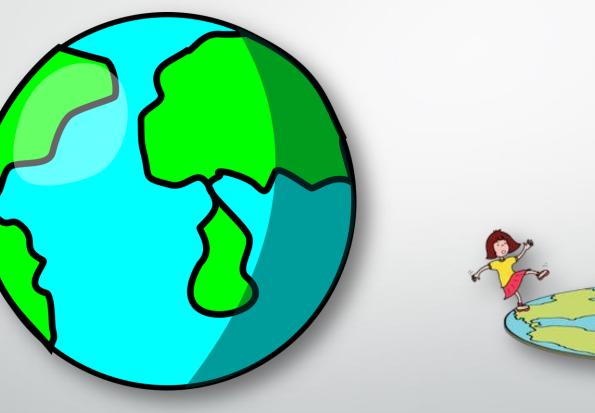
Avalanches on Atlantis Real or Fake? The "true" story!

Florian Thiery M.Sc.*

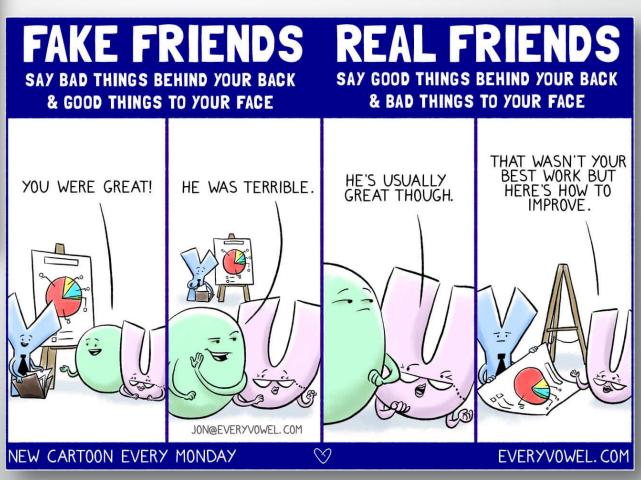
Dipl.Geogr. Rania Taani**

* i3mainz - Institute for Spatial Information and Surveying Technology ** Hochschule Mainz University of Applied Sciences, Germany



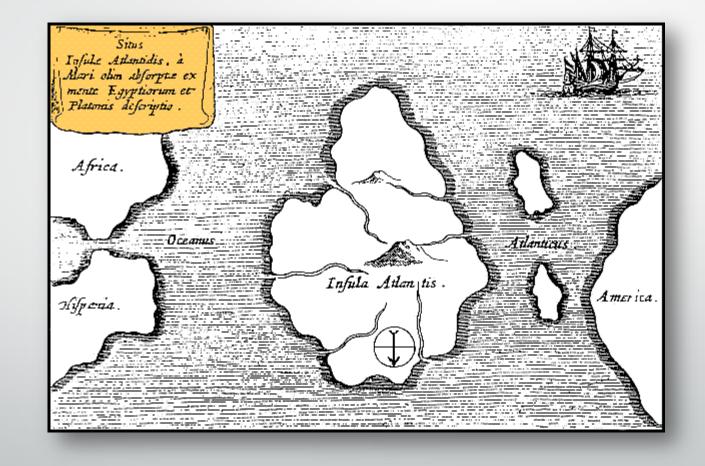
That's me!

- Master Degree (Master of Science) in Geoinformatics and Surveying
- Research Associate at i3mainz Institute for Spatial Information and Surveying Technology
- Computer Scientist at RGZM Archaeological Research Institute


We are living in a world of »fake news« and »alternative facts«, also in history ...

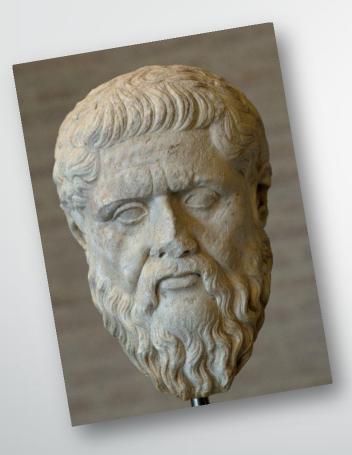
But what is REAL, what is FAKE?

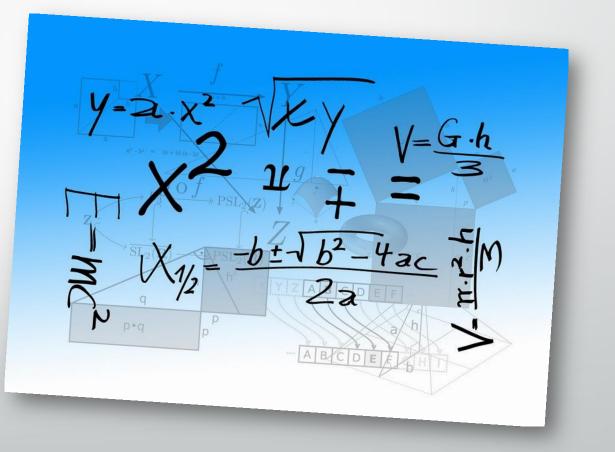
4

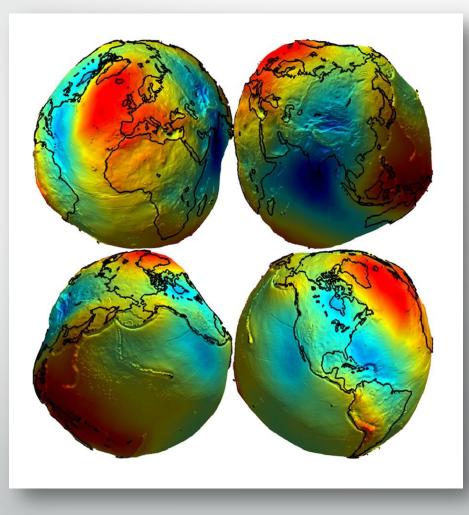

But is fake information always bad?

Have a look in books, there are fairy tales and myths – ideas in mind – with "real" facts...

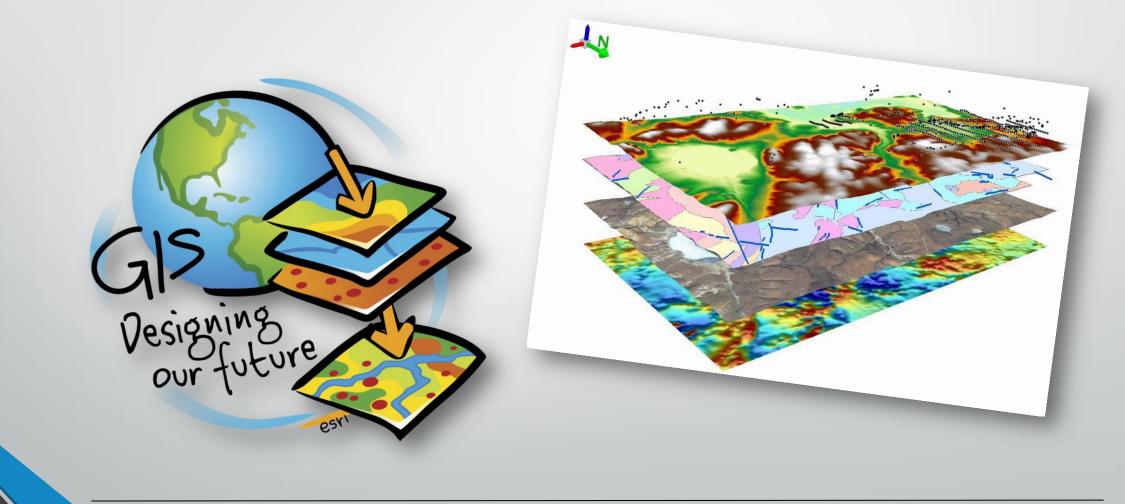
In Greek history, the famous philosopher Plato mentioned the mythical island Atlantis...


Atlantis was a "real" empire, assigned to the sea god Poseidon...

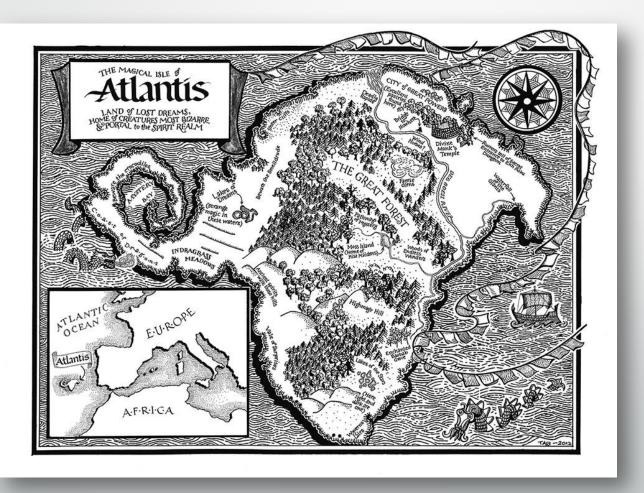



Avalanches on Atlantis | XXX. IGSM 2017 Zagreb, Croatia | 25 June - 1 July 2017

...but only in Platon's mind, to show and explain his theories!


In geodesy we try to model and measure the real world as perfect as we can...

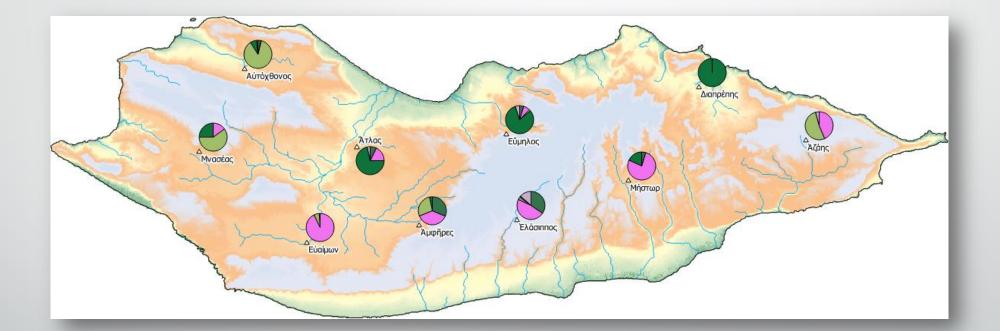
... but we all know, that it will never fit perfectly!


For demonstrating geodetic methods in GIS, we do not need real data, if it does not exist...

...we can use modelled, "faked" information for demonstrating anything we want!

In case of Atlantis, it is hard to get "real" spatial information out of Platon's work...

... because Atlantis could have looked like this...



...and modelled in a faked dataset like this:

The »AtlantGIS« dataset by Prof. Dr. phil. Kai-Christian Bruhn!

This repository Search	Pull requests Issues	Marketplace Gist	🌲 +• 🎑
acebe / AtlantGIS		O U	Inwatch 🕶 5 🗮 Star 4 😵 Fork 2
<>Code ① Issues 0	uests 0 🔲 Projects 0 📰 Wil	ki Insights -	
aked GIS-Datasets, simulating an islar	nd in the Atlantic for educational p	urposes in using GIS in arc	chaeology
26 commits	§ 5 branches	♥ 0 releases	🎎 1 contributor
Branch: master - New pull request		Create new file	Upload files Find file Clone or download
🤔 kacebe Minor Supplemental Data			Latest commit 7c49216 on 26 Jan 2015
gettingstarted	file upload		3 years ago
raster	Minor Supplemental Data		2 years ago
screenshots	upload trenches		3 years ago
tables	Minor Supplemental Data		2 years ago
templates	file upload		3 years ago
ector	Update sites.geojson		2 years ago
License.txt	New License		3 years ago
	Update README.md		3 years ago

AtlantGIS

Faked GIS-Datasets, simulating an island in the Atlantic for educational purposes in using GIS in archaeology. All AtlantGIS data are published under a CC-BY-SA 4.0 license.

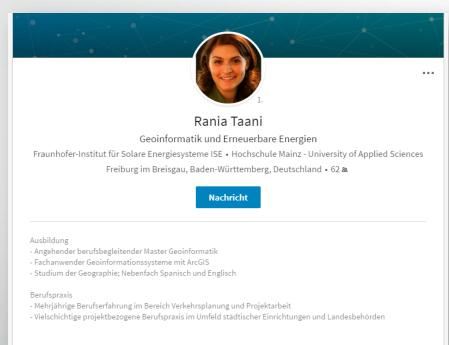
The idea is to create artificial data creatively referring to the story of Atlantis as told by Platon. We believe that simple datasets with a narrative are most qualified to impart knowledge and skills to students.

Whoever likes the idea is invited to contribute data using the repository on GiH4ub. We ask every contributor to link to documents that put the dataset in context of a special GIS-related task and make the tutorials/workshop documents available under an open licence.

DISCLAIMER: These data are not in any way based on any "identification" of Platon's concept of Atlantis in geographical sense. They should and cannot be used to argue in favour or against any scientific of unscientific hypotheses.

https://github.com/kacebe/AtlantGIS

Imagine, you have real problems like avalanches threatening populated areas...

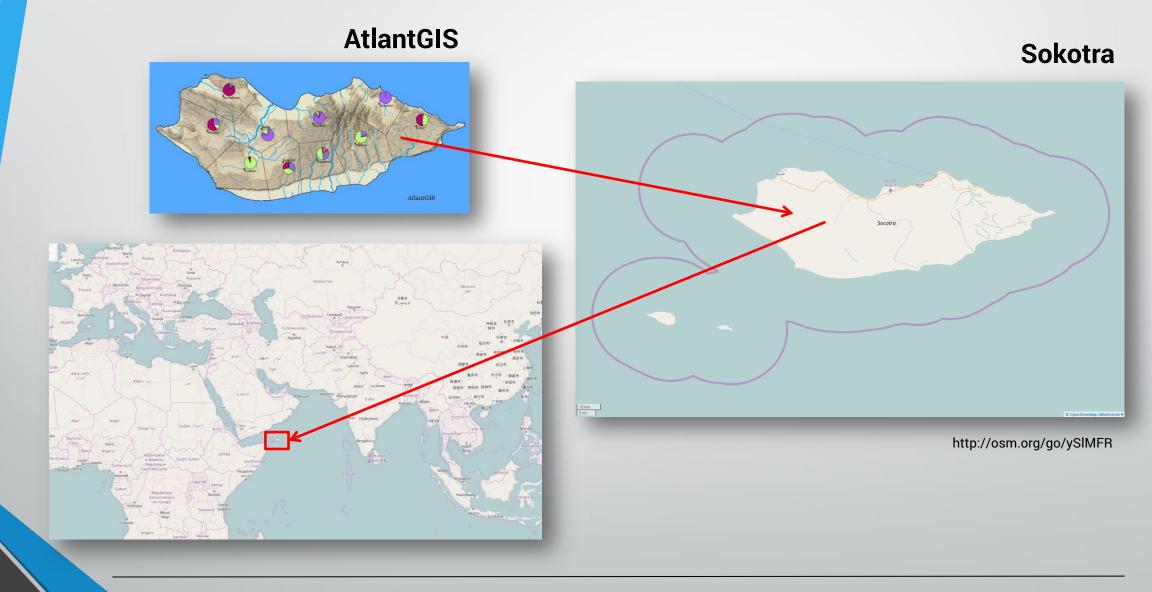


... just simulate and calculate demolition sites on Atlantis using the AtlantGIS dataset!

This was done in a students project by Rania as part of an interdisciplinary GIS module focusing on applications in Digital Humanites!

Zentrale Erfahrungsfelder:

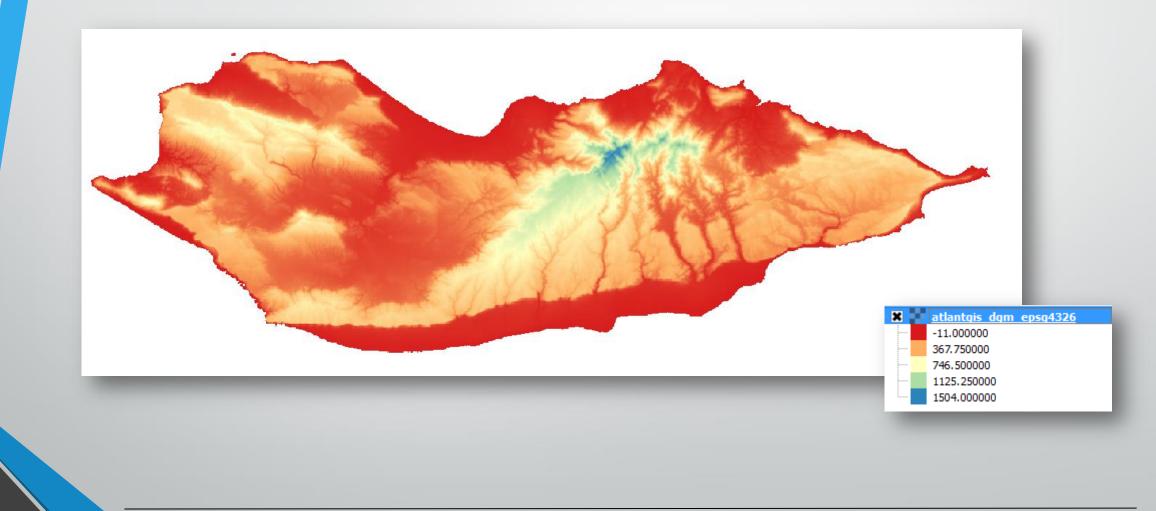
- Mitwirkung an der Konzeption und Umsetzung effizienter ÖPNV-/ SPNV-Lösungen
- Angebotsplanung, Erstellung von Gutachten und Nachfrageprognosen
- (Mit-)Entwicklung innovativer flexibler Bedienungsformen (z. B. Rufbus)
- Analysen und Aufbereitung von Daten, inkl. kartografischer Visualisierungen
- Projekt- und Eventmanagement (konzeptionell und organisatorisch), inkl. Öffentlichkeitsarbeit
- IT-gestützte Recherche- sowie Redaktions- und Übersetzungstätigkeiten


https://linkedin.com/in/rania-taani-012514a6

Rania's scenario...

One day, there was a great concern on Atlantis. Atlas and his twin brothers gathered for the annual island party at the king's palace as they heard a sound coming from the surrounding mighty mountains. It was an avalanche! Nothing happened, puh! Both were responsible for the well-being of their countrymen. Thus, they were obligated to deal with "avalanches". In order to make protective arrangements, areas prone to avalanches, had to be recorded. To analyse the recorded data, a GIS was established. As a result the demolition sites of avalanches have been calculated and will now be presented to the audience.

The investigation area, "real" and "faked"...


The data is based on...

- https://github.com/kacebe/AtlantGIS
- a Digital Terrain Model (DTM) for the visualization and analysis of the height, slope, terrain alignment and the vertical curvature
- current Landsat data for surface roughness (calculated using vegetation information)
 - https://earthexplorer.usgs.gov
 - Data Set Landsat Archive, Pre-Collection, L8 OLI/TIRS
- QGIS, SAGA, GRASS, GDAL

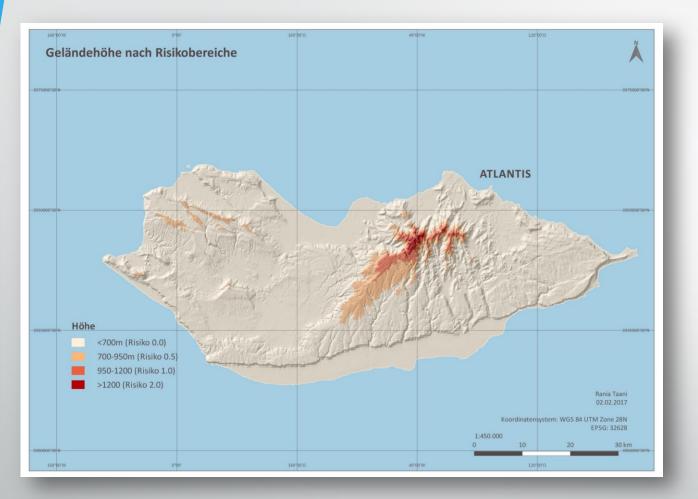
Important characteristics of areas prone to avalanches are...

- ...slope, surface design, snow depth, temperature, wind and the soil character (rubble &. Covering of vegetation)
- A multi criteria analysis was done for...
 - height
 - slope
 - terrain alignment
 - vertical curvature
 - surface roughness

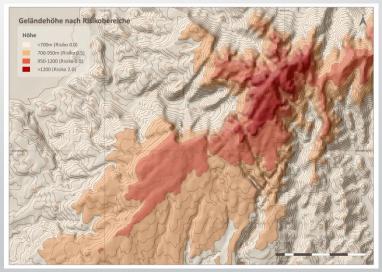
The digital terrain model in pseudo colour ...

The calculations...

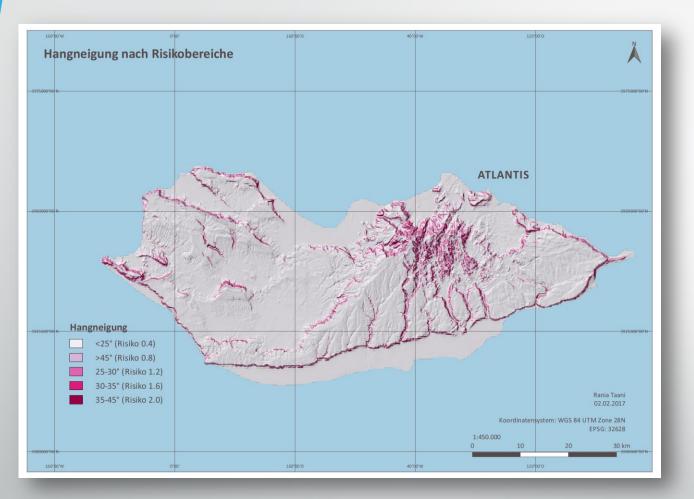
...include reclassifications using QGIS Raster Calculator


Raster Calculator

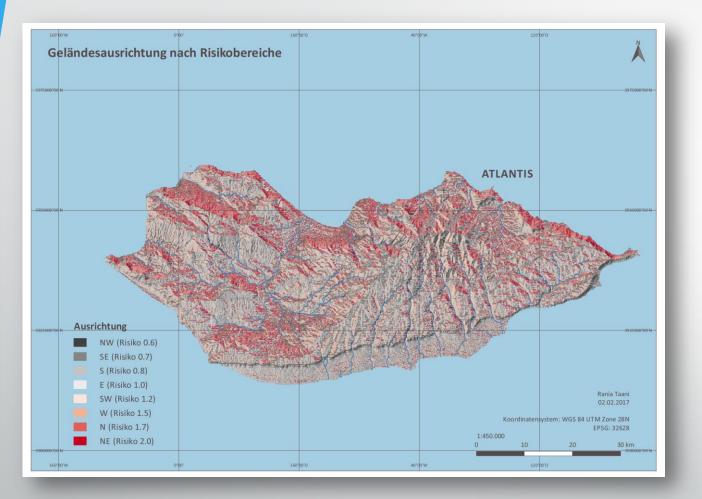
The **Raster Calculator** in the **Raster** menu allows you to perform calculations on the basis of existing raster pixel values (see figure_raster_10). The results are written to a new raster layer with a GDAL-supported format.

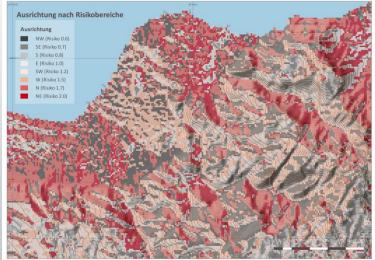

Figure Raster 10:

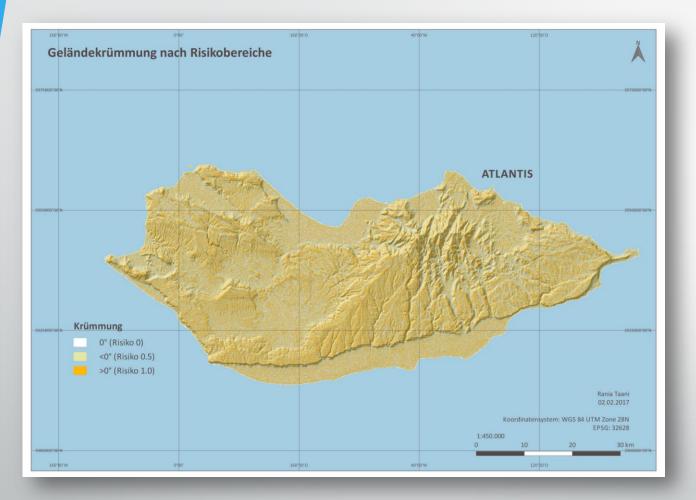
aster bands "elevation@1"		Result layer Output laye	r	home	/210	v/olovatio	n feet tif	- 1	
"landcover@1"			/home/alex/elevation_feet.tif				111		
		Current layer extent							
		X min -7117600.0		00000	📜 XMax		4897040.00000		
		Y min	1367760.0	0000	0000	Y max Rows	7809680.00000		•••
		Columns	3663		-		1964		
		Output format		GeoTIFF					
		Output form	nat	GeoTIF	F			:	
				Concernant of	F			:	
			nat ult to project	Concernant of	F			:	
operators		🧭 Add res	ult to project	Concernant of				:	
Operators +	*			Concernant of		^	acos	:	
Operators +	*	🧭 Add res	ult to project			A an	acos atan	:	
Dperators + - <	* / >	Add res	ult to project		t			() OR	
Operators + aster calculator e	* / > xpression	Add res	ult to project		t	an	atan	() OR	
+ - < aster calculator e	2.500 C C C C C C C C C C C C C C C C C C	✓ Add res sqrt cos =	ult to project		t	an	atan	: () OR	
+ •	2.500 C C C C C C C C C C C C C C C C C C	✓ Add res sqrt cos =	ult to project		t	an	atan	: () OR	
+ - < aster calculator e	2.500 C C C C C C C C C C C C C C C C C C	✓ Add res sqrt cos =	ult to project		t	an	atan	: () OR	

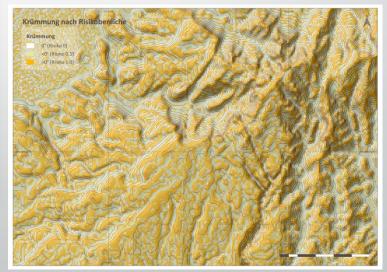

Risk areas based on height...

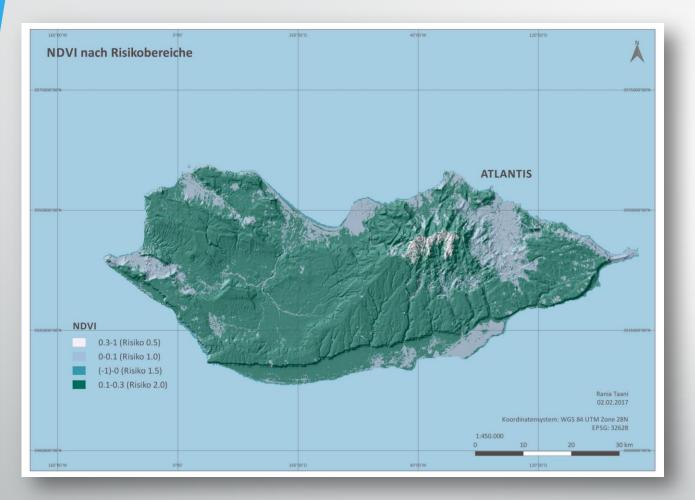
avalanches occur at a certain altitude, which is oriented at the 0°C frost limit of the area; the higher, the more risk

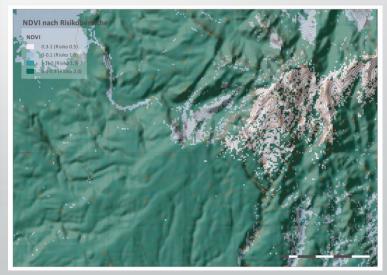

Risk areas based on slope...


major influence! critical inclination for avalanches between 25 ° and 45 °


Risk areas based on terrain alignment...


north slope (315°-45°) highest risk, west slope (225°-315°) second highest risk, south slope (135°-225°) third highest risk and east slope (45°-135°) lowest risk


Risk areas based on vertical curvature...


convex surfaces have higher risks, concave surfaces are more stable

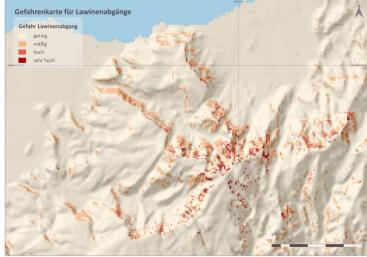
Risk areas based on surface roughness...

calculation of the Normalized Difference Vegetation Index (NDVI), lower values – higher risk

Classification based on multi criteria analysis...

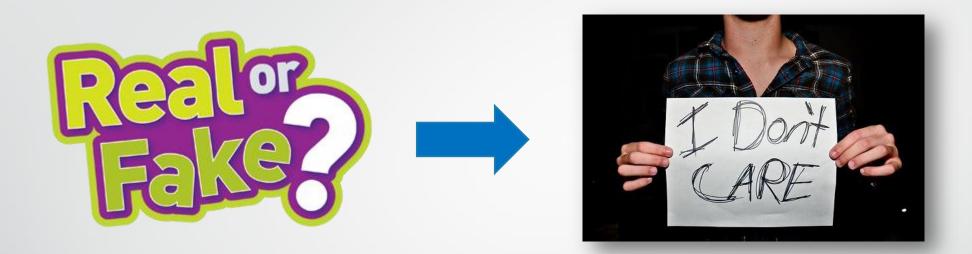
slope	risk	v. curvature [°]	risk	terrain alignment	risk
< 25	0.4	0	0	N (0 -22.5) + (337.5 – 360)	1.7
25 - 30	1.2	< 0	0.5	NE (22.5- 67.5)	2.0
30 - 35	1.6	> 0	1.0	E (67.5 – 112.5)	1.0
35 - 45	2.0			SE (112.5 - 157.5)	0.7
> 45	0.8			S (157.5 – 202.5)	0.8
height	risk	roughness (NDVI)	risk	SW (202.5 – 247.5)	1.2
< 700	0.0	< 0	1.5	W (247.5 – 292.5)	1.5
700 – 950	0.5	0-0,1	1.0	NW (292.5 – 337.5)	0.6
950 - 1200	1.0	0,1-0,3	2.0		
> 1200	2.0	> 0,3	0.5		

demolition sites	risk
0 - 7	1 (low)
7 - 11	2 (medium)
11 - 15	3 (high)
15 - 19	4 (very high)


demolition sites = (height + alignment + curvature) * slope * roughness

Avalanches on Atlantis | XXX. IGSM 2017 Zagreb, Croatia | 25 June - 1 July 2017

The resulting risk areas...



Rania's conclusion...

- the resulting map indicates higher avalanche risks in the north-western part of Atlantis.
- avalanches demolition areas are not the actual danger zones. Lead-out areas have to be included, too.
- the identified "danger zones" have to be identified and monitored.

AtlantGIS is cool! use and extend it!

Avalanches on Atlantis Real or Fake? The "true" story!

mail@florian-thiery.de http://linkedgeodesy.org http://docs.linkedgeodesy.org http://dernettekleinenerd.de

License Information

- Except where otherwise noted, textural content on this presentation is licensed under a Creative Commons Attribution 4.0 International license.
- Image references are noted, if not Public Domain or self-produced.

Image References 1/4

Slide 2

© http://i3mainz.hs-mainz.de

© http://rgzm.de

© ALDODEL via fiverr.com

Slide 3

© https://image.jimcdn.com/app/cms/image/transf/dimension=420x10000:format=png/path/s40cda32f2feface7/image/i0f4b7fa5202078a2/version/1359126272/image.png

Slide 4

© https://plnami.blob.core.windows.net/media/2016/12/real-purpose-behind-fake-news-attack.jpg

© http://www.everyvowel.com/wp-content/uploads/2016/11/Fake-Friends-vs-Real-FriendsJon@EveryVowel.com_.jpg

Slide 5

© http://i0.wp.com/monkeyadvice.com/wp-content/uploads/2016/12/goodorbad-01.png?resize=705%2C435 Slide 6

CC BY-SA 2.0 Arun Katiyar (https://www.flickr.com/photos/48889080879@N01/1342470327)

Slide 8

© http://culturextourism.com/wp-content/uploads/2014/05/Amazing-Greek-God-Poseidon-History-Ancient-Mythology.jpg © https://thumbs.dreamstime.com/x/nettes-poseidon-19739426.jpg

Image References 2/4

Slide 9

© https://timeandnavigation.si.edu/sites/default/files/multimedia-assets/540-geoid_-_nga.jpg

Slide 11

© http://2.bp.blogspot.com/-Ou_TWqMvjfc/U05a2OkaqAI/AAAAAAABq4/OIjxAwmxyew/s1600/Tight_fitting_clothes.jpeg

Slide 12

© http://www.kln.ac.lk/socialsciences/depts/geography/images/stories/gis/gis.png

© http://www.improntait.com/wp-content/uploads/2015/05/mineria_integracion-gis.jpg

Slide 13

© http://www.esri.com/~/media/Images/Content/news/arcnews/spring13/p12p1-lg.jpg

Slide 14

© http://tabarron.com/wp-content/uploads/2013/09/full_map_atlantis.jpg

Slide 15

© https://s-media-cache-ak0.pinimg.com/originals/96/1f/5d/961f5dbf5c24f0f5e92541b9c5fa33cc.jpg
© http://www.umich.edu/~chemh215/W15HTML/SSG4/ssg4.1/HTMLPROJECT/Atlantis%20Background.jpg
© http://img03.deviantart.net/8852/i/2016/004/7/7/dreams_of_atlantis_by_flaviobolla-d9mqhqb.jpg
© https://image.jimcdn.com/app/cms/image/transf/none/path/s963e8548eb7c9623/image/i203a151cca08f2b6/version/1441215294/image.jpg

Image References 3/4

Slide 16

CC BA-SA kacebe (https://github.com/kacebe/AtlantGIS)

Slide 17

© https://github.com/kacebe/AtlantGIS (21.06.2017)

© http://i3mainz.hs-mainz.de/sites/default/files/public/data/KCBruhn.png

Slide 19

© http://abcnews.go.com/images/International/NC_avalanche_french_alps_mm_160113.jpg

© https://file2.stuff.co.nz/1378974812/489/9159489.jpg

Slide 20

© https://linkedin.com/in/rania-taani-012514a6

Slide 21

© https://linkedin.com/in/rania-taani-012514a6

Slide 22

© http://osm.org/go/ySIMFR and OpenStreetMap

© http://i3mainz.hs-mainz.de/sites/default/files/public/data/AtlantGIS_0.jpg

Image References 4/4

Slide 26

By User:Anitagraser on QGIS Wiki, Antigraser (http://www.qgis.org/wiki/File:QGis_Logo.png) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

© https://docs.qgis.org/2.6/en/docs/user_manual/working_with_raster/raster_calculator.html

Slide 35

© http://mountainroad.ca/mrp/wp-content/uploads/2015/04/real-or-fake-logo.png

See also...

- https://github.com/kacebe/AtlantGIS
- https://en.wikipedia.org/wiki/Atlantis
- https://de.wikipedia.org/wiki/Sokotra
- https://docs.qgis.org/2.6/en/docs/user_manu al/working_with_raster/raster_calculator.html