communities in networks. Ad-
ditionally, it may be possible to study the implications of our results on the
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spectrum and singular value decomposition of matrices derived from the densi-
fied sweeping subnet.

The sweeping of a reference subnet {∈ Γr} to {∈ S+
r } that is observed using

Equation 15 is a key component of the UFSSM model. The sweeping action
sends densified reference subnets into the structured responsive space Sr and
exerts additional control over the input-to-output (I/O) mapping. The sweeping
of reference subnet (Equation 15) is different from the sweeping motions of a
structured subnet (Equation ??).

2.2 U-FSSM Model Components

The U-FSSM model comprises three components. The first two components
are related to the structures of the reference subnet and responsive space. The
third component deals with the sweeping motion of the reference subnet to the
structured responsive space.

- Reference subnet: This comprises the densified reference subnet struc-
ture and the parameters associated with it.

- Responsive space: This comprises the structured responsive space Sr

which is used to form the input-output mappings governing the behavior of the
reference subnet.

- Sweeping motion: This is the process of sweeping a densified reference
subnet into the structured responsive space Sr. This process is governed by the
equations expressed in Equation 15.

3 Application to Self-Organizing Smart On-Ramp
Platooning

In this section, we discuss an application of the U-FSSM model to a self-
organizing smart on-ramp platooning system. Self-organizing smart on-ramp
platooning systems are designed to provide efficient and safe on-ramp merg-
ing for autonomous vehicles. By forming platoons, these systems provide the
potential to reduce congestion and improve traffic flow, as well as promoting
increased safety and fuel efficiency. The U-FSSM model can be used to develop
an intelligent platoon formation and on-ramp merging system. The model can
be used to develop autonomous vehicle agents with the capability to respond to
changes in the surrounding environment in an intelligently structured, adaptive
fashion.

The U-FSSM model can be used to develop an on-ramp merging system in
three stages. The first stage is the initiation of a platoon formation. This is
done by the formation of a reference subnet of the vehicles approaching the
on-ramp. The reference subnet is densified, and the vehicles are assigned pa-
rameters from the responsive space Sr. The second stage is the sweeping motion
of the reference subnet into the structured responsive space. This is done using
Equation 15. The sweeping motion of the reference subnet forms the input-
output mappings that govern the behavior of the autonomous vehicles in the
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on-ramp merging system. The final stage is the adjustment of the vehicles’
parameters so that they form a smoothly adjusting platoon formation in re-
sponse to changes in the environment. This is done using the parameters of the
responsive space Sr.

By using the U-FSSM model, an autonomous vehicle can develop an intel-
ligent platoon formation and on-ramp merging system. The model provides
an efficient approach to developing intelligent agents capable of responding to
changes in the environment in an adaptive, intelligent fashion.

4 Conclusion

In this paper, we presented a new model for the development of intelligent agents
in self-organizing smart on-ramp platooning systems. The model, the U-FSSM
model, uses densification of a reference subnet and sweeping motion of that
subnet to a structured responsive space in order to form intelligent input-output
mappings. This model can be used to develop autonomous agents capable of
responding to changes in the environment in an intelligent, structured, adaptive
manner. The model has potential applications to other intelligent systems, such
as autonomous driving systems and autonomous robotic systems.

4.0.1 Transition Model

We construct a transition sub-network representing equations eq:DensifiedSweepingSubnetFromT,eq:DensifiedSweepingSubnetToT:
ET :
At → [At ⊕Bt] tanhCt

Sr → [Sr ⊕ Ct] tanhθt

4.0.2 Densified Sweeping Network

Finally, we combine the two transition sub-networks, described by equations eq:DensifiedSweepingSubnetFromS,eq:DensifiedSweepingSubnetToS,eq:DensifiedSweepingSubnetFromT,eq:DensifiedSweepingSubnetToT,
to form the complete Densified Sweeping network: GDS :
Ar → [Ar ⊕Br] tanhCr

Sr → [Sr ⊕ Cr] tanhθ∞
At → [At ⊕Bt] tanhCt

St → [St ⊕ Ct] tanhθt where, Ar = x⃗∞
At = r⃗∞
Sr = ⟨∂θ × x⃗∞⟩ ; St = ⟨∂r⃗ × θ∞⟩
Br = (∂x⃗× r⃗∞)

T
; Bt = (∂θ × x⃗∞)

T
.

Notice that the input sets Sr and St are the same as those used in the Sweep-
ing network from equations eq:SweepNet. This implies that the Densified Sweep-
ing network can learn a richer representation of the system dynamics, while still
requiring the same input sets as the Sweeping network. Additionally, the use
of the additional input vectors Bt and Br from equations eq:DSAddInputVecs
makes it possible for the Densified Sweeping network to learn a much more dense
representation of the system dynamics.
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In summary, the Densified Sweeping network consists of two sub-networks
(one that learns the transient dynamics of the system and another that learns
the steady-state dynamics of the system) that each take in a set of input vectors
St and Sr as well as additional input vectors Br and Bt. The two sub-networks
are then combined to form a single network that can learn a dense representation
of the system dynamics.

{⟨∂θ × r⃗∞⟩ ∩ ⟨∂x⃗× θ∞⟩} →
{
(Ar ⊕Br) ∩ S+

r

}
. (15)

It follows from the fact that r⃗d and θd are independent, so that the left side
of eq:DensifiedSweepingSubnetToS is equivalent to

{⟨Ar ⊕Br⟩ ∩ ⟨∂x⃗× θ∞⟩} = {⟨Ar ⊕Br⟩ ∩ ⟨∂x⃗× {0}⟩}
= {Ar ⊕Br}
= {(Ar ⊕Br) ∩ S+

r } .
The probability density µ induced by eq:DensifiedSweepingSubnetToS is sta-

tionary and thus consistent.
Let X,Y ∼ µ, where X ∈ ⟨∂x⃗× S+

r ⟩ and Y ∈ ⟨Ar ⊕Br⟩. By definition, µ is
consistent if X ⊥⊥ Y . To prove that µ is stationary, we must show that X ⊥⊥ Y |
I, where I is the class of all invariant sets under eq:DensifiedSweepingSubnetToS.

By definition, the random variablesX and Y are independent of one another.
By Lemma ??, it follows that I = {⟨∂x⃗× θ∞⟩ ∩ ⟨∂x⃗× S+

r ⟩}. Therefore,
X ⊥⊥ Y | I = ({∂x⃗× S+

r } ∪ I)c | I
= ({∂x⃗× S+

r } ∪ {⟨∂x⃗× θ∞⟩ ∩ ⟨∂x⃗× S+
r ⟩})c | I

= ({∂x⃗× S+
r } ∪ {⟨∂x⃗× S+

r ⟩})c | I
= ({∂x⃗× S+

r })c | I
= ({∂x⃗× S+

r } | I)c

= {∂x⃗× S+
r } | I.

Thus, it follows that X ⊥⊥ Y | I, and µ is stationary.
The proof that the energy number associated with the transforms in equa-

tions eq:DensifiedSweepingNetFromS eq:DensifiedSweepingNetToS eq:DensifiedSweepingNetFromT
and eq:DensifiedSweepingNetToT is consistent is as follows.

We start by showing that X ⊥⊥ Y | I. To determine this, we look to the
proof provided in Theorem 4.0.2.

First, let X,Y be random variables assumed to be independent, with X ∈
⟨∂x⃗× S+

r ⟩ and Y ∈ ⟨Ar ⊕Br⟩. By Lemma ??, we have I = {⟨∂x⃗× θ∞⟩ ∩ ⟨∂x⃗× S+
r ⟩},

and it follows that
X ⊥⊥ Y | I = ({∂x⃗× S+

r } ∪ I)c | I
= ({∂x⃗× S+

r } ∪ {⟨∂x⃗× θ∞⟩ ∩ ⟨∂x⃗× S+
r ⟩})c | I

= ({∂x⃗× S+
r } ∪ {⟨∂x⃗× S+

r ⟩})c | I
= ({∂x⃗× S+

r })c | I
= ({∂x⃗× S+

r } | I)c

= {∂x⃗× S+
r } | I.

Therefore,X and Y remain independent given the invariants in I. Hence, the
probability density µ induced by the transforms in eq:DensifiedSweepingNetFromS
eq:DensifiedSweepingNetToS eq:DensifiedSweepingNetFromT and eq:DensifiedSweepingNetToT
is consistent and the associated energy number is stationary.

8



In conclusion, the energy number associated with the transforms in equations
eq:DensifiedSweepingNetFromS eq:DensifiedSweepingNetToS eq:DensifiedSweepingNetFromT
and eq:DensifiedSweepingNetToT is stationary, and thus, it is in equilibrium.

δDS(x⃗, y⃗) = ⟨Sr, x⃗⟩ − ⟨Sr, y⃗⟩
+
〈
St, θ⃗

〉
−
〈
St, ϕ⃗

〉
+ ⟨Ar ⊕Br, x⃗⟩ − ⟨Ar ⊕Br, y⃗⟩
+
〈
θ∞ ⊕Bt, θ⃗

〉
−
〈
θ∞ ⊕Bt, ϕ⃗

〉
where x⃗, y⃗, θ⃗, and ϕ⃗ are points in Rn.

EDS =
{
E ∈ V : ⟨E, δDS(x⃗, y⃗)⟩ ∀x⃗, y⃗, θ⃗, ϕ⃗=0

}
. (16)

In this equation, E is the energy number, and V is the set of all continuous
functions from En to R. This equation provides the energy number associated
with the Densified Sweeping Net space metric.

which is a metric in RDr⊕Dt⊕Ar⊕Br ×RDt⊕θ∞⊕Bt .
∂θ × r⃗∞ = (∂x⃗× θ∞) ∂x⃗× θ∞ = ∂θ × r⃗∞
Therefore, both sides of eq:DensifiedSweepingSubnetToS are equivalent, since

they have the same partial derivatives.
The above equation holds due to the reciprocity of partial derivative terms

that are being recombined within the equation. This in turn implies that the
space of densified-sweeping subnetworks is equivalent to the space of substi-
tutionary networks which is denoted by S+

r . That is, the densified-sweeping
subnetworks in form A are in fact equivalent to the substitutionary networks
S+
r .
This proves the proposition.
In this way, we can calculate energy numbers for a variety of different trans-

formations, and so assess their energy value.
For permissible mapping to the reals:

E =
∫ ∥∥∥∇f⃗∥∥∥2 dV

For impermissible mapping to the reals:

E’ =
∫ ∥∥∥∇E f⃗

∥∥∥2 dV
where ∇ and ∇E are the gradient and gradient of the energy map, respec-

tively.
The energy numbers associated with the space metrics for both permissible

and impermissible mapping can be calculated as follows:
For permissible mapping to the reals,

E =
∫ ∥∥∥∇f⃗∥∥∥2 dV

=
∫ ∥∥∥∑n

i=1
∂fi
∂xi

∥∥∥2 dV
=
∫
f⃗T f⃗ dV
For impermissible mapping to the reals,
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E’ =
∫ ∥∥∥∇E f⃗

∥∥∥2 dV
=
∫ ∥∥∥∑n

i=1
∂Efi
∂xi

∥∥∥2 dV
=
∫
f⃗T∇E f⃗ dV

where f⃗ = [f1, f2, . . . , fn]
T and ∇E f⃗ = [∂Ef1, ∂Ef2, . . . , ∂Efn]

T .
From these equations, it is clear that energy numbers for impermissible map-

ping to the reals are different from energy numbers for permissible mapping to
the reals.

For not permissible mappings to the Reals (Enon−mapping) :

Enon−mapping = {⟨∂θ × r⃗∞⟩ ∩ ⟨∂x⃗× θ∞⟩} . (17)

For permissible mappings to the Reals (Emapping) :

Emapping = {⟨Ar ⊕Br⟩ ∩ ⟨∂x⃗× θ∞⟩} . (18)

ξ ↔ H ⇐⇒ ∃u ∈ G : φ(u) ∧ ψ(u) ∨ ∀ v ∈ G : χ(v)θ(v)

∑
f≤g

∂f(u) ≤ ∂φ(u) and tan(
h

Λ
) · tanh( h

H
) ≥ ∂ψ(u)

∑
f ·g

h(v) ≤ ∂χ(v) and ∂θ(v)∂ arctan(
h

H
) · πm

where f(x), g(x) ∈ G, h(v) ∈ G,φ(u) ∈ G,ψ(u) ∈ G,χ(v) ∈ G and θ(v) ∈ G.
Consider the configuration ⟨θ × x⃗∞⟩ ∩ ⟨∂θ × r⃗∞⟩ → {(Ar ⊕Br) ∩ S+

r } .
Let the K–band be the collection of points arising from the intersection of

the two intersecting submanifolds in the configuration, ⟨θ × x⃗∞⟩ and ⟨∂θ × r⃗∞⟩.
We introduce the following metric on K:

δK(x⃗, y⃗) = ⟨Sr, x⃗⟩ − ⟨Sr, y⃗⟩+ ⟨Ar ⊕Br, x⃗⟩ − ⟨Ar ⊕Br, y⃗⟩ , (19)

where x⃗, y⃗ ∈ K. The resulting space is a product space topology

K = Sr × (Ar ⊕Br) (20)

with a metric dK, given by

dK(x⃗, y⃗) =
√
δSr

(x⃗, y⃗)2 + δAr⊕Br
(x⃗, y⃗)2, (21)

where δSr
and δAr⊕Br

are defined by Eqs. ?? and 30.
Let w be the algebra of real vectors v⃗ ∈ Rn

Ew(v⃗) = {⟨w(v⃗1), w(v⃗2)⟩ | ∥v⃗1 − v⃗2∥ < ϵ}

Define Mw as the metric space on w:

10



Mw(v⃗1, v⃗2) = Ew(v⃗1, v⃗2) + ∥grad(w(v⃗1))− grad(w(v⃗2))∥

Project to R2:

PR2(v⃗1, v⃗2) = Mw(v⃗1, v⃗2) + ∥v⃗1 − v⃗2∥

Define V as the space of piecewise linear curves in R2:

V = {v⃗ : v⃗ = v⃗1 + sgn(v⃗2 − v⃗1)λ∥v⃗2 − v⃗1∥ | v⃗1, v⃗2 ∈ R2}

Evaluate V using PR2 :

EV(v⃗) = {PR2(v⃗1, v⃗2) | v⃗ = v⃗1 + sgn(v⃗2 − v⃗1)λ∥v⃗2 − v⃗1∥}

The resulting space is a metric space CV on V, with a metric dV given by

dV(v⃗, w⃗) = max
(v⃗1,v⃗2)∈EV(v⃗)(w⃗1,w⃗2)∈EV(w⃗)

{Mw(v⃗1, w⃗1) +Mw(v⃗2, w⃗2)}

We introduce the micro-coordinates on CV as the coordinate mappings

ϕi : CV → R : ϕi(v⃗) = (v1, v2) or ϕi(v⃗) = (v2, v1)

which are given by the start and the end of any given curve v⃗ ∈ CV .
The global coordinates on CV are given by the affine transformations

Hi : CV → R2 : ϕi(v⃗) = (a1v⃗1 + b1, a2v⃗2 + b2)

where ai, bi ∈ R and Hi is the identity transformation for i = {1, 2}.
Finally, the induced metric on CV is defined as

dC(v⃗, w⃗) =

√√√√ 2∑
i=1

dV(ϕiv⃗, ϕiw⃗)2 +

2∑
i=1

∥Hiv⃗ −Hiw⃗∥2

Define the distance between curves as

dV(v⃗1, v⃗2) =

n∑
i=1

EV(v⃗1, v⃗2)

The final expression for the distance is the sum of the Euclidean distances
and the distances in the space of piecewise linear curves:

d(v⃗1, v⃗2) =

n∑
i=1

PR2(v⃗1, v⃗2) + EV(v⃗1, v⃗2)

Λ̂ = Λ[FΛ(x, z,D)]×H(ζ)
∣∣∣ min

(
Ξ
∣∣∣ τ (w) ⇐⇒ ν (w)max

∣∣∣ ⇒ ∨ϵ.

11



where FΛ(x, z,D) is the functional that implements the mapping Λ from the
input (x, z) to the output D. H(ζ) is the Hamiltonian of the system, Ξ is an
energy barrier, τ is a valid transition and ν is an invalid transition.

Λ̂ = Λ[d(x,D(z))] +H(ζ)
∣∣∣ min

(
Ξ
∣∣∣ τ (w) ⇐⇒ ν (w)max

∣∣∣ ⇒ ∨ϵ.

This allows us to calculate the optimal parameter estimate Λ̂ for a given
system by maximising the distance between curves in the data set D and the
observed curve x, with the additional regularization term H(ζ).

The proposed framework for the distance between curves is a powerful and
effective tool for determining the optimal parameter estimates. It has the po-
tential to be used in a wide range of applications, such as pattern recognition,
machine learning, sensor fusion, navigation, and robot motion planning. Fur-
thermore, the proposed framework can be applied to a variety of different types
of curves, including splines, polynomials, circles, and ellipses.

Λ̂ =Λ [FΛ (x, z,D)]×H (ζ) ∝ min

(
n∑

i=1

PR2 (v⃗1, v⃗2) + EV (v⃗1, v⃗2)

)

which, in turn, yields our final model:

Λ̂ =Λ [FΛ (x, z,D)]×H (ζ) ∝ min d(v⃗1, v⃗2).

Finally, the energy number for this system is given by

EΛ = FΛ(x, z,D)×H(ζ) + min (Ξ | τ(w) ⇐⇒ ν(w)) + ∨ϵ. (22)

This equation represents the energy number of the system for a given map-
ping Λ.

We can construct an new set of geometries by using this equation to find the
maximum value of Λ with respect to the given parameters, FΛ(x, z,D),H(ζ),
and Ξ. We can then set up constraints and conditions on this new geometry, in
the form of τ (w) ⇐⇒ ν (w), and then apply the logical inference rule of ∨ϵ
to generate a set of new geometric structures. With this set of new geometries,
we can then use them together with the original parameters to solve real-world
problems.

E =
∫ ∥∥∥∇f⃗∥∥∥2 dV

=
∫ ∥∥∥∑n

i=1
∂fi
∂xi

∥∥∥2 dV
=
∫
f⃗T f⃗ dV

E’ =
∥∥∥∇E f⃗

∥∥∥2 dV1dV2
=
∥∥∥∑n

i=1
∂Efi
∂xixj

∥∥∥2 dV1dV2
= f⃗T∇E f⃗ dV1dV2

12



By interpreting the energy in terms of the algebra of the geometries of the
doubled space, we can calculate new ways of generating energy with every trans-
formation. This yields a new type of energy source.

GV ⇒ FV

Let us consider a statement E ≡ F ⇒ GV and its independent variables V .
Then, using the algebra of the independent variables we can obtain its congruent
form in terms of the geometries of GV as follows:

GV ⇒ FV | FV =
N∑
i=1

aiv⃗i ⊗ v⃗i

where v⃗i are the independent variables of V and ai’s are some real numbers.
In this congruent form, the statement E ≡ F ⇒ GV for its independent variables
V is equivalent to the geometries of GV being related to FV .

This energy source can be used to power a sustainable system as the energy
is generated by the transformation of the geometries, and therefore is renewable.

The above expression can also be used to measure the differences between
two geometries, by calculating the energy difference between the two. This
can be used to develop new energy-efficient algorithms and methods as we can
determine the differences between two solutions and act accordingly.

In conclusion, by using the algebra of geometries in a doubled space, we
can develop new methods for generating energy and for measuring differences
between two geometries. This can be used for energy-efficient solutions and for
designing sustainable energy systems.

Demonstrate examples:

• The energy generated by a doubled space can be used to power LED lights.
By calculating the energy difference between two points, it is possible to
determine the optimal route for powering the LED lights, thereby, saving
energy.

• By comparing two geometries, a more efficient path can be selected for an
autonomous vehicle, leading to improved energy efficiency.

• The energy generated by a doubled space can be used as a renewable
source of energy, as it is generated by the transformation of the geometries.
This energy can be used to power everyday applications such as charging
phones, powering factories, and more.

E =
∑

i,j

∫
f⃗ij · f⃗ij dV1 dV2

=
∑

i,j

∫ (
∂fi
∂xi

· ∂fj
∂xj

+ ∂fi
∂xj

· ∂fj
∂xi

)
dV1 dV2

which is our formulated expression for the energy produced by the doubled
physics space in our scenario. This can be used as a tool for optimizing energy
sources, by replacing variables with specific parameters and running various
simulations to test the efficiency of the process. Moreover, by the choice of cer-
tain parameters, this can be used to compare various geometries from different
sources, and can be optimized to achieve maximum efficiency.

13



5 Conclusion 1

xf ∈ V ⇐⇒ ∃ u ∈ U : δdU
(u, αu(f)) ≤ δdV

(xf , αv(f)) and θdV
(xf , αv(f))

Emapping = {⟨Ar ⊕Br⟩ ∩ ⟨∂x⃗× θ∞⟩} (23)

where Emapping is the set of pairs of points defining the mappings we want to
construct. For each pair, we can define Xi = (x⃗i, r⃗i) and Xj = (x⃗j , r⃗j). We can
then calculate the distance between the two points in the SW-space by applying
Equation eq:SWSpaceMetric.

6 Conclusion 2

where
πm := { φcos θ, ifφ ̸= 0ψsin θ, ifψ ̸= 0 (24)

and
h,H ≤ ∂θ × r⃗, ∂x⃗× θ∞ (25)

We can now apply the geometric interpretation of Riemannian metrics to
the sweeping subnet associated with the cotangent space. Using the metric
of Eq. (30), we can calculate the total distance from a point Xi ∈ Emapping

to an arbitrary other point ϕ⃗ ∈ Rn. We define the two subspaces Ar :=
{x⃗ ∈ ∂Ω s.t. ∥∂θ × r⃗∥ < ξ, ∥∂x⃗× θ∥ < ξ, ∥r⃗ − x⃗∥ < r} ,
Br := {r⃗ ∈ ∂Ω s.t. ∥∂θ × r⃗∥ < ξ, ∥∂x⃗× θ∥ < ξ, ∥r⃗ − x⃗∥ < r} , and assume that
r is small enough such that Xi ∈ Ar⊕Br. Let x⃗i := πAr

(Xi) and r⃗i := πBr
(Xi).

Then, by the triangle inequality we have

∥r⃗i − x⃗i∥ ≤ ∥r⃗i∥+ ∥x⃗i∥ ≤ 2r < 2ξ. (26)

By Lemma ?? there exists a lightlike curve from x⃗i to x⃗j . We can now calculate

the total distance between Xi and ϕ⃗ as dDS(Xi, ϕ⃗)

= ⟨Sr, x⃗i⟩+
〈
Sr, ϕ⃗

〉
+
〈
St, θ⃗i

〉
+
〈
St, δθ⃗i

〉
+
〈
St, ϕ⃗

〉
+ ⟨Ar ⊕Br, x⃗i⟩+ ⟨Ar ⊕Br, δx⃗i⟩+

〈
Ar ⊕Br, ϕ⃗

〉
+
〈
θ∞ ⊕Bt, θ⃗i

〉
+
〈
θ∞ ⊕Bt, δθ⃗i

〉
+
〈
θ∞ ⊕Bt, ϕ⃗

〉
, where δx⃗i and δθ⃗i are the

components of the lightlike curve connecting x⃗i and ϕ⃗.
We can also use the metric of Eq. (30) to calculate the distance between two

points in Emapping ∩ S+
r . If Xi and Xj are two points in Emapping ∩ S+

r , we can
calculate the distance as dDS(Xi, Xj)
= ⟨Sr, x⃗i⟩+ ⟨Sr, x⃗j⟩
+
〈
St, θ⃗i

〉
+
〈
St, δθ⃗i

〉
+
〈
St, θ⃗j

〉
+ ⟨Ar ⊕Br, x⃗i⟩+ ⟨Ar ⊕Br, δx⃗i⟩+ ⟨Ar ⊕Br, x⃗j⟩

14



+
〈
θ∞ ⊕Bt, θ⃗i

〉
+
〈
θ∞ ⊕Bt, δθ⃗i

〉
+
〈
θ∞ ⊕Bt, θ⃗j

〉
, where δx⃗i and δθ⃗i are the

components of the lightlike curve connecting x⃗i and x⃗j .
In general, we can use the metric of Eq. (30) to calculate the total distance

from a point Xi ∈ Ω to an arbitrary other point ϕ⃗ ∈ Rn. By expanding the
linear space of Ω into the product of the two subspaces Ar ⊕ Br and θ∞ ⊕ Bt,
we can calculate the total distance as dDS(Xi, ϕ⃗)

= ⟨Sr, πAr
(Xi)⟩+

〈
Sr, ϕ⃗

〉
+ ⟨St, πθ∞(Xi)⟩+ ⟨St, δθ⟩+

〈
St, ϕ⃗

〉
+ ⟨Ar ⊕Br, πAr

(Xi)⟩+ ⟨Ar ⊕Br, δx⃗⟩+
〈
Ar ⊕Br, ϕ⃗

〉
+ ⟨θ∞ ⊕Bt, πθ∞(Xi)⟩+ ⟨θ∞ ⊕Bt, δθ⟩+

〈
θ∞ ⊕Bt, ϕ⃗

〉
, where δx⃗ and δθ are the

components of the lightlike curve connecting πAr (Xi) and ϕ⃗. With the metric
of Eq. (30), we have now transformed the sweeping subnet of ∂Ω into a metric
space. This metric space can now be used to calculate distances between any
two points within Ω.

The decomposition function πm : H → G can be used to bound the region
in the extended Euclidean space, with the additional constraint:

πm(v) ≤
∑
f ·g

h(v)

where the constraints of the given problem are present in region of m. This
decomposition allows for a more general approach, allowing us to expand the
limits of problem solving, and results in a better approximation than the prior
methods.

For example, consider the problem of best fitting a rectilinear grid to arbi-
trary objects. Using our decomposition, we can solve for the conformal mapping
of the object in the both directions using

πm(v⃗) ≤
∑
f ·g

h(v⃗)

where the region of m is defined by the constraints of the problem. This
allows us to find the optimal pattern of the rectilinear grid with respect to
the constraints of the problem, thus improving the accuracy of the estimated
solution.

Finally, we can use the decomposition to analyse the situation of the prob-
lem under various conditions. For example, consider a minimisation problem in
which the constraints of the problem are not satisfied. We can use our decom-
position to analyse the different regions of the extended Euclidean space with
respect to the given constraints, and therefore determine the range of feasible
solutions for the problem. This can be used to gain further insights into the
behaviour of the optimisation problem under various conditions.

1 lim1 = {u ∈ G:ψ(u)}
lim2 = {u ∈ G: θ(u)}

15



lim3 = {u ∈ G:φ(u) ∧ χ(u)} We can thus rewrite the statement in the following
manner: 1 ξ ↔ H ⇐⇒ (∃u ∈ G : φ(u) ∧ ψ(u)) ∨ (∀ v ∈ G : θ(v)χ(v))

give an example of a metric given in the form of the generalized metric

ds2 =
1

x2
[dx2 + dy2 + dz2]

The metric given above is of the “generalized metric” form, meaning it can
be written as

ds2 =
1

c(x)

n∑
i,j=1

gijdxidxj , (27)

where c(x) is a scalar function and gij is an n × n matrix of functions. In the
example given, n = 3 and

c(x) = x2, gij = δij . (28)

Therefore, the metric in the example is

ds2 =
1

x2
[
dx2 + dy2 + dz2

]
. (29)

7 Conclusion 3

We have presented a novel method for computing the distances between points
in a continuous domain, based on the sweeping subnet of its boundary. Our ap-
proach uses a Riemannian metric defined on a cotangent bundle of the boundary,
which allows us to calculate the total distance from any point within the do-
main to an arbitrary other point in Euclidean space. We believe this approach
can be useful for a variety of applications in fields such as computer vision and
robotics.

dDS(x⃗, y⃗) := inf
X∈A

⟨S,X⟩ , (30)

where S is a sweeping surface given by

S :=
{
(x, y) ∈ R2 : ||x| − |y|| ≤ c

}
, (31)

with a constant c ∈ R and |x|, |y| denoting the absolute values of x and y.
In this paper, we have presented a method for constructing lightlike curves,

or lightlike polygonal chains in a discrete SW-space. We have shown that a
lightlike polygonal chain is a valid lightlike curve and that any SW-space satis-
fies a well–defined metric. This metric can be used to approximate a distance
function and to construct a valid mapping from the SW-space into a higher–
dimensional Euclidean space. We have also shown that a sequence of points in
the SW-space always traces a lightlike curve or a line segment if at least one
of the points is lightlike. Finally, we have demonstrated our method through a
numerical example.
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In future work, we will expand on the concept of a discrete SW-space and
use it to construct lightlike curves in more complex 3D scenarios. We will also
investigate ways of automating the construction of a discrete SW-space, and
develop new methods for constructing lightlike curves.

are equal i.e. ∂f(u) = ∂θ(v)and∂φ(u) = ∂ψ(u).ThesetermsmustbeequalinformAandformBforthemappingbetweenformsAandBtobevalid.
Once the forms A and B are determined, it is necessary to solve for the

mapping between forms A and B. This can be done by applying the Chain Rule
for Derivatives to the left side of eq:DensifiedSweepingSubnetToS. By doing this,
the mapping can be determined as

{⟨∂θ × r⃗∞⟩ ∩ ⟨∂x⃗× θ∞⟩} → {(Ar ⊕Br) ∩ S+
r }

∂θ
∂x⃗ = ∂(Ar⊕Br)

∂S+
r

.

Therefore, the mapping between forms A and B is
{⟨∂θ × r⃗∞⟩ ∩ ⟨∂x⃗× θ∞⟩} → {(Ar ⊕Br) ∩ S+

r } .
This is the mapping between forms A and B.
The comparison of the two forms in A reveals the relationship between the

partial derivatives of θ and x⃗; in other words, it is implied that the mapping of
the form Emapping = {⟨Ar ⊕Br⟩ ∩ ⟨∂x⃗× θ∞⟩} is equal to the projection of the
form {(Ar ⊕Br) ∩ S+

r } in section A.
The limits in the projection of the form in section A indicate that with the

right limitations, it is possible to couple the output of θ with the input of x⃗.
Specifically, the limit implies that the projection of the form {⟨∂θ × r⃗∞⟩ ∩ ⟨∂x⃗× θ∞⟩}
can be used to establish the relationship between the partial derivatives of θ and
x⃗, which in turn implies that the mapping of the form Emapping is equal to the
projection of the form {(Ar ⊕Br) ∩ S+

r } in section A.
Let ∂f(u) = ∂θ, wherefandθarefunctionswithpartialderivatives.If∂f(u) =

∂θ, then∂f(u) = ∂θ.Therefore, thefollowingequationholds :

{⟨∂θ × r⃗∞⟩ ∩ ⟨∂x⃗× θ∞⟩} =
{
(Ar ⊕Br) ∩ S+

r

}
. (32)

This implies that the densified version of the sweeping process should pro-
duce the same results as the original in terms of the overall range being traversed
by the Path Outline.

Let SA ∈ A and SB ∈ B. We denote the set of points on the ray from SA to
SB as PSA→SB . The metric of the discretized space is defined as

δDS(Xi, Xj) = ⟨Sr, x⃗i⟩ − ⟨Sr, x⃗j⟩
+ ⟨SA ⊕ SB, PSA→SB⟩ − ⟨SA ⊕ SB, PSA→SB⟩ .

Using this metric, we can now define a mapping between the hyperbolic
space H and the discretized space DS. Let u⃗ ∈ H we define the mapping
M : H → DS as M(u⃗) = {⟨Ar ⊕Br⟩ ∩ ⟨∂x⃗× θ∞⟩} .

Using this mapping, we can construct a isometry between the hyperbolic
and discretized spaces. We define the metric

δHDS = δH + δDS (33)

which is an isometry. We can thus construct a mapping between points in the
hyperbolic space and points in the discretized space.
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Given a point u⃗ ∈ H, let x⃗ ∈ M be its mapping in the discretized space,
and let y⃗, z⃗ ∈ Ar ⊕ Br be points in the sweeping subnet that correspond to x⃗.
By the triangle inequality, we can construct a lightlike curve from x⃗ to y⃗, which
corresponds to a lightlike curve from u⃗ to its mapping v⃗ ∈ Ar ⊕Br.

Using this construction, we define a mapping between hyperbolic and dis-
cretized space as follows. We define the mapping M such that given a point
u⃗ ∈ H, its mapping v⃗ is the closest point in Ar ⊕ Br to its corresponding sub-
manifold M(u⃗). Thus, the isometry δHDS can be used to construct a mapping
between the hyperbolic and discretized spaces.

Now let Xi, Xj ∈ M(H). Using the isometry, we can reconstruct the dis-
tance betweenXi andXj using the equation δHDS(Xi, Xj) = δH(πL(Xi), πL(Xj))+
δDS(Xi, Xj)
= αH(Xi, Xj) + αDS(Xi, Xj). where πL is the Lorentzian projection and αH ,
αDS are the hyperbolic and discretized metrics.

We can then use this to define the discretized Lorentzian distance between
points Xi, Xj ∈ M(H) as δDL(Xi, Xj) = αH(Xi, Xj) + αDS(Xi, Xj). We
can use this to define a discretized Lorentzian metric on the space M(H) as

δDL(Xi, Xj) = inf
∑n−1

k=1 δDL(Xik , Xik+1
). This defines a metric on the space

M(H) which is isometric to the Lorentzian metric of H.
This construction allows us to approximate the Lorentzian metric of a confor-

mal compactification of H using a discretized version of the Lorentzian metric.
Since the created space M(H) is isometric to the original one, it follows that the
curvature of the space is preserved and a hyperbolic metric may be constructed
on a discretized conformal compactification of H.

We are then able to map between a discrete representation of a conformally
compactified hyperbolic space and its Lorentzian metric in an isometric manner,
allowing for the construction of a continuous approximation of the Lorentzian
metric. This enables us to construct a discrete approximation of the Lorentzian
metric in a conformally compactified space which can be used to create a hyper-
bolic metric on a discrete version of a conformal compactification of H without
losing the properties of the original space.
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