
688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 1 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Symbiosis of smart objects across IoT
environments

688156 - symbIoTe - H2020-ICT-2015

Basic Resource Trading Mechanisms
and Access Scopes

The symbIoTe Consortium

Intracom SA Telecom Solutions, ICOM, Greece
Sveučiliste u Zagrebu Fakultet elektrotehnike i računarstva, UNIZG-FER, Croatia
AIT Austrian Institute of Technology GmbH, AIT, Austria
Nextworks Srl, NXW, Italy
Consorzio Nazionale Interuniversitario per le Telecomunicazioni, CNIT, Italy
ATOS Spain SA, ATOS, Spain
University of Vienna, Faculty of Computer Science, UNIVIE, Austria
Unidata S.p.A., UNIDATA, Italy
Sensing & Control System S.L., S&C, Spain
Fraunhofer IOSB, IOSB, Germany
Ubiwhere, Lda, UW, Portugal
VIPnet, d.o.o, VIP, Croatia
Instytut Chemii Bioorganicznej Polskiej Akademii Nauk, PSNC, Poland
NA.VI.GO. SCARL, NAVIGO, Italy

© Copyright 2016, the Members of the symbIoTe Consortium

For more information on this document or the symbIoTe project, please contact:
Sergios Soursos, INTRACOM TELECOM, souse@intracom-telecom.com

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 2 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Document Control

Number: D3.1

Title: Basic Resource Trading Mechanisms and Access Scopes

Type: Public

Editor(s): Peter Reichl, UNIVIE; Gerard Frankowski, PSNC

E-mail: peter.reichl@univie.ac.at; gerard.frankowski@man.poznan.pl

Author(s): Giuseppe Bianchi, Gennaro Boggia, Daniele Caldarola, Gerard Frankowski,
João Garcia, Elena Garrido, Nemanja Ignjatov, Gabriel Kovacs, Michał Pilc,
Giuseppe Piro, Peter Reichl, Savio Sciancalepore (in alphabetical order)

Doc ID: D3.1- Basic Resource Trading Mechanisms and Access Scopes

Amendment History

Version Date Author Description/Comments

v0.1 Sep 25 P. Reichl, G. Frankowski Initial ToC

V0.2 Oct 18 S.Sciancalepore, G.Piro, G.Boggia,
G.Bianchi

Sections 4.2 and 4.3

V0.3 Oct 18 M. Pilc Sections 4.1 and 4.3

V0.4 Oct. 21 S.Sciancalepore, D.Caldarola, G.Piro,
G.Boggia, G.Bianchi

Sections 4.2, 4.3 and 4.4

V0.5 Oct 26 E. Garrido Section 3.4

V0.6 Oct 26 P. Reichl, G. Kovacs Sections 3.1, 3.2

V0.7 Oct 27 P. Reichl, G. Kovacs, N. Ignjatov Section 3.3 – sequence diagrams

V0.8 Oct 28 M. Pilc Section 4.1 and 4.2

V0.9 Nov. 3 S.Sciancalepore, D. Caldarola, G. Piro,
G.Boggia, G.Bianchi

Sections 4.2, 4.3, 4.4 and 4.5

V0.10 Nov.4 S.Sciancalepore, D. Caldarola, G. Piro,
G.Boggia, G.Bianchi

Sections 4.2, 4.3,4.4, 4.5 and 4.6

V0.11 Nov 7 P. Reichl, G. Kovacs, N. Ignjatov Section 3.3 – missing diagrams

V0.12 Nov 8 João Garcia Section 3.5

V0.13 Nov 8 P. Reichl Update ToC + comments

V0.14 Nov 20 P. Reichl Finishing Chapter 3 + reformatting document

V0.15 Nov 21 M. Pilc Finishing Chapter 4 + references + Chapter 5

V0.16 Nov 21 João Garcia Extended Section 3.5

V0.17 Nov 22 S. Sciancalepore, D. Caldarola, G. Piro,
G.Boggia, G.Bianchi

Section 4, Next Steps in T3.2

V0.18 Nov 24 M. Pilc Internal proofreading

V0.19 Nov 28 M. Pilc, E. Garrido, P. Reichl, G.
Kovacs

Adressing comments from internal review

V0.20 Nov 29 E. Garrido Adressing comments and corrections from conf call

V0.21 Nov 29 P. Reichl Final integration

V1.0 Nov 30 P. Reichl and all authors Final version ready for submission

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 3 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Legal Notices
The information in this document is subject to change without notice.
The Members of the symbIoTe Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
The Members of the symbIoTe Consortium shall not be held liable for errors contained herein or direct,
indirect, special, incidental or consequential damages in connection with the furnishing, performance, or use
of this material.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 4 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

(This page is left blank intentionally.)

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 5 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Table of Contents

1 Executive Summary 7

2 Introduction 9

2.1 Purpose of the Document 9

2.2 Structure and Overview 9

3 Bartering and Trading 10

3.1 Overview of Work in T3.1 10

3.2 Fundamentals and Related Work 10

3.2.1 Basic Concepts 10

3.2.2 Related Work 12

3.3 Basic Models 13

3.3.1 Direct Buy – Payment to Core 13

3.3.2 Direct Buy – Payment to Platform 17

3.3.3 Forward Auction 22

3.3.4 Reverse Auction 28

3.3.5 Voucher-based Bartering 32

3.4 Payment Systems 36

3.5 Conclusions for symbIoTe Architecture 38

4 Security and Access Scopes 40

4.1 Overview of Work in T3.2 40

4.1.1 Security Requirements 40

4.1.2 Summary of Activities 41

4.2 Authentication and Authorization 42

4.2.1 Attribute-Based Access Control 42

4.2.2 Review of the Available Solutions 44

4.3 Security Architecture and Components 48

4.3.1 Main Security Rationale 49

4.3.2 Core Authentication and Authorization Manager 51

4.3.3 Platform Authentication and Authorization Manager 52

4.3.4 Security Handler 53

4.4 Token Formats and Comparison 53

4.4.1 Token Format and Security Requirements 53

4.4.2 Token Content and Format in symbIoTe 59

4.4.3 Evaluation of Macaroons and JSON Web Tokens 60

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 6 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

4.5 Interfaces and Services for the Security Components 61

4.5.1 Core AAM: Interfaces and Services 62

4.5.2 Platform AAM: Interfaces and Services 64

4.5.3 Security Handler (SH): Interfaces and Services 66

4.6 Preliminary Implementation 68

4.6.1 Level-1 Sequence Diagram: Access to Resources (without reservation) 68

4.6.2 Details on the Preliminary Implementation 71

4.7 Other Security Related Issues 77

4.8 Summary 78

5 Next Steps for T3.1 and T3.2 79

6 References 80

7 List of Acronyms 82

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 7 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

1 Executive Summary

This document reports on initial work in WP 3 “IoT Platform Federation” of the symbIoTe
project and aims at providing an introduction into the bartering and trading of resources in
a symbIoTe context, as well as a report on the discussion on security and access scopes.

After a brief introduction into the main purpose and the structure of the document, this
deliverable includes two main parts, the first one focusing on bartering and trading issues
in B2B use cases. Here, trading refers to scenarios where platforms use symbIoTe to offer
their resources to other interested platforms or applications/enablers and are paid for it.
Prices are either set explicitly by the producer (Direct Buy) or determined through suitable
auction mechanisms.

In contrast, resource bartering refers to a matching process between the needs and offers
of two platforms without monetary implications. In this case, it is important to recognize
that the participants act as prosumers, i.e. as producers and consumers at the same time.
The actual matching process is based on vouchers that include a Service Level
Agreement (SLA) together with details on the requested service, the expected price and
further parameters.

While there is plenty of related work on pricing and auction theory available, which is not
repeated in this deliverable, a broad search for related bartering mechanisms reveals that
there are neither open software platforms available, nor exist platforms for digital goods
and/or B2B scenarios.

Next, as one of the main contributions of this deliverable, five key scenarios for trading and
bartering are analysed in detail with the help of comprehensive message sequence charts:
two versions of Direct Buy (depending on whether the payment is processed via the Core
Bartering and Trading component, or directly between the participating platforms), two
version of auctions (Forward vs Reverse Auctions), and the standard voucher-based
bartering scenario.

Then, as an important side topic, the question of corresponding payment systems is
addressed, concluding that an integrated payment system would be nice to have but is not
considered to be in the primary scope of symbIoTe and hence will not be involved directly.
The first part ends with a couple of conclusions for the symbIoTe architecture.

The second part of the deliverable is dedicated to security issues, which cover a crucial
aspect of symbIoTe and must be addressed from an early stage of the project
development life cycle. More specifically, the deliverable provides information on work and
achievements obtained in the T3.2 task that concentrates on all security related aspects in
symbIoTe. Following the security requirements established in D1.2, a basic security
architecture and protocols have been designed that should be incorporated into the
symbIoTe system to provide user, application, enabler (i.e. entity) as well as platform
authentication and authorization.

Hence, security requirements are elaborated, which are a required basis for reliable
determining the necessary set of solutions. The requirements are derived from a subset of
IoT use cases of the existing IoT platforms and general security knowledge about
distributed computing systems, together with the identification of threats. Thus,
requirements for different use cases may also be different. A deep analysis of system
requirements and definition of symbIoTe architecture serves as starting point for designing
the security architecture.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 8 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Therefore, a set of analyses and comparisons are performed in order to select the optimal
security solutions in particular areas. As a result, the Attribute-Based Access Control
(ABAC) method of authorization has been decided to be the most suitable one for
symbIoTe, preferred over role-based access control (RBAC) and group-based access
control (GBAC) mainly due to flexibility in the networked and federated IoT environment.
ABAC can be implemented with one of the authorization tokens: Macaroons or JSON Web
Tokens – an extensive analysis has shown the latter to be optimal for symbIoTe.

For documentary purposes and in order more clearly justify the decisions, also information
on the analyzed solutions that finally have been considered not optimal (and thus not
selected), is provided.

The resulting security architecture and components are described as well. The main
security modules include the Core Authentication and Authorization Manager (Core AAM),
the Security Handler (SH) and the components on the platform level: Authentication and
Authorization Manager (AAM) and Resource Access Proxy (RAP). All the aforementioned
modules are described in detail, explaining their tasks and architectural placement in the
context of the derived requirements and particular scenarios. The detailed description of
interfaces and services envisioned for each security components is provided as well.

Based on that, our preliminary implementation of a proof-of-concept is described, which
has been developed to demonstrate the interactions between applications and compo-
nents in the symbIoTe ecosystem. The implementation consists of eight steps, i.e. (1) re-
questing a core token, (2) creating a core token, (3) returning the core token to the appli-
cation, (4) requesting a foreign token from the SH, (5) core token validation with the for-
eign AAM, (6) requesting the foreign token from the foreign AAM, (7) returning the foreign
token to the application, and (8) accessing foreign resources with the foreign token.

The second part concludes with a discussion on further security issues relevant for the
symbIoTe context. Anomaly detection is discussed in some detail, especially with respect
to centralized vs decentralized approaches, and a preliminary implementation proposal is
presented.

Finally, we depict an outlook on the future work for both involved task T3.1 and T3.2. Next
steps in the field of bartering and trading will adress B2C scenarios as well as more
complex bartering situations (e.g. circular bartering and voucher composition). Modelling
utility functions and taking Quality of Service (QoS) and Quality of Experience (QoE)
aspects into account will support resource access management, while also contributions to
the detailed specifications of several symbIoTe modules are planned which will further
facilitate the bartering and trading functionality.

One key security concept, which is not covered yet but considered significant for the fur-
ther stages of symbIoTe, concerns the anomaly detection functionality that is mentioned in
DoW for T3.2. The approach based on discovering anomalies, which are patterns of data
that do not conform to a well-defined notion of behaviour, allows detecting unknown
threats as well as flaws or failures not related to security. Based on our analysis, it is plan-
ned to propose suitable architecture adjustments to enrich it with anomaly detection capa-
bilities, while avoiding the introduction of unacceptable processing overheads.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 9 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

2 Introduction

According to the overall work plan, the first phase of the symbIoTe project is focusing on
WP1, including the detailed specification of use cases (see Deliverable D1.1) as well as a
first version of the overall symbIoTe architecture (see Deliverable D1.2) and an initial
analysis of the business ecosystem (see Deliverable D1.3, to be published in M12). Based
on this work, WP3 together with WP2 and WP4 has initiated the second project phase,
and deals with key aspects of IoT platform federation within the Cloud Domain, aiming at
the development of mechanisms for interoperability, security (including anomaly
detection), trading and optimization mechanisms concerning Quality of Experience, as well
as cost and energy efficiency. The present deliverable reports on early work in WP3.

2.1 Purpose of the Document

The purpose of this deliverable is to provide an introduction into the bartering and trading
of resources in a symbIoTe context, as well as a report on the discussion on security and
access scopes. Hence, D3.1 will document the initial work of tasks T3.1 “Resource
Trading and User-centricity” and T3.2 “Security and Access Scopes”, while both tasks will
continue to run until month M26. More specifically, as pointed out in the DoW, this
document will report on activities related to resource trading mechanisms and access
scopes in the context of IoT platform federations.

2.2 Structure and Overview

Hence, the remainder of this deliverable is structured as follows:

Chapter 3 is devoted to work in the area of bartering and trading IoT resources. It starts
with a basic overview about important concepts and related work in section 3.2, before
analysing in detail five key scenarios in section 3.3 and providing the corresponding
sequence diagrams. In this context, the question of underlying payment systems is
decoupled from the symbIoTe scope and dealt with separately in section 3.4. Finally,
section 3.5 emphasizes the link to Deliverable D1.2, providing conclusions of this work for
the symbIoTe architecture.

Chapter 4 focuses on our work on security mechanisms, with an emphasis on the topic of
access scopes. To this end, Attribute-Based Access Control (including available solutions)
is presented as a key approach for authentication and authorization. Based on this,
symbIoTe’s security reference architecture is presented, and three key components are
described in detail, i.e. the Core Authentication and Authorization Manager, the Platform
Authentication and Authorization Manager, and the Security Handler. As a next step –
after having introduced the concept of tokens, including their requirements, content and
format – the interfaces and services for these components are discussed. The chapter
continues with a description of the initial implementation before discussing anomaly
detection aspects and concluding with a brief summary.

Chapter 5 concludes the deliverable with an outlook on future work planned in both T3.1
and T3.2, which will contribute to the remaining deliverables in WP3, i.e. D3.2 “Resource
Trading, Security and Federation Mechanisms” (due month M22) and D3.3 “Complete
Federation Environment” (due month M30). References and an acronym list are included
in Chapters 6 and 7, resp.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 10 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

3 Bartering and Trading

Bartering and trading of resources is one of the central benefits for the stakeholders of the
symbIoTe ecosystem. Note that in this deliverable we mainly focus on the B2B case,
which is considered to have higher relevance, while a detailed analysis of B2C scenarios
is shifted towards future work.

3.1 Overview of Work in T3.1

In this chapter, we report on the current state of the activities concerning resource-trading
mechanisms in the context of IoT platform federations. This is part of task T3.1 (running
from M6 to M26) which, according to the DoW, investigates resource-trading aspects from
an interdisciplinary perspective, with a specific focus on mechanism which seamlessly
adapt to user needs, user utilities and user preferences (e.g., in terms of subjective Quality
of Experience, QoE). While the present document mainly refers to the state of the art on
this topic, the future roadmap foresees defining reasonable parameters for basic resource
trading, as well as the detailed modelling of prosumers. More specifically, next steps will
include modelling of utility functions which consider tradeoffs as a way to manage resource
allocation internally, while comparing aspects related to the expected Quality of Service
(QoS) (i.e. response time vs availability) and cost functions related to the internal cost of
symbIoTe resources.

3.2 Fundamentals and Related Work

In this subsection, we outline the fundamental concepts of bartering and trading before
summarizing related approaches.

3.2.1 Basic Concepts

The basic economic concept of bartering refers to a market situation where two or more
market participants exchange their respective goods or services directly for other goods or
services, without monetary implications. While the concept itself is a rather old one, it has
been repeatedly criticized for its alleged inefficiency, for instance with respect to difficulties
in matching suitable partners, issues with determining common value metrics, and
problems arising from the fact that certain goods may be indivisible and hence impossible
to precisely match in terms of their value. Eventually, the main justification for employing a
bartering mechanism originates from the fact that it allows two parties achieving a joint
win-win situation without the need of resorting to the explicit exchange of money.

In the context of an IoT middleware like symbIoTe, most of the aforementioned problems
disappear by definition: matching suitable partners is relatively easy, as all platforms
participating in symbIoTe are assumed to be prosumers, i.e. are interested in offering
services to other platforms (as producers) and using services from other platforms (as
consumers) at the same time. Hereby, a service typically consists of allowing or making
use of access to IoT resources, e.g. sensors and their corresponding data, which
circumvents the problem of indivisibility: we can easily define small units of service and
thus provide a mutually acceptable metrical unit for comparing the value/worth of an offer
or a request.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 11 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

From a more formal modelling perspective, bartering schemes are typically based on the
concept of indifference curves, i.e. curves in a two-dimensional coordinate system that
indicate combinations of services which are considered to be of equal value to the
respective other party. Then, bartering can be performed along these curves, exchanging
a certain amount a of service sA against an amount b of service sB, where both service
quantities are considered of equal worth. In the case of two parties, this approach is well-
known as “Edgeworth diagrams”, see for instance [1].

However, in order to increase the efficiency of the mechanism, we will not employ
bartering in this purest form, but instead introduce commonly accepted vouchers as a
means to subsume all important properties referring to a service offer or service request.
Hence, a voucher typically includes

 access token

 Service Level Agreement (SLA)

 details on requested service (wanted)

 details on expected value (price)

 time constraints (e.g. timeout conditions)

Further details on voucher-based bartering schemes are explained in the Section 3.3.

Of course, symbIoTe will also offer a platform ways to access resources from other
platforms without an immediate material counteroffer, i.e. by trading. Here, three basic
scenarios have to be considered:

 Direct Buy: a platform sells access to own resources to an application/enabler or
another platform for a fixed price;

 Forward Trading: a platform is offering access to own resources and asks for
corresponding requests (bids) from other platforms;

 Backward (reverse) Trading: a platform is looking for access to resources offered
by foreign platform(s).

Here, an agreement on monetary compensation is fundamental for closing a deal. In
microeconomics, such situations are usually treated within the framework of auction
theory, i.e. forward auctions (access to resources is offered, and requests are submitted in
the form of bids) and reverse auctions (access to resources is requested, and
corresponding offers including access conditions received by the platform). The symbIoTe
approach is focusing on a suitable adaptation of Progressive Second-Price (PSP)
auctions, or a more general Vickrey-Clarke-Groves (VCG) mechanism, which have been
proven to be incentive compatible and thus force auction participants to be honest
concerning their estimations about the value of the offered/requested resources.

Basically, second-price auctions are so-called closed envelope auctions, where all bidders
submit their bid (desired quantity and offered price per unit quantity) individually and
secretly to the auctioneer before the deadline. As soon as the deadline has passed, the
auctioneer opens all bids, and determines the highest bid as winner of the auction.
However, the price to be paid by the winner is not determined by his own bid, but by the
bid of the highest-bidding loser. Thus, winning an auction is decoupled from the price to be
paid by the winner, which yields some very desirable properties. This principle has been
generalized by Lazar and Semret [2]. Here, the basic idea is to consider an auction of a

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 12 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

divisible resource and with multiple participants who are bidding on potentially different
amounts of the resource and to calculate the price to be paid by a winning bidder as the
overall damage s/he is causing to participants who are losing due to the sheer existence of
the winning bidder.

An additional characteristic of the auctions we are considering is the existence of a so-
called reserve price, i.e. a minimal bid valid for all potential participants. In this way, we
can map the “Direct buy” scenarios with a fixed price to the auction paradigm.

3.2.2 Related Work

Bartering and trading mechanism are widely used in today’s Internet, and hence a plethora
of different websites which enable businesses as well as individuals to trade or barter their
goods and services are available. Even if the number of platforms is high, their modus
operandi is usually very similar: the registered user publishes her/his offer and what s/he
wishes to get in return. As in most cases there is no automated matching algorithm, hence
the users must actively engage in finding a trading/barter partner by means of a search
engine available on the platform. Some platforms offer just bartering (e.g., service vs
service; goods vs goods), while others also make it possible for users to buy
goods/services using money or a virtual currency.

The service vs service (e.g., piano lessons vs gardening) use case is rather limited to
smaller communities (e.g., residents of a city, like for instance with Local Exchange
Trading Systems or LETS), while the goods vs goods use case can even stretch over
country borders. In almost all cases the users have to deal with the shipping by
themselves without any involvement of the platform.

However, we were not able to identify any Web-based platform that offers digital services
or a remotely similar functionality to the one envisioned in symbIoTe. Nevertheless, we
have taken a closer look to the following websites:

 http://www.tradeaway.com/: claims to be “the world’s largest bartering site”, aiming
at a broad range of products and services.

 https://www.listia.com: mobile bartering app, employing some sort of credit scheme
(including initial free credits)

 http://www.barterquest.com: specializing on luxury goods, offering a dedicated
matching algorithm

 https://www.swap.com: mainly for women and baby clothing

Further similar web sites include:

 http://www.swapace.com/index.php

 http://gametz.com

 https://www.freecycle.org

 http://neighborgoods.net

 http://www.swapright.com

 http://www.u-exchange.com

 https://www.leaptrade.com

http://www.tradeaway.com/
https://www.listia.com/
http://www.barterquest.com/
https://www.swap.com/
http://www.swapace.com/index.php
http://gametz.com/
https://www.freecycle.org/
http://neighborgoods.net/
http://www.swapright.com/
http://www.u-exchange.com/
https://www.leaptrade.com/

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 13 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

From these examples, the following conclusions may be drawn:

 To the best of our knowledge, there are hardly any open software platforms for
bartering available which might be reused in the symbIoTe framework.

 There is hardly any bartering platform for digital goods available. More specifically,
we could not find any bartering platform specializing on IoT resources.

 There is hardly any bartering platform for B2B scenarios. Instead, typically they
address end users only.

 Almost all current bartering platforms focus on bilateral consensus without
automatic support. Eventually, the platform service usually boils down to enabling
communication between two potentially interested parties and leave the rest to their
direct discussion.

 Typically, current bartering platforms focus on local exchange of goods.

3.3 Basic Models

In this section, we focus on five key bartering and trading models considered to be
relevant for symbIoTe:

 Direct Buy – Payment to Core

 Direct Buy – Payment to Platform

 Forward auction

 Reverse auction

 Voucher-based Bartering

Note that this section includes only a very simple usage of vouchers, while more complex
voucher-based scenarios (e.g. voucher composition and circular bartering) will be left to
further work and will be reported in D3.2.

For the following diagrams, please refer also to D1.2 [7] concerning the usage of home/
core/foreign tokens as well as details on the functionality of the different modules involved
(e.g. Federation Manager, AAM, SH, Search Engine, Registry, etc.). Moreover, note that
for reasons of completeness and consistency, the following sequence diagrams include all
relevant messages (which means that some parts of the description might be considered
redundant; for instance, messages 1–20 in Fig. 3.1 correspond precisely to the search
functionality already described in D1.2 [7] but have been here included nevertheless, etc.).

3.3.1 Direct Buy – Payment to Core

Focusing on B2B scenarios, Fig. 3.1 depicts the most basic case of trading, where a
symbIoTe-compliant application/enabler buys a service (e.g. resource access) from a
symbIoTe-compliant platform for a fixed price, which is paid via the Core Bartering and
Trading component. Note that, without loss of generality, the buying party can also be
another symbIoTe-enabled platform instead of an application/enabler – this would have no
significant impact on the message flow; therefore, in order to stay consistent with D1.2 [7],
we have decided to stay with this notion.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 14 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Summarizing this scenario briefly, suppose that a platform (producer) has registered,
within the symbIoTe Core, a resource together with a fixed price for it. Assume further that
the Core Search Engine provides result even if the seeker of the resource does not
possess the necessary attributes. Finally, it is considered out of scope which payment
system (out of several offered by the Core) will be chosen by the consumer if it comes to
paying her bill.

Then, the message sequence diagram initially describes how the Application/Enabler
(consumer) makes use of the Core Search Engine to find the desired resource. The
Application choses a presented resource and signals its intent to buy it which gets
forwarded to the Core Bartering and Trading component. The Core Bartering and Trading
component initiates the payment and updates the status of the resource after the
successful financial transaction. In the next step the Core Bartering and Trading informs
(certificate) the producer (IoT platform) about the successful purchase of its resource.
After the successful processing of the information within the producers IoT platform the
buyer receives a confirmation for the purchase.

Figure 3.1: Direct Buy – Payment to Core

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 15 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Note that the upper part of this sequence (messages 1 – 20) diagram is directly taken from
the symbIoTe search functionality as described in D1.2 [7] and therefore is not directly
related to buying a service, but rather to the common procedure of finding a service in the
SymbIoTe system.

Altogether, the diagram comprises the following 38 messages and/or procedures:

Message 1 (optional): generated by the Application/Enabler and sent to the Application
Security Handler. It is used to trigger the recovery of the core token(s). If the
Application/Enabler is already logged in, it is not necessary.

Message 2 (optional) (AppAAInterface): generated by the Application Security Handler
and sent to the Core AAM in which the Application/Enabler is registered. It is used to
authenticate the Application/Enabler. If the Application/Enabler is already logged in, it is
not necessary.

Message 3 (optional): generated by the Core AAM in the IoT platform and sent to the
Application Security Handler. It is used to provide the core token(s) with attributes
included. If the Application/Enabler is already logged in, it is not necessary.

Message 4 (optional): generated by the Application Security Handler and sent to the
Application/Enabler. It is used to deliver the core token(s).

Message 5 (SearchInterface): generated by the Application/Enabler and sent to the
Search Engine. It sends a search query and the core token(s) to the Search Engine.

Message 6: generated by the Search Engine and sent to the Core Security Handler. It is
used to ask the security handler to verify the complete validity of the token.

Procedure 7 (AppSecurityInterface): procedure that allows the Application Security Hand-
ler that is acting on behalf of the Application/Enabler to demonstrate that it is the real
owner of the token(s).

Procedure 8: verification of the time validity, authenticity and integrity of the provided
token(s).

Procedure 9: verification of any asynchronous revocation of the token(s) (i.e., if any
token(s) have been revoked by the Core AAM before the expiration time indicated within
the token itself).

Message 10: generated by the Core Security Handler and sent to the Search Engine. It is
used to communicate the outcome of the token validation procedures performed by the
Core Security Handler.

Message 11: generated by the Search Engine and sent to the Registry. It is used to
search available resources.

Message 12: generated by the Registry and sent to the Search Engine. It is used to return
the result of the search operation, containing resources and associated access policies.

Message 13: generated by the Search Engine and sent to the Core Security Handler. It is
used to deliver the core token(s) previously verified and the results of the search
operation.

Procedure 14: procedure that checks, for each resource, if the attributes contained in the
core token(s) satisfy the access policy associated to that resource.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 16 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Message 15: generated by the Core Security Handler and sent to the Search Engine. It is
used to deliver the result of the previous procedure.

Message 16: generated by the Search Engine and sent to the Application/Enabler
asynchronously. It is used to deliver the result of the search operation (available
resources).

Procedure 17: executes ranking of resources.

Message 18 (ApplicationInterface): asynchronously sends ranking updates to Application/
Enabler.

Message 19 (ApplicationInterface): asynchronously sends message about the end of initial
ranking.

Message 20 (ApplicationInterface): synchronously sends message of the end of final ran-
king.

Message 21 (optional): generated by the Application/Enabler and sent to the Core
Bartering and Trading. It is used to purchase a selected resource.

Message 22 (mandatory): generated by the Core Bartering and Trading and sent to the
Payment Processor. It is used to initialize the payment of the previous selected resource.

Message 23 (mandatory): generated by the Payment Processor and sent to the Core
Bartering and Trading. It is used provide the transaction data and the redirection URL.

Message 24 (mandatory): generated by the Core Bartering and Trading and sent to the
Application/Enabler. It is used to send the redirection URL for the payment process.

Message 25 (mandatory): generated by the Application/Enabler and sent to the Payment
Processor. It is used to execute the payment.

Message 26 (mandatory): generated by the Payment Processor and sent to the
Application/Enabler. It is used to inform the Application/Enabler about the payment
transaction outcome.

Message 27 (mandatory): generated by the Payment Processor and sent to the Core
Bartering and Trading. It is used to inform the Core Bartering and Trading about the
successful payment execution.

Message 28 (mandatory): generated by the Core Bartering and Trading and sent to the
Payment Processor. It is used to acknowledge the previous received message.

Message 29 (mandatory): generated by the Core Bartering and Trading and sent to the
Core Registry. It is used to send a request for resource status update.

Procedure 30 (mandatory): the Core Registry updates the resource status and access
policy.

Message 31 (mandatory): generated by the Core Registry and sent to the Core Bartering
and Trading. It is used to communicate the outcome of the resource status update.

Message 32 (mandatory): generated by the Core Bartering and Trading and sent to the
Bartering and Trading of the offering platform. It is used to send a request for resource
status update and the certificate which confirms the buying transaction.

Message 33 (mandatory): generated by the Bartering and Trading and sent to the Security
Handler. It is used to send the certificate for validation.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 17 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Procedure 34 (mandatory): the Security Handler validates the previously obtained certifi-
cate.

Message 35 (mandatory): generated by the Security Handler and sent to the Bartering and
Trading. It is used to communicate the outcome of the certificate validation.

Procedure 36 (mandatory): the Bartering and Trading updates the resource availability and
access policy.

Message 37 (mandatory): generated by the bartering and Trading and sent to the Core
Bartering and Trading. It is used to acknowledge the buying transaction.

Message 38 (mandatory): generated by the Core Bartering and Trading and sent to the
Application/Enabler. It is used to confirm the buying transaction.

3.3.2 Direct Buy – Payment to Platform

Another relevant B2B scenario depicts a similar case of one symbIoTe-compliant platform
buying a service from another symbIoTe-compliant platform for a fixed price, however
payment is done now via the Cloud Bartering and Trading component located in the
serving platform.

Note that, again, the buying party can also be another symbIoTe-enabled platform instead
of an application/enabler, with essentially the same message sequence diagram.

For this scenario, the following prerequisites are assumed: A platform (producer) has
already registered, within the symbIoTe Core, a resource and also appended a fixed price
to it. The Core Search Engine provides result even if the seeker of the resource does not
possess the necessary attributes.

The Application/Enabler (consumer) makes use of the Core Search Engine to find the
desired resource. After identifying the desired resource, the Application acquires a foreign
token which will enable it to identify itself within the IoT platform (producer) that offers the
desired resource. After the successful authentication of the Application within the
producer’s platform the payment intention is signaled to the Bartering and Trading
component of the producer. Upon a successful payment transaction, the producer will
inform the Core Registry about the purchase of the resource, which will update the
availability of the given resource. Finally, after the Core Registry acknowledges the
successful update, the Application will receive a confirmation for the purchase.

The corresponding message sequence diagram is depicted in Figure 3.2.

Note that, like with Figure 3.1, the upper part of Figure 3.2, comprising messages 1 to 20,
is taken directly from the symbIoTe search functionality as described in D1.2 [7] and has
been included for reasons of completeness and consistency.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 18 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Figure 3.2: Direct Buy – Payment to Platform

Hence, Figure 3.2 comprises the following 51 messages and/or procedures:

Message 1 (optional): generated by the Application/Enabler and sent to the Application
Security Handler. It is used to trigger the recovery of the core token(s). If the Applica-
tion/Enabler is already logged in, it is not necessary.

Message 2 (optional) (AppAAInterface): generated by the Application Security Handler
and sent to the Core AAM in which the Application/Enabler is registered. It is used to
authenticate the Application/Enabler. If the Application/Enabler is already logged in, it is
not necessary.

Message 3 (optional): generated by the Core AAM in the IoT platform and sent to the
Application Security Handler. It is used to provide the core token(s) with attributes
included. If the Application/Enabler is already logged in, it is not necessary.

Message 4 (optional): generated by the Application Security Handler and sent to the
Application/Enabler. It is used to deliver the core token(s).

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 19 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Message 5 (SearchInterface): generated by the Application/Enabler and sent to the
Search Engine. It sends a search query and the core token(s) to the Search Engine.

Message 6: generated by the Search Engine and sent to the Core Security Handler. It is
used to ask the security handler to verify the complete validity of the token.

Procedure 7: (AppSecurityInterface): procedure that allows the Application Security
Handler that is acting on behalf of the Application/Enabler to demonstrate that it is the real
owner of the token(s).

Procedure 8: verification of the time validity, authenticity and integrity of the provided
token(s).

Procedure 9: verification of any asynchronous revocation of the token(s) (i.e., if any
token(s) have been revoked by the Core AAM before the expiration time indicated within
the token itself).

Message 10: generated by the Core Security Handler and sent to the Search Engine. It is
used to communicate the outcome of the token validation procedures performed by the
Core Security Handler.

Message 11: generated by the Search Engine and sent to the Registry. It is used to

search available resources.

Message 12: generated by the Registry and sent to the Search Engine. It is used to return
the result of the search operation, containing resources and associated access policies.

Message 13: generated by the Search Engine and sent to the Core Security Handler. It is
used to deliver the core token(s) previously verified and the results of the search opera-
tion.

Procedure 14: procedure that checks, for each resource, if the attributes contained in the
core token(s) satisfy the access policy associated to that resource.

Message 15: generated by the Core Security Handler and sent to the Search Engine. It is
used to deliver the result of the previous procedure.

Message 16: generated by the Search Engine and sent to the Application/Enabler
asynchronously. It is used to deliver the result of the search operation (available resour-
ces).

Procedure 17: executes ranking of resources.

Message 18 (ApplicationInterface): asynchronously sends ranking update to Application/
Enabler.

Message 19 (ApplicationInterface): asynchronously sends message about the end of initial
ranking.

Message 20 (ApplicationInterface): synchronously sends message of the end of final ran-
king.

Message 21 (optional): generated by the Application/Enabler and sent to Application
Security Handler. It is used to trigger the operations for obtaining the foreign token(s) from
the IoT platform. If the Application/Enabler already has valid foreign token(s), it is not
necessary.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 20 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Message 22 (optional) (AAInterface): generated by the Application Security Handler and
sent to the foreign AAM in IoT platform. It is used to trigger the operations for obtaining the
foreign token(s). If the Application/Enabler already has valid foreign token(s), it is not
necessary.

Procedure 23 (optional) (AppSecurityInterface): procedure that allows the Security Handler
that is acting on behalf of the Application/Enabler to demonstrate that it is the real owner of
the token(s). If the Application/Enabler already has valid foreign token(s), it is not neces-
sary.

Procedure 24 (optional): verification of the time validity, authenticity and integrity of the
provided token(s). If the Application/Enabler already has valid foreign token(s), it is not
necessary.

Procedure 25 (optional) (PlatformAAInterface): verification of any asynchronous revocation
of the token(s) (i.e., if any token(s) have been revoked by the core AAM before the
expiration time indicated within the token itself). If the Application/Enabler already has
valid foreign token(s), it is not necessary.

Procedure 26 (optional): procedure that, in case it is needed, translates attributes that the
Application/Enabler has in the home IoT platform in a new set of attributes that it has in the
core layer. If attributes are the same or the Application/Enabler already has valid foreign
token(s), it is not necessary.

Message 27 (optional): generated by the foreign AAM and sent to the Application Security
Handler. It is used to deliver the foreign token(s) with the new attribute(s). If the Applica-
tion/Enabler already has valid foreign token(s), it is not necessary.

Message 28 (optional): generated by the Application Security Handler and sent to the
Application/Enabler. It is used to forward the foreign token generated at the previous step.

Message 29 (mandatory): generated by the Application/Enabler and sent to the Bartering
and Trading of the foreign platform. It is used to initiate the payment for the previous attai-
ned resource.

Message 30 (mandatory): generated by the Bartering and Trading of the foreign platform
and sent to the Payment Processor. It is used to initialize the payment procedure.

Message 31 (mandatory): generated by the Payment Processor and sent to the Bartering
and Trading of the foreign platform. It is used provide the transaction data and the
redirection URL.

Message 32 (mandatory): generated by the Bartering and Trading of the foreign platform
and sent to the Application/Enabler. It is used to send the redirection URL for the payment
process.

Message 33 (mandatory): generated by the Application/Enabler and sent to the Payment
Processor. It is used to execute the payment.

Message 34 (mandatory): generated by the Payment Processor and sent to the Applica-
tion/Enabler. It is used to inform the Application/Enabler about the payment transaction
outcome.

Message 35 (mandatory): generated by the Payment Processor and sent to the Bartering
and Trading of the foreign platform. It is used to inform the Bartering and Trading about
the successful payment execution.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 21 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Message 36 (mandatory): generated by the Bartering and Trading of the foreign platform
and sent to the Payment Processor. It is used to acknowledge the previous received
message.

Procedure 37 (mandatory): the Bartering and Trading of the foreign platform updates the
resource status and policy.

Message 38 (optional): generated by Bartering and Trading and sent to the Security
Handler. It is used to trigger the recovery of the core token(s). If the Bartering and Trading
is already logged in, it is not necessary.

Message 39 (optional): generated by the Security Handler and sent to the home (platform)
AAM in which the Bartering and Trading is registered. It is used to authenticate the
Bartering and Trading. If the Bartering and Trading is already logged in, it is not
necessary.

Message 40 (optional): generated by the home (platform) AAM in the IoT platform and
sent to the Security Handler. It is used to provide the home token(s) with attributes
included. If the Bartering and Trading is already logged in, it is not necessary.

Message 41 (optional) (PlatformAAInterface): generated by the Security Handler and sent
to the Core AAM in the core layer. It is used to trigger the operations for obtaining the core
token(s). If the Bartering and Trading already has valid core token(s), it is not necessary.

Procedure 42 (optional) (SecurityInterface): procedure that allows the Security Handler
that is acting on behalf of the Bartering and Trading to demonstrate that it is the real owner
of the token(s). If the Bartering and Trading already has valid core token(s), it is not
necessary.

Procedure 43 (optional): verification of the time validity, authenticity and integrity of the
provided token(s). If the Bartering and Trading already has valid core token(s), it is not
necessary.

Procedure 44 (optional) (AAInterface): verification of any asynchronous revocation of the
token(s) (i.e., if any token(s) have been revoked by the home AAM before the expiration
time indicated within the token itself). If the Bartering and Trading already has valid core
token(s), it is not necessary.

Procedure 45 (optional): procedure that, in case it is needed, translates attributes that the
Bartering and Trading has in the home IoT platform in a new set of attributes that it has in
the core layer. If attributes are the same or the Bartering and Trading already has valid
core token(s), it is not necessary.

Message 46 (optional): generated by the Core AAM and sent to the Security Handler. It is
used to deliver the core token(s) with the new attribute(s). If the Bartering and Trading
already has valid core token(s), it is not necessary.

Message 47 (optional): generated by the Security Handler and sent to the Bartering and
Trading. It is used to forward the core token generated at the previous step.

Message 48 (mandatory): generated by the Bartering and Trading of the foreign platform
and sent to the Registry in the Core. It is used to synchronize the resource status.

Procedure 49 (mandatory): the Registry of the Core updates the resource status and
policy.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 22 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Message 50 (mandatory): generated by the Registry of the Core and sent to the Bartering
and Trading of the foreign platform. It is used to inform the Bartering and Trading of the
foreign platform regarding the previous transaction outcome.

Message 51 (mandatory): generated by the Bartering and Trading of the foreign platform
and sent to the Application/Enabler. It is used to confirm the successful purchase of the
resource.

3.3.3 Forward Auction

Figure 3.3 presents the sequence diagram for forward auctioning. As with the afore-
mentioned Direct Buy scenarios, the payment processing again depends on employing
third-party payment systems (like Paypal or Stripe). For a more detailed discussion of this
issue please refer to Section 3.4 of this document.

Before describing this scenario in more detail, remember that auctions are generally
characterized by a bidding process where interested bidders submit their bids either
openly (open-outcry auction) or secretly (sealed bid auction). With open-outcry auctions,
two main types have to be distinguished, i.e. ascending (English) auctions where the price
increases (usually step-wise) vs. descending (Dutch) auctions with a decreasing price.
Similarly, there are two types of sealed bid auctions to be distinguished, i.e. first-price
auctions (where the winning bidder actually pays her bid) vs. second-price (Vickrey)
auctions where the winning bidder pays the bid of the highest-bidding loser.

While these four auction types seem to be rather different from each other, it is highly
interesting to note that – according to the so-called “Revenue Equivalence Theorem” [1]
under rather mild conditions the expected revenue achieved does not vary between these
different types. Hence, the actual choice of an auction mechanism may depend also on
second-order properties like incentive compatibility or revenue variance. This explains why
Vickrey auctions are rather typical in the field of network economics as they have the
intrinsic property of forcing auction participants to be honest about their true evaluation of
the value of the good, because this can be proven to provide them an optimal strategy (cf.
for instance the bidding process followed in ebay that follows the same idea).

Having said that, the corresponding message sequence chart depicted in Figure 3.3 starts
from the assumption that a platform (producer) has already registered within the symbIoTe
Core the resource to be auctioned, and furthermore that the Core Search Engine provides
result even if the seeker of the resource does not possess the necessary attributes.

Then, the producer starts by launching a forward auction for one of its resources which will
be hosted by the symbIoTe Core. The Application/Enabler (consumer) makes use of the
Core Search Engine to find the desired resource. The desired resource is found to be up
for sale by means of a forward auction. All interested parties can place a bid with the aim
to acquire the resource. After the time, designated for the auction, expires the Core
Bartering and Trading will determine the winner. The producer which started the auction
will receive a detailed report regarding the auction outcome. The auction initiator will
inform the winning party that it accepts its bid and that the payment can be performed. A
successful payment transaction will lead to the producer and the symbIoTe Core updating
the status and availability of the sold resource. Eventually, the winner will receive a
confirmation for the purchase.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 23 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Figure 3.3: Forward Auction

In total, Figure 3.3 comprises the following 65 messages and/or procedures:

Message 1 (optional): generated by Bartering and Trading and sent to the Security
Handler. It is used to trigger the recovery of the core token(s). If the Bartering and Trading
is already logged in, it is not necessary.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 24 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Message 2 (optional): generated by the Security Handler and sent to the home (platform)
AAM in which the Bartering and Trading is registered. It is used to authenticate the
Bartering and Trading. If the Bartering and Trading is already logged in, it is not
necessary.

Message 3 (optional): generated by the home (platform) AAM in the IoT platform and sent
to the Security Handler. It is used to provide the home token(s) with attributes included. If
the Bartering and Trading is already logged in, it is not necessary.

Message 4 (optional) (PlatformAAInterface): generated by the Security Handler and sent
to the Core AAM in the core layer. It is used to trigger the operations for obtaining the core
token(s). If the Bartering and Trading already has valid core token(s), it is not necessary.

Procedure 5 (optional) (SecurityInterface): procedure that allows the Security Handler that
is acting on behalf of the Bartering and Trading to demonstrate that it is the real owner of
the token(s). If the Bartering and Trading already has valid core token(s), it is not
necessary.

Procedure 6 (optional): verification of the time validity, authenticity and integrity of the
provided token(s). If the Bartering and Trading already has valid core token(s), it is not
necessary.

Procedure 7 (optional) (AAInterface): verification of any asynchronous revocation of the
token(s) (i.e., if any token(s) have been revoked by the home AAM before the expiration
time indicated within the token itself). If the Bartering and Trading already has valid core
token(s), it is not necessary.

Procedure 8 (optional): procedure that, in case it is needed, translates attributes that the
Bartering and Trading has in the home IoT platform in a new set of attributes that it has in
the core layer. If attributes are the same or the Bartering and Trading already has valid
core token(s), it is not necessary.

Message 9 (optional): generated by the Core AAM and sent to the Security Handler. It is
used to deliver the core token(s) with the new attribute(s). If the Bartering and Trading
already has valid core token(s), it is not necessary.

Message 10 (optional): generated by the Security Handler and sent to the Bartering and
Trading. It is used to forward the core token generated at the previous step.

Message 11 (mandatory): generated by the Bartering and Trading and sent to the Core
Bartering and Trading. It is used to initiate and schedule a forward auction.

Message 12 (mandatory): generated by the Core Bartering and Trading and sent to the
Bartering and Trading. It is used to acknowledge the previous scheduled forward auction.

Procedure 13 (mandatory): the Core Bartering and Trading starts the forward auction.

Message 14 (optional): generated by the Application/Enabler and sent to the Application
Security Handler. It is used to trigger the recovery of the core token(s). If the
Application/Enabler is already logged in, it is not necessary.

Message 15 (optional) (AppAAInterface): generated by the Application Security Handler
and sent to the Core AAM in which the Application/Enabler is registered. It is used to
authenticate the Application/Enabler. If the Application/Enabler is already logged in, it is
not necessary.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 25 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Message 16 (optional): generated by the Core AAM in the IoT platform and sent to the
Application Security Handler. It is used to provide the home token(s) with attributes
included. If the Application/Enabler is already logged in, it is not necessary.

Message 17 (optional): generated by the Application Security Handler and sent to the
Application/Enabler. It is used to deliver the core token(s).

Message 18 (SearchInterface): generated by the Application/Enabler and sent to the
Search Engine. It sends a search query and the core token(s) to the Search Engine.

Message 19: generated by the Search Engine and sent to the Core Security Handler. It is
used to ask the security handler to verify the complete validity of the token.

Procedure 20: (AppSecurityInterface): procedure that allows the Application Security
Handler that is acting on behalf of the Application/Enabler to demonstrate that it is the real
owner of the token(s).

Procedure 21: verification of the time validity, authenticity and integrity of the provided
token(s).

Procedure 22: verification of any asynchronous revocation of the token(s) (i.e., if any
token(s) have been revoked by the Core AAM before the expiration time indicated within
the token itself).

Message 23: generated by the Core Security Handler and sent to the Search Engine. It is
used to communicate the outcome of the token validation procedures performed by the
Core Security Handler.

Message 24: generated by the Search Engine and sent to the Registry. It is used to
search available resources.

Message 25: generated by the Registry and sent to the Search Engine. It is used to return
the result of the search operation, containing resources and associated access policies.

Message 26: generated by the Search Engine and sent to the Core Security Handler. It is
used to deliver the core token(s) previously verified and the results of the search
operation.

Procedure 27: procedure that checks, for each resource, if the attributes contained in the
core token(s) satisfy the access policy associated to that resource.

Message 28: generated by the Core Security Handler and sent to the Search Engine. It is
used to deliver the result of the previous procedure.

Message 29: generated by the Search Engine and sent to the Application/Enabler
asynchronously. It is used to deliver the result of the search operation (available
resources).

Procedure 30: executes ranking of resources.

Message 31 (ApplicationInterface): asynchronously sends ranking update to Application/
Enabler.

Message 32 (ApplicationInterface): asynchronously sends message about the end of initial
ranking.

Message 33 (ApplicationInterface): synchronously sends message of the end of final
ranking.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 26 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Message 34 (optional): generated by the Application/Enabler and sent to the Core
Bartering and Trading. It is used the place a bid.

Message 35 (mandatory): generated by the Core Bartering and Trading and sent to the
Application/Enabler. It is used to acknowledge the previously placed bid.

Procedure 36 (mandatory): the Core Bartering and Trading closes the auction.

Procedure 37 (mandatory): the Core Bartering and Trading reserves the resource and
calculates the price.

Message 38 (mandatory): generated by Core Bartering and Trading and sent to the
Bartering and Trading. It is used to provide information about the auction outcome and the
corresponding certificate.

Message 39 (mandatory): generated by the Bartering and Trading and sent to the Security
Handler. It is used to verify the validity of the previously received certificate.

Procedure 40 (mandatory): the Security Handler validates the certificate.

Message 41 (mandatory): generated by the Security handler and sent to the Bartering and
Trading. It is used to report the outcome of the certificate validation.

Procedure 42 (mandatory): the Bartering and Trading stores the data regarding the
auction.
Message 43 (mandatory): generated by the Bartering and Trading and sent to the Core
Bartering and Trading. It is used to acknowledge the outcome of the auction.

Message 44 (mandatory): generated by the Core Bartering and Trading and sent to the
Application/Enabler. It is used to inform the winner of the auction that the won.

Message 45 (optional): generated by the Application/Enabler and sent to Application
Security Handler. It is used to trigger the operations for obtaining the foreign token(s) from
IoT platform. If the Application/Enabler already has valid foreign token(s), it is not
necessary.

Message 46 (optional) (AAInterface): generated by the Application Security Handler and
sent to the foreign AAM in IoT platform. It is used to trigger the operations for obtaining the
foreign token(s). If the Application/Enabler already has valid foreign token(s), it is not
necessary.

Procedure 47 (optional) (AppSecurityInterface): procedure that allows the Security Handler
that is acting on behalf of the Application/Enabler to demonstrate that it is the real owner of
the token(s). If the Application/Enabler already has valid foreign token(s), it is not
necessary.

Procedure 48 (optional): verification of the time validity, authenticity and integrity of the
provided token(s). If the Application/Enabler already has valid foreign token(s), it is not
necessary.

Procedure 49 (optional) (PlatformAAInterface): verification of any asynchronous revocation
of the token(s) (i.e., if any token(s) have been revoked by the core AAM before the
expiration time indicated within the token itself). If the Application/Enabler already has
valid foreign token(s), it is not necessary.

Procedure 50 (optional): procedure that, in case it is needed, translates attributes that the
Application/Enabler has in the home IoT platform in a new set of attributes that it has in the

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 27 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

core layer. If attributes are the same or the Application/Enabler already has valid foreign
token(s), it is not necessary.

Message 51 (optional): generated by the foreign AAM and sent to the Application Security
Handler. It is used to deliver the foreign token(s) with the new attribute(s). If the Applica-
tion/Enabler already has valid foreign token(s), it is not necessary.

Message 52 (optional): generated by the Application Security Handler and sent to the
Application/Enabler. It is used to forward the foreign token generated at the previous step.

Message 53 (mandatory): generated by the Application/Enabler and sent to the Bartering
and Trading of the foreign platform. It is used to initiate the payment for the previous
attained resource.

Message 54 (mandatory): generated by the Bartering and Trading of the foreign platform
and sent to the Payment Processor. It is used to initialize the payment procedure.

Message 55 (mandatory): generated by the Payment Processor and sent to the Bartering
and Trading of the foreign platform. It is used provide the transaction data and the
redirection URL.

Message 56 (mandatory): generated by the Bartering and Trading of the foreign platform
and sent to the Application/Enabler. It is used to send the redirection URL for the payment
process.

Message 57 (mandatory): generated by the Application/Enabler and sent to the Payment
Processor. It is used to execute the payment.

Message 58 (mandatory): generated by the Payment Processor and sent to the Applica-
tion/Enabler. It is used to inform the Application/Enabler about the payment transaction
outcome.

Message 59 (mandatory): generated by the Payment Processor and sent to the Bartering
and Trading of the foreign platform. It is used to inform the Bartering and Trading about
the successful payment execution.

Message 60 (mandatory): generated by the Bartering and Trading of the foreign platform
and sent to the Payment Processor. It is used to acknowledge the previous received
message.

Procedure 61 (mandatory): the Bartering and Trading of the foreign platform updates the
resource status and policy.

Message 62 (mandatory): generated by the Bartering and Trading of the foreign platform
and sent to the Registry in the Core. It is used to synchronize the resource status.

Procedure 63 (mandatory): the Registry of the Core updates the resource status and
policy.

Message 64 (mandatory): generated by the Registry of the Core and sent to the Bartering
and Trading of the foreign platform. It is used to inform the Bartering and Trading of the
foreign platform regarding the previous transaction outcome.

Message 65 (mandatory): generated by the Bartering and Trading of the foreign platform
and sent to the Application/Enabler. It is used to confirm the successful purchase of the
resource.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 28 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

3.3.4 Reverse Auction

Reverse auctions differ from forward auctions by the fact that there is no good to be
auctioned between different interested consumers, but rather the other way round, a
consumer publishes a request for a certain resource, and different producers provide
corresponding offers between which the consumer has to decide.

The corresponding message sequence diagram is depicted in Figure 3.4 and starts from
the prerequisites that one or more platforms (producers) have already registered, within
the symbIoTe Core, their resources, and that the Core Search Engine provides result only
to producers which have already registered within symbIoTe the desired resources.

Figure 3.4: Reverse Auction

Then, a consumer launches a reverse auction by defining a request (i.e. a resource s/he
wishes to buy) which will be hosted by the symbIoTe Core. A producer makes use of the
Core Search Engine to find potential buyers. Every producer who can fulfill the request
may submit a bid. After the auction deadline has expired, the Core Bartering and Trading
will determine the winner. The consumer which started the auction will receive a detailed

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 29 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

report regarding the auction outcome. The auction initiator will authenticate itself within
winner’s IoT platform and signal its intent to buy the desired resource. A successful
payment transaction will lead to the producer and the symbIoTe Core updating the status
and availability of the sold resource. Eventually, the winning producer will receive a
confirmation for the purchase.

Hence, Figure 3.4 includes the following 55 messages and/or procedures:

Message 1 (optional): generated by Bartering and Trading and sent to the Security
Handler. It is used to trigger the recovery of the core token(s). If the Bartering and Trading
is already logged in, it is not necessary.

Message 2 (optional): generated by the Security Handler and sent to the home (platform)
AAM in which the Bartering and Trading is registered. It is used to authenticate the
Bartering and Trading. If the Bartering and Trading is already logged in, it is not
necessary.

Message 3 (optional): generated by the home (platform) AAM in the IoT platform and sent
to the Security Handler. It is used to provide the home token(s) with attributes included. If
the Bartering and Trading is already logged in, it is not necessary.

Message 4 (optional) (PlatformAAInterface): generated by the Security Handler and sent
to the Core AAM in the core layer. It is used to trigger the operations for obtaining the core
token(s). If the Bartering and Trading already has valid core token(s), it is not necessary.

Procedure 5 (optional) (SecurityInterface): procedure that allows the Security Handler that
is acting on behalf of the Bartering and Trading to demonstrate that it is the real owner of
the token(s). If the Bartering and Trading already has valid core token(s), it is not
necessary.

Procedure 6 (optional): verification of the time validity, authenticity and integrity of the
provided token(s). If the Bartering and Trading already has valid core token(s), it is not
necessary.

Procedure 7 (optional) (AAInterface): verification of any asynchronous revocation of the
token(s) (i.e., if any token(s) have been revoked by the home AAM before the expiration
time indicated within the token itself). If the Bartering and Trading already has valid core
token(s), it is not necessary.

Procedure 8 (optional): procedure that, in case it is needed, translates attributes that the
Bartering and Trading has in the home IoT platform in a new set of attributes that it has in
the core layer. If attributes are the same or the Bartering and Trading already has valid
core token(s), it is not necessary.

Message 9 (optional): generated by the Core AAM and sent to the Security Handler. It is
used to deliver the core token(s) with the new attribute(s). If the Bartering and Trading
already has valid core token(s), it is not necessary.

Message 10 (optional): generated by the Security Handler and sent to the Bartering and
Trading. It is used to forward the core token generated at the previous step.

Message 11 (mandatory): generated by the Bartering and Trading and sent to the Core
Bartering and Trading. It is used to initiate and schedule a reverse auction.

Message 12 (mandatory): generated by the Core Bartering and Trading and sent to the
Bartering and Trading. It is used to acknowledge the previous scheduled reverse auction.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 30 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Procedure 13 (mandatory): the Core Bartering and Trading starts the reverse auction.

Message 14 (optional): generated by the Bartering and Trading and sent to the Security
Handler. It is used to trigger the recovery of the core token(s). If the Bartering and Trading
is already logged in, it is not necessary.

Message 15 (optional): generated by the Security Handler and sent to the Core AAM in
which the platform is registered. It is used to authenticate the Bartering and Trading. If the
Bartering and Trading is already logged in, it is not necessary.

Message 16 (optional): generated by the Core AAM and sent to the Security Handler. It is
used to provide the core token(s) with attributes included. If the Bartering and Trading is
already logged in, it is not necessary.

Message 17 (optional): generated by the Security Handler and sent to the Bartering and
Trading. It is used to deliver the core token(s).

Message 18 (SearchInterface): generated by the Bartering and Trading and sent to the
Search Engine. It sends a search query and the core token(s) to the Search Engine.

Message 19: generated by the Search Engine and sent to the Core Security Handler. It is
used to ask to the security handler to verify the complete validity of the token.

Procedure 20: procedure that allows the Security Handler that is acting on behalf of the
Bartering and Trading to demonstrate that it is the real owner of the token(s).

Procedure 21: verification of the time validity, authenticity and integrity of the provided
token(s).

Procedure 22: verification of any asynchronous revocation of the token(s) (i.e., if any
token(s) have been revoked by the Core AAM before the expiration time indicated within
the token itself).

Message 23: generated by the Core Security Handler and sent to the Search Engine. It is
used to communicate the outcome of the token validation procedures performed by the
Core Security Handler.

Message 24: generated by the Search Engine and sent to the Registry. It is used to
search available reverse auctions.

Procedure 25: the Core Registry compares the resources registered by the querying
platform with resource needs present in the ongoing or scheduled reverse auctions.

Message 26: generated by the Core Registry and sent to the Core Search Engine. It is
used to return the result of the search operation, containing reverse auctions which fulfil
the check in procedure 25.

Message 27: generated by the Search Engine and sent to the Bartering and Trading
asynchronously. It is used to deliver the result of the search operation (reverse auctions).

Message 28: generated by the Bartering and Trading and sent to the Core Bartering and
Trading. It is used to place a bid for a reverse auction.

Procedure 29: the Core Bartering and Trading closes the reverse auction.

Message 30: generated by the Core Bartering and Trading and sent to the Bartering and
trading which initiated the reverse auction. It is used to report the outcome of the reverse
auction and the confirmation certificate.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 31 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Message 31: generated by the Bartering and Trading and sent to the Security Handler. It
is used to send the previously obtained certificate for validation.

Procedure 32: the Security Handler validates the previously obtained certificate.

Message 33: generated by the Security Handler and sent to the Bartering and Trading. It
is used to report on the certificate validation outcome.

Procedure 34: the Bartering and Trading stores the reverse auction data.

Message 35 (optional): generated by Bartering and Trading and sent to the Security
Handler. It is used to trigger the recovery of the foreign token(s). If the Bartering and
Trading is already logged in, it is not necessary.

Message 36 (optional): generated by the Security Handler and sent to the foreign
(platform) AAM which has won the reverse auction. It is used to authenticate the Bartering
and Trading. If the Bartering and Trading is already logged in, it is not necessary.

Procedure 37 (optional): procedure that allows the Security Handler that is acting on
behalf of the Bartering and Trading to demonstrate that it is the real owner of the token(s).
If the Bartering and Trading already has valid core token(s), it is not necessary.

Procedure 38 (optional): verification of the time validity, authenticity and integrity of the
provided token(s). If the Bartering and Trading already has valid core token(s), it is not
necessary.

Procedure 39 (optional) (AAInterface): verification of any asynchronous revocation of the
token(s) (i.e., if any token(s) have been revoked by the home AAM before the expiration
time indicated within the token itself). If the Bartering and Trading already has valid core
token(s), it is not necessary.

Procedure 40 (optional): procedure that, in case it is needed, translates attributes that the
Bartering and Trading has in the home IoT platform in a new set of attributes that it has in
the foreign platform. If attributes are the same or the Bartering and Trading already has
valid foreign token(s), it is not necessary.

Message 41 (optional): generated by the foreign platform AAM and sent to the Security
Handler. It is used to deliver the foreign token(s) with the new attribute(s). If the Bartering
and Trading already has valid foreign token(s), it is not necessary.

Message 42 (optional): generated by the Security Handler and sent to the Bartering and
Trading. It is used to forward the foreign token generated in the previous step.

Message 43 (mandatory): generated by the Bartering and Trading and sent to the
Bartering and Trading of the foreign platform. It is used to initiate the payment for the
previous requested (needed) resource.

Message 44 (mandatory): generated by the Bartering and Trading of the foreign platform
and sent to the Payment Processor. It is used to initialize the payment procedure.

Message 45 (mandatory): generated by the Payment Processor and sent to the Bartering
and Trading of the foreign platform. It is used provide the transaction data and the
redirection URL.

Message 46 (mandatory): generated by the Bartering and Trading of the foreign platform
and sent to the Bartering and Trading which initiated the reverse auction. It is used to send
the redirection URL for the payment process.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 32 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Message 47 (mandatory): generated by the Bartering and Trading and sent to the
Payment Processor. It is used to execute the payment.

Message 48 (mandatory): generated by the Payment Processor and sent to the Bartering
and Trading. It is used to inform the Bartering and Trading about the payment transaction
outcome.

Message 49 (mandatory): generated by the Payment Processor and sent to the Bartering
and Trading of the foreign platform. It is used to inform the Bartering and Trading about
the successful payment execution.

Message 50 (mandatory): generated by the Bartering and Trading of the foreign platform
and sent to the Payment Processor. It is used to acknowledge the previous received
message.

Procedure 51 (mandatory): the Bartering and Trading of the foreign platform updates the
resource status and policy.

Message 52 (mandatory): generated by the Bartering and Trading of the foreign platform
and sent to the Registry in the Core. It is used to synchronize the resource status.

Procedure 53 (mandatory): the Registry of the Core updates the resource status and
policy.

Message 54 (mandatory): generated by the Core Registry and sent to the Bartering and
Trading of the foreign platform. It is used to inform the Bartering and Trading of the foreign
platform regarding the previous transaction outcome.

Message 55 (mandatory): generated by the Bartering and Trading of the foreign platform
and sent to the Bartering and Trading which initiated the reverse auction. It is used to
confirm the successful purchase of the resource.

3.3.5 Voucher-based Bartering

Finally, Figure 3.5 depicted below represents the basic bartering scenario between two
distinct platforms. Suppose again that a platform (prosumer) has already registered, within
the symbIoTe Core, the resources s/he is willing to trade, using a voucher description.
When defining the desired resources on the voucher, the the prosumer can determine
suitable intervals for the parameters describing the resource.

To start with, two distinct prosumers (IoT platforms) send to the Core Bartering and
Trading a description of the resources which they are willing to barter (own ones) and the
resources (needed ones) they are looking for. Upon receiving the information from the
platforms the Core Bartering and Trading can start matching the desired resources with
the offered resources. As perfectly matching resource descriptions might be relatively rare
occasions, various way of relaxing the matching criterion can be implemented, for instance
a matching ratio of higher than 90% with respect to the resource SLAs. If such a ratio can
be determined, the Core Bartering and Trading automatically sends the corresponding
vouchers, which hence correspond mostly to the needs of the platforms, to the platforms.
If, however, the match is below or equal to 90%, the Core Bartering and Trading will only
inform the participating platforms about the potential bartering opportunity, and only after
both parties have explicitly stated their interest, the Core Bartering and Trading will send
out the corresponding vouchers. The last step after a successful exchange is the update of
the corresponding availability and policy of the resources.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 33 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Figure 3.5: Voucher-based Bartering between two Platforms A (left) and B (right)

Figure 3.5 includes a total of 37 (alternative path: 39) messages and/or procedures. Note
that this scenario depicts two alternative paths: while messages 26 and 27 describe the
case of automatic bartering due to an SLA match above 90%, messages 26a*, 26b*, 26c*
and 27* refer to the case that, before vouchers are sent out, both participants have to
explicitly agree as the matching ratio between their SLAs is below 90%. Hence, the
alternative messages with an asterisk * are supposed to be exchanged between platforms
and Core services if SLAs are accepted by both Federation Managers involved in the
bartering process, and in this sense are characterized as not mandatory but rather
optional messages.

Message 1 (optional): generated by the Federation Manager and sent to the Security
Handler. It is used to trigger the recovery of the core token(s). If the Registration Handler
is already logged in, it is not necessary.

Message 2 (optional): generated by the Security Handler and sent to the home (platform)
AAM in which the Federation Manager is registered. It is used to authenticate the
Federation Manager. If the Federation Manager is already logged in, it is not necessary.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 34 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Message 3 (optional): generated by the home (platform) AAM in the IoT platform and sent
to the Security Handler. It is used to provide the home token(s) with attributes included. If
the Federation Manager is already logged in, it is not necessary.

Message 4 (optional) (PlatformAAInterface): generated by the Security Handler and sent
to the Core AAM in the core layer. It is used to trigger the operations for obtaining the core
token(s). If the Federation Manager already has valid core token(s), it is not necessary.

Procedure 5 (optional) (SecurityInterface): procedure that allows the Security Handler that
is acting on behalf of the Federation Manager to demonstrate that it is the real owner of
the token(s). If the Federation Manager already has valid core token(s), it is not necessary.

Procedure 6 (optional): verification of the time validity, authenticity and integrity of the
provided token(s). If the Federation Manager already has valid core token(s), it is not
necessary.

Procedure 7 (optional) (AAInterface): verification of any asynchronous revocation of the
token(s) (i.e., if any token(s) have been revoked by the home AAM before the expiration
time indicated within the token itself). If the Federation Manager already has valid core
token(s), it is not necessary.

Procedure 8 (optional): procedure that, in case it is needed, translates attributes that the
Federation Manager has in the home IoT platform in a new set of attributes that it has in
the core layer. If attributes are the same or the Federation Manager already has valid core
token(s), it is not necessary.

Message 9 (optional): generated by the Core AAM and sent to the Security Handler. It is
used to deliver the core token(s) with the new attribute(s). If the Federation Manager
already has valid core token(s), it is not necessary.

Message 10 (optional): generated by the Security Handler and sent to the Federation
Manager. It is used to forward the core token generated at the previous step.

Message 11 (mandatory): generated by the Federation Manager and sent to the
CoreBartering and Trading. It is used to deliver the core token(s) with the new attribute(s),
the offered SLA and the desired SLA.

Message 12 (mandatory): generated by the Core Bartering and Trading and sent to the
Federation Manager. It is an acknowledgement of the received SLAs.

Message 13 (optional): generated by the Federation Manager and sent to the Security
Handler. It is used to trigger the recovery of the core token(s). If the Registration Handler
is already logged in, it is not necessary.

Message 14 (optional): generated by the Security Handler and sent to the home (platform)
AAM in which the Federation Manager is registered. It is used to authenticate the
Federation Manager. If the Federation Manager is already logged in, it is not necessary.

Message 15 (optional): generated by the home (platform) AAM in the IoT platform and
sent to the Security Handler. It is used to provide the home token(s) with attributes
included. If the Federation Manager is already logged in, it is not necessary.

Message 16 (optional) (PlatformAAInterface): generated by the Security Handler and sent
to the Core AAM in the core layer. It is used to trigger the operations for obtaining the core
token(s). If the Federation Manager already has valid core token(s), it is not necessary.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 35 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Procedure 17 (optional) (SecurityInterface): procedure that allows the Security Handler
that is acting on behalf of the Federation Manager to demonstrate that it is the real owner
of the token(s). If the Federation Manager already has valid core token(s), it is not
necessary.

Procedure 18 (optional): verification of the time validity, authenticity and integrity of the
provided token(s). If the Federation Manager already has valid core token(s), it is not
necessary.

Procedure 19 (optional) (AAInterface): verification of any asynchronous revocation of the
token(s) (i.e., if any token(s) have been revoked by the home AAM before the expiration
time indicated within the token itself). If the Federation Manager already has valid core
token(s), it is not necessary.

Procedure 20 (optional): procedure that, in case it is needed, translates attributes that the
Federation Manager has in the home IoT platform in a new set of attributes that it has in
the core layer. If attributes are the same or the Federation Manager already has valid core
token(s), it is not necessary.

Message 21 (optional): generated by the Core AAM and sent to the Security Handler. It is
used to deliver the core token(s) with the new attribute(s). If the Federation Manager
already has valid core token(s), it is not necessary.

Message 22 (optional): generated by the Security Handler and sent to the Federation
Manager. It is used to forward the core token generated at the previous step.

Message 23 (mandatory): generated by the Federation Manager and sent to the
CoreBartering and Trading. It is used to deliver the core token(s) with the new attribute(s),
the offered SLA and the desired SLA.

Message 24 (mandatory): generated by the Core Bartering and Trading and sent to the
Federation Manager. It is an acknowledgement of the received SLAs.

Message 25 (mandatory): the Core Bartering and Trading tries to find the best match
between desired and offered SLA.

Message 26 (mandatory): generated by the Core Bartering and Trading and sent to the
Federation Manager of platform B. It is used to send the matching desired SLA and the
certificate (confirmation).

Message 27 (mandatory): generated by the Core Bartering and Trading and sent to the
Federation Manager of platform A. It is used to send the matching desired SLA and the
certificate (confirmation).

Message 26a* (mandatory): generated by the Core Bartering and Trading and sent to the
Federation Manager of platform B. It is used to send the best matching desired SLA and
the request for confirmation, and needs explicit approval by platform B.

Message 26b* (mandatory): generated by the Core Bartering and Trading and sent to the
Federation Manager of platform A. It is used to send the best matching desired SLA and
the request for confirmation, and needs explicit approval by platform A.

Message 26c* (optional): generated by the Core Bartering and Trading and sent to the
Federation Manager of platform B. It is used to send the matching desired SLA and the
certificate (confirmation). If the other party does not accept the swapping, this message
will not be sent.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 36 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Message 27* (optional): generated by the Core Bartering and Trading and sent to the
Federation Manager of platform A. It is used to send the matching desired SLA and the
certificate (confirmation). If the other party does not accept the swapping, this message
will not be sent.

Message 28 (mandatory): generated by the Federation Manager and sent to the Security
Handler. It is used to send the obtained certificate (confirmation) which validates the
bartering transaction.

Message 29 (mandatory): the Security Handler validates the received certificate.

Message 30 (mandatory): generated by the Security Handler and sent to the Federation
Manager. It is used to provide a response regarding the validity check of the certificate.

Message 31 (mandatory): the Federation Manager updates the quota regarding the
involved SLA in the bartering transaction.

Message 32 (mandatory): generated by the Federation Manager and sent to the Security
Handler. It is used to send the obtained certificate (confirmation) which validates the
bartering transaction.

Message 33 (mandatory): the Security Handler validates the received certificate.

Message 34 (mandatory): generated by the Security Handler and sent to the Federation
Manager. It is used to provide a response regarding the validity check of the certificate.

Message 35 (mandatory): the Federation Manager updates the quota regarding the
involved SLA in the bartering transaction.

Message 36 (mandatory): generated by the Federation Manager and sent to the Core
Bartering and Trading. It is used to provide an acknowledgment regarding the bartering
transaction.

Message 37 (mandatory): generated by the Federation Manager and sent to the Core
Bartering and Trading. It is used to provide an acknowledgment regarding the bartering
transaction.

3.4 Payment Systems

A payment system is any system used to settle financial transactions through the transfer
of monetary value, and includes the institutions, instruments, people, rules, procedures,
standards, and technologies that make such an exchange possible [10][11].

The main characteristic of a payment system is that they use cash-substitutes. No bank
notes are involved in the transactions. Some payment systems might include credit
mechanisms. Payment systems are used in lieu of tendering cash in domestic and
international transactions and consist of a major service provided by banks and other
financial institutions.

An e-commerce payment system facilitates the acceptance of electronic payment for
online transactions. They have become increasingly popular due to the widespread use of
the internet-based shopping and banking. A large number of alternative electronic
payment systems have emerged and more will be available soon. It has been found out
that the more types of payment systems are used, the higher percentage of selling a
website will have [15], so it makes sense to integrate more than one payment system for

https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Financial_transaction
https://en.wikipedia.org/wiki/Cash
https://en.wikipedia.org/wiki/Electronic_payment
https://en.wikipedia.org/wiki/E-commerce

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 37 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

monetary transactions. Below we comment some details about the most important existing
payment systems.

Credit cards have become one of the most common and known form of payment for e-
commerce transactions. In North America almost 90% of online retail transactions were
made with this payment type [12]. Online merchants have to comply with stringent rules
stipulated by the credit and debit card issuers (Visa and MasterCard) this means that
merchants must have security protocol and procedures in place to ensure transactions are
more secure. This can also include having a certificate from an authorized certification
authority (CA) who provides PKI(Public-Key infrastructure) for securing credit and debit
card transactions [13].

PayPal: fees are charged to sellers/merchants for each transaction by the PayPal [16].
PayPal payment system can be integrated with other shopping cart systems, which
enables individual websites, retail and online shopping centers/markets or point of sales,
to accept payments on their own. Any individual sending/receiving personal payments can
also use PayPal. Within PayPal, a user is able to configure how the funds have to be
charged for a transaction: credit card, debit card or bank account. PayPal does offer its
own Buyer Protection program, which safeguards users in case that something goes
wrong, for example if an item doesn't arrive or doesn't match its description [17].

Bitcoin Payment System: Bitcoin is a digital cryptocurrency created in 2009 by an
unknown person using the alias Satoshi Nakamoto. The system is peer-to-peer and
transactions take place between users directly, without the presence of Trusted Third
Parties (e.g. banks). Transactions are verified by network nodes and recorded in a public
distributed ledger called blockchain. It used to have no transaction fees, but right now it
changed to “Cost very little”. Bitcoins are not tied to any country and they are not subject
to regulation. There is even no need for the Bitcoin holders to provide their real names.
People compete to “mine” bitcoins using computers to solve complex math puzzles.
Bitcoins are stored in a “digital wallet,” which exists either in the cloud or on a user’s
computer. The wallet is a kind of virtual bank account that allows users to send or receive
bitcoins, pay for goods or save their money [18][19].

Google Pay (aka, Google Wallet [20], upgraded into Android Pay [21]): is used by Google
based services, products, and supported by many retail shopping centers/markets and
point of sales. Google Wallet allows users to send/receive money to/from other users via
their Android or iOS based phone. Android Pay is used by buyers for purchasing, and is
available mostly on Google Android OS based phones. Google charges sellers/merchants
around 30% fee for each payment that a buyer pays [22]. It started running in the U.K. on
18th May 2016, when Google’s mobile payment service officially went online. Android
phones with version 4.4 (KitKat) or newer include an NFC chip inside are compatible with
Android Pay, provided that banks and card providers support the service. The system
uses tokenization, which processes transactions via individual random account numbers,
rather than the actual credit or debit card account number [23].

Apple Pay: is used in iTunes store, in Apple Stores, Apple based services and products,
and it is supported by many retail shopping centers/markets. Apple charges around 15% +
$0.15 for each payment transaction, before giving the rest of the amount to seller. Banks
take-away around 2% fee from Apple's portion for each transaction. It is possible to use an
iPhone, iPad or Apple Watch within apps when you see Apple Pay as a payment option.
Online shopping support was launched in September 2016. It runs in a customer’s Safari
web browser, like a regular online payment page [22][24].

https://en.wikipedia.org/wiki/Credit_card
https://en.wikipedia.org/wiki/Visa_Inc.
https://en.wikipedia.org/wiki/MasterCard
https://en.wikipedia.org/wiki/Certification_Authority
https://en.wikipedia.org/wiki/Certification_Authority
https://en.wikipedia.org/wiki/Public-key_infrastructure
https://en.wikipedia.org/wiki/PayPal
https://en.wikipedia.org/wiki/Point_of_sale
https://en.wikipedia.org/wiki/Peer-to-peer
https://en.wikipedia.org/wiki/Node_%28networking%29
https://en.wikipedia.org/wiki/Distributed_database
https://en.wikipedia.org/wiki/Google_Wallet
https://en.wikipedia.org/wiki/Point_of_sale
https://en.wikipedia.org/wiki/Apple_Pay

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 38 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Samsung Pay: is used by Samsung-based services, products, and is supported by many
retail shopping centers/markets. When Samsung Pay is used via Samsung smartphone
devices, then neither the buyer nor the seller are charged. Also, it uses tokenization for
individual transactions. Online payments were already possible through Samsung Pay, but
only in South Korea, the company's native country. In early 2017, Samsung Pay users will
be able to make online payments from their phones, tablets, or computers, and use
express checkouts that automatically fill in payment data based on information saved in
Samsung Pay wallets [25].

Some e-commerce solutions exist for small retailers in order to go online to sell their
products. The most prominent ones are:

 WooCommerce: WordPress users can create their own e-commerce shop

 2CheckOut: payment processor which is a combination of a merchant account and
payment gateway. By registering and verifying the account it is possible to start
accepting credit card and PayPal payments

 Stripe: mainly used by developers due to the robust API

 ACH Payments: one of the top payment system primarily used for person-to-person

 Authorize.Net: exists since 1996, most widely used payment gateway on internet

 Amazon Payments: safe and easy method to receive money [14].

It is important to note that, within symbIoTe, no payment system will be explicitly involved.
This decision has been taken based on information requested from platform owners and
use cases and a subsequent long discussion. Here, while an interest has been identified
to use a payment system and it would be a nice feature to have, especially from a use
cases perspective, however no payment systems were identified in the existing platform
within symbIoTe. symbIoTe has to provide interoperability between platforms. In any case,
in [26] a protocol is presented for payments across payment systems. It enables secure
transfers between ledgers and allows anyone with an account on two ledgers to create a
connection between them. In [27], the authors comment that there is no need to create a
protocolfor several ledger systems, since one unified ledger for the whole world like Bitcoin
already exists. If there is some need in the future of a real implementation supporting
payment systems interoperability, both solutions should be studied carefully and pros and
cons must be taken into account, in relevance with the requirements of symbIoTe.

3.5 Conclusions for symbIoTe Architecture

symbIoTe’s architecture has to be sufficiently versatile to be able to support different
platforms, domains and technologies. As such, a system that can cope with such a rich
environment will be complex by nature. As a module of the symbIoTe architecture,
Bartering and Trading might not necessarily be a core module needed to make the system
function, but it is very important for whoever will use the system in the future. It allows
users to buy, sell and trade access to their resources, making the system very dynamic.
This is of great interest to prosumers, which are envisioned to be symbIoTe’s main users.

The Bartering and Trading Manager (B&T Manager) module will make three different
systems available: vouchers, direct payments and auctions. To make them work correctly,

https://en.wikipedia.org/wiki/Samsung_Pay

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 39 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

the Bartering & Trading Manager requires the cooperation of several other symbIoTe
modules. One of these is the Registration Handler, which stores rules regarding bids and
usage of a resource, configured through B&T Manager. The Resource Access Proxy
(RAP) checks with the B&T Manager if a user has quota and can pay for the access for a
given resource. If these conditions are not satisfied, the RAP will not grant access. The
Federation Manager monitors SLA agreements and checks if any violations occur. If that
happens, the B&T Manager can take certain actions (reward/punish the user/platform/
application) to compensate. The B&T Manager can also make use of third party payment
processing systems to handle monetary payments between users. Additionally, the B&T
Manager needs to validate incoming certificates with the Security Handler. Only after the
successful completion of this process, can the B&T Manager allow access to certain
resources.

There are certain procedures, such as third party payments and forward auctions, that
need to be handled centrally. As such, they will be processed by the Core Bartering &
Trading Manager. After these procedures are executed, the Core B&T Manager must
communicate with the B&T Manager, stating any update to the resources, so that these
can be updated in the Registry.

The B&T module might not be of interest to every use case, but it is very important in the
commercial context of symbIoTe. As such, it is important that its implementation is
intelligent and contained, since its performance can affect the users’ satisfaction within
symbIoTe’s ecosystem.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 40 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

4 Security and Access Scopes

In the following chapter, we discuss access scopes to resources in symbIoTe with a strong
focus on security. Section 4.1 summarises the efforts that were made in task T3.2. Section
4.2 is devoted to authentication and authorization in symbIoTe. Subsection 4.2.1 presents
attribute-based access control (ABAC) as a method of authorization in a network of
federated IoT platforms. Subsection 4.2.2 shows a review of the available implementations
of ABAC, namely OAuth2.0 and two solutions that rely on authorization tokens, one that
relies on Macaroons and another that is based on JSON Web Tokens (JWT). In Section
4.3, we present the proposed security architecture with sequence diagrams showing the
steps of obtaining access to resources in different scenarios. In Section 4.4, two types of
authorization tokens, i.e. Macaroons and JSON Web Tokens are compared in terms of
security related requirements that were defined in Deliverable D1.2 and difficulties in
implementation. Section 4.5 describes interfaces and services for security components,
which are Core Authentication and Authorization Manager (Core AAM), Platform
Authentication and Authorization Manager (Platform AAM) and Security Handler (SH).
Section 4.6 describes a preliminary proof-of-concept that has been developed to show
interactions between the components described in 4.2 and 4.3. Finally, in Section 4.7 we
describe other security related issues that might be helpful for further development of
system architecture. Threat analysis is carried out and anomaly detection methods that
can be applied to overcome security threats which are described.

4.1 Overview of Work in T3.2

Task T3.2 concentrates on all security related aspects in symbIoTe. Its objective is to
implement authentication and authorization mechanisms, provide privacy and data
anonymization and finally – to propose anomaly detection methods. Following the security
requirements defined in D1.2, we designed security architecture and protocols that should
be incorporated into the symbIoTe system to provide user, application, enabler (i.e. entity)
and platform authentication and authorization.

First, attribute-based access control method of authorization was decided to be the most
suitable for symbIoTe, because it originates from distributed computing systems. Other
authorization methods like role-based access control (RBAC) or group-based access
control (GBAC) are not flexible enough to be applied in a network of federated IoT
platforms. The details of access control methods are given in Section 4.2.1.

Second, the details of operations that ensure mutual authentication (an entity vs. a
platform) and authorization are presented with the aid of sequence diagrams. A related
work prior to the agreement of sequence diagrams was the final choice of symbIoTe
requirements that refer to security (within T1.3), the final decision about the location of
architecture components related to security and their functionality (within T1.4). These are
listed below.

4.1.1 Security Requirements

After the symbIoTe project was launched, the definition of system requirements was
started, containing a subset of security requirements. The discussion was handled
between April 2016 and September 2016, when Deliverable D1.2 was issued [7]. The
requirements were derived from a subset of IoT use cases of the existing IoT platforms

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 41 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

and general security knowledge about distributed computing systems, together with the
identification of threats. Taking over the control of sensors and actuators in a network of
federated IoT platforms can cause several unexpected operations like opening doors in a
smart home environment or launching the evacuation mechanism in smart stadium. Some
of the security requirements were defined to prevent such threats.

First of all, the system must provide authentication and authorization (granting access
rights) of its entities, which are enablers, platforms, applications and users. Not only
applications must be authenticated by IoT platforms, but also IoT platforms must be
authenticated by applications to avoid impersonating the whole platforms. Secondly, a
multifactor authentication must be supported that refers to two independent characteristics
that identify the user (e.g. RF fingerprint indicating the location and password indicating
the users' knowledge). Moreover, validation of input data based on sanitization
mechanisms, which remove potentially harmful input data is a necessity. Another
important security mechanism that must be implemented is the access control defined
through access policies. Referring to security requirements, access control must be
handled through Attribute-Based Access Control (ABAC) schemes. The latter is discussed
in Section 4.2.

It is important that user authentication is carried out independently of authorization. In
other words, verification of a user’s identity by a foreign IoT platform should be performed
regardless of granting or not granting him access rights to the resources stored within this
IoT platform. Especially desirable is the capability of getting access to resources in one
IoT platform while being a registered user in another IoT platform. To overcome this
problem the system must offer entity identification mechanisms e.g. by adoption of tokens.
From a practical point of view it is necessary to let users, applications and enablers decide
how their data is processed and whom they can delegate their authorities by attenuating
them. For example, an owner of a Smart Home platform can let his guests open the
entrance gate to his residence between 7 p.m. and 9 p.m. in a particular day. All
requirements are listed in Table 2 of Deliverable D1.2, which is recollected in Section 4.4
[7].

4.1.2 Summary of Activities

A deep analysis of system requirements and definition of symbIoTe architecture were the
starting point for designing the security architecture. Combining this with our knowledge on
sensor networks, distributed and cloud computing helped us define functional units and
their responsibilities in Application Domain and Cloud Domain. A detailed analysis resulted
in the security architecture concept that is presented in Section 4.3, with Level1 sequence
diagrams showing the exchange of messages between security components. Moreover, a
Demo that is a proof-of-concept of our design was built by us and presented in the
Technical Review of symbIoTe project that took place in Vienna in October 2016. In the
meantime, we tried to identify a method of authentication and authorization that would
match symbIoTe’s requirements and architecture.

Initially, the Open Authorization Framework (OAuth 2.0), defined in RFC 6749 was
considered for authorization [3]. OAuth 2.0 is an authorization framework for web
applications, desktop applications, mobile phones, and living room devices. In the
introduction of RFC 6749, it was mentioned: “It enables a third party application to obtain
limited access to an HTTP service either on behalf of a resource owner by orchestrating
an approval interaction between the resource owner and the HTTP service or by allowing

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 42 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

the third-party application to obtain access on its own behalf.” The token format is out-of-
scope of OAuth 2.0, however some implementations use JSON Web Tokens. OAuth 2.0
can also be implemented with Proof-of-Possession (PoP) schemes and with Macaroon
tokens.

However, the conclusion drawn from several discussions was that OAuth 2.0 does not
correspond to the security architecture and requirements of symbIoTe. Hence, we adopted
some ideas from distributed computing systems and cloud computing. One idea that was
seriously considered was the adoption of Macaroon tokens that are successfully applied
for rights delegation and attenuation in cloud computing systems [5]. Macaroons eliminate
complexity in the authorization code of an application in distributed computing systems.
Moreover, they support decoupled authorization logic by separating the policy of user
application (who can access what and when) from the mechanism (i.e. the source code)
that upholds this policy. The concept of a security architecture that adopted Macaroon
tokens for contextual delegation of authorities was presented in the 2nd plenary meeting in
Vienna in July 2016. A detailed description of macaroon tokens is given in Section 4.4.
Because a network of federated IoT platforms like symbIoTe resembles cloud computing,
we claimed that the adoption of macaroons will cover the needs of that system. However,
after a thorough investigation of requirements it turned out that original macaroons
developed by Birgisson et al in 2014 do not support offline authentication in Smart Space
domain, which is a must requirement in Smart Yachting and other use case scenarios [8].
Moreover, a privacy problem was identified, since all the attributes are shared with the
platform. Other drawbacks of macaroons are the lack of a clear way to revoke access
rights for specific users and the absence of search functionality. Finally, implementation of
Macaroons in symbIoTe would require solving problems with managing session keys. A
competitive solution that is based on JSON Web Tokens (JWT) was perceived as a
promising candidate to be applied for storing and transferring security attributes. JSON
Web tokens were adopted from online purchasing and they are based on claims. It turned
out that JWTs match all security requirements defined in D1.2 and they are relatively easy
to implement. There are libraries in Java, where JSON Web Tokens are implemented.
This implementation is easy to be integrated into the symbIoTe core, which is
implemented in Java and follows the microservices architectural approach. For this reason
in M11 the members of symbIoTe Consortium decided to choose JSON Web Tokens for
authorization.

4.2 Authentication and Authorization

Authentication and authorization in a network of federated IoT platforms can be performed
by applying Attribute-Based Access Control (ABAC), which is described in Section 4.2.1.
ABAC can be implemented with one of the authorization tokens: Macaroons or JSON Web
Tokens, discussed in Section 4.2.2.

4.2.1 Attribute-Based Access Control

Provision of data and system security in distributed, hierarchical systems like symbIoTe
requires sophisticated mechanisms of authentication and authorization for users,
applications, enablers and platforms. Security requirements previously described stem
from the main use case when smart devices connect to applications and different IoT
platforms. Attribute-based access control (ABAC) fulfills these requirements, unlike role-

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 43 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

based access control (RBAC). The latter method of authorization known from local
computer networks, which assigns each user a role like ‘administrator’ or ‘normal user’, is
impractical in distributed IoT environments [5]. Moreover, the fixed roles classification
provided by the RBAC does not allow considering also environmental aspects when
establishing rules for accessing the resources and requires a preliminary phase of role
assignment, that can be unfeasible in modern IoT networks.

Security in a symbIoTe network of IoT platforms is achieved more effectively with ABAC,
whose paradigm falls within a wide set of logical access control schemes. Their goal is the
protection of sensitive data or services from unauthorized operations like discovering,
reading, writing, creating files and so on.

ABAC is based on the assignment of ‘attributes’ to each client application and entity in the
system. An ‘attribute’ is defined as a property, role or permission associated to an entity in
the system, assigned after an authentication procedure by the system administrator.

In ABAC, by contrast to other access control methods, the access to resources is
controlled through Access Control Policies. An access policy defined as a specific
combination of attributes needed to grant access to a resource is assigned to by the owner
of that resource.

Therefore, a client application, enabler or user may be granted access to a resource only if
it possesses a set of attributes that match the predefined access policy. In symbIoTe, this
policy can contain at the same time attributes assigned to users and objects, and
environment conditions connected to the request [6].

In contrast to RBAC, ABAC is more general and allows the consideration of different
heterogeneous aspects (properties of both users, applications and objects, environmental
conditions, date considerations) when establishing access control policies.

The prevalence of ABAC over traditional access control schemes like Identity-Based
Access Control (IBAC) or Group-Based Access Control (GBAC) is represented by the
efficiency, simplicity and flexibility of the access rules. In fact, complex policies can be
created and managed, without directly referencing to potentially numerous users,
applications and objects. Moreover, the structure of the policy can be independent from
the number of users within the system, with an enhanced flexibility especially in distributed
environments, where the specific domains can avoid any form of synchronization to create
consistent access control policies.

For instance, regarding the access policy depicted in Figure 4.1, an application may
access the resource if and only if:

 the list of its attributes contains at least Attribute 1;

 the list of its attributes contains at least Attribute 2 and Attribute 3.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 44 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Figure 4.1: Example of Policy for the ABAC approach

4.2.2 Review of the Available Solutions

In this section, we present some possible technical solutions for the authentication and
authorization architecture (OAuth2.0) and the token format (i.e. Macaroons and JSON
Web Tokens), along with an initial comparison between their application in the symbIoTe
context. The final comparison of both token format implementations in symbIoTe that
considers security requirements and architecture is presented in Section 4.4.

4.2.2.1 OAuth 2.0

The OAuth 2.0 authorization framework, introduced in 2012, is one of the most adopted
and trusty solution for managing access control in Internet. It was designed to allow a
third-party application to get access to protected resources possessed by a user, without
requiring the previous sharing of user's credentials [3].

OAuth 2.0 framework describes four different actors:

 Resource Owner (RO): the owner of a resource, able to grant or deny access to
protected resources.

 Resource Server (RS): a dedicated server machine on which resources are
stored.

 Client: an application that makes requests for accessing resources on behalf of the
RO.

 Authorization Server (AS): a dedicated server machine which issues access
tokens, after authenticating with the RO.

To sum up, OAuth 2.0 allows a third-party application to obtain access to a HTTP service
on behalf of a resource owner,. This is obtained through an approval interaction between
the resource owner and the HTTP service. Access grants are released on a token-based
approach. The definition of tokens is out-of-scope for the reference specification.

This interaction between the actors is depicted in Figure 4.2.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 45 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Figure 4.2: Protocol flow for the OAuth 2.0 access control framework

It is worth noting that all the messages described within the OAuth 2.0 specification are
secured by the TLS protocol.

OAuth 2.0 defines different kind of tokens. An access token encodes the authorization
issued to a client, and it is used to access resources on the RS. No specific details are
provided regarding the format and the content of the token, but a common rule is to
explicitly indicate the time-validity of this token in a dedicated entry within the token itself.

On the other hand, refresh tokens are used to obtain new access tokens. Specific
implementations of the OAuth 2.0 authorization framework can customize their issuing at
the AS; however, they are used only between the client and the AS.

Details about tokens are not provided by the main OAuth 2.0 authorization framework.
Therefore, there are many technical documents and RFCs that specifically addressed this
issue. Examples are [4] and [9].

OAuth 2.0 offers interesting functionalities, such as a general framework for managing
authorization and the decoupling between evaluation of access rights and access to
resources. Unfortunately, it cannot be used in symbIoTe as it is. In fact, the system
architecture depicted by OAuth 2.0 is not aligned with the components identified in
symbIoTe, as well as interactions envisaged between them. This is because OAuth 2.0
supposes that the control over resources is maintained by a single Resource Owner, while
in symbIoTe we have different platforms (i.e., different Resource Owners) that share their
resources. However, it can still be used as a useful starting point for the design of the
provided security architecture.

4.2.2.2 Macaroons

Macaroons were developed by Birgisson et al. from Google in 2014 to overcome the
problem of delegating access rights in public cloud computing systems like Google
documents [8]. The idea is based on nested structure of HMAC. As bearer’s credentials
Macaroons offer similar function as cookies in World Wide Web, but they are more flexible
and provide better security. Their construction relies on nested, chained HMAC (Hash-
based Message Authentication Code (HMAC)) structure in a highly efficient, easy to

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 46 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

deploy and widely applicable manner. Each field embedded within macaroons’ structure,
i.e. the caveat, restricts both the macaroons’ authority and the context in which it can be
used (e.g. by limiting the permitted operations and requiring its bearer to connect from a
particular IP address to present additional evidence such as a third-party signature).
These caveats are readable plain texts. A Macaroon also contains a list of AND
conditions.

Figure 4.3: A generic structure of a root macaroon

The main (root) macaroon, whose generic structure is presented in Figure 4.3, gets suc-
cessfully attenuated with those conditions. Each of them is signed with an HMAC function.

In the initial stage of symbIoTe project we studied the option of using macaroons for
granting access to resources and delegating authorities. A network of federated IoT
platforms like symbIoTe resembles public cloud computing systems like Google, Dropbox
etc. in several aspects. Therefore, we claimed that Macaroon tokens designed for the
purpose of fine-grained authorization in public cloud systems will fill the needs of
symbIoTe. In M7 we gave a proposal of exchanging security messages between the
system components according to the scheme presented in Figure 4.4.

Figure 4.4: An initial proposal of Level 2 sequence diagrams that describe how
macaroons are applied for granting access to resources from Platform B

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 47 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

We assume that Platform B has registered its resources in core layer and a user of
Platform A can find these resources through its search engine. The reference architecture
for this solution was presented in M4. In accordance with it, three types of tokens can be
used: the root macaroon, platform macaroons and user/application macaroons. The
mediator, that is the symbIoTe core creates a root macaroon by calculating the HMAC
function of a random nonce and its secret key. However, the output of the HMAC function
must be shared among AAM (Authentication and Authorization Manager) of federated
platforms for verifying the authenticity of tokens received during the resource access
procedure. Starting from the root macaroon the mediator also generates platform
macaroons. The platform macaroons are signed by the HMAC function with the key being
the previously calculated HMAC value. Then, each platform can autonomously generate
application macaroons by following the same process. However, further discussion on
security architecture excluded the possibility of sequence diagrams presented in Figure
4.4. By the date of issuing this deliverable the work on Level-2 seuqence diagrams is still
in progress. After obtaining a macaroon from the AAM component of its IoT platform a
user can further attenuate it and delegate their authorities to other entities. For example,
the owner of Smart Home platform can restrict the time his guests are allowed to open the
gate to his garage and handle the appropriate token to them. Besides, the owner of the
macaroon can specify whether it is possible to further delegate their authorities and restrict
the potential group of interest. An example of a platform macaroon in the context of
security architecture is given in Section 4.4.

4.2.2.3 JSON Web Tokens (JWT)

JWT is an open industry standard widely used in today's Internet to deal with
authentication and authorization issues [4].

It contains a set of claims. A claim is a specific certified statement related both to the token
itself or to the entity that is using it. Typically, these claims are encoded in the JSON
format, thus easily allowing system interoperability.

A claim is identified with a specific name: it is possible to distinguish between Registered
Claim Names, that are names defined and standardized in the reference document and
Private Claim Names, that represent extensions that a developer could choose for his/her
own system.

The cryptographic force of the JWT resides in the sign field, stored at the end of the token.
It can be generated through symmetric or asymmetric cryptography techniques and allows
verifying the authenticity of the token, i.e. generation by a trusted entity, as well as
integrity, in the sense that no one could modify its content without invalidating it.

Each JWT contains a header that provides information about the type of the token and the
algorithm used to build the sign of the token. It contains also a body, encoding a set of
claims for this token, and finally - a sign containing the cryptographic validation of the
token and generated as stated in the header. In Table 4.1 depicted below we can observe
Registered Claim Names carried in the body of the JWT.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 48 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Table 4.1: Registered Claim Names of the JWT and related description

Registered Claim Name Description

iss It uniquely identifies the entity that issued the token

sub It uniquely identifies the entity for which this token has been
released (it is a key field when a token needs to be used also
for authentication purposes)

exp It indicates the expiration time, after which this token should
not be used and processed by any entity in the system

nbf It identifies the time in which this token becomes effectively
valid and can be processed by any entity in the system

iat It uniquely identifies the time in which this token has been
created

jti It is the unique identifier of the token

Important features useful in symbIoTe, such as the support for an expiration date, are
integrated in JWT thanks to the definition of the exp claim.

Also, each token can be easily associated with a given entity in the system through the
sub claim. Specifically, the public key of the owner of the token can be embedded in this
claim. This can be used in the challenge-response procedure to prove the possession of
the respective private key and verify that the application using the token is effectively the
entity for which the token has been generated. This procedure avoids replay attacks.

Finally, the JWT can be easily extended to support the carrying of attributes associated
with the ABAC logic, thanks to the possibility to integrate customized Private Claims.

4.3 Security Architecture and Components

The reference architecture considered in this contribution is depicted in Figure 4.5.

It integrates many independent IoT platforms exposing heterogeneous resources. Each
IoT platform (thus, each available resource) is registered with a trusted mediator (i.e. the
symbIoTe core), which offers advanced mechanisms for enabling platform interoperability
and distributed resource access. Moreover, there are applications willing to access the
available resources.

To maximize interoperability among platforms the developed security framework has to
deal with different scenarios: applications can be registered only with the symbIoTe core,
only with one IoT platform, or with two (or more) IoT platforms federated with symbIoTe.
Therefore, the following target scenarios can be identified:

 Scenario #1: an application is registered with an IoT platform and it would like to
access resources exposed by the IoT platform where it is registered with. This is the
case of a typical closed system, where applications, services and resources are
controlled by the same administrator, without the need to interface with other
platforms.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 49 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Figure 4.5: symbIoTe System Architecture

 Scenario #2: an application is registered with the trusted mediator and it would like
to access resources exposed by a federated IoT platform. This is the case of a
third-party application developer, which implements special applications to access
services and resources exposed by a given IoT platform controlled by a different
administrator.

 Scenario #3: an application is registered with one or more IoT platforms federated
with the mediator and it would like to access resources exposed elsewhere in the
considered architecture. This is the case of a current sensor in a private smart
home. To access the data, the system could require an application to register both
with Smart-Home and the Service Provider IoT platforms. We refer to this scenario
as the multi-domain access rights composition paradigm.

4.3.1 Main Security Rationale

The solution described hereby offers the decoupling between authentication and
authorization processes. This means that authentication and authorization involve different
components and are independently executed at different times. An application uses the
authentication procedure to authenticate itself within a given domain (like the symbIoTe
mediator or an IoT platform federated with the mediator). In case of a successful
authentication it obtains a set of tokens storing its own attributes. Then, the collected
attributes can be used during the authorization procedure to obtain access to resources
only if the provided attributes satisfy the access control policy associated to the requested
resources. A big picture of the proposed architecture is illustrated in Figure 4.6. As a
general remark, the resource access is handled through the ABAC logic, described in
Section 4.2.1.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 50 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Figure 4.6: Main Security Rationale

Each platform has its own registered users/applications. Applications, as well as attributes
related to each of them, are stored in the Authentication and Authorization Manager
(AAM), which is the Authority for this platform. An attribute encodes a specific property,
role or permission assigned to an application or component in the symbIoTe ecosystem.
Attributes are stored within a digital object, namely a token, that certifies the authenticity of
both the issuer (i.e., a dedicated component of the mediator or the IoT platform) and the
owner (i.e., the application or the component), additionally to its time validity. Both
symmetric or asymmetric cryptography techniques can be used to ensure authenticity and
integrity of those tokens. To provide few examples, Macaroons, described in Section 4.2.2,
use symmetric keys to generate a Hash-based Message Authentication Code (HMAC) that
assures integrity and authenticity of the token, while JWTs can be created both by using
symmetric or asymmetric keys. The initial configuration of users and related attributes is
performed offline, by the system administrator or by the platform owner. Following a
successful authentication procedure performed by an application, the AAM releases
tokens, each of them encoding attributes assigned to the user. Therefore, the token
represents a key element in the resource access mechanism. From the security
perspective, it is generated during the authentication procedure, and inspected and
validated during the authorization procedure.

Resources, as well as the access control policies, are stored on the Resource Access
Proxy component, which represents the Policy Enforcement Point. An access policy
enables a fine-grained access control mechanism. In fact, it describes the combination of
attributes needed to obtain the access to a given resource. For each resource, a dedicated

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 51 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

access policy can be defined. An application in possession of tokens storing a set of
attributes matching the access policy can successfully obtain the access to the resource.
Otherwise, its access request will be denied.

With reference to Figure 4.6, an application forwards the tokens to the RAP. The RAP
validates the token, verifies that it has been issued for this application and if it is still valid.
If the token is successfully validated, the RAP checks the policy against the set of
attributes provided by the application. If the policy is satisfied, the RAP grants the access
to the resource. Otherwise, the access is denied.

Since an application should not perform the whole authentication process for each
resource access, the designed approach allows also for enhanced flexibility and scalability
benefits for the whole system.

Note that when an application or component registered in a given IoT platform or in the
symbIoTe mediator would like to access resources exposed elsewhere, it could be
possible that the attributes that are assigned to it are not valid in the new domain.
Therefore, an Attributes Mapping Function is needed to manage the translation between
attributes in different platforms.

Thanks to the described functionalities, at the same time the interoperability framework
works on top and extends the existing security architecture of a given IoT platform,
providing procedures for allowing secure communications with foreign IoT platforms and
third-party applications.

In what follows we provide a thorough description of functionalities and the scope of the
components in the symbIoTe architecture specifically devoted to the management of
security procedures. These are:

 Core Authentication and Authorization Manager (Core AAM)

 Platform Authentication and Authorization Manager (Platform AAM)

 Security Handler (SH)

4.3.2 Core Authentication and Authorization Manager

The Core Authentication and Authorization Manager (Core AAM) handles the
authentication procedure only for third-party applications, i.e., applications registered with
the symbIoTe core. Therefore, as a result of a successful authentication procedure, it
releases core tokens, storing attributes that describe properties, roles and/or permissions
assigned to the application at the mediator side, according to the ABAC logic described in
Section 4.2.1.

Moreover, it also manages a Token Revocation List (TRL), storing the list of tokens that
have been revoked before their nominal expiration (i.e., the expiration date reported in the
token itself). For this reason, it may be contacted by any component in the architecture
during a dedicated procedure, namely the check revocation procedure, to check if a given
token is still valid.

When the Core AAM is contacted by a platform component or application, i.e., a
component or an application that is registered within a platform federated with symbIoTe, it
performs many operations to verify that the component/application is authentic, the tokens
that it is providing are valid and they have not been revoked asynchronously, before the
nominal expiration date reported in each of the tokens.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 52 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

The Challenge-Response procedure is initiated by the Core AAM to verify that the
component/application that is using a token is effectively the entity for which this token has
been issued. The procedure leverages public keys included in the token, and requires the
component/application to demonstrate the possession of the respective private key
corresponding to the public key reported in the token. During the challenge-response
procedure, also the Core AAM authenticates towards the component/application, thus
realizing the mutual authentication, as required by the Security Requirements no. 20.

Following a successful outcome by the previous procedure, the Core AAM executes the
token validation procedure, aiming to verify the cryptographic validity of each of the
presented tokens. Specifically, the Core AAM checks that the expiration date indicated
within the token does not exceed the actual date, and that the final part of the token is
cryptographically valid (it can be an HMAC in case Macaroons are used or a digital sign in
case JWTs are adopted).

Then, the check revocation procedure previously described is applied.

If all the previous steps end successfully, the Core AAM executes the Attribute Mapping
Function, in which it translates each of the attributes included in each of the token in a new
attribute, valid within the symbIoTe core layer. Thus, a new set of tokens is issued and
delivered to the component/application. These tokens will be used to access services and
resources in the symbIoTe core, according the ABAC paradigm.

4.3.3 Platform Authentication and Authorization Manager

The Platform Authentication and Authorization Manager (Platform AAM) handles the
authentication procedure for platform components or applications, i.e. components or
applications registered in a particular IoT platform federated with symbIoTe.

As a result of a successful authentication, it releases home tokens storing attributes that
describe properties, roles and/or permissions assigned to the component or application
within the platform where it is registered in, i.e., its Home Platform. Moreover, similarly to
the Core AAM, it manages the TRL and can be contacted by any component in the
architecture during the check revocation procedure.

The Platform AAM can also be contacted by third-party components/applications or foreign
components/applications, i.e. components/applications that are registered within other IoT
platforms federated with symbIoTe. These situations occur when these
components/applications want to access to resources hosted in the IoT platform in which
the Platform AAM is located (see, e.g., the Sequence Diagram reported in Section 4.4).

As described for the Core AAM, when the Platform AAM is contacted, it performs many
operations to verify that the component/application is authentic, the tokens that it is
providing are valid and they have not been revoked asynchroneously, before the nominal
expiration date reported in each of the tokens.

If all the previous steps end successfully, the Platform AAM executes the Attribute
Mapping Function, in which it translates each of the attributes included in each of the
home tokens in a new attribute, valid within the IoT platform in which it is registered. As a
result, a new set of tokens is issued, namely Foreign Tokens, and they are delivered to the
component/application. These foreign tokens will be used to access services and
resources in the IoT platform, according the ABAC paradigm.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 53 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

4.3.4 Security Handler

The Security Handler (SH) component is a library, that can be plugged within any
component in the symbIoTe ecosystem, to provide it witha wide set of security procedures
and functionalities.

The installation of the Security Handler is a cornerstone operation for components that
want to interact either with the core layer or with other IoT platforms.

First of all, the Security Handler allows the host component to authenticate with its
reference AAM (it can be the Core AAM in case it is a third-party application or a Platform
AAM if the host application is a platform application). Secondly, the Security Handler
authenticates the reference AAM with which is communicating, thus providing mutual
authentication.

Moreover, the SH includes the procedures to retrieve, store and manage tokens. These
procedures are executed when the reference component tries to log-in in another platform
or in the core layer. In this case, the SH performs also the challenge-response procedure
on behalf of the reference component, by using the private/public key pair that has been
assigned to it.

Finally, the SH includes also functionalities for verifying X.509 certificates delivered by
foreign components to authenticate with the host component.

4.4 Token Formats and Comparison

The implementation of the security architecture described in Section 4.3 requires the
selection of a suitable token format.

The following discussion does not provide only a comparison between the two
approaches, but it illustrates also how Macaroons and JWTs can be modified in order to fit
within the proposed architecture.

4.4.1 Token Format and Security Requirements

We made a thorough investigation of Macaroon tokens and JSON Web Tokens to identify
whether symbIoTe security requirements are fulfilled by them. In Table 4.2 we summarise
the results of our work. System security requirements are copied from Deliverable D1.2.
Each row indicates whether the corresponding requirement is fulfilled or not. For clarity
reasons we put a short message ‘YES” if the corresponding requirement is fulfilled by the
authorization token that we refer to in the respective column. Otherwise, we put ‘NO’. The
last column consists of comments or remarks that explain special cases. The numbers
included in the “Use Cases” column denote the particular symbIoTe Use Cases which are:

1 – Smart Residence

2 – Edu Campus

3 – Smart Stadium

4 – Smart Mobility & Ecological Routing

5 – Smart Yachting

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 55 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Table 4.2: Security system requirements and their fulfillment by Macaroon tokens and JSON Web Tokens (JWT)

Index Domain Description Use Cases Macaroons
JSON
Web

Tokens
Comments

1 All
The system MUST offer mechanisms for the authentication of
symbIoTe entities/actors i.e., users/application developers, IoT
platforms, developed applications and clients.

1,2,3,4,5 YES YES

2 All
The system MUST offer mechanisms for the authorization of
symbIoTe entities/actors i.e., users/application developers, IoT
platforms, developed applications and clients.

1,2,3,4,5 YES YES

3 Application

The SymbIoTe ecosystem must offer mechanisms to establish trust
relationships - and thus implicitly trust levels - prior to applying
security mechanisms for the first time. This information must be
stored in a secure datastore. e.g. by PKI infrastructure.

2 not refer to
not refer

to

4
Smart
Space

The authentication to a smart space SHOULD work even if the smart
space is disconnected from the Internet.

1,2,3,5 YES/NO YES

If a copy of core AAM is included in
each platform within symbIoTe
then authentication with macaroons
is possible. More details about this
in section 4.4.3

5
Application
/
Cloud

The system MUST support the revocation of access rights to
users/application developers, IoT platforms. (Comment: Although in
the Yachting use case it might only be revoked when the system
comes online again.)

1,2,3,4 YES YES

This requirement can be fulfilled by
allowing AAMs to asynchronously
revoke tokens that they created.
Therefore, it is more related to the
architecture than to token format.
This is supported in the
architecture through the "check
revocation procedure”

6
Application
/Cloud

The system MUST explicitly support access rights expiration. 1,2,3,4 YES YES This requirement can be fulfilled by
just including in the token an

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 56 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

expiration time. Both Macaroons
and JWT support this feature.

7 Cloud
The authentication mechanisms of the system MUST support
identity federation (e.g. single sign-on).

1,2,3,4 YES YES

Attribute Mapping Function is
responsible for translating the
attributes from one platform to
another. Both Macaroons and
JWTs support this feature.

8
Application
/ Cloud

The system MUST preserve end-user privacy. (E.g. locations of end
users / sent sensor data and their identity, e.g. via data
anonymization)

1,2,3,4,5 not refer to
not refer

to

Data anonymization can be done
via generalization or indexing the
sensor,
This is a requirement related to the
security architecture

9
Smart
Space

The system MUST support encrypted data communication between
all involved entities on level 1 and 2 (e.g. the SymbIoTe core,
platforms, etc.).

1,2,3,4,5 not refer to
not refer

to
Encryption depends on applying
ciphering protocols like SSL.

10
Smart
Space

The system MUST ensure privacy protection on each layer, do not
publicly expose e.g., devices information or application used by
applications.

1,2,3 not refer to
not refer

to

11
Application
/ Cloud

The system MUST support fine-grained and standardised access
rights to registered IoT resources, including also aggregated
resources e.g., resources provided by enablers.

E.g. it must be possible to identify individual sensors (which also
allows tracking their wearers) for the layer which interpolates the air
quality from individual sensors. This functionality is done on a
domain specific layer. The output of this will not give data from
sensors away but for other entities (like street segments).

E.g. In the smart stadium use case, the "normal" user should not be
allowed to see locations of individuals. Certain personal security
might need access to this information.

1,2,3,4

YES YES
This feature is related more to the
policy than to the token format.

12
Application
/ Cloud

The system MAY provide best practices guide for applications to set-
up end-user security in order to function in a secure and privacy-
preserving way.

2,3 not refer to
not refer

to

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 57 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

13
Application
/ Cloud

The system MUST provide the possibility to let users / entities
choose where (enablers/IoT platforms) their data is being used and
processed. The users/entities MUST be able to modify the privacy
parameters regarding their data.

1,2,3,4 YES YES

With macaroons the entities can
confine authorities however it is
arguable if users can reject their
previous operations of authority
confinement; macaroon tokens
cannot be modified ad hoc.
However a new macaroon can be
issued for revoking the previously
given rights.

14
Application
/Cloud

symbIoTe SHOULD detect and propagate any security error
notifications through the system to application/enablers/end user.

1,2,3,4,5 not refer to
not refer

to

15 Application

The terminology used to describe the system status must not be
overly technical so that users can understand without having a
technical background. symbIote MAY create best practices with
unified terminology for developers of applications and enablers.

 not refer to
not refer

to

16 All layers Access rules MUST be defined as an access policy. not refer to
not refer

to

Access policy is based on the
attributes and both Macaroons and
JWT address the problem of
authorization.

17 All layers
The system MUST allow entities to delegate access to specific
resources to other entities (e.g. by the usage of bearer access
tokens)

1,2,3,4 YES YES

18
Application
/Cloud

The system MUST support the authentication of the user without
implying authorization for a specific resource.

(E.g. it must be possible for platform B to have a user of platform A
authenticated (by platform A) in a secure way while roaming in
platform B)

2.4 YES YES

If the token (either a Macaroon or a
JWT) does not include any
information about accessible
resources, but only attributes, the
same token can be used to try to
access to different resources, until
its validity expires. Tokens protect
data integrity and identity of
entities. Thus, this requirement is
related both to token format and

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 58 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

architecture.

19 Application
Symbiote MAY support Multi-Factor Authentication if the underlying
platform supports it. (e.g. Authentication using password and PIN)

 not refer to
not refer

to

20 Application

Mutual authentication must be supported by all security
mechanisms.

(i.e. NOT only the user/application/software/... must be authenticated
against the platform but also vice versa in order to facilitate
malicious platform detection)

4 YES YES

This requirement depends strongly
on the implementation of the
challenge-response procedure. If it
is implemented correctly, both
Macaroons and JWT fulfill it.

21
Application
/Smart
space

The access to a resource MUST be handled through 'Attribute-
Based Access Control (ABAC)' schemes. An 'attribute' refers to a
generic property/role/permission that the application grants during
the authentication phases.

1 (MAY) YES YES
ABAC can be implemented both
with Macaroons and with JWTs.

22
Smart
Space

Within smart spaces it must be possible to run a local symbIoTe core
instance for privacy and security reasons (e.g. a symbIoTe core
instance installed in a smart residence). This instance might not be
connected to the Internet (but could). If connected to the Internet it
might expose sensors to another remote symbIoTe core instance.

2,3
(SHOULD)

YES YES

Provided that a local instance
contains a complete copy of the
symbIoTe core that supports all its
mechanisms and functionalities.
However, if not connected to the
Internet then it can work only
locally.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 59 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Observe that, according to Table 4.2, the performance of both Macaroons and JSON Web
Tokens is similar for almost all security requirements. Only for requirement 4 Macaroons
fail to support offline authentication unlike JWTs. This is because a root macaroon must be
issued by symbIoTe core.

4.4.2 Token Content and Format in symbIoTe

In the following Figure, we compare the format of tokens described in Section 4.2.2. Even
if the complexity of their structure is similar, the difficulty in implementation of security
operations with each token format is an open issue.

Figure 4.7: Authorization tokens: (a) a Macaroon, (b) a JSON Web Token

The application macaroon issued by a platform AAM to an application registered in the
same IoT platform is showed in 4.7(a). It has a hierarchical structure. The nonce is used
as a unique identifier of the token. The second, third and fourth caveats are related to the
AAM of the platform in which the application is registered with. The ID of the AAM is
signed through the private key of the mediator entity (PVroot). The remaining lines are
dedicated to the application. They contain the list of attributes assigned to the application,
its public key certificate and, finally, the sign on the user ID by the AAM that issued the
token, through its private key (PViot-a). The last line is needed to assure that the AAM is the
unique component able to sign the token. Finally, the last caveat is the chained HMAC of
all the caveats in the token, performed starting from the output of the HMAC function of the
root macaroon.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 60 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

The application JWT issued by a platform AAM to an application registered in the same
IoT platform is showed in Fig. 4.7(b). Also, in this case we can identify the part related to
the issuer of the token, certified through the sign with the private key (PVroot), and the part
related to the owner of the token.
The private claim “att” is introduced to encode the information about the list of attributes
possessed by the application. Finally, the sign of the whole token is performed through the
private key of the issuer (PViot-a) without the need of a symmetric shared secret.

Note that both token types have a limited time validity. After the expiration of that date, the
token must be renewed through a new authentication procedure.

4.4.3 Evaluation of Macaroons and JSON Web Tokens

In the 3rd Plenary Meeting that took place in Rome in November 2016 we compared the
security functionalities of Macaroons and JSON Web Tokens in terms of potential use in
the reference security architecture of symbIoTe that is described in Section 4.3. Three
basic evaluation criteria of the considered authorization tokens were:

a) the fulfillment of security requirements

b) match between token formats and the reference architecture

c) difficulties in implementation

In the discussion, the members of symbIoTe consortium assessed that both Macaroons
and JSON Web Tokens can be applied as authorization tokens in a way that fulfills the
security requirements and matches the reference architecture. The performance of both
tokens was investigated to be very similar in most cases. Both tokens support ABAC,
delegation of rights and their contextual confinement, even though these features are
implemented differently. As listed in Table 4.2 both Macaroons and JSON Web Tokens
support mutual authentication, which protects against logging in malicious platforms,
expiration of access rights (‘time constraints’ field in a platform macaroon, ‘exp’ filed in
body of a corresponding JWT) and Attributes Mapping Function.

However, there are slight differences in performance of both tokens that have to be noted.
One difference refers to the case of offline authentication. The correct performance of
offline authentication while implementing Macaroons requires that an instance of
symbIoTe core is launched in the considered platform. In that case, a platform AAM issues
a root macaroon on behalf of the Core AAM. Besides, the access to symbIoTe core must
be periodically refreshed. Otherwise, the tokens (regardless of their format) will expire, and
consequently access to the resources will be prevented. In case of JWTs, offline
authentication in Platform side works irrespectively of the connection to symbIoTe core or
its instance. This is because JWTs can leverage asymmetric cryptography techniques.
Thus, the knowledge of only the public key of the creator of the token is enough for
verifying it. Another important difference between both token formats is represented by key
management. We claim that the implementation of Macaroon tokens would require solving
key management and distribution concerns. This problem originates from the construction
of Macaroons, i.e. the issuer of the session key and its verifier (according to the original
concept presented in [8]) is the same entity. Although this concept works well with public
cloud computing systems, it can cause security threats in symbIoTe because the
symmetric key used to generate the sign of the token would be shared with each AAM and

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 61 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

RAP entity in the system. This problem can be overcome by integrating Macaroons with a
key management system. In case of JSON Web Tokens, we do not observe this problem
due to different construction (token_sign field that includes the private key of the issuer
without the need of a symmetric shared secret).

Finally, we tried to identify possible difficulties in implementation. It turned out that while
there is a publically available ‘libmacaroon’ library including the implementation of
Macaroons in C, there is no similar library in Java [28]. In case of JSON Web Tokens, we
have jjwt library that is publically available [29]. We have ready implementations of JWTs
in Java and Spring, which will simplify their integration with the remaining parts of the
architecture that are implemented in Java and follow the microservices architectural
approach.

Taking into account security concerns and the much simplier implementation with JWTs,
the symbIoTe consortium decided to choose JSON Web Tokens as authorization tokens
for security operations in symbIoTe. However, we concluded that Macaroon tokens could
be applied as well but with additional burden of work; that is the implementation/integration
of a key management system and libraries in Java that would cooperate with rest of the
software.

4.5 Interfaces and Services for the Security Components

A detailed description of interfaces and services envisioned for each security components
will be provided in this section. Section 4.5.1 focuses on the Core AAM, Section 4.4.2
describes the Platform AAM, while Section 4.5.3 highlights interfaces and services for the
SH. For each of the components, a table is provided highlighting the sequence diagrams in
which those interfaces are used. The sequence diagrams have been described in D1.2
and they are:

 Resource Registration (S1)

 Resource Unregistration (S2)

 Resource Update (S3)

 Monitoring of Resource Availability (S4)

 Search for Resources (S5)

 Access to Resources (S6)

 Monitoring (S7)

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 62 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

4.5.1 Core AAM: Interfaces and Services

Two interfaces are envisioned for the implementation of the Core AAM. They are the
AppAAInterface and the PlatformAAInterface.

The AppAAInterface is the interface that groups services implemented on the Core AAM
and dedicated to the communication between the Core AAM and third-party
applications/components in the symbIoTe application domain. At the time of this writing,
the only service included in this interface is the SignIn service, used by third-party
applications/components to authenticate with the Core AAM. The inputs provided to this
service are the username and the password of the application/component. The output
provided by the service is a set of tokens, storing trusted attributes that are assigned to the
application/component in the symbIoTe core layer.

The PlatformAAInterface is the interface that groups services implemented on the Core
AAM and dedicated to the communication between the Core AAM and platform-side
applications/components. The PlatformAAInterface includes two services, that are the
RequestCoreToken and the CheckCoreTokenRevocation services. The
RequestCoreToken service is used by foreign components/application to obtain the
desired set of core tokens. The input that must be provided to this service is constituted by
a list of tokens (the application/components home tokens), while the output is a list of core
tokens.The CheckCoreTokenRevocation service is used by platform AAMs to verify the
validity of a given token list, used by applications registered in the symbIoTe core layer
when they try to access resources outside the symbIoTe core. The input to this procedure
is a list of core tokens, and the output is a list of statuses, indicated if each of the input
tokens is valid or not.

The following table (Table 4.3) highlights the main features of the above-described
interfaces of the Core AAM.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 63 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Table 4.3: Core AAM Interfaces and Services

Interface Service Functionality Seq.
diagrams

Involved
components

Input Output

AppAAInterface SignIn Authentication
of components

and
applications
registered in

the core

S4

S5

S6

Application/
Enabler

username,
password

Core token

PlatformAA
Interface

Request CoreToken Authentication
of components

and
applications
registered in

the IoT
platforms

S1

S2

S3

S4

S7

Registration
Handler,

Monitoring

Home
tokens

Core
tokens

Check
CoreTokenRevocation

check actual
validity of home

tokens

S4

S5

S6

Platform
AAM,

RAP

Core token Status
(YES/NO)

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 64 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

4.5.2 Platform AAM: Interfaces and Services

Two interfaces are envisioned for the implementation of the Platform AAM. They are the
HomeAAInterface and the ForeignAAInterface.

The HomeAAInterface is the interface that groups services implemented on the Platform
AAM and dedicated to the communication between the Platform AAM and home
applications/components, i.e., applications/components registered in the same IoT
platform. At the time of this writing, the only service included in this interface is the SignIn
service, used by third-party applications/components to authenticate with the Platform
AAM. The inputs provided to this service are the username and the password of the
application/component. The output provided by the service is a set of tokens, storing
trusted attributes that are assigned to the application/component in the reference IoT
platform.

The ForeignAAInterface is the interface that groups services implemented on the Platform
AAM and dedicated to the communication between the Platform AAM and foreign
applications/components, i.e. applications/components registered in the symbIoTe core
layer or in another IoT platform federated with symbIoTe. The ForeignAAInterface includes
two services, that are the RequestForeignToken and CheckHomeTokenRevocation
services. The RequestForeignToken service is used by foreign components/applications to
obtain the desired set of foreign tokens. The input that must be provided to this service is
constituted by a list of tokens (the application/component home tokens), while the output is
a list of foreign tokens. The CheckHomeTokenRevocation service is used by other
platform or Core AAMs to verify the validity of a given token list, used by applications
registered in the reference IoT platform when they try to access resources outside the
reference IoT platform. The input to this procedure is a list of home tokens, and the output
is a list of statuses, indicated if each of the input tokens is valid or not.

The following table (Table 4.4) highlights the main features of the above-described
interfaces of the Platform AAM.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 65 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Table 4.4: Platform AAM Interfaces and Services

Interface Service Functionality Seq.
diagrams

Involved
components

Input Output

HomeAA

Interface

SignIn Authentication
of

components
and

applications
registered in
the home IoT

platform

S1

S2

S3

S4

Registration
Handler,

Monitoring

username,
password

Home
token

ForeignAA
Interface

Request Foreign

Token

Authentication
of

components
and

applications
registered in
the foreign

IoT platforms

S4

S6

Application/Enabler Home
tokens

Foreign
tokens

 CheckHomeTokenRevocation check actual
validity of

home tokens

S1 S2 S3
S4 S6 S7

Core AAM, RAP Home
token

Status
(YES/NO)

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 66 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

4.5.3 Security Handler (SH): Interfaces and Services

A single interface is envisioned for the implementation of the SH, i.e. the SecurityInterface.

The SecurityInterface is the interface that groups services implemented on the SH and
dedicated to the communication between the SH and any component in the symbIoTe
ecosystem. The SecurityInterface includes three services, i.e. the ChallengeResponse, the
VerifyCertificate and the VerifyToken services.

The ChallengeResponse service is used to execute operations connected with the
Challenge-Response procedure. Its input is a challenge, while its output is a status that
identifies if the target application/component is authentic or not.

The VerifyCertificate service, instead, is used to verify the validity of X.509 certificates
supplied to the host component/application. Its input is a X.509 certificate, while its output
is a status indicating if the certificate is valid or not.

Finally, the VerifyToken service is used by any component in the symbIoTe ecosystem to
verify the full validity of a token. This includes the performing of the challenge-response
procedure, the cryptography validation of the token and the check of the asynchronous
revocation of the token.

The following table (Table 4.5) highlights the main features of the above-described
interfaces of the SH.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 67 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Table 4.5: SH Interfaces and Services

Interface Service Functionality Seq.
diagrams

Involved
components

Input Output

SecurityInterface

Challenge
Response

Management of
the challenge-
response
procedure

S1,S2, S3

S4,S5, S6

S7

Registration
Handler,

RAP,

Application/
Enabler,

Monitoring

challenge Status
(YES/NO)

Verify
Certificate

Validation of
X.509 certificates

S1

S2

S3

Registration
Handler,

RAP

X.509
certificate

Status
(YES/NO)

Verify

Token

Home/Foreign
Token validation

S1, S2, S3,
S4, S5, S6,

S7

Registry,

Resource
Monitor,

Search
Engine,

RAP

Home or
Foreign
Token

Status
(YES/NO)

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 68 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

4.6 Preliminary Implementation

In this section, we provide a preliminary implementation of a proof-of-concept, developed
to show the interactions between applications and components in the symbIoTe
ecosystem.

The proof-of-concept makes explicit reference to the sequence diagram describing the
access to resources exposed in an IoT platform federated with symbIoTe by a third-party
application, without reservation mechanisms, which has been thoroughly described in
D2.1.

Therefore, Section 4.6.1 recaps the main operations included in this sequence diagram,
while Section 4.6.2 provides more technical details about the preliminary implementation.

4.6.1 Level-1 Sequence Diagram: Access to Resources (without reservation)

The “Resource Access” procedure allows an application registered in the symbIoTe core
layer to access resources in an IoT platform, which these resources are produced in and
exposed. This procedure can happen both with and without resources reservation. Figure
4.8 depicts the corresponding message sequence diagram.

Figure 4.8: Sequence Diagram for Level-1 Resource Access Without Reservation

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 69 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

The procedure involves the following steps:

 Message 1 (optional): generated by the Application/Enabler and sent to the Security
Handler. It is used to trigger the recovery of the core token(s). If the Application/Enabler
is already logged in, it is not necessary.

 Message 2 (optional): generated by the Security Handler and sent to the core AAM in
which the Application/Enabler is registered. It is used to authenticate the Application/
Enabler. If the Application/Enabler is already logged in, it is not necessary.

 Message 3 (optional): generated by the core AAM in the IoT platform and sent to the
Security Handler. It is used to provide the core token(s) with attributes included. If the
Application/Enabler is already logged in, it is not necessary. If the Application/Enabler
is not registered in the core AAM or username and/or password are wrong, the core
token is not provided and a “401 Unauthorized” error code is returned to the Security
Handler.

 Message 4 (optional): generated by the Security Handler and sent to the Application/
Enabler. It is used to deliver the core token(s).

 Message 5 (optional): generated by the Application/Enabler and sent to Application
Security Handler. It is used to trigger the operations for obtaining the foreign token(s)
from IoT platform. If the Application/Enabler already has valid foreign token(s), it is not
necessary.

 Message 6 (optional): generated by the Application Security Handler and sent to the
foreign AAM in IoT platform. It is used to trigger the operations for obtaining the foreign
token(s). If the Application/Enabler already has valid foreign token(s), it is not
necessary.

 Procedure 7 (optional): procedure that allows the Security Handler that is acting on be-
half of the Application/Enabler to demonstrate that it is the real owner of the token(s). If
the Application/Enabler already has valid foreign token(s), it is not necessary. If an
error occurs during the challenge-response procedure, a “401 Unauthorized” error code
is returned to the application and no foreign token is provided.

 Procedure 8 (optional): verification of the time validity, authenticity and integrity of the
provided token(s). If the Application/Enabler already has valid foreign token(s), it is not
necessary. If an error occurs during the token validation procedure, a “403 Forbidden”
error code is returned to the application and no foreign token is provided.

 Procedure 9 (optional): verification of any asynchronous revocation of the token(s) (i.e.,
if any token(s) have been revoked by the home AAM before the expiration time
indicated within the token itself). If the Application/Enabler already has valid foreign
token(s), it is not necessary. If an error occurs during the check revocation procedure,
a “403 Forbidden” error code is returned to the application and no foreign token is
provided.

 Procedure 10 (optional): procedure that, in case it is needed, translates attributes that
the Application/Enabler has in the home IoT platform in a new set of attributes that it
has in the core layer. If attributes are the same or the Application/Enabler already has
valid foreign token(s), it is not necessary.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 70 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

 Message 11 (optional): generated by the foreign AAM and sent to the Application
Security Handler. It is used to deliver the foreign token(s) with the new attribute(s). If
the Application/Enabler already has valid foreign token(s), it is not necessary.

 Message 12 (optional): generated by the Application Security Handler and sent to the
Application/Enabler. It is used to forward the foreign token generated at the previous
step.

 Message 13 (mandatory): Application/Enabler sends request access to selected re-
sources to Core Resource Access Monitor. Message includes foreign tokens obtained
in previous message

 Message 14 (mandatory): Core Resource Access Monitor returns list of URLs for
selected resources in IoT platform.

 Message 15 (mandatory): generated by the Application/Enabler and sent to the Re-
source Access Proxy in the foreign IoT platform. It is used to access resources, while
providing the foreign token previously obtained.

 Message 16 (mandatory): generated by the Resource Access Proxy and sent to the
Security Handler in the foreign IoT platform. It is used to ask to the security handler to
verify the complete validity of the token.

 Procedure 17 (mandatory): procedure that allows the Application Security Handler that
is acting on behalf of the Application/Enabler to demonstrate that it is the real owner of
the token(s). If an error occurs during the challenge-response procedure, a “401
Unauthorized” error code is returned to the RAP and no resource is provided by the
RAP to the Application/Enabler.

 Procedure 18 (mandatory): verification of the time validity, authenticity and integrity of
the provided token(s). If an error occurs during the token validation procedure, a “403
Forbidden” error code is returned to the RAP and no resource is provided by the RAP
to the Application/Enabler.

 Procedure 19 (mandatory): verification of any asynchronous revocation of the token(s)
(i.e., if any token(s) have been revoked by the home AAM before the expiration time
indicated within the token itself). If the output is NO, this means that the token has been
revoked. Thus, a “403 Forbidden” error code is delivered to the RAP and no resource is
provided by the RAP to the Application/Enabler.

 Message 20 (mandatory): generated by the Security Handler in the foreign IoT platform
and sent to the Resource Access Proxy. It is used to communicate the outcome of the
token validation procedures performed by the Foreign Security Handler. If the output is
NO, no resource is provided by the RAP to the Application/Enabler and one of the
previously indicated error codes (401 or 403) is returned to the Application/Enabler.

 Message 21 (mandatory): generated by the Resource Access Proxy and sent to the
Security Handler. It is used to deliver the foreign token(s) previously verified and the
access policy of the requested resource to the Security Handler.

 Procedure 22 (mandatory): it is used to check if the attributes included in the foreign
token(s) satisfy the access policy associated to the requested resource. If the access
policy is not satisfied, a NO status is returned to the RAP. Thus, no resource is

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 71 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

provided and a “403 Forbidden” error code is returned by the RAP to the
Application/Enabler.

 Message 23 (mandatory): generated by the Security Handler and sent to the Resource
Access Proxy. It is used to deliver the result of the operation executed at the previous
step.

 Message 24 (optional): asynchronously emit resource usage per use/per stream start

 Message 25 (mandatory): this message can be synchronous, then Resource Access
Proxy returns data. If it is asynchronously then it can emit asynchronous messages for
some time.

 Message 26 (optional): if previous message is asynchronous then this message
informs Core Resource Access Monitor when the stream is ended

4.6.2 Details on the Preliminary Implementation

A preliminary proof-of-concept has been developed to show the interactions between
components described in Section 4.3 of this document.

The proof-of-concept refers to the sequence diagram described in Section 4.6.1, with
explicit reference to the case of resource access without reservation, depicted in Figure
4.8.

The perspective through which the diagram has been analyzed is from the
Application/Enabler’s point of view. Therefore, the preliminary implementation has been
divided into many steps, assembling together messages that are related to each other with
a request/response relationship.

Moreover, some figures include both the part of the sequence diagram involved in the step
and a terminal, showing the details on the message sent and received by the application
when interacting with another component in the symbIoTe ecosystem.

Each step has been thoroughly described in the following subsections.

4.6.2.1 Step 1: Request Core Token

The Application/Enabler sends a request to obtain the core token(s) from the Core AAM to
the Security Handler.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 72 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Figure 4.9: Step 1 of the Proof-of-Concept implementation

Interface: AppAAInterface

Service: AppAAInterface_RequestCoreTokens

input: username, password

output: core token(s)

4.6.2.2 Step 2: Core Token creation

The Security Handler requests the list of the core tokens available for this application from
the Core AAM.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 73 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Figure 4.10: Step 2 of the Proof-of-Concept implementation

Interface: AppAAInterface

Input: username of the application, password of the application, IP address of Core AAM

Output: list of core tokens

4.6.2.3 Step 3: Return core token to the Application

The Security Handler returns the Core token previously requested in Step 1 to the
Application.

Figure 4.11: Step 3 of the Proof-of-Concept implementation

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 74 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

As this is the return call to the function initiated in Step 1, the Interfaces and services
involved are the same.

Interface: AppAAInterface

Service: AppAAInterface_RequestCoreTokens()

input: username of the application, password of the application, IP adress of the Core
AAM

output: list of core token(s)

4.6.2.4 Step 4: Request Foreign Token

The Application/Enabler sends a request to obtain the foreign token(s) from the Foreign
AAM to the Security Handler.

Figure 4.12: Step 4 of the Proof-of-Concept implementation

Interface: ForeignAAInterface

Service: ForeignAAInterface_RequestForeignTokens();

Input: List of Core Tokens, IP address of the Foreign AAM

Output: List of Foreign Tokens

4.6.2.5 Step 5: Application Authentication to the Foreign AAM

The Security Handler running on the Application/Enabler forwards the core token to the
Foreign AAM for validation.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 75 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Figure 4.13: Step 5 of the Proof-of-Concept implementation

Interfaces: ForeignAAInterface, SecurityInteface

Input: List of Core Tokens, IP address of the Foreign AAM

Output: Challenge value

4.6.2.6 Step 6: Foreign Token request

The Security Handler provides the response to the challenge received at Step 5 and
requests the foreign token from the Foreign AAM.

Figure 4.14: Step 6 of the Proof-of-Concept implementation

Interfaces: ForeignAAInterface, SecurityInterface, PlatformAAInterface

Services: ForeignAAInterface_RequestForeignTokens,
SecurityInterface_ChallengeResponse,PlatformAAInterface_CheckHomeTokenRevocation

Input: Response, List of Core Tokens, IP address of the Foreign AAM

Output: List of Foreign Tokens

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 76 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

4.6.2.7 Step 7: Return Foreign Token to Application

The Security Handler of the Application/Enabler returns the foreign token to the
Application/Enabler, previously requested in Step 4.

Figure 4.15: Step 7 of the Proof-of-Concept implementation

As this is the return call to the function initiated in Step 5, the related API is the same.

Interfaces: ForeignAAInterface, SecurityInterface, PlatformAAInterface

Services: ForeignAAInterface_RequestForeignTokens,
 SecurityInterface_ChallengeResponse,
 PlatformAAInterface_CheckHomeTokenRevocation

Input: Response, List of Core Tokens, IP address of the Foreign AAM

Output: List of Foreign Tokens

4.6.2.8 Step 8: Access Foreign Resources with Foreign Token

The Application/Enabler makes an access request to the foreign RAP to obtain the desired
resource.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 77 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

Figure 4.16: Step 8 of the Proof-of-Concept implementation

Interface: Access Resource Interface (RAP)

Service: access resources

Input: RAP IP address, resource ID, list of foreign tokens, metadata (i.e., freshness);

Output: status, resource Value.

4.7 Other Security Related Issues

In symbIoTe, there are much more security concerns than authentication of users and
granting access to resources. First, the system must be resistant against Denial-of-Service
attacks, which can happen when a lot of entities overload the network with abnormally high
number of requests directed to the same network component. Besides, privacy of end
users and sensors must be protected by proper data anoymization. The search engine
must be designed in such a way that prevents illegitimate users to acquire knowledge on
the network structure of foreign platforms and symbIoTe core or gain administrative laws.

The Sections above focused mainly on security at the software level. However, hardware
security issues must also be addressed. Sensors, actuators and other network devices
must be hardened in terms of operating system, i.e. default entity names available in
search engine (cannot expose information about the manufacturer or firmware version),
passwords and a default configuration of database management system must be replaced
with a dedicated configuration. Passwords change policy and password rules (i.e. at least
8 letter, at least one capital letter, one digit, one special sign) must be obeyed as well.
Moreover, anomalous behavior in symbIoTe must be detected.

For this reason, a centralized approach to Anomaly Detection (AD) in symbIoTe was
presented in M11. There are two approaches to threat detection in information systems.
The first one relies on signatures of known attacks. However, it cannot detect 0-day
attacks and other unexpected behaviour in a computer network. Another approach is
based on detecting anomalies, which are patterns of data that do not conform to a well-
defined notion of behaviour. Anomaly detection can detect flaws or failures not related to
security. On the other hand, it can yield improper results that is false positives (showing

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 78 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

that a normal behaviour is an anomaly) or false negatives (not detecting threats).
Moreover, it needs to properly train and instrument the system to work correctly. Last but
not least, huge processing capabilities may be required to launch an anomaly detection
module.

Initial discussion considered both a centralized and a decentralized approach to anomaly
detection. In the decentralized approach, each IoT platform federated within symbIoTe
would have its own anomaly detection module, whereas in the centralized one, an AD
module is a dedicated entity within symbIoTe core. The prevalence of the centralized
approach over the decentralized one is represented mainly in simplified implementation.

In the centralized approach that is under discussion, an AD module is situated in
symbIoTe core. Its performance is based on Complex Event Processing (CEP) approach.
It collects data from platforms that expose the logs from all operations that refer to
resource access through generic RAP. The AD module has a tunable training phase,
where a system learns patterns of ‘typical behaviour’. For instance, it can learn that a
sensor in Smart Home is polled 5 times per hour on average. Thus, if this sensor is polled
50 times per minute, then the AD module can detect anomaly suspecting that it is an
attempt of a DDoS attack.

The proposed implementation is based on Zipkin Distributed Tracing service for traffic
analysis in symbIoTe core and Hystrix Circuit Braker for Health Check on services.
However, for correct performance of AD we also need statistics on external traffic which is
done by data mining of logged usage traffic reported by interworking API modules in each
platform. This data might be available for monthly periods to platform owners as usage
statistics reports – statistics module/DB.

Thus, thanks to Netflix (open source software for analysing operations in the cloud) we can
analyse the symbIoTe core and thanks to statistics we know how the traffic inside the core
is related to the traffic in platforms and how the traffic in Platforms affects the traffic in the
core layer. This is necessary to make reasonable decisions and avoid false alarms.

The final decision on the performance of anomaly detection module in symbIoTe and its
implementation is still an open point.

4.8 Summary

Chapter 4 gave a description of different access scopes. Useful starting points for the
proposal of the authentication and the authorization architecture were the ABAC approach
to authorization and its implementation with Oauth2.0, Macaroons, and JSON Web
Tokens. Starting from these concepts, we presented a security architecture designed by
us and evaluated the functionalities of two competitng token formats. We decided that
while both Macaroons and JWTs can successfully be applied to symbIoTe, the
implementation with JWTs is much simpler and does not bring additional implementation
and key management concerns. Finally, we presented a demo that justified our approach.
Besides, we briefly described other security related issues and threats that are present in a
network of federated IoT Platforms. Finally, we described our approach to anomaly
detection that is currently under discussion. A detailed description of the anomaly
detection module in terms of performance and implementation will be given in D3.2.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 79 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

5 Next Steps for T3.1 and T3.2

In this chapter, we will briefly outline a few key research topics which, based on the
present document, are planned for task T3.1 “Resource Trading and User-centricity” and
T3.2 “Security and Access Scopes” as next steps.

While the present deliverable has strongly focused on the B2B case, T3.1 will also have a
look into B2C scenarios, where devising an efficient auction scheme is of key importance.
Hand in hand with task T1.2, we will also contribute to develop further on the opportunities
which two-sided market theory will provide for trading in the symbIoTe case.

As already mentioned earlier, future work will also deal with defining parameters for basic
resource trading and detailed prosumer modelling. In this context, suitable modelling of
utility functions will contribute to the internal management of resource allocation based on
corresponding tradeoffs. For this purpose, also investigating the expected Quality of
Service (QoS) and/or Quality of Experience (QoE), e.g. with respect to response time vs.
availability, and cost functions for symbIoTe resources will be of specific relevance.

Another important topic to be tackled soon concerns a more general approach for
bartering which for instance allows for circular bartering (prosumer 1 offering good 1 to
prosumer 2 who offers good 2 to prosumer 3 who offers good 3 to prosumer 1) as well as
voucher composition (prosumer 1 composing two or more vouchers to receive a desired
good from prosumer 2 and/or 3 in exchange for good 1).

Moreover, we will contribute to the evolving description of several symbIoTe modules
which will further facilitate the bartering and trading functionality, including the Resource

Access Proxy (RAP), the Federation Manager and the Search Engine.

Next steps in T3.2 will be the implementation of anomaly detection module and making
final decision on Level 2, Level 3 and Level 4 sequence diagrams. First, the
implementation of security components that were described in Section 4.4 and 4.5 (i.e
Core AAM, SH, platform AAM) will be our main concern in next months. Interfaces and
services described in Section 4.5 will be implemented and will be ready for the next
release of the symbIoTe demo (planned for the end of M13), while the complete solution,
including the full set of security functionalities, will be provided by the end of M15.

Moreover, a specific definition of “Attributes” in the system will be provided, in strict
coordination with the work of the WP2. Accordingly, a logic for the Attributes Mapping
Function will be defined, in order to manage attributes assigned to applications also in
foreign platforms.

Finally, technical solutions for the challenge-response authentication procedure and details
about the token content will be further detailed.

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 80 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

6 References

[1] Hal Varian: Intermediate Microeconomics. A Modern Approach. W. W. Norton,

New York, 2010.

[2] A. Lazar, N. Semret: Design and Analysis of the Progressive Second Price
Auction for Network Bandwidth Sharing. Telecommunication Systems – Special
issue on Network Economics, 1999.

[3] D. Hardt (Ed.): The OAuth 2.0 Authorization Framework. RFC 6749, IETF, Oct
2012, available online https://tools.ietf.org/html/rfc6749.

[4] M. Jones, J. Bradley, N. Sakimura: JSON Web Token (JWT). RFC 5719, IETF,
May 2015.

[5] L. Macvittie: ABAC not RBAC. Welcome to the (IoT) world of contextual security.
September 2015. Available online: https://f5.com/about-us/blog/articles/abac-not-
rbac-welcome-to-the-iot-world-of-contextual-security

[6] V. Hu, D. Ferraiolo, R. Kuhn, et al.: Guide to Attribute Based Access Control
(ABAC) - Definition and Considerations. NIST Special Publication, January 2014.
Available online:

http://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.sp.800-162.pdf

[7] symbIoTe project Deliverable D1.2: Initial Report on System Requirements and
Architecture. September 2016.

[8] A. Birgisson, J. Gibbs Politz, U. Erlingisson, M. Lentczner: Macaroons: Cookies
with Contextual Caveats for Decentralized Authorization in the Cloud. Proc. of the
Conf. on Network and Distributed System Security Symposium, 2014.

[9] M. Jones, D. Hardt: The OAuth 2.0 Authorization Framework: Bearer Token
usage. RFC 6750, IETF, Oct. 2012.

[10] What is a Payment System? (PDF). Federal Reserve Bank of New York. 13 Oct
2000.

[11] B. Bossone, M. Cirasino: The Oversight of the Payment Systems: A Framework
for the Development and Governance of Payment Systems in Emerging
Economies. The World Bank, July 2001, p.7

[12] E. Turban, D. King, J. McKay, P. Marshall, J. Lee, D. Vielhand: Electronic
Commerce 2008: A Managerial Perspective. London, Pearson, 2008, p.550

[13] Mastercard: Security Rules and Procedures-Merchant Edition (PDF). 2009.
Retrieved: May 12, 2009

[14] https://www.searchenginejournal.com/the-10-most-popular-online-payment-
solutions/, Visited October 2016

[15] http://electroniccommercepaymentsystem.weebly.com/3-smart-cards.html

[16] https://www.paypal.com/webapps/mpp/paypal-fees

[17] http://uk.creditcards.com/credit-card-news/paypal-vs-plastic-1372.php

http://app.ny.frb.org/CfCBSWEB/Payments_Presentation.pdf
http://www.mastercard.com/us/merchant/pdf/SPME-Entire_Manual_public.pdf
https://en.wikipedia.org/wiki/Portable_Document_Format
https://www.searchenginejournal.com/the-10-most-popular-online-payment-solutions/
https://www.searchenginejournal.com/the-10-most-popular-online-payment-solutions/
http://electroniccommercepaymentsystem.weebly.com/3-smart-cards.html
https://www.paypal.com/webapps/mpp/paypal-fees
http://uk.creditcards.com/credit-card-news/paypal-vs-plastic-1372.php

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 81 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

[18] http://money.cnn.com/infographic/technology/what-is-bitcoin/

[19] J. Kopstein: The Mission to Decentralize the Internet. The New Yorker, 12 Dec
2013), retrieved 30 December 2014.

[20] https://www.google.com/wallet/faq/

[21] https://www.android.com/pay?referrer=utm_source=wallet&utm_medium=websit
e&utm_campaign=faqs

[22] https://en.wikipedia.org/wiki/Comparison_of_payment_systems

[23] http://www.digitaltrends.com/mobile/android-pay-guide/2/

[24] http://fortune.com/2016/03/24/apple-pay-gets-easier-to-use-this-year/

[25] http://www.theverge.com/2016/10/26/13414232/samsung-pay-online-purchases-
us-2017

[26] https://interledger.org/interledger.pdf

[27] https://webonanza.com/2015/10/07/why-w3cs-payment-system-proposal-
interledger-wont-work/

[28] https://github.com/rescrv/libmacaroons

[29] https://github.com/jwtk/jjwt

http://money.cnn.com/infographic/technology/what-is-bitcoin/
http://www.newyorker.com/tech/elements/the-mission-to-decentralize-the-internet
https://www.google.com/wallet/faq/
https://en.wikipedia.org/wiki/Comparison_of_payment_systems
http://www.digitaltrends.com/mobile/android-pay-guide/2/
http://fortune.com/2016/03/24/apple-pay-gets-easier-to-use-this-year/
http://www.theverge.com/2016/10/26/13414232/samsung-pay-online-purchases-us-2017
http://www.theverge.com/2016/10/26/13414232/samsung-pay-online-purchases-us-2017
https://interledger.org/interledger.pdf

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 82 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

7 List of Acronyms

AAM

ABAC

AD

AMF

API

AS

B2B

B2C

B&T

CEP

DB

DDoS

DoS

DoW

GBAC

HMAC

HTTP

IBAC

IoT

JSON

JWT

LETS

NFC

OAuth

OS

PoP

PSP

QoS

QoE

PIN

Authentication and Authorization Manager

Attribute-Based Access Control

Anomaly Detection

Attributes Mapping Function

Application Programming Interface

Authorization Server

Business to Business

Business to Customer

Bartering and Trading

Complex Event Processing

Database

Distributed Denial-of-Service

Denial-of-Service

Description of Work (Technical Project Annex)

Group-Based Access Control

Hashed-based Message Authentication Code

Hypertext Transport Protocol

Identity-Based Access Control

Internet of Things

JavaScript Object Notation

JSON Web Token

Local Exchange Trading System

Near-Field Communications

Open Authentication

Operating System

Proof of Possession

Progressive Second Price

Quality of Service

Quality of Experience

Personal Identification Number

688156 - symbIoTe - H2020-ICT-2015 D3.1- Basic Resource Trading Mechanisms and Access Scopes

 Public

Version 1.0 Page 83 of 83
 © Copyright 2016, the Members of the symbIoTe Consortium

PKI

RAP

RBAC

RO

RF

RFC

RS

SH

SLA

TRL

TLS

URL

VGC

Public Key Infrastructure

Resource Access Proxy

Role-Based Access Control

Resource Owner

Radio Frequency

Request for Comments

Resource Server

Security Handler

Service Level Agreement

Token Revocation List

Transport Layer Security

Uniform Resource Locator

Vickrey-Clarke-Groves

