Supporting Information

Potential-Modulated Ion Distributions in the Back-to-Back Electrical Double Layers at a Polarised Liquid|Liquid Interface Regulate the Kinetics of Interfacial Electron Transfer

Dr. Alonso Gamero-Quijano,*^[a,b] Prof. José A. Manzanares,^[c] Dr. Seyed M. B. H. Ghazvini,^[d] Prof. Paul J. Low,^[d] Prof. Micheál D. Scanlon*^[b]

This article is dedicated to Prof. Hubert Girault on the occasion of his 65th birthday.

[a] Department of Physical Chemistry, University of Alicante (UA), E-03080, Alicante, Spain.
 *E-mail: <u>daniel.gamero@ua.es</u>

[b] The Bernal Institute and Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland.

*E-mail: micheal.scanlon@ul.ie

[c] Department of Thermodynamics, Faculty of Physics, University of Valencia, C/Dr. Moliner, 50,Burjasot, E-46100 Valencia, Spain.

[d] School of Molecular Sciences, University of Western Australia (UWA), 35 Stirling Highway, Crawley, Western Australia, 6009, Australia.

Table S1. Summary of the reduction half-reactions of (i) various aqueous, organic or interfacial O_2 or proton reduction reactions and (ii) various organic electron donor species, described in Figures 1a and b, and their associated standard redox potentials (expressed *versus* the standard hydrogen electrode (SHE)) as a function of pH.

Reduction Half-Reactions	Standard redox potentials (V)		pН	Ref.
$DcMFc^{+,TFT} + e^{-} \rightleftharpoons DcMFc^{TFT}$ [a]	$\left[E_{\rm DcMFc^+/DcMFc}^{\rm 0}\right]_{\rm SHE}^{\rm TFT}$	0.107	n/a	[60]
$PMFc^{+,TFT} + e^{-} \rightleftharpoons PMFc^{TFT}$	$\left[E^{0}_{PMFc^{+}/PMFc}\right]_{SHE}^{TFT}$	0.415	n/a	This work (Figure S1)
$DiMFc^{+,TFT} + e^{-} \rightleftharpoons DiMFc^{TFT}$	$\left[E_{\rm DiMFc^+/DiMFc}^{\rm 0}\right]_{\rm SHE}^{\rm TFT}$	0.617	n/a	This work (Figure S1)
		0.665	0.5	-
$O_{1} \rightarrow U_{1} O^{+,aq} \rightarrow U_{2} O_{2} \rightarrow U_{2} O_{2}$		0.577	2	
$O_{2(g)} + 2\Pi_3 O^{-1} + 2e^{-1} \equiv \Pi_2 O_{2(l)} + 2\Pi_2 O_{2(l)}$	$\begin{bmatrix} F^0 \end{bmatrix}^{aq}$	0.429	4.5	[61]
$(2a^{-}ODD)$ [b]	$[L_{O_2}/H_2O_2]_{SHE}$	0.281	7	
$(2e \text{ OKK})^{1/2}$		0.104	10	1
		-0.014	12	
		1.199	0.5	
		1.111	2	
$O_{2(g)} + 4H_3O^{+,aq} + 4e^- \rightleftharpoons 6H_2O_{(l)}$		0.964	4.5	[61]
(4e ⁻ ORR) ^[c]	$\begin{bmatrix} E_{0_2/H_20} \end{bmatrix}_{SHE}$	0.815	7	
		0.638	10	
		0.520	12	
	$\left[E_{O_2^{\bullet}^{-}/HO_2^{\bullet}}^{0}\right]_{SHE}^{aq}$	0.094	0.5	[62]
$O_2^{\bullet,aq} + H_3O^{+,aq} \rightleftharpoons HO_2^{\bullet,aq} + H_2O_{(l)}$		0.005	2	
(perhydroxyl radical) ^[u]		-0.143	4.5	
	$\left[E^{0}_{O_{2}/O_{2}^{\bullet}}-\right]^{\mathrm{aq}}_{\mathrm{SHE}}$	-0.160	7	
$O_{2(g)} + e^- \rightleftharpoons O_2^{\bullet,aq}$ (superoxide radical anion)		-0.160	10	
		-0.160	12	
	$\left[E^{0}_{\rm H_{3}O^{+}/\frac{1}{2}\rm H_{2}}\right]^{\rm aq}_{\rm SHF}$	-0.030	0.5	[63]
		-0.118	2	
		-0.266	4.5	
$2H_3O^{+,aq} + 2e^{-} \rightleftharpoons H_{2(g)} + 2H_2O_{(l)}[e]$		-0.414	7	
		-0.591	10	
		-0.709	12	
$2\mathrm{H}^{+,\mathrm{TFT}} + 2\mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2(\mathrm{g})}$	$\left[E^{0}_{\mathrm{H^{+}}/\frac{1}{2}\mathrm{H}_{2}}\right]_{\mathrm{SHE}}^{\mathrm{TFT}}$	0.717	n/a	[63]
	$\left[E^{0}_{[\mathrm{H}^{+}\mathrm{TB}^{-}]/\frac{1}{2}\mathrm{H}_{2}}\right]_{\mathrm{SHE}}^{\mathrm{int}}$	0.344	0.5	This work
		0.299	2	
$2[H^+TB^-]^{int} + 2e^- \rightleftharpoons H_{2(g)} +$		0.225	4.5	
2TB ^{-,int} [f]		0.151	7	
		0.063	10	
		0.004	12	

^[a] Note that the redox potential of the DcMFc⁺/DcMFc redox couple is barely affected by the solvent compositions and can be considered constant in the mixed solvent region. Thus, DcMFc should be considered a superior redox couple for studying solvent effects on the thermodynamics of electron transfer

reactions at aqueous|TFT interfaces.^[54] In contrast, the standard redox potentials of DiMFc and PMFc may be affected by the composition of the mixed solvent layer.

^[b]
$$\left[E_{O_2/H_2O_2}^0\right]_{SHE}^{aq.} = 0.695 - 0.0591 \text{pH}$$

^[c] $\left[E_{O_2/H_2O}^0\right]_{SHE}^{aq.} = 1.229 - 0.0591 \text{pH}$

^[d] The superoxide radical anion $(O_2^{\bullet,aq})$ has a p K_a of 4.8 and at pH < 4.8 it is protonated forming perhydroxyl radicals $(HO_2^{\bullet,aq})$.^[64] Thus, the standard redox potential of $HO_2^{\bullet,aq}$ is pH-dependent according to the relationship: $\left[E_{O_2^{\bullet-}/HO_2^{\bullet}}^{0}\right]_{SHE}^{aq} = -0.160 - 0.0591(pH - pK_a)$. Thus, at pH = 4.8 $\left[E_{O_2^{\bullet-}/HO_2^{\bullet}}^{0}\right]_{SHE}^{aq} = -0.160 - 0.0591(pH - pK_a)$. Thus, at pH = 4.8 $\left[E_{O_2^{\bullet-}/HO_2^{\bullet}}^{0}\right]_{SHE}^{aq} = -0.160 - 0.0591 \times (-2.8) = 0.005 \text{ V}.$ ^[e] $\left[E_{H_3O^{+}/\frac{1}{2}H_2}^{0}\right]_{SHE}^{aq} = 0 - 0.0591pH$ ^[f] $\left[E_{[H^+...TB^-]/\frac{1}{2}H_2}^{0}\right]_{SHE}^{int.} = \frac{1}{2} \left(\left[E_{H_3O^{+}/\frac{1}{2}H_2}^{0}\right]_{SHE}^{aq} + \left[E_{H^+/\frac{1}{2}H_2}^{0}\right]_{CHE}^{TFT}\right)$

Table S2. Summary of the interfacial electron transfer (IET) reactions for biphasic ORRs (2e⁻ or 4e⁻ pathways) with various organic electron donors, described in Figure 1c and Figure S2a, and their associated standard Galvani IET potentials $(\Delta_o^w \phi_{IET}^0)$ as a function of pH.

IET reaction	Standard Galvani IET potential (V)		pН
		-0.558	0.5
		-0.470	2
$2DcMFc^{+} + O_{2(g)} + 2H_3O^{+,m}$	$\Delta_0^{w} \phi_{\mathrm{IET}}^0(O_2 \mathrm{DcMFc} (2\mathrm{e}^- \mathrm{ORR}))$	-0.322	4.5
$= 2 D C W F C^{\prime} + H_2 O_{2(1)} + 2 U_2 O_{2(1)} + 2 U$	$= \left[E_{\text{DcMEc}^{\dagger}/\text{DcMEc}}^{0} - \left[E_{\text{Dc}/\text{H}_{2}}^{0} \right]_{\text{curr}}^{\text{aq}} \right]$	-0.174	7
$2H_2O_{(l)}$	L Downey Source SHE	0.003	10
		0.121	12
		-1.092	0.5
		-1.004	2
$4\text{DcMFc}^{\text{TFT}} + \text{O}_{2(g)} + 4\text{H}_3\text{O}^{+,aq}$	$\Delta_0^{w} \phi_{\mathrm{IET}}^{o}(O_2 \mathrm{DcMFc} (4\mathrm{e}^- \mathrm{ORR}))$	-0.857	4.5
\Rightarrow 4DcMFc ^{+,TFT} + 6H ₂ O ₍₁₎	$= \left[E_{\rm DcMFc^{+}/DcMFc}^{0} \right]_{\rm cur}^{\rm 1F1} - \left[E_{\rm O_{2}/H_{2}O}^{0} \right]_{\rm cur}^{\rm aq}$	-0.708	7
	Learne Activity SHE	-0.531	10
		-0.413	12
		-0.250	0.5
$2DME_{a}TFT + O_{a} + 2U_{a}O^{+}aq$	w O construction of the second second	-0.162	2
$\rightarrow 2DME_{2}^{+}.TFT + UO$	$\Delta_0^{W} \phi_{IET}^0(O_2 PMFc (2e^- ORR))$	-0.014	4.5
$= 2 P M F C^{2} + H_{2} O_{2(1)} + 2 H_{2} O_{2(1$	$= \left[E_{\rm PMFc^{+}/PMFc}^{0} \right]_{\rm SHE}^{\rm 1F1} - \left[E_{\rm O_{2}/H_{2}O_{2}}^{0} \right]_{\rm SHE}^{\rm aq}$	0.134	7
2H2O(l)		0.311	10
		0.429	12
		-0.784	0.5
		-0.696	2
$4PMFc^{TFT} + O_{2(g)} + 4H_3O^{+,aq}$	$\Delta_0^{w} \phi_{\mathrm{IET}}^{o}(O_2 PMFc \ (4e^- \ ORR))$	-0.549	4.5
\Rightarrow 4PMFc ^{+,TFT} + 6H ₂ O _(l)	$= \left[E_{\rm PMFc^{+}/PMFc}^{0} \right]_{\rm cup}^{\rm 1F1} - \left[E_{\rm O_{2}/H_{2}O}^{0} \right]_{\rm cup}^{\rm aq}$	-0.400	7
	L SISHE - 2, 2 - SHE	-0.223	10
		-0.105	12
		-0.048	0.5
$2D:ME_{a}TFT + O_{a} + 2UO^{+,aq}$		0.040	2
$\Rightarrow 2DiMFc + O_{2(g)} + 2H_{3}O^{-1}$	$\Delta_0^{w} \phi_{\mathrm{IET}}^{o}(O_2 \mathrm{DiMFc} (2\mathrm{e}^- \mathrm{ORR}))$	0.188	4.5
$\approx 2D_1MFc^{1,11} + H_2O_{2(1)} + 2H_2O_{(1)}$	$= \left[E_{\rm DiMFc^{+}/DiMFc}^{0} \right]_{\rm out}^{1\rm Fr} - \left[E_{\rm O_{2}/H_{2}O_{2}}^{0} \right]_{\rm cur}^{\rm aq}$	0.336	7
	L SHE STE	0.513	10
		0.631	12
$4\text{DiMFc}^{\text{TFT}} + \text{O}_{2(g)} + 4\text{H}_{3}\text{O}^{+,aq}$ $\approx 4\text{DiMFc}^{+,\text{TFT}} + 6\text{H}_{2}\text{O}_{(l)}$		-0.582	0.5
	$\Delta_{\rm o}^{\rm w} \phi_{\rm IET}^{\rm 0}({\rm O_2} {\rm DiMFc}~(4{\rm e^-~ORR}))$		2
			4.5
	$= \left[E_{\text{DiMFc}^+/\text{DiMFc}}^0 \right]_{\text{outp}}^{\text{IFI}} - \left[E_{\text{O}_2/\text{H}_2\text{O}}^0 \right]_{\text{outp}}^{\text{aq}}$	-0.198	7
	L , JSHE SHE		10
		0.097	12

Table S3. Summary of the IET reactions for biphasic reduction of aqueous (H₃O⁺) or interfacial [H⁺...TB⁻] protons with various organic electron donors, described in Figure 1d and Figure S2b, and their associated standard Galvani IET potentials ($\Delta_0^w \phi_{IFT}^0$) as a function of pH.

IET reaction	Standard Galvani IET potential (V)		
			0.5
$2D$ ME TEL 211 O^{+30}			2
$2DcMFc^{-1} + 2H_3O^{+,m_1} \equiv 2DcMFc^{+,TFT} + 11$	$\Delta_0^{\circ} \phi_{IET}^{\circ} (H_3 O^{\circ} DCMFC)$	0.373	4.5
$2DCIVIFC + H_2(g) + 2H_2O(g)$	$= \left[E_{\rm DcMFc^{+}/DcMFc}^{0} \right]_{\rm SHE}^{\rm TT} - \left[E_{\rm H_{3}O^{+}/\frac{1}{2}H_{2}}^{0} \right]_{\rm SHE}^{\rm SHE}$		7
2H2U(1)			10
		0.816	12
			0.5
$2DcMFc^{TFT} +$	$\Lambda^{W} a^{0} ([H^{+} TB^{-}]] UDcMEc)$	-0.192	2
$2[H^+TB^-]^{int} \rightleftharpoons$	$\Delta_0 \varphi_{\text{IET}}([11 \dots 15]] [Denire)$	-0.118	4.5
$2\text{DcMFc}^{+,\text{TFT}} + \text{H}_{2(g)} +$	$= \left E_{\text{DcMFc}^{+}/\text{DcMFc}}^{0} \right _{\text{SHF}}^{11} - \left E_{\text{IH}^{+} \text{TB}^{-}/\text{L}_{\text{H}_{2}}}^{0} \right $		7
2TB ^{-,int}	SHE LICENCE SHE	0.044	10
		0.103	12
		0.445	0.5
$2\mathbf{DME}_{\alpha}^{\mathrm{TFT}} + 2\mathbf{H}_{\alpha}\mathbf{O}^{+,\mathrm{aq}} \rightarrow$		0.533	2
2IWIC + 2II3O + (-)	$\Delta_{\rm w}^{\rm w} \phi^0 ({\rm H_{2}O^{+}} {\rm IPMFc}) = \left[E_{\rm w}^0 + {\rm max}\right]^{\rm TFT} - \left[E_{\rm w}^0 - {\rm I}\right]^{\rm aq}$	0.671	4.5
$2PNIFC + H_{2(g)} + 2U_{2}O_{3}$		0.829	7
21120(1)		1.006	10
		1.124	12
		0.071	0.5
$2PMFc^{TFT} +$	$\Delta_{0}^{w} \phi_{IET}^{0} ([H^{+} TB^{-}]] PMFc)$ $= \left[E_{PMFc^{+}/PMFc}^{0} \right]_{SHE}^{TFT} - \left[E_{[H^{+}TB^{-}]/\frac{1}{2}H_{2}}^{0} \right]_{SHE}^{int}$		2
$2[H^+TB^-]^{int} \rightleftharpoons$			4.5
$2PMFc^{+,1F1} + H_{2(g)} +$			7
2TB ^{-,int}			10
		0.411	12
	$\Delta_{0}^{W}\phi_{IET}^{0}(H_{3}O^{+} DiMFc) = \left[E_{DiMFc^{+}/DiMFc}^{0}\right]_{SHE}^{TFT} - \left[E_{H_{3}O^{+}/\frac{1}{2}H_{2}}^{0}\right]_{SHE}^{aq}$		0.5
$2\text{DiMFc}^{\text{TFT}} + 2\text{H}_2\text{O}^{+,\text{aq}} \Rightarrow$			2
$2\text{DiMFc}^{+,\text{TFT}} + \text{H}_{2(a)} +$			4.5
2H2O(1)			7
			10
		1.326	12
$2\text{DiMFc}^{\text{TFT}} + 2[\text{H}^+\text{TB}^-]^{\text{int}} \rightleftharpoons 2\text{DiMFc}^{+,\text{TFT}} + \text{H}_{2(g)} + 2\text{TB}^{-,\text{int}}$	$\Delta_{o}^{w} \phi_{IET}^{0} ([H^{+} TB^{-}] DiMFc) $ $= \left[E_{DiMFc^{+}/DiMFc}^{0} \right]_{SHE}^{TFT} - \left[E_{[H^{+}TB^{-}]/\frac{1}{2}H_{2}}^{0} \right]_{SHE}^{int}$		0.5
			2
			4.5
			7
			10
		0.613	12

Figure S1. Cyclic voltammograms (CVs) of the reversible DcMFc⁺/DcMFc, PMFc⁺/PMFc and DiMFc⁺/DiMFc redox couples in TFT. All CVs were calibrated to the standard hydrogen electrode (SHE) scale by using the DcMFc⁺/DcMFc redox couple as an internal calibrant. The standard redox potential of the latter in TFT is 0.107 V *vs*. SHE (see Table S1). The solid black CV is of 110.3 μ M DcMFc and 169.2 μ M PMFc, and the dashed black CV is of 110.3 μ M DcMFc and 234.0 μ M DiMFc. The organic supporting electrolyte was 5 mM BATB. All CVs were obtained under a nitrogen atmosphere in a 3-electrode electrochemical cell with TFT solutions degassed for 15 min and at a scan rate of 20 mV s⁻¹. ITO and platinum were used as the working and counter electrodes respectively, while a Ag wire acted as the *pseudo*-reference electrode. The standard redox potentials of the PMFc⁺/PMFc and DiMFc⁺/DiMFc redox couples in TFT were determined as 0.415 and 0.617 V *vs*. SHE, respectively.

Figure S2. (a) Plot of $\Delta_0^w \phi_{IET}^0$ as a function of pH for the biphasic ORR (2e⁻ or 4e⁻ pathways) with PMFc as the organic electron donor. (b) Plot of $\Delta_0^w \phi_{IET}^0$ as a function of pH for the reduction of aqueous (H₃O⁺) and interfacial [H⁺...TB⁻] protons with PMFc as the organic electron donor. The sources of electrochemical data and equations used to construct plots (a) and (b) are described in Tables S2 and S3, respectively.

Figure S3. CVs obtained in the presence (solid) and absence (dashed) of 500 μ M DiMFc at pH 0.55, 7.00 and 11.87, respectively. All CVs were obtained at a scan rate of 20 mV·s⁻¹ using Electrochemical Cells 1 (for pH 0.55), 2 (for pH 7.00) and 3 (for pH 11.87), respectively, under aerobic, ambient conditions (see Scheme 2). The compositions of the aqueous and organic phases for each electrochemical cell are further noted in each panel.

Figure S4. CVs obtained in the presence (solid) and absence (dashed) of 500 μ M PMFc at pH 0.55, 7.00 and 11.87, respectively. All CVs were obtained at a scan rate of 20 mV·s⁻¹ using Electrochemical Cells 1 (for pH 0.55), 2 (for pH 7.00) and 3 (for pH 11.87), respectively, under aerobic, ambient conditions (see Scheme 2). The compositions of the aqueous and organic phases for each electrochemical cell are further noted in each panel.

Figure S5. The apparent Galvani IET potential $\Delta_0^w \phi_{IET}^{app}$ (blue circles) for the biphasic 2e⁻ ORR with DcMFc shifts positively by η_R on the Galvani scale compared with $\Delta_0^w \phi_{IET}^0$ (red circles) as shown in a plot of $\Delta_0^w \phi$ versus pH.

Figure S6. (a) Taking the intrinsic overpotential (η_R) of biphasic proton reduction at a polarised L|L interface into account, E^{app} (green circles) required to reduce interfacial [H⁺...TB⁻] protons shifts negatively compared with E^0 (red circles). (b) In turn, $\Delta_0^w \phi_{IET}^{app}$ (blue squares) for the biphasic reduction of interfacial [H⁺...TB⁻] protons with DcMFc shifts positively by η_R on the Galvani scale compared with $\Delta_0^w \phi_{IET}^0$ (red squares) as shown in a plot of $\Delta_0^w \phi$ versus pH.

Figure S7. Differential capacitance measurement with an aqueous phase containing $200 \text{ mM H}_2\text{SO}_4$ and the TFT phase containing 5 mM BATB. The measurement was taken using a voltage excitation frequency of 5 Hz under aerobic, ambient conditions.

Figure S8. Differential capacitance measurements demonstrate that the PZC does not shift meaningfully in the presence of the neutral electron donor, in this case 500 μ M PMFc, across the pH range (a) pH 0.55, (b) pH 7.00 and (c) pH 11.87. The magnitude of the interfacial capacitance does decrease in the presence of PMFc at each pH. Differential capacitance measurements were taken using a voltage excitation frequency of 5 Hz at pH 0.55 using Electrochemical Cell 1, at pH 7.00 using Electrochemical Cell 2 and at pH 11.87 using Electrochemical Cell 3 under aerobic, ambient conditions (see Scheme 2).

Figure S9. (a) Ionic contributions Q_i to the separated charge density across the L|L interface in Electrochemical Cell 1 (see Scheme 2a), 5mM BATB (TFT) || 1000 mM H₂SO₄ (aq), as a function of the applied interfacial Galvani potential difference $(\Delta_o^w \phi)$. Note that $Q^w = Q_{H^+} + Q_{HSO_4^-} + Q_{SO_4^{2^-}} = -Q_{BA^+} - Q_{TB^-} = -Q^o$. Labels a-f mark the potentials corresponding to the ionic concentration profiles shown in Figure S10. (b) The slope of the total Q^w curve is the differential capacitance.

The description of the dissociation of sulfuric acid into protons (subscript H), bisulfate ions (subscript 1) and sulfate ions (subscript 2) has to take into account the strong interactions between the ions. The dissociation equilibrium of bisulfate ions can be described by

$$K_{\rm d}(c_0) = \frac{c_{\rm H}c_2}{c_1}$$
 (S1)

where the dissociation "constant" $K_d(c_0)$ is a function of the sulfuric acid concentration c_0 . Since $c_0 = c_1 + c_2$ and $2c_0 = c_H + c_1$, we can introduce the fractions $x_1 = c_1/c_0$, $x_2 = c_2/c_0 = 1 - x_1$, $x_H = c_H/c_0 = 2 - x_1$, and rewrite Eq. (S1) as

$$k_{\rm d}(c_0) \equiv \frac{K_{\rm d}(c_0)}{c_0} = \frac{x_{\rm H}x_2}{x_1} = \frac{(2-x_1)(1-x_1)}{x_1}$$
 (S2)

and solve for the fraction of sulfuric acid molecules dissociated to bisulfate ions

$$x_1(c_0) = \frac{1}{2} \left(3 + k_d(c_0) - \sqrt{1 + 6k_d(c_0) + k_d(c_0)^2} \right).$$
(S3)

By fitting the experimental data in ref.^[65] we find

$$k_{\rm d}(c_0) = 0.1061 (c_0/{\rm M})^{-1/2} + 0.3252 + 0.09296(c_0/{\rm M}).$$
 (S4)

Thus, in the bulk, electroneutral aqueous solution with a sulfuric acid concentration c_0 , the ionic concentrations are obtained as $c_{\rm H} = [2 - x_1(c_0)]c_0$, $c_1 = x_1(c_0)c_0$ and $c_2 = [1 - x_1(c_0)]c_0$, where $x_1(c_0)$ is given by Eqs. (S3) and (S4).

Figure S10. Ionic concentration profiles in Electrochemical Cell 1 (Scheme 2a), 5mM BATB (TFT) || 1000 mM H₂SO₄ (aq), for applied $\Delta_0^w \phi$ values of: (a) -0.3 V, (b) -0.2 V, (c) +0.15 V, (d) +0.2 V, (e) +0.3 V, and (f) +0.4 V. The maximum concentration of the organic ions due to their size has been given the roughly estimated value of 2 M. The L|L interface is located at *x* = 0. Position *x* has been scaled with the reciprocal Debye length κ_0 in phase o (1/ κ_0 = 1.489 nm). The insets show the corresponding electrical potential profiles.

Table S4. A list of aqueous and organic soluble redox species that could fulfil the roles of the redox species in the majority of the panels shown in Figure 10. This table is not an exhaustive list, for example excluding photo-induced biphasic IET reactions, and simply contains representative examples.

Charge of the aqueous and organic redox species prior to the biphasic IET reaction		Representative examples of biphasic IET reactions		Direction	Ref.	$\Delta_{\rm o}^{\rm w} \phi_{\rm IET}^0$
Aqueous redox species	Organic redox species	Aqueous redox species ^{[a], [b]}	Organic redox species ^{[c],[d]}	biphasic IET		(V)
		Protons (and O ₂)	DcMFc	(o)→(w)	This work	-0.55 (pH 2; 2e ⁻ ORR)
Cationic	Neutral	Ce ⁴⁺	EDOT	(0)→(W)	[1]	0.00
		Ag ⁺	BuFc	(o)→(w)	[66]	-0.24
		Cu ²⁺	DcMFc	(o)→(w)	[07]	-0.30
		$[Fe^{(III)}(CN)_6]^{3-}$	DcMFc	(o)→(w)	[68]	-0.50
		$[Ir^{(IV)}Cl_6]^{2-}$	DcMFc	(o)→(w)	[68]	-0.93
		$[Ru^{(III)}(CN)_6]^{3-}$	DcMFc	(o)→(w)	[68]	-0.79
		$[Ru^{(III)}(CN)_6]^{3-}$	ZnPor	(o)→(w)	[21]	-1.31
		$[Fe^{(II)}(CN)_6]^{4-}$	TCNQ	(w)→(o)	[69–71]	-0.15
Anionic	Neutral	$[Fe^{(II)}(CN)_6]^{4-}$	ТСВQ	(w)→(o)	[71]	-0.21
		$[Fe^{(II)}(CN)_6]^{4-}$	TFBQ	(w)→(o)	[71]	-0.26
		$[Fe^{(III)}(CN)_6]^{3-}$	TTF	(o)→(w)	[71,72]	+0.06
		$[Pt^{(II)}Cl_4]^{2-}$	DcMFc	(o)→(w)	[39,73]	-0.69
		$[Pd^{(II)}Cl_4]^{2-}$	DcMFc	(o)→(w)	[73–75]	-0.57
		[Au ^(III) Cl ₄] ⁻	TPTA	(o)→(w)	[76]	Not given
	Neutral	Co ^(I) L-H	RBr ₂	(w)→(o)	[77]	Not given
Neutral		NADH	TCBQ	(w)→(o)	[78]	+0.48
		NADH	MBQ	(w)→(o)	[78]	Not given
		H_2O_2	TCHQ	(w)→(o)	[79]	-0.85
Cationic	Anionic	No examples found				
Anionia		$[Fe^{(III)}(CN)_6]^{3-}$	TCNQ ⁻	(o)→(w)	[80]	-0.15
Amonic	Amonic	$[Fe^{(III)}(CN)_6]^{3-}$	C_{60}^-	(o)→(w)	[81]	-0.72
Neutral	Anionic		No examples	found		
Cationic	Cationic	$[{Ru}^{(II)}({NH}_3)_6]^{2+}$	ZnPor ⁺	(w)→(o)	[82]	-0.52
Anionic	Cationic	[Fe ^(II) (CN) ₆] ⁴⁻	Fc ⁺ or DiMFc ⁺	(w)→(o)	[83]	+0.17 or +0.05
		$[Ru^{(II)}(CN)_6]^{4-}$	ZnPor ⁺	(w)→(o)	[84]	-1.31
Neutral	Cationic	No examples found				

^[a] Aqueous soluble oxidants

<u>Anionic:</u> $[Fe^{(III)}(CN)_6]^{3-}; [Ir^{(IV)}Cl_6]^{2-}; [Ru^{(II)}(CN)_6]^{4-}; [Pt^{(II)}Cl_4]^{2-}; [Pd^{(II)}Cl_4]^{2-}; [Au^{(III)}Cl_4]^{-}; [Au^{(III)}Cl_4]^{2-}; [Au^{(III}Cl_4]^{2-}; [Au^{(III}Cl_4]$

^[b] Aqueous soluble reductants

Neutral: $Co^{(I)}L$ -H (a $Co^{(I)}$ form of vitamin B_{12}); NADH (nicotinamide adenine dinucleotide); H_2O_2 Cationic: $[Ru^{(II)}(NH_3)_6]^{2+}$ Anionic: $[Fe^{(II)}(CN)_6]^{4-}$; $[Ru^{(III)}(CN)_6]^{3-}$

^[c] Organic soluble oxidants

- Neutral:RBr2 (trans-1,2-dibromocyclohexane); TCNQ (7,7,8,8-tetracyanoquinodimethane);
TCBQ (2,3,5,6-tetrachloro-1,4-benzoquinone); TFBQ (2,3,5,6-tetrafluoro-1,4-
benzoquinone); MBQ (methyl-1,2-benzoquinone); tetrachlorohydroquinone (TCHQ)Cationic:DcMFc⁺; DiMFc⁺; Fc⁺; ZnPor⁺
- <u>Anionic:</u> No example found

^[d] Organic soluble reductants

<u>Neutral:</u> RBr₂ = *trans*-1,2-dibromocyclohexane; DcMFc (decamethylferrocene); DiMFc (dimethylferrocene); BuFc (butylferrocene); Fc (ferrocene); TTF (tetrathiafulvalene); TPTA (tri-*p*-tolylamine); ZnPor (zinc^(II) *meso*-tetraphenylporphyrin); EDOT (3,4-ethylenedioxythiophene)

<u>Cationic:</u> No example found.

<u>Anionic:</u> TCNQ⁻; C_{60}^{-} (fullerene radical anion)

Figure S11. Plot of the ¹H NMR spectrum of pentamethylferrocene.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 **Figure S12.** Plot of the ${}^{13}C{}^{1}H$ NMR spectrum of pentamethylferrocene.

Figure S13. Plot of the ${}^{1}H-{}^{13}C{}^{1}H$ HMBC spectrum of pentamethylferrocene.

<u>Supporting references</u> Please see the main text article for all references.