
Defining the Threat Manufacturer Usage
Description Model for Sharing Mitigation Actions

Sara N. Matheu-Garcı́a
Department of Information and Communication Engineering

University of Murcia
Murcia, Spain

saranieves.matheu@um.es

Antonio Skarmeta
Department of Information and Communication Engineering

University of Murcia
Murcia, Spain

skarmeta@um.es

Abstract—While the growing development of paradigms such
as the 5G or the Internet of Things (IoT) enlarges the attack
surface due to its high inter-connectivity, an effective prompt
response to discovered vulnerabilities arises as a crucial need to
guarantee the security of these systems throughout their lifecycle.
Based on the threat signalling mechanism proposed by NIST and
the Manufacturer Usage Description (MUD) standard, this article
defines the threat MUD model, its architecture and usage to share
security information about threats, compromised domains and
possible mitigation actions in terms of security policies.

Index Terms—threat MUD, MUD, information sharing, CTI,
NIST

I. INTRODUCTION

The advent of the 5G technology and its close relationship
with the Internet of Things (IoT) promises to realise the
vision of a hyper-connected society, in which humans and
devices compose complex interconnected systems leading to
a strong cybersecurity interdependence. In this scenario, the
final network becomes much more complex and heterogeneous
and therefore it can be much more feasible for a vulnerability
to affect many more systems and to be propagated very
quickly. Due to the borderless nature of the infrastructures
and threats involved, any vulnerability or security incident
in one country can have catastrophic implications throughout
the world. While Europe is leading huge initiatives such as
the Cybersecurity Act and the 5G Toolbox to ensure the
security of these systems, it is still unclear how to handle
new vulnerabilities in such a complex context as 5G.

Only in 2021, more than 20,000 vulnerabilities were de-
tected1. The fact is that manufacturers cannot quickly deal
with new discoveries since the release of a patch or an update
is usually a slow process. In this sense, security information
sharing systems propose an efficient, fast and collaborative
way of sharing recently discovered vulnerabilities or attacks
in order to react in time before a patch is released. The US Na-
tional Institute of Standards and Technology (NIST) proposed
a threat signalling approach using a threat Manufacturer Usage
Description (MUD) [1]. The threat MUD is based on the MUD
standard for network behavioural specification [2], and they
are intended to be structured similarly. However, unlike the
MUD standard, the threat MUD is designed as a mitigation

1https://www.cvedetails.com/browse-by-date.php

mechanism. The NIST gives some indications about the new
MUD and a specific build to obtain it. However, the threat
MUD model is still unclear.

In this paper, we analyse the NIST indications and the
MUD standard model to define the threat MUD model, we
generalise the architecture proposed by the NIST to combine
the usage of the MUD and threat MUD and we provide two
possible scenarios in which the threat MUD file can be used
for sharing security information and mitigations. In this way,
the proposal guarantees an effective action when a security
breach is detected. We do not only identify the systems that
may be affected, but we also design a mechanism based on a
standard to communicate the existence of said threat and the
mitigations that should be applied to avoid more damage even
before a patch is released.

The structure of this paper is the following: Section II
describes the MUD standard, with a special focus on the
MUD model, which is similar to the threat MUD. Section III
defines the proposed threat MUD model and its architecture.
Moreover, this section also presents two use cases in which the
threat MUD file can be applied. Finally, Section IV concludes
this paper.

II. THE MANUFACTURER USAGE DESCRIPTION STANDARD

The MUD [2] is a standardised behavioural profile that was
established by the Internet Engineering Task Force (IETF)
in 2019. The main purpose of the MUD specification is to
limit the device’s attack surface by allowing manufacturers to
specify the network behaviour for their devices. The profile is
based on a set of policies, also known as Access Control Lists
(ACLs) that define the communication’s endpoints. Beyond
the usage of IP addresses to enable interactions with other ser-
vices, the MUD represents a scalable and flexible solution to
the specification of network access policies. Indeed, the MUD
design and format make it possible to automate the creation
of network access policies based on the manufacturer’s MUD
profile.

The MUD standard restricts IoT device connections by
defining ACLs, using the Yet Another Next Generation
(YANG) [3] standard to model network restrictions and us-
ing JavaScript Object Notation (JSON) [4] for serialisation.
Towards this end, the MUD file contains two main blocks: the

“mud” and “acls” containers. The “mud” container specifies
several features related to the MUD file itself such as the
current version of the MUD file or the URL that can be used to
retrieve it and the signature to verify the integrity of the MUD
file to avoid security issues. After that, the “acls” container
defines those ACLs based on [5]. An ACL has a name, a
set of conditions to apply the rule (matches), and the actions
to apply in case the conditions are satisfied (e.g., forwarding
accept or deny). It’s worth noting that the MUD model
includes Network ACL extensions to the YANG data model,
which are augmented by the MUD standard to specify more
expressive terms that facilitates the definition of high-level
policies without the need to know the associated IP addresses.
These keywords are manufacturer, same-manufacturer, model,
local-networks, controller and my-controller.

The NIST [1] presented a threat signalling technique using
what is called a threat MUD based on this standardised
behavioural profile. Although this threat MUD has a structure
similar to the regular MUD format, it is intended to serve
as a mitigation mechanism, listing external sites to and from
which traffic should be restricted due to their association
with a specific threat. Therefore, it is not within the scope
of the threat MUD to provide a list of sites with which
access should be permitted, nor to establish any rules for local
network traffic. As a result, rather than being developed by
the manufacturer, the threat MUD is supposed to be created
by a threat intelligence provider. However, the NIST only
gives some indications about the threat MUD model and its
similarity with the MUD standard.

III. FORMALISATION OF THE THREAT MUD

This section defines the threat MUD model and its archi-
tecture taking the NIST guidelines and the MUD standard as
a starting point. In addition, two possible usages of the gen-
eralised threat MUD are proposed to highlight the interest of
the proposal. The first one for sharing encountered threats and
the second one for obtaining information about compromised
domains and possible mitigations.

A. Threat MUD modeL

The only indication that the NIST gives about the threat
MUD document is that the threat MUD model is equal to the
MUD model, with the exception of two fields: model-name and
mfg-name, which are substituted by the name of the threat and
the intelligence provider, respectively. However, other fields
of the MUD standard are not applicable to the threat MUD
concept, and additional fields would be required to complete
the information about the threat detected. We performed a
carefully analysis of the standard MUD model to select which
fields are applicable to this new concept of threat MUD and
which fields should be added. Listing 2 shows the first module
of the threat MUD. This module has been generated from the
standard MUD model and the NIST indications with some
variations, and includes the following fields:

• threat-mud-version, previously named mud-version, in-
dicates the current version of the threat MUD file. It

can be used to get the last update of the threat MUD
or compare different threat MUD files.

• threat-mud-url, previously named mud-url, indicates the
URL associated with the current threat MUD file. This
URL can be used to retrieve the file.

• last-update, indicates the date of the last update of the
threat MUD file, which can be used to get the last version
of the file.

• threat-mud-signature, previously named mud-signature,
indicates the URL in which the signature of the file is
located. As in the MUD standard, this signature is used
to check the integrity of the threat MUD file.

• cache-validity, indicates the frequency in hours to check
for an update of the current file. This field is especially
relevant in the threat MUD, as an updated threat MUD
can be created in a short time if new domains are known
to be compromised by the associated threat, and therefore,
having the last update of the file is crucial to implement
the countermeasures.

• is-supported indicates if the threat associated with the
threat MUD file is currently being addressed by the
involved manufacturers.

• threat-intelligence-provider substitutes the mfg-name
field and indicates the threat intelligence provider that
detected and alerted about the threat (NIST indication).

• threat-name substitutes the model-name field and identi-
fies the threat associated with the threat MUD file (NIST
indication).

• cvss-vector is a new field that indicates the severity of
the threat in terms of the Common Vulnerability Scoring
System (CVSS) standard [6]. In particular, the CVSS
score is represented as a vector string, a compressed
textual representation of the values used to derive the
score.

• documentation points to an URL in which additional
information about the threat can be found e.g., a link to
the National Vulnerability Database (NVD)2 entry.

• extensions, as in the MUD standard, is reserved for future
extensions of the threat MUD model.

• from-device-policy and to-device-policy, indicate the
name of the ACLs that should be applied to mitigate
the threat. These ACLs are further detailed in the next
module of the threat MUD.

• system-info, firmware-rev and software-rev fields have
been removed from the threat MUD model, as they are
associated with a specific device.

Listing 4 shows the second module of the threat MUD,
which integrates the ACLs that could be applied to mitigate
the associated threat in terms of network access control. The
module is similar to the MUD standard model. However,
as the threat MUD is associated with a specific threat, not
with a device and the configuration to apply should be as
generic as possible, some fields have been removed from the
ace/matches/mud section, in particular, same-manufacturer,

2https://nvd.nist.gov

local-networks, controller and my-controller. The field
same-manufacturer always had a null value to indicate devices
from the same manufacturer specified in the mfg-name field
from the previous module. However, this field was substituted
by the intelligence provider. The field local-networks was used
to remove or allow access to the whole local network of a
particular device. As the threat MUD should be applicable
to any kind of device, this field has been removed. Finally,
controller and my-controller were used to indicate the generic
controller of a device. As before, this field is not generic
enough to be included in the threat MUD.

Listing 1: Threat MUD module
1 module : i e t f − t h r e a t −mud
2 +−−rw t h r e a t m u d !
3 +−−rw t h r e a t −mud− v e r s i o n
4 +−−rw t h r e a t −mud− u r l
5 +−−rw l a s t − u p d a t e
6 +−−rw t h r e a t −mud− s i g n a t u r e ?
7 +−−rw cache − v a l i d i t y ?
8 +−−rw i s − s u p p o r t e d
9 +−−rw t h r e a t − i n t e l l i g e n c e − p r o v i d e r

10 +−−rw t h r e a t −name
11 +−−rw cvss − v e c t o r ?
12 +−−rw d o c u m e n t a t i o n ?
13 +−−rw e x t e n s i o n s *?
14 +−−rw from − dev ice − p o l i c y
15 +−−rw to − dev ice − p o l i c y

Listing 2: Threat MUD module
1 module : i e t f −mud
2 +−−rw mud !
3 +−−rw mud− v e r s i o n
4 +−−rw mud− u r l
5 +−−rw l a s t − u p d a t e
6 +−−rw mud− s i g n a t u r e ?
7 +−−rw cache − v a l i d i t y ?
8 +−−rw i s − s u p p o r t e d
9 +−−rw mfg−name

10 +−−rw model −name
11 +−−rw system − i n f o ?
12 +−−rw f i rmware − r e v ?
13 +−−rw s o f t w a r e − r e v ?
14 +−−rw d o c u m e n t a t i o n ?
15 +−−rw e x t e n s i o n s *?
16 +−−rw from − dev ice − p o l i c y
17 +−−rw to − dev ice − p o l i c y

Listing 3: ACL module
1 module : i e t f − a c c e s s − c o n t r o l − l i s t
2 +−−rw a c l s
3 +−−rw a c l * [name]
4 | +−−rw a l s
5 | +−−rw a c e s s − l i s t * [name]
6 | +−−rw name
7 | +−−rw t y p e ?
8 | +−−rw a c e s
9 | +−−rw ace * [name]

10 | +−−rw name
11 | +−−rw matches
12 | | +−−rw mud
13 | | | +−−rw m a n u f a c t u r e r ?
14 | | | +−−rw model ?
15 | | +−−rw e t h ?
16 | | +−−rw ipv4 ?
17 | | +−−rw ipv6 ?
18 | | +−−rw t c p ?
19 | | | +−−rw d i r e c t i o n − i n i t i a t e d ?
20 | | +−−rw udp ?
21 | | +−−rw icmp ?
22 | | +−−rw e g r e s s − i n t e r f e ?
23 | | +−−rw i n g r e s s − i n t e r f e ?
24 | +−−rw a c t i o n s
25 +−−rw a t t a c h m e n t − p o i n t s

Listing 4: ACL module
1 module : i e t f − a c c e s s − c o n t r o l − l i s t
2 +−−rw a c l s
3 +−−rw a c l * [name]
4 | +−−rw a l s
5 | +−−rw a c e s s − l i s t * [name]
6 | +−−rw name
7 | +−−rw t y p e ?
8 | +−−rw a c e s
9 | +−−rw ace * [name]

10 | +−−rw name
11 | +−−rw matches
12 | | +−−rw mud
13 | | | +−−rw m a n u f a c t u r e r ?
14 | | | +−−rw model ?
15 | | | +−−rw l o c a l − n e t w o r k s ?
16 | | | +−−rw same − m a n u f a c t u r e r ?
17 | | | +−−rw c o n t r o l l e r ?
18 | | | +−−rw my− c o n t r o l l e r ?
19 | | +−−rw e t h ?
20 | | +−−rw ipv4 ?
21 | | +−−rw ipv6 ?
22 | | +−−rw t c p ?
23 | | | +−−rw d i r e c t i o n − i n i t i a t e d ?
24 | | +−−rw udp ?
25 | | +−−rw icmp ?
26 | | +−−rw e g r e s s − i n t e r f e ?
27 | | +−−rw i n g r e s s − i n t e r f e ?
28 | +−−rw a c t i o n s
29 +−−rw a t t a c h m e n t − p o i n t s

B. Threat MUD architecture

A particular build to obtain the threat MUD was proposed
by the NIST in [1] to combine the usage of the MUD standard
and the threat MUD. Figure 1 shows a generalisation of that
build including additional components for threat management.

• The device operating in the network. It is responsible
for sending the MUD URL to the switch for the MUD
obtaining.

• The router or switch responsible to forward or restrict the
device traffic.

• The MUD Manager is the main entity of the MUD
architecture. It will be in charge of asking for the MUD
file to the MUD File Manager using the MUD URL.
Additionally, it will also retrieve a signature to validate
the integrity of the MUD file. Once the MUD is obtained,
it will translate and enforce the MUD policies over the
switch. Although the standard does not specify how to
perform the enforcement, further research has been done
to enforce them in a SDNs architecture [7].

• The MUD file server, located in the manufacturer domain,
stores all the MUD files from devices of a certain
manufacturer.

• The Threat Agent monitors the DNS traffic from and to
the device to detect when a DNS request is not solved.
When a domain is suspicious of being compromised,
that is, a DNS request returned a null value, it asks for
confirmation to the Threat API and alerts the Threat MUD
Manager about this domain. Moreover, it also receives
information from the monitoring and detection entity
about possible threats.

• The DNS service, which receives information from threat
intelligence providers about a compromised domain. In
case the domain is marked as compromised, it returns a
null value.

Fig. 1: Threat MUD and MUD architecture

• Threat API receives requests from the Threat Agent to
verify whether an unresolved domain is compromised.
Moreover, it gives information about the Threat Intelli-
gence provider that identified a compromised domain.

• The Threat MUD Manager, analogous to the MUD Man-
ager, queries the Threat MUD file Server for the threat
MUD file and signature. In addition, the Threat MUD
Manager enforces the filtering rules in the router. It’s
worth mentioning that the Threat MUD connected with a
threat will list all of the domains that are affected by the
threat, as well as the filtering rules that will block access
to them. The threat MUD Manager is also responsible for
creating a threat MUD file in case a new threat without
an existing threat MUD file is detected.

• The threat MUD file server job will consist of storing
and delivering Threat MUD files associated with a com-
promised domain (and threat).

• The Monitoring and detection entity is in charge of
monitoring the device communications and alerting the
threat agent about possible threats.

C. Use Case: Sharing discovered threats

The threat MUD is integrated into the workflow of a use
case whose main objective is to share encountered threats and
mitigation with interested stakeholders, as shown in figure 2.
In this context, the monitoring and detection entity in charge of
monitoring the device communications (step 1) detects a new
threat and alerts the local threat signalling service, specifically
the threat Agent (step 2). The threat agent validates if this
threat was already discovered by asking the threat API (step
3). If the threat API replies that the threat is unknown (step
4), the threat Agent will request the threat MUD manager
the creation of a threat MUD associated with the encountered
threat, indicating the compromised domains identified by the
monitoring and detection entity (step 5). Once the threat MUD
file is created, the threat MUD manager will post it on the
threat MUD file server (step 6). If accepted, the threat MUD
file server will acknowledge it (step 7) and request an update of
the threat API database (step 8). In this way, other domains that
may be affected by this threat will be able to have access to this
information, apply the pertinent mitigations and collaborate in
the construction of the new threat MUD file.

D. Use Case: Enforcing mitigations

This second use case depicted in Figure 3 shows how the
threat MUD file can be used to deploy security policies to
mitigate encountered vulnerabilities. In this case, the detection
of compromised domains is performed through the DNS
service. The device will eventually make a DNS request to
access a certain domain (step 1). The router or switch is
responsible to forward the DNS request to the Threat Agent
(step 2) and the DNS server (step 3). The DNS service,
which receives information from threat intelligence providers
about compromised domains will answer the DNS query of
the device. In case the domain is marked as compromised, it
will return a null value (step 4). The threat Agent, which is
monitoring DNS traffic from/to devices to DNS server, will
detect a NULL DNS answer, and it will ask for confirmation
to the Threat API (step 5). If the threat API confirms that
the domain is compromised (step 6), the threat Agent will
alert the Threat MUD Manager about this domain to obtain
the threat MUD file (step 7). The threat MUD Manager will
ask for the associated Threat MUD file (and its signature) to
the threat MUD file server (steps 8 and 9). Finally, the threat
MUD Manager will translate and enforce the threat MUD
policies in the switch (step 10). An integration of this use case
architecture within the INSPIRE-5Gplus project is provided in
[8].

IV. CONCLUSION AND FUTURE WORK

The management of new vulnerabilities and attacks during
the life cycle of a device becomes even more important due
to the high inter-connectivity inherent in the IoT. In this
article we address the sharing of security information about
the threats discovered and possible mitigations to apply based
on the threat MUD proposed by NIST and the IETF MUD
standard. This new approach to the MUD allows obtaining
information on compromised domains and security policies
and sharing information on vulnerabilities discovered locally,
facilitating the application of mitigations before a patch is
available. In the future, we plan to carry out an implementation
of the threat MUD following the proposed model, linking it
with existing cyber threat information approaches such as the
Malware Information Sharing Platform (MISP).

ACKNOWLEDGMENTS

The research is supported by the H2020 EU project
INSPIRE-5Gplus project, Grant Agreement Nº 871808 and
the H2020 project BIECO, Grant Agreement Nº 952702.

REFERENCES

[1] NIST, “Securing Small-Business and Home Internet of Things Devices:
NIST SP 1800-15,” 2019.

[2] E. Lear, D. Romascanu, and R. Droms, “Manufacturer Usage
Description Specification (RFC 8520),” 2019. [Online]. Available:
https://tools.ietf.org/html/rfc8520

[3] M. Bjorklund, “The YANG 1.1 data modeling language (RFC 7950),”
2016. [Online]. Available: https://tools.ietf.org/html/rfc7950

[4] T. Bray, “The JavaScript Object Notation (JSON) Data Interchange
Format (RFC8259),” 2017. [Online]. Available: https://tools.ietf.org/html/
rfc8259

https://tools.ietf.org/html/rfc8520
https://tools.ietf.org/html/rfc7950
https://tools.ietf.org/html/rfc8259
https://tools.ietf.org/html/rfc8259

Fig. 2: Use case: Sharing discovered threats

Fig. 3: Use case: Enforce mitigation

[5] M. Jethanandani, D. Blair, L. Huang, and S. Agarwal, “YANG Data
Model for Network Access Control Lists (RFC8519),” 2019. [Online].
Available: https://tools.ietf.org/html/rfc8519

[6] FIRST, Common Vulnerabilities Scoring System (CVSS), 2014. [Online].
Available: https://www.first.org/cvss

[7] S. N. M. Garcı́a, A. Molina Zarca, J. L. Hernández-Ramos, J. B. Bernabé,
and A. S. Gómez, “Enforcing Behavioral Profiles through Software-
Defined Networks in the Industrial Internet of Things,” Applied Sciences,
vol. 9, no. 21, p. 4576, 2019.

[8] N. P. Palma, S. N. Matheu-Garcı́a, A. M. Zarca, J. Ortiz, and A. Skarmeta,
“Enhancing trust and liability assisted mechanisms for ZSM 5G architec-
tures,” in 2021 IEEE 4th 5G World Forum (5GWF). IEEE, Oct. 2021,
pp. 362–367.

https://tools.ietf.org/html/rfc8519
https://www.first.org/cvss

	Introduction
	The Manufacturer Usage Description standard
	Formalisation of the threat MUD
	Threat MUD modeL
	Threat MUD architecture
	Use Case: Sharing discovered threats
	Use Case: Enforcing mitigations

	Conclusion and Future Work
	References

