
688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 1 of 46
© Copyright 2016, the Members of the symbIoTe

Symbiosis of smart objects across IoT
environments

688156 - symbIoTe - H2020-ICT-2015

D2.1 – Semantics for IoT and Cloud resources

The symbIoTe Consortium

Intracom SA Telecom Solutions, ICOM, Greece
Sveučiliste u Zagrebu Fakultet elektrotehnike i računarstva, UNIZG-FER, Croatia
AIT Austrian Institute of Technology GmbH, AIT, Austria
Nextworks Srl, NXW, Italy
Consorzio Nazionale Interuniversitario per le Telecomunicazioni, CNIT, Italy
ATOS Spain SA, ATOS, Spain
University of Vienna, Faculty of Computer Science, UNIVIE, Austria
Unidata S.p.A., UNIDATA, Italy
Sensing & Control System S.L., S&C, Spain
Fraunhofer IOSB, IOSB, Germany
Ubiwhere, Lda, UW, Portugal
VIPnet, d.o.o, VIP, Croatia
Instytut Chemii Bioorganicznej Polskiej Akademii Nauk, PSNC, Poland
NA.VI.GO. SCARL, NAVIGO, Italy

© Copyright 2016, the Members of the symbIoTe Consortium

For more information on this document or the symbIoTe project, please contact:
Sergios Soursos, INTRACOM TELECOM, souse@intracom-telecom.com

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 2 of 46
© Copyright 2016, the Members of the symbIoTe

Document Control

Title: Semantics for IoT and Cloud resources

Type: Public

Editor(s): Michael Jacoby (IOSB)

E-mail: michael.jacoby@iosb.fraunhofer.de

Author(s): Aleksandar Antonić (UNIZG-FER), Gerhard Dünnebeil (AIT), Reinhard Herzog
(IOSB), Michael Jacoby (IOSB), Roman Łapacz (PSNC), Matteo Pardi (NXW),
Svenja Schröder (UNIVIE), Ivana Podnar Žarko (UNIZG-FER)

Doc ID: D2.1-v1.3.docx

Amendment History

Version Date Author Description/Comments

v0.0 11/04/2016 Michael Jacoby (IOSB) Table of Contents

v0.1 08/09/2016 Michael Jacoby (IOSB) Updated Table of Contents

v0.2 06/10/2016 Michael Jacoby (IOSB) Updated ToC, added content to Section 3, 4, 5

v0.3 13/10/2016 Gerhard Dünnebeil (AIT)

Svenja Schröder (UNIVIE)

Added a first draft of openUwedat’s data model

Updated Sections 2.2, 2.3 and 2.4

v0.4 Gerhard Dünnebeil (AIT)

Svenja Schröder (UNIVIE)

Reinhard Herzog (IOSB)

Michael Jacoby (IOSB)

Updated Section 3.4.1

Added Section 8

Added Section 1

Added Table of Figures, Section 5.2, Section 5.4, Section 6; updated
Section 2, Section 3.2.1, Section 5; added references for Section 3.3

v0.5 25/10/2016 Reinhard Herzog (IOSB)

Matteo Pardi (NXW)

Michael Jacoby (IOSB)

Aleksandar Antonić (UNIZG-FER)

Roman Łapacz (PSNC)

Updated Section 1

Added Section 3.4.2

Added Section 3.4

Added Section 5.3, Section 5.5

Added Section 4.3

v1.0 28/10/2016 Matteo Pardi (NXW)

Michael Jacoby (IOSB)

Updated Section 3.4.2

Updated figures in Section 3.4.2, Updated all sections (incorporated
feedback)

v1.1 07.11.2016 Aleksandar Antonić (UNIZG-FER)

Ivana Podnar Žarko (UNIZG-FER)

Gerhard Dünnebeil (AIT)

Reinhard Herzog (IOSB)

Michael Jacoby (IOSB)

Updated Section 5.5

Updated all sections

Updated Section 3.5.1

Updated Section 1

Updated all Sections

v1.2 23.11.2016 Ivana Podnar Žarko (UNIZG-FER)

Michael Jacoby (IOSB)

Updated all sections

Updated Section 5, Section 6

v1.3 29.11.2016 Sergios Soursos (ICOM) Final Editing

Legal Notices

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 3 of 46
© Copyright 2016, the Members of the symbIoTe

The information in this document is subject to change without notice.
The Members of the symbIoTe Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The
Members of the symbIoTe Consortium shall not be held liable for errors contained herein or direct, indirect,
special, incidental or consequential damages in connection with the furnishing, performance, or use of this
material.

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 4 of 46
© Copyright 2016, the Members of the symbIoTe

Table of Contents

1 Executive Summary 7

2 Introduction 8
2.1 Semantics in symbIoTe 8
2.2 Purpose of the document 8
2.3 Document Scope 8
2.4 Relation to other deliverables 9
2.5 Deliverable Outline 9

3 Background 10
3.1 What are semantics and why do we need it? 10
3.2 Semantic Interoperability 10
3.3 Semantic Web 11

3.3.1 Resource Description Format (RDF) 11
3.3.2 RDF Schema (RDFS) & Web Ontology Language (OWL) 12
3.3.3 SPARQL Protocol and RDF Query Language 14

3.4 Semantic Mapping 14
3.5 Information Models of Existing Platforms used in symbIoTe 16

3.5.1 openUwedat 16
3.5.2 Symphony 18

4 Achieving Semantic Interoperability 20
4.1 Problem 20
4.2 Possible Approaches 20

4.2.1 Core Information Model 21
4.2.2 Multiple Pre-Mapped Core Information Models 21
4.2.3 Core Information Model with Extensions 22
4.2.4 Pre-Mapped Best Practice Information Models 23
4.2.5 Mapping between Platform-Specific Information Models 24

4.3 Comparison of Approaches 24

5 symbIoTe’s Approach to Semantic Interoperability 26
5.1 symbIoTe Information Model (SIM) 28

5.1.1 Survey on Domains 28
5.1.2 Core Information Model (CIM) 30
5.1.3 Meta Information Model (MIM) 31

5.2 Platform-Specific Information Models / Extending the Core Information Model 32
5.3 symbIoTe Architecture from the Semantic Interoperability Perspective 32
5.4 Semantic Mapping and SPARQL Query Re-Writing 37
5.5 Registering resources to the symbIoTe ecosystem 38

6 Conclusions and Next Steps 41

7 References 42

8 Acronyms 45

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 5 of 46
© Copyright 2016, the Members of the symbIoTe

Table of Figures

Figure 1 Example RDF data depicted as graph. ... 11

Figure 2 Schematic representation of an example usage of semantic mapping for semantic
interoperability. ... 15

Figure 3 The core Information Model of openUwedat. .. 17

Figure 4 openUwedat Information Model for SymbIoTe. 18

Figure 5 The Symphony data model. .. 18

Figure 6 Data model for a temperature sensor in Symphony. 19

Figure 7 Data model for a linear load actuator in Symphony. 19

Figure 8 Schematic representation of the problem of semantic interoperability between
different IoT platforms. ... 20

Figure 9 Solution space for possible approaches to semantic interoperability. ... 21

Figure 10 Structural similarity between an ontology-based model-driven KES and the Core
Information Model with Extensions. .. 23

Figure 11 High-level diagram showing how symbIoTe approaches syntactic and semantic
interoperability. ... 27

Figure 12 The symbIoTe Information Model (SIM). .. 28

Figure 13 Outcome of the internal survey on which domains must/should/could be modelled
within symbIoTe. .. 29

Figure 14 The symbIoTe Core Information Model (v0.2). 30

Figure 15 The symbIoTe Meta Information Model (v0.2). 31

Figure 16 symbIoTe component diagram for Level 1 compliance (taken from D1.2) with
changes regarding semantic interoperability highlighted in green. 33

Figure 17 Enhanced sequence diagram from D1.2 “Initial Report on System Requirements
and Architecture” (Figure 18) describing the search functionality with respect to
SPARQL query re-writing. .. 38

Figure 18 Enhanced sequence diagram from D1.2 “Initial Report on System Requirements
and Architecture” (Figure 14) describing the resource registration........... 40

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 6 of 46
© Copyright 2016, the Members of the symbIoTe

Table of Tables
 Table 1 Most important classes of RDFS. .. 13

Table 2 Most important properties defined in RDFS. .. 13

Table 3 SPARQL query types. .. 14

Table 4 Changes of the Administration component introduced by semantic interoperability.
 ... 33

Table 5 Changes of the Registry component introduced by semantic interoperability. 34

Table 6 Changes of the Search Engine component introduced by semantic interoperability.
 ... 35

Table 7 Description of the Registration Handler component regarding the symbIoTe
Information Model. ... 35

Table 8 Description of the Resource Access Proxy component regarding the symbIoTe
Information Model. ... 36

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 7 of 46
© Copyright 2016, the Members of the symbIoTe

1 Executive Summary

One main objective of the symbIoTe project is to create a mediation framework to enable
the discovery and sharing of connected devices across existing and future IoT platforms to
enable platform federation and rapid development of cross-platform IoT applications. The
problem is that these devices are managed by different Internet of Things (IoT) platforms,
which are designed for different application domains. The requirement to enable information
technology to deal with the semantic of data has been one of the grand challenges in the
computer science domain in the past and probably will be one for the next future. Having
that in mind, this document will not try to solve all open issues, but it will lay out a practical
approach to the given task. Deliverable D2.1 is the first iteration of this deliverable with the
purpose to analyse the general problem and to define the basic approach to be used by
symbIoTe. The second and final version of this deliverable is scheduled for month 18.

To understand the motivation of this document one may imagine a typical IoT platform for
any given domain, for example, a climate control system for a smart home. Such a platform
deals with data in a given context where the meaning is predefined, e.g., the scale of a
thermostat ranging from 0 to 5, where 0 means no heating and 5 valve is open. It also has
implicit data models like the location of a radiator, which relates to a room and maybe to a
heating circuit. Another IoT platform could manage for example self-monitoring devices
which collect data within a different context and different predefined meanings of
temperature and locations. To make such different IoT-platforms understand each other, the
meaning of data and concepts must be explicitly defined. The background chapter on
semantic interoperability introduces possible technical solutions for this task. With the
developments influenced by the so called ‘Semantic Web’ there are established standards,
methods and tools available, like the RDF and OWL format to describe the semantics of
data which will be used by symbIoTe. The document also describes the achievements in the
development of semantic mapping, to translate one information model into another which is
semantically similar but structurally different. This capability is required for enabling
interoperability between platforms which are based on individual data models.

There are several ways to achieve semantic interoperability. Section 4 explains and
discusses the possible approaches, from a simple approach where everybody shares the
same understanding, to the most complex one where everybody may use different concepts
and interpretations. From a practical perspective, neither the easy nor the complex approach
is feasible for most real-life applications. symbIoTe proposes an approach where it starts
from a set of basic concepts, which are common for all platforms connected via the
symbIoTe framework. These basic concepts are sufficient to provide “meta”-understanding
about the connected IoT platforms and their resources, so that symbIoTe can provide a
generic interoperable mediation service. To cover the actual meaning of platform-specific
data, more detailed platform specific concepts are required. symbIoTe thus proposes an
approach which allows multiple extensions to the basic concepts and aims to provide
semantic and syntactic transformation as a common interoperability service.

This deliverable provides an initial proposal how the approach to semantic interoperability
presented in this document can be incorporated into the symbIoTe architecture presented
in D1.2. Further refinements on this will be included in the final deliverable D2.4.

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 8 of 46
© Copyright 2016, the Members of the symbIoTe

2 Introduction

In the context of this document, semantic can be understood as the meaning of things. Its
main purpose in symbIoTe is to enable interoperability, especially semantic interoperability
which “is the ability of computer systems to exchange data with unambiguous, shared
meaning” [1] (see Section 3.1 for a detailed definition of semantic interoperability). Some
parts of this deliverable are based on the unpublished paper “Semantic Interoperability as
Key to IoT Platform Federation” [2] (accepted at the 2nd International Workshop on
Interoperability & Open Source Solutions for the Internet of Things) as well as the paper
“Semantic interoperability in IoT-based automation infrastructures” [3], both of which were
authored as part of the academic dissemination within symbIoTe.

2.1 Semantics in symbIoTe

As the overall objective of symbIoTe is to create an interoperability framework for IoT
platforms and to enable platform federation, achieving semantics is a key challenge.
symbIoTe plans to use semantic technologies to bridge the semantic gap between existing
and future IoT platforms with a goal to enable interoperability on a higher level, the semantic
level, which is a step forward in comparison to state of the art solutions which primarily focus
on syntactic interoperability.

2.2 Purpose of the document

The purpose of deliverable D2.1 “Semantics for IoT and Cloud resources” is to document
the first outcomes and intermediate results regarding semantics in the symbIoTe project.
The role of semantics within symbIoTe is described and approaches to achieve semantic
interoperability are identified and discussed. Implementation plans for semantics in
symbIoTe and how they’re represented in the current architecture are specified in this
document.

This document will serve as a basis for the revised version of the semantics, which will be
presented in deliverable D2.4 “Revised Semantics for IoT and Cloud Resources” in month
18.

2.3 Document Scope

This document reports on the work accomplished in T2.1 “Semantics for IoT and Cloud
Resources” with a strong focus on semantic interoperability. It presents a theoretical
analysis of the problem domain of semantic interoperability together with multiple possible
approaches to address this problem. Furthermore, it discusses which of these approaches
be used within symbIoTe and presents ideas how this approach can be realized.

Although mentioned in some parts, syntactic interoperability and how it is addressed and
realized by symbIoTe is not the primary subject to this deliverable.

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 9 of 46
© Copyright 2016, the Members of the symbIoTe

2.4 Relation to other deliverables

The content of this deliverable was motivated and influenced by the intermediate outcome
of tasks T1.3 “System requirements” and T1.4 “System architecture” which has been
published in D1.2 “Initial Report on System Requirements and Architecture”.

This deliverable will have impact on multiple tasks as semantic interoperability is a core
functionality of symbIoTe. The need for new functionality and components realizing semantic
interoperability will have a direct influence on T1.4 “System architecture”, T2.2 “Virtual IoT
environment” and T3.3 “Specification & Implementation of IoT Federation”. Furthermore,
T2.3 “Implementation of symbIoTe domain-specific enablers”, T3.2 “Security and Access
Scopes” and T4.1 “Local Registration, Discovery and Interoperability of Smart Objects” will
be influenced indirectly by the outcome of this deliverable.

2.5 Deliverable Outline

This deliverable is structured as follows: Section 3 introduces the term semantic
interoperability and provides background information on current semantic web technologies
and standards. Furthermore, the information models of a subset of existing platforms that
will be used in symbIoTe are presented to get a better understanding of the current situation
and the difficulty of the problem of semantic interoperability. In Section 4 the problem of
achieving semantic interoperability between multiple IoT platforms is presented in detail,
together with a number of possible approaches how to address it. Section 5 presents which
of the presented approaches the symbIoTe consortium has decided to follow and sketches
the current plans to implement the chosen approach. This section also presents details on
how this will influence the architecture presented in D1.2. The document closes with Section
6 to present conclusions and next steps.

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 10 of 46
© Copyright 2016, the Members of the symbIoTe

3 Background

3.1 What are semantics and why do we need it?

According to the Merriam-Webster dictionary, semantics is the study of meaning, especially
“the meaning or relationship of meanings of a sign or set of signs” [4]. A sign here is a
fundamental linguistic unit that designates an object or relation and therefore semantics can
be understood as the mapping of signs to their meaning. For example, a sign could be a
word, e.g. the word ‘table’, or a URI (Uniform Resource Identifier) like
‘http://www.example.com/table’ and the corresponding meaning would be the concept of a
table that is defined by its properties and context specifying that it is a constructed thing
which has some legs, a solid top and is normally found in a man-made environment. In every
act of communication, the involved actors, human or computers, require a shared
understanding of things. A typical way to express semantics is via a taxonomy or an ontology
which is “an explicit specification of a [shared] conceptualization” [5] (explicit because all
relevant elements must be explicitly named in order to avoid misinterpretations; shared
because there must be a common agreement within a specific domain of interest).

Knowing this, it is obvious that semantics plays an important role in every act of
communication. Without it, we would not be able to understand the meaning of the
exchanged information, or at least we could not be sure that we are having the same
understanding of it as our communication partner. To give an example image two people
having a conversation about the weather and one says “…it had 40 degrees outside”. In this
case the semantics are not clearly defined as degrees could refer to degrees Fahrenheit or
to degrees Celsius. Communication might work by chance if they both have the same
understanding of degree in the context of temperature but as long as they don’t use a shared
or agreed upon vocabulary they cannot be sure that they both have the same understanding
of the exchanged information.

Transferring this example to the technical level of the IoT platforms communicating and
exchanging data where the information is exchanged, processed and interpreted by
machines this clear and formal definition of meaning is even more important because
machines (most of the time) do not have any capability of reasoning to come up with a
probably correct interpretation of the meaning of received data from others (mainly because
they don’t have the information they need for this task, in the example this would be the
cultural background of the person speaking). Therefore, semantics is essential to bring
multiple IoT platforms which were created by different persons with different cultural
backgrounds and with focus on different domains together as they most probably will have
different understandings of things and interoperability will fail.

3.2 Semantic Interoperability

A common understanding of the concept of interoperability is described in the Levels of
Conceptual Interoperability Model (LCIM) [6]. This definition is derived from simulation
theory, but it has a much broader applicability. This definition distinguishes 7 levels of
interoperability which are grouped in 3 parts [7].

 Integratability contends with the physical/ technical realms of connections between
systems, which include hardware and firmware, protocols, etc.

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 11 of 46
© Copyright 2016, the Members of the symbIoTe

 Interoperability contends with the software and implementation details of
interoperations, including exchange of data elements based on a common data
interpretation, etc.

 Composability contends with the alignment of issues on the modelling level. The
underlying models are purposeful abstractions of reality used for the
conceptualization being implemented by the resulting simulation systems.

For computer systems, the ability to have a clear and formalized way to express the meaning
of things is an indispensable precondition to achieve semantic interoperability. Bringing both
terms together, semantic interoperability can be defined as “the ability of computer systems
to exchange data with unambiguous, shared meaning” [1].

3.3 Semantic Web

The term Semantic Web was first used by Tim Berners-Lee in his article “The semantic web”
from 2001 stating that “the Semantic Web is not a separate Web but an extension of the
current one, in which information is given well-defined meaning, better enabling computers
and people to work in cooperation” [8].

The main concept of the Semantic Web is to extend the existing World Wide Web from a
web of (interlinked) documents to a web of (interlinked) machine-readable and processable
data. This is achieved through a family of very specific technology standards driven by the
World Wide Web Consortium (W3C) which are presented in the following.

3.3.1 Resource Description Format (RDF)

RDF1 is the (metadata) data model for the Semantic Web and therefore can be seen as its
cornerstone. All data on the Semantic Web is represented in RDF, even the schema
description. The main advantage of RDF is its innate flexibility compared to the tabular data
model of relational databases and the tree-based data model of XML.

As shown in Figure 1, data in RDF is often depicted as a labelled, directed graph where the
nodes represent resources (depicted as ovals) or literals (depicted as rectangles) and the
labelled edges represent relations. This representation clearly shows the power of RDF to
represent data without previously defining its structure, unlike with relation databases.

Figure 1 Example RDF data depicted as graph.

All data in RDF is described as a triple (also often called statement or 3-tuple) of the form
(subject, predicate, object). Subjects and predicates are resources which are represented
by an URI (Universal Resource Identifier). Objects can also be a resource or a literal (which

1 https://www.w3.org/TR/2004/REC-rdf-primer-20040210/

https://www.w3.org/TR/2004/REC-rdf-primer-20040210/

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 12 of 46
© Copyright 2016, the Members of the symbIoTe

is only a fancy name for value). Datatypes of literals can be defined using XSD datatypes2.
The use of URIs to identify resources (which can be seen as an atomic piece of information)
allows globally unique addressing even between different databases and thus allows global
interlinking of information.

Collections of triples are called a graph. For better data management (e.g. access control,
simplified updating, trust), large collections of RDF data are usually segmented into different
named graphs. Triples stored in a named graph are often referred to as quads as they are
of the form (graph, subject, predicate, object). Databases designed to store RDF data are
referred to as triple (or quad) stores.

RDF is an abstract data model, which means there are multiple serialization formats that
can be used to represent RDF data. The most popular are RDF/XML3, N-Triples4, Turtle5,
TriG6, RDFa7, Notation3 (N3)8 and JSON-LD9.

3.3.2 RDF Schema (RDFS) & Web Ontology Language (OWL)

RDFS10 and OWL11 are RDF schema languages which are used to define meta models for
RDF data. These meta models are often referred to as vocabularies or ontologies which are
explained in detail in the next section. Both, RDFS and OWL are themselves expressed
using RDF.

3.3.2.1 Vocabularies and Ontologies

The terms vocabulary and ontology are terms used very frequently in the context of
Semantic Web but are often defined and thus used differently. Generally, they are used to
describe a set of triples with a strong logical cohesion. The W3C states, that “there is no
clear division between what is referred to as vocabularies and ontologies. The trend is to
use the word ontology for more complex, and possibly quite formal collection of terms,
whereas vocabulary is used when such strict formalism is not necessarily used or only in a
very loose sense” [9].

For the rest of the document we will use the term ontology and refer to it as a set of triples
defining a meta model. This means ontologies only contain information about general
concepts and no data of concrete instances (also often called individuals). The main idea
behind developing ontologies is to structure data in a clear and machine-readable way to
have a common understanding of things as well as to enable inference (making implicit
knowledge explicit through reasoning).

2 https://www.w3.org/TR/swbp-xsch-datatypes/
3 https://www.w3.org/TR/rdf-syntax-grammar/
4 https://www.w3.org/TR/n-triples/
5 https://www.w3.org/TR/turtle/
6 https://www.w3.org/TR/trig/
7 https://www.w3.org/TR/rdfa-primer/
8 https://www.w3.org/TeamSubmission/n3/
9 https://www.w3.org/TR/json-ld/
10 https://www.w3.org/TR/rdf-schema/
11 https://www.w3.org/TR/owl2-overview/

https://www.w3.org/TR/swbp-xsch-datatypes/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/trig/
https://www.w3.org/TR/rdfa-primer/
https://www.w3.org/TeamSubmission/n3/
https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/owl2-overview/

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 13 of 46
© Copyright 2016, the Members of the symbIoTe

3.3.2.2 RDFS

RDFS is the most basic schema language of the Semantic Web. It is a very minimalistic set
of classes and properties used to describe classes of and relations between objects. RDFS
also distinguishes between classes and individuals (instances of classes). The most
important classes are listed in Table 1

Table 1 Most important classes of RDFS.

Class Name Description

rdfs:Resource all things declared by RDF are resources

rdfs:Class describes the concepts of a class

rdfs:Literal describes the concept of a literal

rdfs:Property the class for properties

Table 2 Most important properties defined in RDFS.

Property Name Description

rdfs:domain defines to which subjects does a property applies

rdfs:range defines the set of values a property can accept

rdf:type used to state that a resource is an instance of a class

rdfs:subClass
Of

defines one class as a subclass of another class

rdfs:label provide human-readable version of resource’s name

rdfs:comment provide human-readable description of resource

rdfs:seeAlso link to another resource that might provide additional information

3.3.2.3 OWL

OWL is another RDF schema language which is more expressive than RDFS and can
express quite subtle ideas about data. It is very efficient as it comes in various flavours,
called profiles, each with a different level of expressivity and therefore complexity and
computational power needed for inference. It includes everything RDFS provides and adds
a lot of new classes and properties like

 owl:TransitiveProperty

 owl:unionOf

 owl:sameAs

 owl:inverseOf

 owl:hasValue

and also some properties to model meta-meta-data like

 owl:import

 owl:versionInfo

 owl:deprecatedProperty

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 14 of 46
© Copyright 2016, the Members of the symbIoTe

3.3.3 SPARQL Protocol and RDF Query Language

SPARQL12 is the de facto standard query language for RDF data and quite similar to the
query language for relational data SQL.

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

3 PREFIX dbp: <http://dbpedia.org/ontology/>

4
5 SELECT ?city ?popTotal

6 FROM <http://example.com/dataset.rdf>

7 WHERE

8 {

9 ?city rdf:type <http://dbpedia.org/class/yago/CitiesInTexas> .

10 ?city dbp:populationTotal ?popTotal .

11 }

12 ORDER BY ?popTotal

Listing 1 An example SPARQL query.

Looking at the overall structure of the example SPARQL query in Listing 1 we see that it is
quite similar to SQL. One main difference is the format of the WHERE clause as with
SPARQL it consists of a list of so called triple patterns. These triple patterns are normal
triples which can contain a variable (starting with a ‘?’) on every position. When executed,
the variables in the triple patterns are bound to concrete values whereat all occurrences of
the same variable are bound to the same value. This concept is called graph pattern
matching and the results of the query are all possible valid combinations of values bound to
all mentioned variables. In SPARQL there exist multiple query types as specified in Table 3.

Table 3 SPARQL query types.

Query Type Description

SELECT returns a list of bindings which is basically a table like in SQL

CONSTRUCT returns a RDF graph which is basically a list of triples

DESCRIBE returns information about a single resource. What will be returned is
not generally defined but rather implementation dependent

ASK returns true if the query has at least one result, otherwise false

3.4 Semantic Mapping

Ontologies are a way to formally describe the concepts and relations of a domain. But even
if two ontologies cover the same domain they can describe the domain quite differently, e.g.
use a taxonomy with another scope or granularity, use the same terminology but in a
different language or even use a different terminology. Such differences between ontologies

12 https://www.w3.org/TR/sparql11-overview/

https://www.w3.org/TR/sparql11-overview/

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 15 of 46
© Copyright 2016, the Members of the symbIoTe

are called ontology mismatches. There exist multiple classifications describing and
structuring ontology mismatches in literature [10] [11] [12] [13] [14].

Semantic mapping refers to the idea to resolve ontology mismatches by defining statements
and rules how data expressed using one ontology can be translated into the terms of another
ontology. Such a statement or rule is called a correspondence pattern and consists of a
source ontology, a target ontology and some correspondence/transformation information.
All correspondence patterns having the same source and destination ontology together form
an alignment between the two ontologies. Such an alignment contains all correspondence
patterns necessary to translate instances of the source ontology into instances of the target
ontology. Some mismatches are so profound that this translation is not possible without loss
of information. In fact, this is quite common as only data modelled in both ontologies, i.e.
that is part of the semantic intersecting set of the two ontologies, can be safely translated
between them.

Figure 2 Schematic representation of an example usage of semantic mapping for semantic
interoperability.

Figure 2 depicts a schematic representation how semantic mapping can be used for
achieving semantic interoperability and which kind of software and tools are involved. In the
centre we see an alignment as an aggregation of multiple correspondence patterns. To
formulate, express and exchange such correspondence patterns a mapping language is
needed. There are multiple existing mapping languages that can be used. The main criteria
to classify them is their expressivity, i.e. what kind of ontology mismatches they can resolve,
as this defines the capability of a system providing semantic interoperability to enable
interoperability of systems even if their internal information models differ strongly. Some
available languages are Alignment Format [15], EDOAL (Expressive and Declarative
Ontology Alignment Language) [16], C-OWL [17], SWRL (Semantic Web Rule Language)

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 16 of 46
© Copyright 2016, the Members of the symbIoTe

[18], MAFRA (Ontology MApping FRAmework) [19], SPARQL Construct13 and SPARQL
Inferencing Notation14 (SPIN).

In the upper centre of Figure 2 we see a user which in our case is a platform owner of an
IoT platform. He has knowledge about the information model used in his own platform
(Information Model A) as well as about the one used in another platform (Information Model
B). Based on this knowledge he wants to formulate a mapping/alignment between the two
information models using a mapping language. To ease this process, he could use a
matcher which is a tool that automatically discovers correspondences between ontologies,
e.g. by applying different similarity measures [20] [21] [22] [23]. Furthermore, he probably
would like to use some visual editor for the mapping language because the correspondences
and the alignment can become quite complex [24] [25] [26] [27]. Ontology matching and
graphical alignment tools are both still an active area of research.

After an alignment between two information models is defined at design-time it can be used
at run-time by some kind of mediator to translate information expressed using information
model A to information model B.

3.5 Information Models of Existing Platforms used in symbIoTe

In this section we highlight the problem of enabling interoperability between multiple
platforms by providing a practical example. Therefore, we present the information models of
two existing platforms, openUwedat from AIT and Symphony from NXW, that will be used
within symbIoTe. These real world examples highlight the problem of semantic
interoperability to demonstrate which services are needed when different IoT platforms want
to exchange information.

3.5.1 openUwedat

openUwedat is not a closed system but rather a library and framework for arbitrary time
series oriented applications. It does not use a single data model, but rather adapts the data
model to the needs of specific applications. Nevertheless, there is a core data model that
applies to all applications and there are extensions that apply to individual applications.
Thus, the description of the data model is split into two parts.

3.5.1.1 General Information Model

The core data model of openUwedat is constructed around datapoints. These datapoints
are sources and destinations of time series data.

Each datapoint can be queried to emit TimeSeries data. A TimeSeries is mainly a container
for Slots. TimeSeries object are comparable to the Observations collection of the OData
interface, which is currently used for syntactic interoperability in symbIoTe (further
information is provided in Section 5).

Each Slot has a reference time and zero or more values assigned to it. Thus, it is closely
related to symbIoTe’s concept of an Observation, as defined in Section 5.1.2.

13 https://www.w3.org/TR/rdf-sparql-query/#construct
14 https://www.w3.org/Submission/spin-overview/

https://www.w3.org/TR/rdf-sparql-query/#construct
https://www.w3.org/Submission/spin-overview/

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 17 of 46
© Copyright 2016, the Members of the symbIoTe

Each slot’s value can be any type (restricted to Java types at the moment). This is related
to symbIoTe’s idea of an observation value.

TimeSeries have Properties. They are addressed in a dictionary style by using key-strings.
For this reason, the property system is easily extendable with new properties needed for
particular applications.

There is a set of Properties within the core model whose existence is mandatory or at least
strongly recommended:

 ValueKeys: This key describes which values are available within a slot.

 ValueUnits: A description of the Units of Measurements (UoM) related to each value.

 QueryInterval: This property describes the interval covered by the TimeSeries. This
property is especially useful if the timely pattern of slots is only sparsely populated so
that deriving the coverage from contained slots is not possible. This Property can also
be used for paging in case a datapoint decided to not give back the complete query
interval that was requested.

Datapoints also have properties. The only mandatory property is ObservedProperty.

Figure 3 The core Information Model of openUwedat.

3.5.1.2 Information Model of the SymbIoTe installation

For symbIoTe most of the core model was already covered by openUwedat’s core model.

Two important extensions were needed nevertheless:

 We needed a simple ID that can be exposed via the OData interface. This was added
to the set of properties.

 Each datapoint (aka Sensor or Resource) has a concept of location. For the
symbIoTe use case this concept is simple as we are dealing with fixed stations. So
we just added a property location which is composed of longitude, latitude and
altitude.

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 18 of 46
© Copyright 2016, the Members of the symbIoTe

Figure 4 openUwedat Information Model for SymbIoTe.

3.5.2 Symphony

Symphony is the NXW platform for the integration of home/building control functions,
devices and heterogeneous subsystems. Symphony is a service-oriented middleware
integrating several functional subsystems into a unified IP–based platform. As
hardware/software compound, Symphony encompasses media archival and distribution,
voice/video communications, home/building automation and management, and energy
management. The platform owns a generalized abstract model for all the Internet Connects
Objects (e.g., smartphones, printers, sensors, actuators, etc.), managing a set of context-
driven decisions/actions. This leads to a quite complex data model, partitioned into
subcomponents, one for each service provided by the platform.

Figure 5 depicts a high-level diagram which explains the Symphony platform data model.

Figure 5 The Symphony data model.

Since Symphony integrates a large number of sensors and actuators, two examples are
shown below:

 a temperature sensor (depicted in Figure 6)

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 19 of 46
© Copyright 2016, the Members of the symbIoTe

Figure 6 Data model for a temperature sensor in Symphony.

 a linear load actuator (depicted inFigure 7)

Figure 7 Data model for a linear load actuator in Symphony.

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 20 of 46
© Copyright 2016, the Members of the symbIoTe

4 Achieving Semantic Interoperability

In this section we introduce the problem of semantic interoperability between multiple IoT
platforms. Furthermore, we present multiple possible approaches how semantic
interoperability can be achieved on a general level together with their advantages and
disadvantages which is the outcome of the analysis on semantic interoperability within the
symbIoTe project.

4.1 Problem

Figure 8 Schematic representation of the problem of semantic interoperability between
different IoT platforms.

Figure 8 depicts the general problem of semantic interoperability between multiple IoT
Systems. Each IoT platform models its data using an internal information model that is used
by native applications of this specific platform. As different IoT platforms are designed by
different bodies/communities/companies and often focus on different aspects within IoT they
tend to have platform-specific information models that differ in multiple aspects as presented
in Section 3.4. Closing this semantic gap means enabling semantic interoperability.

4.2 Possible Approaches

As outcome of our research on the problem domain of how to achieve semantic
interoperability we identified a possible solution space which is depicted in Figure 9. It can
be thought of as a line between the two most radical and opposed approaches which are,
on the one side, using a single core information model that all platforms must use and, on
the other side, using completely independent platform-specific information models for each
platform which then need to be aligned using semantic mapping techniques. In between,
there exists a large, not clearly defined number of intermediate solutions from which three
representative ones are chosen and presented in the following together with the two radical
ones. These approaches are motivated by and in-line with the concepts presented by Wache
et al. [28] and Choi et al. [21]

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 21 of 46
© Copyright 2016, the Members of the symbIoTe

Figure 9 Solution space for possible approaches to semantic interoperability.

4.2.1 Core Information Model

The most widespread approach amongst existing platforms is to use a single core
information model that all platforms must comply with. This means that a platform can only
expose data that fits into this core information model as custom extensions are not permitted.
If a platform needs to expose data that does not fit into the core information model the
platform cannot expose this data and cannot inter-operate with others. From our perspective
this is rather some form of standardization than an approach to enable true semantic
interoperability that will also work without adaption (e.g. changing the “standard”/Core
Information Model) when new IoT platforms covering eventually new domains will emerge.

Pros

 easy to implement and use since the data from all platforms follows the same
information model

 resulting system easy to use for app developers who only need to know one
information model

Cons

 finding/defining an information model all platforms can agree upon may be difficult

 information model tends to become complex as it must comprise all data that should
be exchangeable between platforms

 will always exclude some platforms whose internal information model does not fit the
core information model

 no way to integrate future platforms with information models not compatible to the
core information model without breaking the existing system

4.2.2 Multiple Pre-Mapped Core Information Models

Based on the single core information model approach this one tries to make it more easy
and convenient for platform owners to integrate their internal information model by
supporting not only a single core information model but multiple ones. To achieve that a
large number of existing platforms can easily participate it would be a good idea to choose
well-established information models (e.g. the Semantic Sensor Network Ontology [29] (SSN)
or the oneM2M ontology [30]) as core information models. To ensure interoperability
between platforms using different core information models the supported core information
models are already mapped to each other. As it will not always be possible to map two core
information models completely there will be some degree of information loss if platforms

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 22 of 46
© Copyright 2016, the Members of the symbIoTe

conform to different core information models but if they conform to the same one they will
be fully interoperable.

Pros

 flexible approach as further core information models and mappings can be added
over time

 does not enforce use of one single core information model which excludes less
platforms from participating

Cons

 may still exclude some platforms whose information model does not match any of the
core information models

4.2.3 Core Information Model with Extensions

This approach is based on an information model that is designed to be as abstract as
possible but at the same time as detailed as needed. Therefore, the core information model
should try to only define high-level classes and their interrelations which act as extension
points for platform-specific instantiations of this information model. These platform-specific
instantiations either use the provided classes directly or they can define a subclass which
can hold any platform-specific extensions to the core information model, e.g. additional
properties. Besides the high-level classes the core information model may also contain
properties the system needs which will be very general properties like ID or name in most
of the cases.

This approach resembles an approach for a model-driven knowledge engineering system
(KES) presented by Studer et al. shown in Figure 10a where a domain ontology is extended
to an application ontology which is mapped to a method ontology that is finally used to define
in- and output of a method used to solve a problem. The core information model with
extensions can be very closely matched to this approach as depicted in Figure 10b. The
main difference is, that there exists not only a domain ontology that is extended but rather
the
core information model which contains the domain model and the system model (which can
be seen as a platform-specific extension of the domain model to the system that provides
the interoperability). The application ontology corresponds to the platform-specific model
which is a platform-specific extension to the core information model and the method ontology
corresponds to the internal information model of the platform as depicted in Figure 10.

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 23 of 46
© Copyright 2016, the Members of the symbIoTe

Figure 10 Structural similarity between an ontology-based model-driven KES and the Core

Information Model with Extensions.

This results in an information model that has a minimalistic core that all platforms must
conform to and extension points to realize custom requirements. Two platforms using
different extensions can directly understand each other in terms of the core information
model and when they need also to understand the custom extensions they must define a
semantic mapping between their extensions.

Pros

 provides basic interoperability between platforms by defining minimalistic core
information model

 provides full flexibility by custom extensions, i.e. no platforms are excluded

 high acceptance from adopter-side as it combines basic out-of-the-box
interoperability (by the core information model) with support for complex scenarios
(through extensions and semantic mapping)

Cons

 requires semantic mapping when custom extensions need to be understood by
different platforms

 defining a semantic mapping can be a complex task and requires additional work
from developers/platform owners

 design of the core information model is a complex task

4.2.4 Pre-Mapped Best Practice Information Models

Essentially, this is the same approach as Multiple Core Information Models but with one
small but significant modification: the provided information models are no longer seen as
core information models but rather as best practice information models. Hence, platforms
must not be compliant to any of the provided information models as in the previous approach
but can choose their information model freely. If they choose to re-use one of the provided
best practice information models they will gain instant interoperability to other platforms also
aligned with one of the best practice information models.

Pros

 no limitations on information model, hence does not exclude any platform

 best practice information models make usage for inexperienced platform owner more
easy

(a) Ontology-based approach for a model-
driven KES (based on Figure 6 from [11]).

(b) Conceptual structure of the Core
Information Model with Extensions approach.

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 24 of 46
© Copyright 2016, the Members of the symbIoTe

 better and broader interoperability due to already aligned best practice information
models

Cons

 no initial interoperability between platforms as long as no mapping is defined when
no pre-mapped information model is used

 defining a semantic mapping can be a complex task and requires additional work
from developers/platform owners

4.2.5 Mapping between Platform-Specific Information Models

In this approach, there isn't anything like one or more core information models. Instead,
every platform independently provides its own information model. Interoperability is only
achieved through mapping between these platform-specific information models.

Pros

 not limited only to a fixed set of information models but rather supports all possible
information models

 mappings can be added iteratively increasing the degree of interoperability
Cons

 no initial interoperability between platforms as long as no mapping is defined

 defining a semantic mapping can be a complex task and requires additional work
from developers/platform owners

 the system does not understand any of the data it is processing

4.3 Comparison of Approaches

Section 4 presents the analysis of possible approaches for the semantic interoperability. It
is required to decide how independent IoT platforms should exchange meta-information and
thus create a pool of IoT data sources, resources and services available to the applications.
Such an interoperability is a crucial functionality for symbIoTe because it addresses the need
of presence of framework across existing and future IoT platforms. The framework will
enable discovery and sharing of resources for rapid cross-platform application development.
Those applications exploiting multiple data sources and resources will bring new innovative
functionalities and lift up the IoT to the next technology level.

The first described approach “Core Information Model” seems to be the most suitable to
enforce the interoperability between the IoT platforms. Theoretically, if they speak only one
language there is no need to warry about inconsistency, complexity and the performance
issue of additional operations like translations (complete or incomplete). Moreover,
developers are satisfied because they can stick to only one standard solution so application
development is quicker and cheaper from the business point of view. The more applications
the more innovative ideas and therefore better IoT based services. This vision is compelling
but the reality is different. Heterogeneity is the characteristic that has to be accepted and
considered when a service or a product is offered to the market. Nowadays, there are many
IoT platforms utilizing different information models to describe their resources, applying
policies to share their data and comprising implementation limits preventing smooth
integration with other platforms. It would be extremely difficult to convince IoT platform
vendors to make deep (and thus expensive) changes in their products. More realistic is to
propose the solutions which try to find some compromise and balance. “Core Information
Model” is not an optimal approach but also the interoperability with the use of all possible

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 25 of 46
© Copyright 2016, the Members of the symbIoTe

platform-specific information models (“Mapping between Platform-Specific Information
Models”) is not a straightforward direction. In this case semantic mapping and complexity
for developers bring disadvantages like translation performance issues, possible slow
progress of application development, incomplete translations and the costs of supporting of
new emerging information models.

If two aforementioned extreme approaches are not suitable then one can analyse the three
others described in the previous subsections. The first one, “Core Information Model with
Extensions”, specifies the very abstract representation of information model which may be
applicable to any IoT platform. This allows for exchanging at least a set of basic, platform-
independent information. Any specific information may be modelled as an extension
including required mapping (translation) between extensions of respective platforms. Apart
from obvious advantages like flexibility and partial standardization one should emphasize
the downsides. It is not clear if the generic abstract representation is enough useful for
interoperability and effective in real use cases. Moreover, certain mappings between
extensions may still be complex and incomplete. Regarding the last two approaches,
“Multiple Pre-Mapped Core Information Models” and “Pre-Mapped Best Practice Information
Models”, they are based on mappings of a subset of information models. They require the
implementation of translation mechanisms which results in all related difficulties but may be
suitable if it is assumed that the number of information models is limited and stable.
Moreover, those models are well-known and widely accepted.

Section 4 does not provide the answer, which approach for the semantic interoperability
should be chosen by the symbIoTe project. This is an analysis presenting their
characteristics and comparing week and strong points. Thus, it should be an input to the
further discussion on the final selection decision.

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 26 of 46
© Copyright 2016, the Members of the symbIoTe

5 symbIoTe’s Approach to Semantic Interoperability

We analysed the approaches to semantic interoperability presented in Section 4 regarding
their suitability for symbIoTe and decided to follow the Core Information Model with
Extensions approach due to mainly two reasons. First, symbIoTe needs to have at least
some degree of understanding of the resource descriptions exposed by the platforms to be
able to provide additional services like location-based search for sensors. For this, we need
platforms to use the same terms to describe all information that is relevant to symbIoTe.
This is achieved by having a common, minimalistic Core Information Model covering these
symbIoTe-relevant terms. Second, this approach gives almost full flexibility to platforms as
it allows platforms to model all non-symbIoTe-relevant information within extensions without
any restrictions. Due to the first reason, the approaches Pre-Mapped Best Practice
Information Models and Mapping between Platform-Specific Information Models are not
suitable as with these approaches symbIoTe would not be able to understand any of the
resource descriptions exposed by the platforms. On the other side, the approaches Core
Information Model and Multiple Pre-Mapped Core Information Models are not suitable as
they do not only enforce usage of a minimalistic core but with these approaches a core
information model is a complete model of the IoT domain and thus would massively limit the
degree of freedom of the platforms to expose their data as they want or need to.

Nevertheless, this approach is quite challenging and may render too complex for
implementation. Hence, aiming also at a solution that is feasible in the next period, together
with working on the Core Information Model with Extensions approach, we will also consider
adding a Best Practice Information Model on top of the Core Information Model. Such a Best
Practice Information Model (BIM) can be seen as a special form of a Platform-Specific
Information Model which is provided together with symbIoTe. Its use will be optional and
using it will allow platform owners to register their platforms to symbIoTe without having to
use semantic technologies but rather using simple clearly defined REST- and JSON-based
interfaces. This dual approach allows us to provide simple interfaces and out-of-the-box
interoperability where the Best Practice Information Model is applicable and also full support
for custom Platform-Specific Information Models aligned with mappings when needed. A
more detailed description of the Best Practise Information Model approach is currently under
definition and will be documented in the next and final deliverable on semantics. In the
remainder of this section we present the Core Information Model with Extensions approach.

Figure 11 shows the concept for realizing the Core Information Model with Extensions
approach presented in Section 4.2.3. On the left and right hand side we see two typical
vertical IoT silos. Each platform uses its own internal information model to provide a
platform-specific API which is then used by native applications. Between those two vertical
IoT silos we see the symbIoTe interoperability framework depicted in light grey providing
interoperability between the two IoT platforms. As proposed in Section 4.2.3 and shown in
Figure 10b, symbIoTe uses two central information models: the Core Information Model
(CIM) describing domain specific information (matches the Domain Model in Figure 10b)
and the Meta Information Model (MIM) describing symbIoTe internal meta information about
platforms and resources (matching the System Model in Figure 10b). For a platform to
become symbIoTe-compliant, it must expose its data using a Platform-Specific Information
Model (PIM) which is basically the CIM with platform-specific extensions to it. The main part
of the actual interoperability happens via semantic mapping as shown by the arrow
connection between the two platform-specific information models. This allows to define how
the platform-specific extension of one platform can be translated into the platform-specific

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 27 of 46
© Copyright 2016, the Members of the symbIoTe

extensions of another platform and therefore allows to define an arbitrary degree of
interoperability between two platforms. When an app or a platform queries symbIoTe to find
resources of interest on all available platforms, symbIoTe uses these mappings to re-write
the query to fit the platform-specific information model of each platform when needed and
execute it against the metadata it has stored about each of them. Details on the symbIoTe
Information Model (SIM) as well as semantic mapping and SPARQL query re-writing are
provided in the following sections.

To enable syntactic interoperability, which is a prerequisite for semantic interoperability, we
need platforms to expose their data in a unified way. At the moment, symbIoTe is using the
Open Data Protocol15 (OData) for this purpose but since it has no native support for
subscription-based access to entities this decision might be revised. Furthermore, this issue
has been identified within the IoT-EPI Task Force “Platforms Interoperability” (TF02) as a
potential collaboration and standardization subject between projects.

Figure 11 High-level diagram showing how symbIoTe approaches syntactic and semantic
interoperability.

15 http://www.odata.org/

http://www.odata.org/

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 28 of 46
© Copyright 2016, the Members of the symbIoTe

5.1 symbIoTe Information Model (SIM)

Figure 12 The symbIoTe Information Model (SIM).

The symbIoTe Information Model (SIM) as shown in Figure 12 comprises all classes (also
called concepts) and their relations (also called predicates) which symbIoTe can
understand. It is composed of two parts, the Meta Information Model (MIM) and the Core
Information Model (CIM) which are explained in detail in the following sections. All
information models are realized as an OWL ontology. Furthermore, they are developed in
an iterative process as it is considered the best practice for ontology design [31] and
currently in version 0.2.

5.1.1 Survey on Domains

To find out which domains need to be part of the SIM, we conducted a project-internal
survey. We started out collecting requirements about relevant domains and came up with
the following twelve domains which are divided into four groups:

 Observation & Measurement

o Time: Concepts of time instant, time interval, time zones, etc.

o Location: Basic geo-location like long/lat/alt, polygon, symbolic location.

o Sensors: Definition of an abstract concept of a sensor.

o Units of Measurement: Abstract concept, may include some model of units.

 Access & Control

o Actuators: Definition of an abstract concept of an actuator.

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 29 of 46
© Copyright 2016, the Members of the symbIoTe

o Services: Services offered by symbIoTe-compliant IoT platforms.

o Protocols: Protocols via which these platforms can be accessed.

 Interoperability

o symbIoTe infrastructure: Description of symbIoTe-compliant platforms for
discovery purpose.

o Quality of Service / SLA: Concepts describing QoS parameters of
interoperability e.g. reliability, availability, response time, etc.

o Trading & Bartering: Concepts like cost and utility functions, algorithms, etc.

 Security

o Identity & Access Management: Concepts needed for IAM like roles, access
rights, etc.

o Encryption: Abstract concept, may include concrete encryption algorithms.

We then asked the project partners to state their opinion if these domains must, should or
could be part of a core ontology. The outcome is shown in Figure 13 which shows that
location and time are believed to be the most important concepts together with units of
measurement and sensors. For identity & access management, actuators and symbIoTe
infrastructure we have still a rather strong opinion that they should be part of the CIM.
Services and Protocols are up for discussion as at most 50% of partners think that this
should be an essential element of the CIM. The same goes for Bartering & Trading.
Encryption & Quality of Service / SLA is not considered to be part of the CIM.

Figure 13 Outcome of the internal survey on which domains must/should/could be
modelled within symbIoTe.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Quality of Service / SLA

Encryption

Trading & Bartering

Protocols

Services

symbIoTe Infrastructure

Actuators

Identity & Access management

Sensors

Units of Measurement

Time

Location

MUST SHOULD COULD

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 30 of 46
© Copyright 2016, the Members of the symbIoTe

5.1.2 Core Information Model (CIM)

Figure 14 The symbIoTe Core Information Model (v0.2).

The Core Information Model (CIM) comprises all the metadata about resources exposed by
platforms connected to symbIoTe that symbIoTe can understand. It is designed to be as
abstract as possible and as specific as needed at the same time. The design principles of
the CIM and why we are not re-using any existing ontology for that is explained in the
following section. The concepts and relations which are selected to be included in the
proposed CIM use as input the conducted survey on domains presented in the previous
section.

The idea of having such a CIM is that all platforms are forced to use a very minimalistic
information model so that symbIoTe can understand at least the essential descriptions of
platform resources that it needs to understand to work properly. We assume that a platform
which is symbIoTe-enabled must provide its own PIM to expose its resources and
associated data to the outside world and symbIoTe. This PIM must be fully compliant and
aligned to the CIM. For details on the relation between PIM and CIM see Section 5.2.

It is to notice that the CIM is developed in an iterative process and Figure 14 depicts the
current version (v0.2) and not the final one. There are a number of open issues under
discussion, e.g. how to properly model mobile and stationary sensors as they have different
requirements regarding the relations between Sensor and Location as well as Observation
and Location. Furthermore, the CIM will be extended with concepts regarding actuators in a
later version.

5.1.2.1 Why we need a new information model

The design of the CIM was driven by two principles: on the one hand we wanted to be as
explicit as needed to at least include all the concepts symbIoTe needs to understand to

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 31 of 46
© Copyright 2016, the Members of the symbIoTe

provide its functionality and services. In other words, we need the concept of a resource
which has an identifier or the concept of a sensor and observations which must be
associated to a location so that symbIoTe is able to support location-based search for
sensors and observations. On the other hand, we need to be as abstract as possible, i.e.,
we must be careful not to introduce any concept and relation that is not really essential, as
each introduced concept and relation reflects a design/modelling decision which needs to
be shared by platforms that want to use symbIoTe. Thus adding any concept or relation that
is not essential to the CIM can potentially exclude some platforms from using symbIoTe
because they won’t be able to fit their internal information model with the CIM.

Based on these two partially contradictory design principles we figured out that directly re-
using any existing ontology is not suitable for our needs. In general, there are mainly two
types of IoT ontologies that could be considered for re-use. First, the more abstract type,
e.g., the SSN ontology which resemble the CIM very closely. In fact, abstract ontologies are
almost what we need (that is why they are so similar to the CIM) but existing ontologies are
either too broad, i.e., containing concepts that are not relevant for symbIoTe or, which is
worse, do not fully cover the needs of symbIoTe (e.g., support of moving sensors). However,
the CIM is strongly influenced by the existing ontologies, especially the SSN ontology and
the SensorThings API information model [32]. The second type of IoT ontologies are those
which are on a more practical level. They often extend abstract ontologies with additional
concepts for practical use, e.g., the IoT-Lite16 ontology which is based on the SSN ontology.
Such ontologies are not suitable for symbIoTe as they are far too application specific and
not abstract enough to be used as CIM.

5.1.3 Meta Information Model (MIM)

Figure 15 The symbIoTe Meta Information Model (v0.2).

16 https://www.w3.org/Submission/iot-lite/

https://www.w3.org/Submission/iot-lite/

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 32 of 46
© Copyright 2016, the Members of the symbIoTe

The Meta Information Model (MIM) is used to store meta information about platforms in
symbIoTe for internal use. It provides the concepts describing the platforms which are
registered to symbIoTe: platform owner, endpoints for data access (URL of the Interworking
Interface implementation/Resource Access Proxy), information model used by endpoints
and definitions of the mappings between information models. The last concept is linked to
an external ontology used to describe these mappings. We are currently considering to use
the Expressive and Declarative Ontology Alignment Language (EDOAL) [33] [16] for this
purpose.

5.2 Platform-Specific Information Models / Extending the Core
Information Model

To make an IoT platform symbIoTe compliant, the platform must expose its resource
metadata to the outside world based on a Platform-Specific Information Model (PIM). The
PIM needs to be compliant with the CIM, which means that it must contain all concepts and
relations that are defined in the CIM and is not allowed to alter them. Basically, any PIM can
be seen as an extension to the CIM adding all concepts and relations that are necessary to
completely describe the IoT domain and also platform-specific domains.

As it may be a hard task for platform owners to define a PIM using RDF, especially if they
are no experts in semantic technologies, to define such a PIM using RDF symbIoTe is
considering to merge the concept of a best practice information model with the Core
Information Model with Extensions approach. This means that symbIoTe would provide a
Best Practice Information Model (BIM) which is compliant to the CIM and can be used by
platforms as their PIM if it suits their needs. Additionally, platforms will automatically gain
semantic interoperability to all other platforms also using the BIM without the need to define
any mappings. This is expected to massively lower the entrance barrier for platform owners
who are not that familiar with semantic technologies to make their platform symbIoTe-
compliant and enable interoperability to other platforms.

However, using the symbIoTe-specific BIM should be optional so that platforms with special
information models that are incompatible with BIM are not excluded from the symbIoTe
ecosystem. Such platforms will rather have the possibility to define their own PIM and
manually align it with other PIMs (as well as the BIM).

5.3 symbIoTe Architecture from the Semantic Interoperability
Perspective

In this section, we provide details on how the chosen approach to semantic interoperability
influences the symbIoTe architecture as defined in deliverable D1.2 “Initial Report on
System Requirements and Architecture” [34]. We start from the component diagram defined
for symbIoTe Level 1 compliance presented in D1.2 in Figure 16, and highlight all
components in green that are affected by the proposed solution for semantic interoperability.
The previously defined information models (MIM, CIM, PIM) have the strongest impact on
the symbIoTe architecture.

The most affected parts of the architecture are those that enable the interaction between
the symbIoTe Core Services and symbIoTe-enabled IoT platforms, as well as between
applications/enablers and IoT platforms. We can identify three main functionalities that
directly depend on the information models: 1) registration of platform/resources, 2) search

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 33 of 46
© Copyright 2016, the Members of the symbIoTe

for resources and 3) data acquisition from a platform. Further details on how each
component is affected by the integration of semantic interoperability concepts are given in
the following tables and they should be considered as expanded description of the
components introduced in deliverable D1.2. Note that these descriptions are only a proposal
on how to integrate semantic interoperability concepts within the next version of the
symbIoTe architecture.

Figure 16 symbIoTe component diagram for Level 1 compliance (taken from D1.2) with
changes regarding semantic interoperability highlighted in green.

Table 4 Changes of the Administration component introduced by semantic interoperability.

Component Administration

symbIoTe
Domain

APP

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 34 of 46
© Copyright 2016, the Members of the symbIoTe

Description This component enables registration of a PIM through its interface.
The PIM should be provided in the RDF format which can be verified
to check if the PIM is aligned with the CIM. If the two models are
aligned, the PIM can be stored in Registry.
This component will also provide an interface to define a mapping
between two PIMs. It allows a user to create a mapping between two
PIMs to indicate relations between PIM entities by using an alignment
language (e.g. EDOAL). The mappings defined through the
Administration interface are stored in Registry and are later on used
by Search Engine to retrieve results across multiple platforms even if
they don’t use the same PIM.

Provided
functionalities

 Provides an interface for registration of a PIM
 Provides an interface for definition of the mapping between

two PIMs

Relation to other
components

Registry: stores PIMs and defined mappings between two PIMs.

Table 5 Changes of the Registry component introduced by semantic interoperability.

Component Registry

symbIoTe
Domain

APP

Description The component must provide unique symbIoTe identifiers to all resources
registered within the symbIoTe Core Services. Uniqueness must be
enforced both within and across IoT platform boundaries, which is critical,
e.g., in the case of roaming IoT devices. The Id is also assigned to all
metadata resources, such as: symbIoTe users, PIMs or mappings between
PIMs.
A core information model with extensions (i.e. PIM) must be supported by
the Registry for the description of available resources across IoT platforms.
The symbIoTe Core Information Model should be compatible with existing
standards, prominent ontologies in the IoT space and should be aligned (if
possible) with the data model of other IoT-EPI projects. The model must
support geo-referenced information. It must distinguish IoT devices which
are fixed (their geo-location does not change over time) and mobile (their
geo-location continuously changes). The information generated by IoT
devices must be annotated by standard units. The information model of an
IoT platforms and enablers (i.e., PIM) registering their resources to
symbIoTe should be aligned to the symbIoTe core information model (i.e.,
CIM).
All interfaces should communicate using the Semantic Web technologies. In
case of data manipulation (insertion, deletion, update), resources and
resource metadata should be communicated in the RDF format (e.g., as
payload of REST message). To execute a search query issued by the
Search Engine, the Registry should offer an interface that accepts the
SPARQL query.

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 35 of 46
© Copyright 2016, the Members of the symbIoTe

Provided
functionaliti
es

 Handles requests for resource registration and resource.
 Stores resource metadata. All resources are described using the

appropriate symbIoTe information model (platforms and devices
using the PIM, PIM mappings using the MIM).

Relation to
other
components

Search Engine: uses platform, enabler and resource-related information
(PIM) managed by the Registry and uses mappings between PIMs to
execute re-written search queries.

Table 6 Changes of the Search Engine component introduced by semantic interoperability.

Component Search Engine

symbIoTe
Domain

APP

Description This component allows to search for registered resources across
platforms registered to symbIoTe in a unified way. A query must be
formulated against an information model known to symbIoTe, which
can either be the Core Information Model (CIM), any Platform-
Specific Information Model (PIM) or the Best Practice Information
Model (BIM), i.e., a special case of PIM that is used by multiple
platforms. The goal is to return cross-platform results that satisfy the
conditions of the query. When the query is formulated against the
CIM than it can be answered by straightforward execution of the
query against the Registry. Otherwise, if the query is formulated
against a PIM (or, as special case, the BIM), the query is translated
based on the mappings between the used PIM and other PIMs stored
in the Registry using SPARQL query re-writing techniques to provide
results from multiple platforms. The component’s primary interface
accepts SPARQL queries, but to simplify its usage, it may also offer
multiple pre-defined parameterisable search queries (such as:
search for a property, location, owner, etc.), which will be
subsequently transformed to the SPARQL query using pre-prepared
templates before executing it in Registry.

Provided
functionalities

 Searches for resources which match a specific query across
registered platforms and their resources.

Relation to other
components

Registry: provides platform, enabler and resource-related information
(PIM) needed to perform the search operation, provides all defined
mappings for the used PIM and performs a SPARQL execution on
the storage.

Table 7 Description of the Registration Handler component regarding the symbIoTe
Information Model.

Component Registration Handler (RH)

symbIoTe
Domain

CLD

Description This component will drive an IoT platform owner through the step of
registering resources into the symbIoTe Core. Registration Handler

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 36 of 46
© Copyright 2016, the Members of the symbIoTe

should monitor platform resources so that it can register them into the
symbIoTe (eco)system. These resources can be an IoT Device or a
Composite IoT Service and must be described using a PIM which is
aligned with the CIM. Registration Handler at least needs to provide all
information from the CIM: IoT Device or Composite IoT Service
description, Location and its properties and Observed Property
description and name.

Registration using the PIM relies on the Semantic Web technologies
(PIM and resource instances description should be provided in the RDF
format for the general version of the API of this component but for ease
of usability additional interfaces hiding the Semantic Web technologies
can be added later on) so it can become an obstacle for platform owner
to join the symbIoTe ecosystem. For that purpose, the Registration
Handler will provide the BIM, i.e. Best-Practice Information Model, which
is a Platform-Specific Information Model (PIM) aligned with the CIM and
provided by symbIoTe for making it more easy for platform owners to
make their platforms symbIoTe-compliant. The purpose of the BIM is to
facilitate the registration of IoT platforms that do not use Semantic Web
technologies, so that platforms can only provide raw data necessary to
fill the BIM template (i.e. to describe its resources). The data provided
for BIM needs to include the mandatory elements of CIM, to enable the
basic functionalities of the symbIoTe Core Services (search, check
availability). Platforms that use BIM are automatically interoperable with
other platforms using the BIM without the need to define any mapping.

Provided
functionalities

 Registers resources to the symbIoTe core, virtual and physical,
using the PIM

 Updates resource status and unregistered resources

Relation to
other
components

Registry (within symbIoTe Core Services): stores data about resource
in the PIM, assigns unique symbIoTe IDs and maintains information
about current resource status.

Table 8 Description of the Resource Access Proxy component regarding the symbIoTe
Information Model.

Component Resource Access Proxy (RAP)

symbIoTe
Domain

CLD

Description This component enables symbIoTe-compliant access to resources
within an IoT platform or (enabler acting as a platform). The data
generated by IoT Services must be returned in accordance with the
PIM. Since the PIM is an extension of the CIM, all requests made in-
line with the CIM will return valid results (also valid for the platforms
that are using the BIM). Also, the component will return results if the
query is in-line with the used PIM, but it does not guarantee to return
results if a request is made using some other PIM.

Provided
functionalities

 Ensures formatting of data generated by resources in
accordance with the PIM

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 37 of 46
© Copyright 2016, the Members of the symbIoTe

Relation to
other
components

Application/Enabler: provides requested data

5.4 Semantic Mapping and SPARQL Query Re-Writing

As shown in Section 3.4, semantic mapping is not only about defining mapping between
ontologies but also about using these mappings at runtime to mediate between them. This
functionality is provided as an execution framework or a mediator as depicted in Figure 2.
In symbIoTe this will be implemented using SPARQL query re-writing techniques [35] [36]
[37]. How this works in detail is shown in Figure 17 which is an enhanced version of the
sequence diagram describing the symbIoTe Core search functionality taken from D1.2
“Initial Report on System Requirements and Architecture” (Figure 17). The implications on
the existing sequence diagram and changes to it are based on the introduction of SPARQL
query re-writing as the main approach to address semantic interoperability. These are
described in detail in hereafter.

Message 1 to 4 stay exactly the same, whereas for Message 5 we now know that the
payload (referred to as search in the diagram) should be in the form of a SPARQL query
under the assumption that all information models inside symbIoTe are formulated using
RDF/OWL. We are aware that not all people are familiar with semantic technologies like
SPARQL and that enforcing them to use semantic technologies can be quite an entry barrier.
As SPARQL is only the direct interface to the Search Engine this doesn’t mean it must be
the only one. To facilitate access to the Search Engine we are planning to also provide a
simpler interface with a limited subset of functionality, e.g., a REST-based interface
supporting multiple pre-defined parameterisable SPARQL queries. The rest of the
messages stays the same except Message 11 which is now decomposed into multiple sub-
messages and operations. First of all, the Search Engine asks the Registry for all platforms
that use an information model, called IMPlatform for which a mapping exists to from the
information model the search SPARQL query Q is formulated in, called IMQuery (Message
11a). As a result, the Registry will provide a list of platforms P1..n together with the mapping
definition M1..n mapping between IMPlatform 1..n and IMQuery. Now for all found i = 1..n platforms
the Search Engine executes the following steps:

 Re-write SPARQL query Q based on mapping Mi to query Qi (Message 11b)

 Execute query Qi against Registry (Message 11c) and receive query results QRi
(Message 11d)

 Re-write query result QRi based on mapping Mi to query result QRi,Query which is
compliant with the information model of the original query IMQuery

These steps are executed in parallel for each found platform. After all parallel tasks have
finished, the re-written results are merged (⋃ 𝑄𝑅𝑖,𝑄𝑢𝑒𝑟𝑦

𝑛
𝑖=1) and returned (Message 12).

Following this approach, symbIoTe is able to answer queries formulated against any
(registered) information model with data from all platforms using an information model which
is mapped to the one used in the query which essentially enables semantic interoperability.
It is to notice that there exist multiple different types of ontology mismatches as described in
Section 3.4 of which only a subset will be supported for SPARQL query re-writing by
symbIoTe. This means that PIMs which extended the CIM in such a different way that they

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 38 of 46
© Copyright 2016, the Members of the symbIoTe

have serious types of mismatches will probably not be able to interoperate in practice. As it
is still an open research question how to overcome those serious types of ontology
mismatches symbIoTe envisions to define clear interfaces for the components related to
solving this issue to provide a framework to encourage researches to address these
problems and to make it easy for them to integrate their new solutions into symbIoTe. This
will also allow to clearly separate the part of symbIoTe that is guaranteed to be successfully
and completely implemented and the research part of symbIoTe which outcome is open to
some degree as it is the case with every scientific research question. Furthermore, this
separation with a clearly defined interface allows to be open to collaboration, especially with
other projects inside the IoT-EPI which will also need to somehow address the problem of
semantic interoperability.

Figure 17 Enhanced sequence diagram from D1.2 “Initial Report on System Requirements
and Architecture” (Figure 18) describing the search functionality with respect to SPARQL

query re-writing.

5.5 Registering resources to the symbIoTe ecosystem

Hereafter we will describe the registration process from an alternative point of view,
depicting communication between components and transmitted data. A basic sequence

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 39 of 46
© Copyright 2016, the Members of the symbIoTe

diagram for resource registration is taken from deliverable D1.2 [34] (Figure 14). Figure 18
presents an enhanced sequence diagram for resource registration that presents two
possible approaches of resource registration. Compared to the original diagram presented
in deliverable D1.2 “Initial Report on System Requirements and Architecture”, only message
12 is presented in more details because it is the only one that is affected by specification of
the symbIoTe information model. A platform owner has two possibilities to register resources
to the symbIoTe ecosystem, one using the semantic resource description (depicted with
message 12.1) and second describing resources in plain text and using that description to
fill the Best Practice Information Model (depicted with the messages 12.2). The first
approach assumes that a platform is using Semantic Web technologies, and a PIM needs
to be aligned with the CIM. In this case, a platform owner needs to expose its used data
model via its PIM extending and aligned with the CIM (by adding appropriate relations), and
such extended PIM (i.e. platform and resource description in the RDF format) is provided to
Registration Handler which will forward it to the Registry and perform registration. If a
platform owner does not want to use Semantic Web technologies and/or thinks that the BIM
fits his/her needs well, he can instead just re-use the BIM as his/her PIM (this is very close
to the approach of a Core Information Model as introduced in Section 4.2.1). As the used
information model is completely defined by the BIM it is then possible to register resources
via any kind of description (e.g. JSON, XML or even plain-text) via the Registration Handler.
In both cases, Registration Handler uses the semantic description of resources in RDF
format when it is communicating with Registry to perform registration.

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 40 of 46
© Copyright 2016, the Members of the symbIoTe

Figure 18 Enhanced sequence diagram from D1.2 “Initial Report on System Requirements
and Architecture” (Figure 14) describing the resource registration.

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 41 of 46
© Copyright 2016, the Members of the symbIoTe

6 Conclusions and Next Steps

In this deliverable we presented the problem of semantic interoperability between multiple
heterogeneous IoT platforms together with a formal analysis of the solution domain to this
problem. We highlighted five different possible approaches to achieve semantic
interoperability ranging from a “monolithic” approach where all platforms use a single
completely agreed upon information model to a “distributed” approach where each platform
defines their own information model and they can only exchange information via mappings
between those information models. In addition, we have also presented the advantages and
disadvantages of the proposed approached. We presented that symbIoTe is aware that the
best suitable approach would be the Core Information Model with Extensions approach but
as it may render too complex for implementation, symbIoTe will consider the Best Practice
Information Model approach with a Best Practice Information Model aligned with a Core
Information Model as a next feasible step.

As semantics is essential for IoT platform interoperability (as explained in Section 3.1) we
decided to build upon semantic technologies, e.g., RDF to describe information models. In
Section 5.1 and its subsections we presented the symbIoTe Information Model (SIM)
consisting of the Core Information Model (CIM) and the Meta Information Model (MIM)
together with their design rationales. In addition, considerations on how this impacts the
symbIoTe architecture is presented in D1.2 “Initial Report on System Requirements and
Architecture” and also details on how SPARQL query re-writing can be used to solve the
issue of semantic interoperability are provided in Section 5.3 and Section 5.4.

We have identified multiple domains where future work is needed. As a next step, we will
keep up with the iterative development of the CIM which will focus on the different modelling
needs of mobile vs. stationary sensors as well as in-situ vs. remote observations and also
actuators will be part of a next version of the CIM.

Regarding SPARQL query re-writing as an approach to solve the problem of semantic
interoperability we will focus on clearly separating the core functionality of symbIoTe from
the research questions so that the success of the project is not dependant on the outcome
of the research questions as real scientific research questions are never guaranteed to be
completely solvable. This will also enable us to provide a partial solution to the research
question of SPARQL query re-writing which will probably look like we’re providing this
functionality to a limited subset of identified ontology mismatches. Therefore, a part of the
research challenge will be to do an analysis of existing ontology mismatch classifications
and to decide which of these can and will be supported within symbIoTe.

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 42 of 46
© Copyright 2016, the Members of the symbIoTe

7 References

[1] Network Centric Operations Industry Consortium, „NCOIC, "SCOPE",“ 2008.

[2] M. Jacoby, A. Antonic, K. Kreiner, R. Lapacz und J. Pielorz, „Semantic Interoperability
as Key to IoT Platform Federation,“ Interoperability and Open-Source Solutions for the
Internet of Things, Forthcoming 2017.

[3] R. Herzog, M. Jacoby und I. Podnar Zarko, „Semantic interoperability in IoT-based
automation infrastructures,“ at-Automatisierungstechnik, Bd. 64, Nr. 9, pp. 742-749,
2016.

[4] „Merriam-Webster,“ 06 04 2016. [Online]. Available: http://www.merriam-
webster.com/dictionary/semantics.

[5] T. R. Gruber, „A translation approach to portable ontology specifications.,“ in
Knowledge acquisition 5.2, 1933, pp. 199-200.

[6] A. Tolk und J. A. Muguira, „The levels of conceptual interoperability model,“ in
Proceedings of the 2003 Fall Simulation Interoperability Workshop, Citeseer, 2003, pp.
1-11.

[7] „Wikipedia,“ [Online]. Available: https://en.wikipedia.org/wiki/
Conceptual_interoperability#Levels_of_conceptual_interoperability. [Zugriff am 06 04
2016].

[8] T. Berners-Lee und L. Ora, „The semantic web,“ Scientific american, pp. 28-37, 2001.

[9] W3C, „Vocabularies,“ [Online]. Available:
https://www.w3.org/standards/semanticweb/ontology. [Zugriff am 06 10 2016].

[10] P. Visser, D. M. Jones, T. J. Bench-Capon und M. J. Shave, „Assessing heterogeneity
by classifying ontology mismatches,“ in Proceedings of the FOIS, 1998.

[11] P. Visser, D. M. Jones, T. J. Bench-Capon und M. J. Shave, „An analysis of ontology
mismatches; heterogeneity versus interoperability,“ in AAAI Spring Symposium on
Ontological Engineering, Stanford CA., USA, 1997.

[12] M. Klein, „Combining and relating ontologies: an analysis of problems and solutions,“
in IJCAI-2001 Workshop on ontologies and information sharing, 2001.

[13] F. Scharffe, O. Zamazal und D. Fensel, „Ontology alignment design patterns,“
Knowledge and Information Systems, 2014.

[14] M. Rebstock, J. Fengel und H. Paulheim, Ontologies-based business integration,
Springer Science & Business Media, 2008.

[15] J. Euzenat, „An API for ontology alignment,“ in International Semantic Web
Conference, Springer, 2004, pp. 698-712.

[16] J. Euzenat, F. Scharffe und A. Zimmermann, „Expressive alignment language and
implementation,“ 2007.

[17] P. Bouquet, F. Giunchiglia, F. Van Harmelen, L. Serafini und H. Stuckenschmidt, „C-
OWL: Contextualizing ontologies,“ in International Semantic Web Conference,
Springer, 2003, pp. 164-179.

[18] I. Horrocks, P. Patel-Schneider, H. Boley, S. Tabet, B. Grosof und M. Dean, „SWRL: A
semantic web rule language combining OWL and RuleML,“ W3C Member submission,
Bd. 21, p. 79, 2004.

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 43 of 46
© Copyright 2016, the Members of the symbIoTe

[19] A. Maedche, B. Motik, N. Silva und R. Volz, „MAFRA—An Ontology MApping
FRAmework in the Context of the Semantic Web,“ in Workshop on Ontology
Transformation at ECAI-2002, 2002.

[20] P. Shvaiko und J. Euzenat, „A survey of schema-based matching approaches,“ in
Journal on data semantics IV, Springer, 2005, pp. 146-171.

[21] N. Choi, I.-Y. Song und H. Han, „A survey on ontology mapping,“ ACM Sigmod Record,
2006.

[22] E. Rahm und P. A. Bernstein, „A survey of approaches to automatic schema matching,“
the VLDB Journal, Bd. 10, Nr. 4, pp. 334-350, 2001.

[23] B. T. Le, R. Dieng-Kuntz und F. Gandon, „On ontology matching problems,“ ICEIS (4),
pp. 236-243, 2004.

[24] M. Granitzer, V. Sabol, K. W. Onn, D. Lukose und K. Tochtermann, „Ontology
alignment—a survey with focus on visually supported semi-automatic techniques,“
Future Internet, Bd. 2, Nr. 3, pp. 238-258, 2010.

[25] Á. Siciliaa, G. Nemirovskib und A. Nolleb, Map-On: A web-based editor for visual
ontology mapping.

[26] S. Massmann, S. Raunich, D. Aumüller, P. Arnold und E. Rahm, „Evolution of the
COMA match system,“ in Proceedings of the 6th International Conference on Ontology
Matching-Volume 814, 2011, pp. 49-60.

[27] M. Kerrigan und A. Mocan, „The web service modeling toolkit,“ in European Semantic
Web Conference, Springer, 2008, pp. 812-816.

[28] H. Wache, T. Voegele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann und
S. Hübner, „Ontology-based integration of information-a survey of existing
approaches,“ in IJCAI-01 workshop: ontologies and information sharing, 2001.

[29] M. Compton, P. Barnaghi, L. Bermudez, R. García-Castro, O. Corcho, S. Cox, J.
Graybeal, M. Hauswirth, C. Henson und A. Herzog, „The SSN ontology of the W3C
semantic sensor network incubator group,“ Web Semantics: Science, Services and
Agents on the World Wide Web, 2012.

[30] oneM2M Partners Type 1, „oneM2M Base Ontology,“ 2016.

[31] N. F. Noy, D. L. McGuinness und others, Ontology development 101: A guide to
creating your first ontology, Stanford knowledge systems laboratory technical report
KSL-01-05 and Stanford medical informatics technical report SMI-2001-0880,
Stanford, CA, 2001.

[32] Open Geospatial Consortium, „OGC SensorThings API Part 1: Sensing,“ Version 1.0,
2016.

[33] J. David, J. Euzenat, S. Francois und C. Trojahn dos Santos, „The alignment API 4.0,“
Semantic web, Bd. 2, Nr. 1, pp. 3-10, 2011.

[34] s. Project, „D1.2: Initial Report on System Requirements and Architecture,“ 2016.

[35] G. Correndo, M. Salvadores, I. Millard, H. Glaser und N. Shadbolt, „SPARQL query
rewriting for implementing data integration over linked data,“ in Proceedings of the
2010 EDBT/ICDT Workshops, ACM, 2010, p. 4.

[36] M. Konstantinos, N. Bikakis, N. Gioldasis und S. Christodoulakis, „SPARQL-RW:
transparent query access over mapped RDF data sources,“ in Proceedings of the 15th
International Conference on Extending Database Technology, ACM, 2012, pp. 610-
613.

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 44 of 46
© Copyright 2016, the Members of the symbIoTe

[37] B. Quilitz und U. Leser, „Querying distributed RDF data sources with SPARQL,“ in
European Semantic Web Conference, Springer, 2008, pp. 524-538.

[38] R. Studer, V. R. Benjamins und D. Fensel, „Knowledge engineering: principles and
methods,“ Data & knowledge engineering, 1998.

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 45 of 46
© Copyright 2016, the Members of the symbIoTe

8 Acronyms

API Application Programming Interface

BIM Best Practice Information Model

C-OWL Context OWL

CIM Core Information Model

EDOAL Expressive and Declarative Ontology Alignment Language

IAM Identity & Access Management

ID Identifier

IM Information Model

IoT Internet of Things

IoT-EPI IoT-European Platforms Initiative

JSON JavaScript Object Notation

JSON-LD JSON-based Serialization for Linked Data

KES Knowledge Engineering System

LCIM Levels of Conceptual Interoperability Model

MAFRA Ontology MApping FRAmework

MIM Meta Information Model

N3 Notation3

OData Open Data Protocol

OWL Web Ontology Language

PIM Platform-Specific Information Model

QoS Quality of Service

QR Query Results

RDF Resource Description Framework

RDFa Resource Description Framework in Attributes

RDFS RDF Schema

REST Representational State Transfer

SE Core Security Handler

SIM symbIoTe Information Model

SLA Service Level Agreement

SPARQL SPARQL Protocol and RDF Query Language

SPIN SPARQL Inferencing Notation

SQL Structured Query Language

SSN Semantic Sensor Network

688156 - symbIoTe - H2020-ICT-2015 D2.1 – Semantics for IoT and Cloud resources

Version 1.3 Page 46 of 46
© Copyright 2016, the Members of the symbIoTe

SWRL Semantic Web Rule Language

symbIoTe Symbiosis of Smart Objects across IoT Environments

Turtle Terse RDF Triple Language

UoM Units of Measurements

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

WGS World Geodetic System

WKT Well-Known Text

XML Extensible Markup Language

XSD XML Schema Definition

