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1 Executive Summary 

One main objective of the symbIoTe project is to create a mediation framework to enable 
the discovery and sharing of connected devices across existing and future IoT platforms to 
enable platform federation and rapid development of cross-platform IoT applications. The 
problem is that these devices are managed by different Internet of Things (IoT) platforms, 
which are designed for different application domains. The requirement to enable information 
technology to deal with the semantic of data has been one of the grand challenges in the 
computer science domain in the past and probably will be one for the next future. Having 
that in mind, this document will not try to solve all open issues, but it will lay out a practical 
approach to the given task. Deliverable D2.1 is the first iteration of this deliverable with the 
purpose to analyse the general problem and to define the basic approach to be used by 
symbIoTe. The second and final version of this deliverable is scheduled for month 18.  

To understand the motivation of this document one may imagine a typical IoT platform for 
any given domain, for example, a climate control system for a smart home. Such a platform 
deals with data in a given context where the meaning is predefined, e.g., the scale of a 
thermostat ranging from 0 to 5, where 0 means no heating and 5 valve is open. It also has 
implicit data models like the location of a radiator, which relates to a room and maybe to a 
heating circuit. Another IoT platform could manage for example self-monitoring devices 
which collect data within a different context and different predefined meanings of 
temperature and locations. To make such different IoT-platforms understand each other, the 
meaning of data and concepts must be explicitly defined. The background chapter on 
semantic interoperability introduces possible technical solutions for this task. With the 
developments influenced by the so called ‘Semantic Web’ there are established standards, 
methods and tools available, like the RDF and OWL format to describe the semantics of 
data which will be used by symbIoTe. The document also describes the achievements in the 
development of semantic mapping, to translate one information model into another which is 
semantically similar but structurally different. This capability is required for enabling 
interoperability between platforms which are based on individual data models.  

There are several ways to achieve semantic interoperability. Section 4 explains and 
discusses the possible approaches, from a simple approach where everybody shares the 
same understanding, to the most complex one where everybody may use different concepts 
and interpretations. From a practical perspective, neither the easy nor the complex approach 
is feasible for most real-life applications. symbIoTe proposes an approach where it starts 
from a set of basic concepts, which are common for all platforms connected via the 
symbIoTe framework. These basic concepts are sufficient to provide “meta”-understanding 
about the connected IoT platforms and their resources, so that symbIoTe can provide a 
generic interoperable mediation service. To cover the actual meaning of platform-specific 
data, more detailed platform specific concepts are required. symbIoTe thus proposes an 
approach which allows multiple extensions to the basic concepts and aims to provide 
semantic and syntactic transformation as a common interoperability service.  

This deliverable provides an initial proposal how the approach to semantic interoperability 
presented in this document can be incorporated into the symbIoTe architecture presented 
in D1.2. Further refinements on this will be included in the final deliverable D2.4.  
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2 Introduction 

In the context of this document, semantic can be understood as the meaning of things. Its 
main purpose in symbIoTe is to enable interoperability, especially semantic interoperability 
which “is the ability of computer systems to exchange data with unambiguous, shared 
meaning” [1] (see Section 3.1 for a detailed definition of semantic interoperability). Some 
parts of this deliverable are based on the unpublished paper “Semantic Interoperability as 
Key to IoT Platform Federation” [2] (accepted at the 2nd International Workshop on 
Interoperability & Open Source Solutions for the Internet of Things) as well as the paper 
“Semantic interoperability in IoT-based automation infrastructures” [3], both of which were 
authored as part of the academic dissemination within symbIoTe. 

2.1 Semantics in symbIoTe 

As the overall objective of symbIoTe is to create an interoperability framework for IoT 
platforms and to enable platform federation, achieving semantics is a key challenge. 
symbIoTe plans to use semantic technologies to bridge the semantic gap between existing 
and future IoT platforms with a goal to enable interoperability on a higher level, the semantic 
level, which is a step forward in comparison to state of the art solutions which primarily focus 
on syntactic interoperability. 

2.2 Purpose of the document 

The purpose of deliverable D2.1 “Semantics for IoT and Cloud resources” is to document 
the first outcomes and intermediate results regarding semantics in the symbIoTe project. 
The role of semantics within symbIoTe is described and approaches to achieve semantic 
interoperability are identified and discussed. Implementation plans for semantics in 
symbIoTe and how they’re represented in the current architecture are specified in this 
document.  

This document will serve as a basis for the revised version of the semantics, which will be 
presented in deliverable D2.4 “Revised Semantics for IoT and Cloud Resources” in month 
18. 

2.3 Document Scope 

This document reports on the work accomplished in T2.1 “Semantics for IoT and Cloud 
Resources” with a strong focus on semantic interoperability. It presents a theoretical 
analysis of the problem domain of semantic interoperability together with multiple possible 
approaches to address this problem. Furthermore, it discusses which of these approaches 
be used within symbIoTe and presents ideas how this approach can be realized. 

Although mentioned in some parts, syntactic interoperability and how it is addressed and 
realized by symbIoTe is not the primary subject to this deliverable. 
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2.4 Relation to other deliverables 

The content of this deliverable was motivated and influenced by the intermediate outcome 
of tasks T1.3 “System requirements” and T1.4 “System architecture” which has been 
published in D1.2 “Initial Report on System Requirements and Architecture”.  

This deliverable will have impact on multiple tasks as semantic interoperability is a core 
functionality of symbIoTe. The need for new functionality and components realizing semantic 
interoperability will have a direct influence on T1.4 “System architecture”, T2.2 “Virtual IoT 
environment” and T3.3 “Specification & Implementation of IoT Federation”. Furthermore, 
T2.3 “Implementation of symbIoTe domain-specific enablers”, T3.2 “Security and Access 
Scopes” and T4.1 “Local Registration, Discovery and Interoperability of Smart Objects” will 
be influenced indirectly by the outcome of this deliverable.  

2.5 Deliverable Outline 

This deliverable is structured as follows: Section 3 introduces the term semantic 
interoperability and provides background information on current semantic web technologies 
and standards. Furthermore, the information models of a subset of existing platforms that 
will be used in symbIoTe are presented to get a better understanding of the current situation 
and the difficulty of the problem of semantic interoperability. In Section 4 the problem of 
achieving semantic interoperability between multiple IoT platforms is presented in detail, 
together with a number of possible approaches how to address it. Section 5 presents which 
of the presented approaches the symbIoTe consortium has decided to follow and sketches 
the current plans to implement the chosen approach. This section also presents details on 
how this will influence the architecture presented in D1.2. The document closes with Section 
6 to present conclusions and next steps. 
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3 Background  

3.1 What are semantics and why do we need it? 

According to the Merriam-Webster dictionary, semantics is the study of meaning, especially 
“the meaning or relationship of meanings of a sign or set of signs” [4]. A sign here is a 
fundamental linguistic unit that designates an object or relation and therefore semantics can 
be understood as the mapping of signs to their meaning. For example, a sign could be a 
word, e.g. the word ‘table’, or a URI (Uniform Resource Identifier) like 
‘http://www.example.com/table’ and the corresponding meaning would be the concept of a 
table that is defined by its properties and context specifying that it is a constructed thing 
which has some legs, a solid top and is normally found in a man-made environment. In every 
act of communication, the involved actors, human or computers, require a shared 
understanding of things. A typical way to express semantics is via a taxonomy or an ontology 
which is “an explicit specification of a [shared] conceptualization” [5] (explicit because all 
relevant elements must be explicitly named in order to avoid misinterpretations; shared 
because there must be a common agreement within a specific domain of interest). 

Knowing this, it is obvious that semantics plays an important role in every act of 
communication. Without it, we would not be able to understand the meaning of the 
exchanged information, or at least we could not be sure that we are having the same 
understanding of it as our communication partner. To give an example image two people 
having a conversation about the weather and one says “…it had 40 degrees outside”. In this 
case the semantics are not clearly defined as degrees could refer to degrees Fahrenheit or 
to degrees Celsius. Communication might work by chance if they both have the same 
understanding of degree in the context of temperature but as long as they don’t use a shared 
or agreed upon vocabulary they cannot be sure that they both have the same understanding 
of the exchanged information.  

Transferring this example to the technical level of the IoT platforms communicating and 
exchanging data where the information is exchanged, processed and interpreted by 
machines this clear and formal definition of meaning is even more important because 
machines (most of the time) do not have any capability of reasoning to come up with a 
probably correct interpretation of the meaning of received data from others (mainly because 
they don’t have the information they need for this task, in the example this would be the 
cultural background of the person speaking). Therefore, semantics is essential to bring 
multiple IoT platforms which were created by different persons with different cultural 
backgrounds and with focus on different domains together as they most probably will have 
different understandings of things and interoperability will fail. 

3.2 Semantic Interoperability 

A common understanding of the concept of interoperability is described in the Levels of 
Conceptual Interoperability Model (LCIM) [6]. This definition is derived from simulation 
theory, but it has a much broader applicability. This definition distinguishes 7 levels of 
interoperability which are grouped in 3 parts [7]. 

 Integratability contends with the physical/ technical realms of connections between 
systems, which include hardware and firmware, protocols, etc. 
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 Interoperability contends with the software and implementation details of 
interoperations, including exchange of data elements based on a common data 
interpretation, etc. 

 Composability contends with the alignment of issues on the modelling level. The 
underlying models are purposeful abstractions of reality used for the 
conceptualization being implemented by the resulting simulation systems. 

For computer systems, the ability to have a clear and formalized way to express the meaning 
of things is an indispensable precondition to achieve semantic interoperability. Bringing both 
terms together, semantic interoperability can be defined as “the ability of computer systems 
to exchange data with unambiguous, shared meaning” [1].   

3.3 Semantic Web 

The term Semantic Web was first used by Tim Berners-Lee in his article “The semantic web” 
from 2001 stating that “the Semantic Web is not a separate Web but an extension of the 
current one, in which information is given well-defined meaning, better enabling computers 
and people to work in cooperation” [8]. 

The main concept of the Semantic Web is to extend the existing World Wide Web from a 
web of (interlinked) documents to a web of (interlinked) machine-readable and processable 
data. This is achieved through a family of very specific technology standards driven by the 
World Wide Web Consortium (W3C) which are presented in the following. 

3.3.1 Resource Description Format (RDF) 

RDF1 is the (metadata) data model for the Semantic Web and therefore can be seen as its 
cornerstone. All data on the Semantic Web is represented in RDF, even the schema 
description. The main advantage of RDF is its innate flexibility compared to the tabular data 
model of relational databases and the tree-based data model of XML. 

As shown in Figure 1, data in RDF is often depicted as a labelled, directed graph where the 
nodes represent resources (depicted as ovals) or literals (depicted as rectangles) and the 
labelled edges represent relations. This representation clearly shows the power of RDF to 
represent data without previously defining its structure, unlike with relation databases. 

 

 

Figure 1 Example RDF data depicted as graph. 

All data in RDF is described as a triple (also often called statement or 3-tuple) of the form 
(subject, predicate, object). Subjects and predicates are resources which are represented 
by an URI (Universal Resource Identifier). Objects can also be a resource or a literal (which 

                                            
 
1 https://www.w3.org/TR/2004/REC-rdf-primer-20040210/ 

https://www.w3.org/TR/2004/REC-rdf-primer-20040210/
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is only a fancy name for value). Datatypes of literals can be defined using XSD datatypes2. 
The use of URIs to identify resources (which can be seen as an atomic piece of information) 
allows globally unique addressing even between different databases and thus allows global 
interlinking of information. 

Collections of triples are called a graph. For better data management (e.g. access control, 
simplified updating, trust), large collections of RDF data are usually segmented into different 
named graphs. Triples stored in a named graph are often referred to as quads as they are 
of the form (graph, subject, predicate, object). Databases designed to store RDF data are 
referred to as triple (or quad) stores.  

RDF is an abstract data model, which means there are multiple serialization formats that 
can be used to represent RDF data. The most popular are RDF/XML3, N-Triples4, Turtle5, 
TriG6, RDFa7, Notation3 (N3)8 and JSON-LD9. 

3.3.2 RDF Schema (RDFS) & Web Ontology Language (OWL) 

RDFS10 and OWL11 are RDF schema languages which are used to define meta models for 
RDF data. These meta models are often referred to as vocabularies or ontologies which are 
explained in detail in the next section. Both, RDFS and OWL are themselves expressed 
using RDF. 

3.3.2.1 Vocabularies and Ontologies 

The terms vocabulary and ontology are terms used very frequently in the context of 
Semantic Web but are often defined and thus used differently. Generally, they are used to 
describe a set of triples with a strong logical cohesion. The W3C states, that “there is no 
clear division between what is referred to as vocabularies and ontologies. The trend is to 
use the word ontology for more complex, and possibly quite formal collection of terms, 
whereas vocabulary is used when such strict formalism is not necessarily used or only in a 
very loose sense” [9]. 

For the rest of the document we will use the term ontology and refer to it as a set of triples 
defining a meta model. This means ontologies only contain information about general 
concepts and no data of concrete instances (also often called individuals). The main idea 
behind developing ontologies is to structure data in a clear and machine-readable way to 
have a common understanding of things as well as to enable inference (making implicit 
knowledge explicit through reasoning). 

                                            
 
2 https://www.w3.org/TR/swbp-xsch-datatypes/ 
3 https://www.w3.org/TR/rdf-syntax-grammar/ 
4 https://www.w3.org/TR/n-triples/ 
5 https://www.w3.org/TR/turtle/ 
6 https://www.w3.org/TR/trig/ 
7 https://www.w3.org/TR/rdfa-primer/ 
8 https://www.w3.org/TeamSubmission/n3/ 
9 https://www.w3.org/TR/json-ld/ 
10 https://www.w3.org/TR/rdf-schema/ 
11 https://www.w3.org/TR/owl2-overview/ 

 

https://www.w3.org/TR/swbp-xsch-datatypes/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/trig/
https://www.w3.org/TR/rdfa-primer/
https://www.w3.org/TeamSubmission/n3/
https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/owl2-overview/
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3.3.2.2 RDFS 

RDFS is the most basic schema language of the Semantic Web. It is a very minimalistic set 
of classes and properties used to describe classes of and relations between objects. RDFS 
also distinguishes between classes and individuals (instances of classes). The most 
important classes are listed in Table 1 

Table 1 Most important classes of RDFS. 

Class Name Description 

rdfs:Resource all things declared by RDF are resources 

rdfs:Class describes the concepts of a class 

rdfs:Literal describes the concept of a literal 

rdfs:Property the class for properties 

  

Table 2 Most important properties defined in RDFS. 

Property Name Description 

rdfs:domain defines to which subjects does a property applies 

rdfs:range defines the set of values a property can accept 

rdf:type used to state that a resource is an instance of a class 

rdfs:subClass
Of 

defines one class as a subclass of another class 

rdfs:label provide human-readable version of resource’s name 

rdfs:comment provide human-readable description of resource 

rdfs:seeAlso link to another resource that might provide additional information 

 

3.3.2.3 OWL 

OWL is another RDF schema language which is more expressive than RDFS and can 
express quite subtle ideas about data. It is very efficient as it comes in various flavours, 
called profiles, each with a different level of expressivity and therefore complexity and 
computational power needed for inference. It includes everything RDFS provides and adds 
a lot of new classes and properties like 
 

 owl:TransitiveProperty 

 owl:unionOf 

 owl:sameAs 

 owl:inverseOf 

 owl:hasValue 
 
and also some properties to model meta-meta-data like 

 owl:import 

 owl:versionInfo 

 owl:deprecatedProperty 
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3.3.3 SPARQL Protocol and RDF Query Language 

SPARQL12 is the de facto standard query language for RDF data and quite similar to the 
query language for relational data SQL. 

 

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

3 PREFIX dbp: <http://dbpedia.org/ontology/> 

4  
5 SELECT ?city ?popTotal 

6 FROM <http://example.com/dataset.rdf> 

7 WHERE 

8 { 

9     ?city rdf:type <http://dbpedia.org/class/yago/CitiesInTexas> . 

10     ?city dbp:populationTotal ?popTotal . 

11 } 

12 ORDER BY ?popTotal 

 
 

Listing 1 An example SPARQL query. 

Looking at the overall structure of the example SPARQL query in Listing 1 we see that it is 
quite similar to SQL. One main difference is the format of the WHERE clause as with 
SPARQL it consists of a list of so called triple patterns. These triple patterns are normal 
triples which can contain a variable (starting with a ‘?’) on every position. When executed, 
the variables in the triple patterns are bound to concrete values whereat all occurrences of 
the same variable are bound to the same value. This concept is called graph pattern 
matching and the results of the query are all possible valid combinations of values bound to 
all mentioned variables. In SPARQL there exist multiple query types as specified in Table 3. 
 

Table 3 SPARQL query types. 

Query Type Description 

SELECT returns a list of bindings which is basically a table like in SQL 

CONSTRUCT returns a RDF graph which is basically a list of triples 

DESCRIBE returns information about a single resource. What will be returned is 
not generally defined but rather implementation dependent 

ASK returns true if the query has at least one result, otherwise false 

 

3.4 Semantic Mapping 

Ontologies are a way to formally describe the concepts and relations of a domain. But even 
if two ontologies cover the same domain they can describe the domain quite differently, e.g. 
use a taxonomy with another scope or granularity, use the same terminology but in a 
different language or even use a different terminology. Such differences between ontologies 

                                            
 
12 https://www.w3.org/TR/sparql11-overview/ 

https://www.w3.org/TR/sparql11-overview/
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are called ontology mismatches. There exist multiple classifications describing and 
structuring ontology mismatches in literature [10] [11] [12] [13] [14]. 

Semantic mapping refers to the idea to resolve ontology mismatches by defining statements 
and rules how data expressed using one ontology can be translated into the terms of another 
ontology. Such a statement or rule is called a correspondence pattern and consists of a 
source ontology, a target ontology and some correspondence/transformation information. 
All correspondence patterns having the same source and destination ontology together form 
an alignment between the two ontologies. Such an alignment contains all correspondence 
patterns necessary to translate instances of the source ontology into instances of the target 
ontology. Some mismatches are so profound that this translation is not possible without loss 
of information. In fact, this is quite common as only data modelled in both ontologies, i.e. 
that is part of the semantic intersecting set of the two ontologies, can be safely translated 
between them. 

 

Figure 2 Schematic representation of an example usage of semantic mapping for semantic 
interoperability. 

Figure 2 depicts a schematic representation how semantic mapping can be used for 
achieving semantic interoperability and which kind of software and tools are involved. In the 
centre we see an alignment as an aggregation of multiple correspondence patterns. To 
formulate, express and exchange such correspondence patterns a mapping language is 
needed. There are multiple existing mapping languages that can be used. The main criteria 
to classify them is their expressivity, i.e. what kind of ontology mismatches they can resolve, 
as this defines the capability of a system providing semantic interoperability to enable 
interoperability of systems even if their internal information models differ strongly. Some 
available languages are Alignment Format [15], EDOAL (Expressive and Declarative 
Ontology Alignment Language) [16], C-OWL [17], SWRL (Semantic Web Rule Language) 
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[18], MAFRA (Ontology MApping FRAmework) [19], SPARQL Construct13 and SPARQL 
Inferencing Notation14 (SPIN).  

In the upper centre of Figure 2 we see a user which in our case is a platform owner of an 
IoT platform. He has knowledge about the information model used in his own platform 
(Information Model A) as well as about the one used in another platform (Information Model 
B). Based on this knowledge he wants to formulate a mapping/alignment between the two 
information models using a mapping language. To ease this process, he could use a 
matcher which is a tool that automatically discovers correspondences between ontologies, 
e.g. by applying different similarity measures [20] [21] [22] [23]. Furthermore, he probably 
would like to use some visual editor for the mapping language because the correspondences 
and the alignment can become quite complex [24] [25] [26] [27]. Ontology matching and 
graphical alignment tools are both still an active area of research. 

After an alignment between two information models is defined at design-time it can be used 
at run-time by some kind of mediator to translate information expressed using information 
model A to information model B.  

3.5 Information Models of Existing Platforms used in symbIoTe 

In this section we highlight the problem of enabling interoperability between multiple 
platforms by providing a practical example. Therefore, we present the information models of 
two existing platforms, openUwedat from AIT and Symphony from NXW, that will be used 
within symbIoTe. These real world examples highlight the problem of semantic 
interoperability to demonstrate which services are needed when different IoT platforms want 
to exchange information. 

3.5.1 openUwedat 

openUwedat is not a closed system but rather a library and framework for arbitrary time 
series oriented applications. It does not use a single data model, but rather adapts the data 
model to the needs of specific applications. Nevertheless, there is a core data model that 
applies to all applications and there are extensions that apply to individual applications. 
Thus, the description of the data model is split into two parts. 

3.5.1.1 General Information Model 

The core data model of openUwedat is constructed around datapoints. These datapoints 
are sources and destinations of time series data.  

Each datapoint can be queried to emit TimeSeries data. A TimeSeries is mainly a container 
for Slots. TimeSeries object are comparable to the Observations collection of the OData 
interface, which is currently used for syntactic interoperability in symbIoTe (further 
information is provided in Section 5). 

Each Slot has a reference time and zero or more values assigned to it. Thus, it is closely 
related to symbIoTe’s concept of an Observation, as defined in Section 5.1.2. 

                                            
 
13 https://www.w3.org/TR/rdf-sparql-query/#construct 
14 https://www.w3.org/Submission/spin-overview/ 

https://www.w3.org/TR/rdf-sparql-query/#construct
https://www.w3.org/Submission/spin-overview/
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Each slot’s value can be any type (restricted to Java types at the moment). This is related 
to symbIoTe’s idea of an observation value. 

TimeSeries have Properties. They are addressed in a dictionary style by using key-strings. 
For this reason, the property system is easily extendable with new properties needed for 
particular applications. 

There is a set of Properties within the core model whose existence is mandatory or at least 
strongly recommended: 

 ValueKeys: This key describes which values are available within a slot. 

 ValueUnits: A description of the Units of Measurements (UoM) related to each value. 

 QueryInterval: This property describes the interval covered by the TimeSeries. This 
property is especially useful if the timely pattern of slots is only sparsely populated so 
that deriving the coverage from contained slots is not possible. This Property can also 
be used for paging in case a datapoint decided to not give back the complete query 
interval that was requested. 

Datapoints also have properties. The only mandatory property is ObservedProperty. 

 

Figure 3 The core Information Model of openUwedat. 

 

3.5.1.2 Information Model of the SymbIoTe installation 

For symbIoTe most of the core model was already covered by openUwedat’s core model. 

Two important extensions were needed nevertheless: 

 We needed a simple ID that can be exposed via the OData interface. This was added 
to the set of properties. 

 Each datapoint (aka Sensor or Resource) has a concept of location. For the 
symbIoTe use case this concept is simple as we are dealing with fixed stations. So 
we just added a property location which is composed of longitude, latitude and 
altitude. 
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Figure 4 openUwedat Information Model for SymbIoTe. 

 

3.5.2 Symphony 

Symphony is the NXW platform for the integration of home/building control functions, 
devices and heterogeneous subsystems. Symphony is a service-oriented middleware 
integrating several functional subsystems into a unified IP–based platform. As 
hardware/software compound, Symphony encompasses media archival and distribution, 
voice/video communications, home/building automation and management, and energy 
management. The platform owns a generalized abstract model for all the Internet Connects 
Objects (e.g., smartphones, printers, sensors, actuators, etc.), managing a set of context-
driven decisions/actions. This leads to a quite complex data model, partitioned into 
subcomponents, one for each service provided by the platform. 

Figure 5 depicts a high-level diagram which explains the Symphony platform data model. 

 

 

Figure 5 The Symphony data model. 

 

Since Symphony integrates a large number of sensors and actuators, two examples are 
shown below: 

 a temperature sensor (depicted in Figure 6) 
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Figure 6 Data model for a temperature sensor in Symphony. 

 

 

 

 a linear load actuator (depicted inFigure 7) 

 

 

Figure 7 Data model for a linear load actuator in Symphony. 
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4 Achieving Semantic Interoperability 

In this section we introduce the problem of semantic interoperability between multiple IoT 
platforms. Furthermore, we present multiple possible approaches how semantic 
interoperability can be achieved on a general level together with their advantages and 
disadvantages which is the outcome of the analysis on semantic interoperability within the 
symbIoTe project.  

4.1 Problem 

 

Figure 8 Schematic representation of the problem of semantic interoperability between 
different IoT platforms. 

Figure 8 depicts the general problem of semantic interoperability between multiple IoT 
Systems. Each IoT platform models its data using an internal information model that is used 
by native applications of this specific platform. As different IoT platforms are designed by 
different bodies/communities/companies and often focus on different aspects within IoT they 
tend to have platform-specific information models that differ in multiple aspects as presented 
in Section 3.4. Closing this semantic gap means enabling semantic interoperability. 

4.2 Possible Approaches 

As outcome of our research on the problem domain of how to achieve semantic 
interoperability we identified a possible solution space which is depicted in Figure 9. It can 
be thought of as a line between the two most radical and opposed approaches which are, 
on the one side, using a single core information model that all platforms must use and, on 
the other side, using completely independent platform-specific information models for each 
platform which then need to be aligned using semantic mapping techniques. In between, 
there exists a large, not clearly defined number of intermediate solutions from which three 
representative ones are chosen and presented in the following together with the two radical 
ones. These approaches are motivated by and in-line with the concepts presented by Wache 
et al. [28] and Choi et al. [21] 
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Figure 9 Solution space for possible approaches to semantic interoperability. 

4.2.1 Core Information Model 

The most widespread approach amongst existing platforms is to use a single core 
information model that all platforms must comply with. This means that a platform can only 
expose data that fits into this core information model as custom extensions are not permitted. 
If a platform needs to expose data that does not fit into the core information model the 
platform cannot expose this data and cannot inter-operate with others. From our perspective 
this is rather some form of standardization than an approach to enable true semantic 
interoperability that will also work without adaption (e.g. changing the “standard”/Core 
Information Model) when new IoT platforms covering eventually new domains will emerge. 
 
Pros 

 easy to implement and use since the data from all platforms follows the same 
information model 

 resulting system easy to use for app developers who only need to know one 
information model 

Cons 

 finding/defining an information model all platforms can agree upon may be difficult 

 information model tends to become complex as it must comprise all data that should 
be exchangeable between platforms 

 will always exclude some platforms whose internal information model does not fit the 
core information model 

 no way to integrate future platforms with information models not compatible to the 
core information model without breaking the existing system 

4.2.2 Multiple Pre-Mapped Core Information Models 

Based on the single core information model approach this one tries to make it more easy 
and convenient for platform owners to integrate their internal information model by 
supporting not only a single core information model but multiple ones. To achieve that a 
large number of existing platforms can easily participate it would be a good idea to choose 
well-established information models (e.g. the Semantic Sensor Network Ontology [29] (SSN) 
or the oneM2M ontology [30]) as core information models. To ensure interoperability 
between platforms using different core information models the supported core information 
models are already mapped to each other. As it will not always be possible to map two core 
information models completely there will be some degree of information loss if platforms 
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conform to different core information models but if they conform to the same one they will 
be fully interoperable. 
 
Pros 

 flexible approach as further core information models and mappings can be added 
over time 

 does not enforce use of one single core information model which excludes less 
platforms from participating 

Cons 

 may still exclude some platforms whose information model does not match any of the 
core information models 

 

4.2.3 Core Information Model with Extensions 

This approach is based on an information model that is designed to be as abstract as 
possible but at the same time as detailed as needed. Therefore, the core information model 
should try to only define high-level classes and their interrelations which act as extension 
points for platform-specific instantiations of this information model. These platform-specific 
instantiations either use the provided classes directly or they can define a subclass which 
can hold any platform-specific extensions to the core information model, e.g. additional 
properties. Besides the high-level classes the core information model may also contain 
properties the system needs which will be very general properties like ID or name in most 
of the cases. 
 
This approach resembles an approach for a model-driven knowledge engineering system 
(KES) presented by Studer et al. shown in Figure 10a where a domain ontology is extended 
to an application ontology which is mapped to a method ontology that is finally used to define 
in- and output of a method used to solve a problem. The core information model with 
extensions can be very closely matched to this approach as depicted in Figure 10b. The 
main difference is, that there exists not only a domain ontology that is extended but rather 
the 
core information model which contains the domain model and the system model (which can 
be seen as a platform-specific extension of the domain model to the system that provides 
the interoperability). The application ontology corresponds to the platform-specific model 
which is a platform-specific extension to the core information model and the method ontology 
corresponds to the internal information model of the platform as depicted in Figure 10. 
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Figure 10 Structural similarity between an ontology-based model-driven KES and the Core 

Information Model with Extensions. 

This results in an information model that has a minimalistic core that all platforms must 
conform to and extension points to realize custom requirements. Two platforms using 
different extensions can directly understand each other in terms of the core information 
model and when they need also to understand the custom extensions they must define a 
semantic mapping between their extensions. 
 
Pros 

 provides basic interoperability between platforms by defining minimalistic core 
information model 

 provides full flexibility by custom extensions, i.e. no platforms are excluded 

 high acceptance from adopter-side as it combines basic out-of-the-box 
interoperability (by the core information model) with support for complex scenarios 
(through extensions and semantic mapping) 

Cons 

 requires semantic mapping when custom extensions need to be understood by 
different platforms 

 defining a semantic mapping can be a complex task and requires additional work 
from developers/platform owners 

 design of the core information model is a complex task 

4.2.4 Pre-Mapped Best Practice Information Models 

Essentially, this is the same approach as Multiple Core Information Models but with one 
small but significant modification: the provided information models are no longer seen as 
core information models but rather as best practice information models. Hence, platforms 
must not be compliant to any of the provided information models as in the previous approach 
but can choose their information model freely. If they choose to re-use one of the provided 
best practice information models they will gain instant interoperability to other platforms also 
aligned with one of the best practice information models. 
 
Pros 

 no limitations on information model, hence does not exclude any platform 

 best practice information models make usage for inexperienced platform owner more 
easy 

(a) Ontology-based approach for a model-
driven KES (based on Figure 6 from [11]). 

(b) Conceptual structure of the Core 
Information Model with Extensions approach. 
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 better and broader interoperability due to already aligned best practice information 
models 

Cons 

 no initial interoperability between platforms as long as no mapping is defined when 
no pre-mapped information model is used 

 defining a semantic mapping can be a complex task and requires additional work 
from developers/platform owners 

4.2.5 Mapping between Platform-Specific Information Models 

In this approach, there isn't anything like one or more core information models. Instead, 
every platform independently provides its own information model. Interoperability is only 
achieved through mapping between these platform-specific information models. 
 
Pros 

 not limited only to a fixed set of information models but rather supports all possible 
information models 

 mappings can be added iteratively increasing the degree of interoperability 
Cons 

 no initial interoperability between platforms as long as no mapping is defined 

 defining a semantic mapping can be a complex task and requires additional work 
from developers/platform owners 

 the system does not understand any of the data it is processing 

4.3 Comparison of Approaches 

Section 4 presents the analysis of possible approaches for the semantic interoperability. It 
is required to decide how independent IoT platforms should exchange meta-information and 
thus create a pool of IoT data sources, resources and services available to the applications. 
Such an interoperability is a crucial functionality for symbIoTe because it addresses the need 
of presence of framework across existing and future IoT platforms. The framework will 
enable discovery and sharing of resources for rapid cross-platform application development. 
Those applications exploiting multiple data sources and resources will bring new innovative 
functionalities and lift up the IoT to the next technology level. 

The first described approach “Core Information Model” seems to be the most suitable to 
enforce the interoperability between the IoT platforms. Theoretically, if they speak only one 
language there is no need to warry about inconsistency, complexity and the performance 
issue of additional operations like translations (complete or incomplete). Moreover, 
developers are satisfied because they can stick to only one standard solution so application 
development is quicker and cheaper from the business point of view. The more applications 
the more innovative ideas and therefore better IoT based services. This vision is compelling 
but the reality is different. Heterogeneity is the characteristic that has to be accepted and 
considered when a service or a product is offered to the market. Nowadays, there are many 
IoT platforms utilizing different information models to describe their resources, applying 
policies to share their data and comprising implementation limits preventing smooth 
integration with other platforms. It would be extremely difficult to convince IoT platform 
vendors to make deep (and thus expensive) changes in their products. More realistic is to 
propose the solutions which try to find some compromise and balance. “Core Information 
Model” is not an optimal approach but also the interoperability with the use of all possible 
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platform-specific information models (“Mapping between Platform-Specific Information 
Models”) is not a straightforward direction. In this case semantic mapping and complexity 
for developers bring disadvantages like translation performance issues, possible slow 
progress of application development, incomplete translations and the costs of supporting of 
new emerging information models.  

If two aforementioned extreme approaches are not suitable then one can analyse the three 
others described in the previous subsections. The first one, “Core Information Model with 
Extensions”, specifies the very abstract representation of information model which may be 
applicable to any IoT platform. This allows for exchanging at least a set of basic, platform-
independent information. Any specific information may be modelled as an extension 
including required mapping (translation) between extensions of respective platforms. Apart 
from obvious advantages like flexibility and partial standardization one should emphasize 
the downsides. It is not clear if the generic abstract representation is enough useful for 
interoperability and effective in real use cases. Moreover, certain mappings between 
extensions may still be complex and incomplete. Regarding the last two approaches, 
“Multiple Pre-Mapped Core Information Models” and “Pre-Mapped Best Practice Information 
Models”, they are based on mappings of a subset of information models. They require the 
implementation of translation mechanisms which results in all related difficulties but may be 
suitable if it is assumed that the number of information models is limited and stable. 
Moreover, those models are well-known and widely accepted. 

Section 4 does not provide the answer, which approach for the semantic interoperability 
should be chosen by the symbIoTe project. This is an analysis presenting their 
characteristics and comparing week and strong points. Thus, it should be an input to the 
further discussion on the final selection decision. 
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5 symbIoTe’s Approach to Semantic Interoperability 

We analysed the approaches to semantic interoperability presented in Section 4 regarding 
their suitability for symbIoTe and decided to follow the Core Information Model with 
Extensions approach due to mainly two reasons. First, symbIoTe needs to have at least 
some degree of understanding of the resource descriptions exposed by the platforms to be 
able to provide additional services like location-based search for sensors. For this, we need 
platforms to use the same terms to describe all information that is relevant to symbIoTe. 
This is achieved by having a common, minimalistic Core Information Model covering these 
symbIoTe-relevant terms. Second, this approach gives almost full flexibility to platforms as 
it allows platforms to model all non-symbIoTe-relevant information within extensions without 
any restrictions. Due to the first reason, the approaches Pre-Mapped Best Practice 
Information Models and Mapping between Platform-Specific Information Models are not 
suitable as with these approaches symbIoTe would not be able to understand any of the 
resource descriptions exposed by the platforms. On the other side, the approaches Core 
Information Model and Multiple Pre-Mapped Core Information Models are not suitable as 
they do not only enforce usage of a minimalistic core but with these approaches a core 
information model is a complete model of the IoT domain and thus would massively limit the 
degree of freedom of the platforms to expose their data as they want or need to.  

Nevertheless, this approach is quite challenging and may render too complex for 
implementation. Hence, aiming also at a solution that is feasible in the next period, together 
with working on the Core Information Model with Extensions approach, we will also consider 
adding a Best Practice Information Model on top of the Core Information Model. Such a Best 
Practice Information Model (BIM) can be seen as a special form of a Platform-Specific 
Information Model which is provided together with symbIoTe. Its use will be optional and 
using it will allow platform owners to register their platforms to symbIoTe without having to 
use semantic technologies but rather using simple clearly defined REST- and JSON-based 
interfaces. This dual approach allows us to provide simple interfaces and out-of-the-box 
interoperability where the Best Practice Information Model is applicable and also full support 
for custom Platform-Specific Information Models aligned with mappings when needed. A 
more detailed description of the Best Practise Information Model approach is currently under 
definition and will be documented in the next and final deliverable on semantics. In the 
remainder of this section we present the Core Information Model with Extensions approach. 

Figure 11 shows the concept for realizing the Core Information Model with Extensions 
approach presented in Section 4.2.3. On the left and right hand side we see two typical 
vertical IoT silos. Each platform uses its own internal information model to provide a 
platform-specific API which is then used by native applications. Between those two vertical 
IoT silos we see the symbIoTe interoperability framework depicted in light grey providing 
interoperability between the two IoT platforms. As proposed in Section 4.2.3 and shown in 
Figure 10b, symbIoTe uses two central information models: the Core Information Model 
(CIM) describing domain specific information (matches the Domain Model in Figure 10b) 
and the Meta Information Model (MIM) describing symbIoTe internal meta information about 
platforms and resources (matching the System Model in Figure 10b). For a platform to 
become symbIoTe-compliant, it must expose its data using a Platform-Specific Information 
Model (PIM) which is basically the CIM with platform-specific extensions to it. The main part 
of the actual interoperability happens via semantic mapping as shown by the arrow 
connection between the two platform-specific information models. This allows to define how 
the platform-specific extension of one platform can be translated into the platform-specific 
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extensions of another platform and therefore allows to define an arbitrary degree of 
interoperability between two platforms. When an app or a platform queries symbIoTe to find 
resources of interest on all available platforms, symbIoTe uses these mappings to re-write 
the query to fit the platform-specific information model of each platform when needed and 
execute it against the metadata it has stored about each of them. Details on the symbIoTe 
Information Model (SIM) as well as semantic mapping and SPARQL query re-writing are 
provided in the following sections. 

To enable syntactic interoperability, which is a prerequisite for semantic interoperability, we 
need platforms to expose their data in a unified way. At the moment, symbIoTe is using the 
Open Data Protocol15 (OData) for this purpose but since it has no native support for 
subscription-based access to entities this decision might be revised. Furthermore, this issue 
has been identified within the IoT-EPI Task Force “Platforms Interoperability” (TF02) as a 
potential collaboration and standardization subject between projects. 

 

 

Figure 11 High-level diagram showing how symbIoTe approaches syntactic and semantic 
interoperability. 

                                            
 
15 http://www.odata.org/ 

http://www.odata.org/
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5.1 symbIoTe Information Model (SIM) 

 

Figure 12 The symbIoTe Information Model (SIM). 

The symbIoTe Information Model (SIM) as shown in Figure 12 comprises all classes (also 
called concepts) and their relations (also called predicates) which symbIoTe can 
understand. It is composed of two parts, the Meta Information Model (MIM) and the Core 
Information Model (CIM) which are explained in detail in the following sections. All 
information models are realized as an OWL ontology. Furthermore, they are developed in 
an iterative process as it is considered the best practice for ontology design [31] and 
currently in version 0.2. 

5.1.1 Survey on Domains 

To find out which domains need to be part of the SIM, we conducted a project-internal 
survey. We started out collecting requirements about relevant domains and came up with 
the following twelve domains which are divided into four groups: 

 Observation & Measurement 

o Time: Concepts of time instant, time interval, time zones, etc. 

o Location: Basic geo-location like long/lat/alt, polygon, symbolic location. 

o Sensors: Definition of an abstract concept of a sensor. 

o Units of Measurement: Abstract concept, may include some model of units. 

 Access & Control 

o Actuators: Definition of an abstract concept of an actuator. 
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o Services: Services offered by symbIoTe-compliant IoT platforms. 

o Protocols: Protocols via which these platforms can be accessed. 

 Interoperability 

o symbIoTe infrastructure: Description of symbIoTe-compliant platforms for 
discovery purpose. 

o Quality of Service / SLA: Concepts describing QoS parameters of 
interoperability e.g. reliability, availability, response time, etc. 

o Trading & Bartering: Concepts like cost and utility functions, algorithms, etc. 

 Security 

o Identity & Access Management: Concepts needed for IAM like roles, access 
rights, etc.  

o Encryption: Abstract concept, may include concrete encryption algorithms.  

 

We then asked the project partners to state their opinion if these domains must, should or 
could be part of a core ontology. The outcome is shown in Figure 13 which shows that 
location and time are believed to be the most important concepts together with units of 
measurement and sensors. For identity & access management, actuators and symbIoTe 
infrastructure we have still a rather strong opinion that they should be part of the CIM. 
Services and Protocols are up for discussion as at most 50% of partners think that this 
should be an essential element of the CIM. The same goes for Bartering & Trading. 
Encryption & Quality of Service / SLA is not considered to be part of the CIM. 

 

Figure 13 Outcome of the internal survey on which domains must/should/could be 
modelled within symbIoTe. 
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5.1.2 Core Information Model (CIM) 

 

Figure 14 The symbIoTe Core Information Model (v0.2). 

The Core Information Model (CIM) comprises all the metadata about resources exposed by 
platforms connected to symbIoTe that symbIoTe can understand. It is designed to be as 
abstract as possible and as specific as needed at the same time. The design principles of 
the CIM and why we are not re-using any existing ontology for that is explained in the 
following section. The concepts and relations which are selected to be included in the 
proposed CIM use as input the conducted survey on domains presented in the previous 
section.  

The idea of having such a CIM is that all platforms are forced to use a very minimalistic 
information model so that symbIoTe can understand at least the essential descriptions of 
platform resources that it needs to understand to work properly. We assume that a platform 
which is symbIoTe-enabled must provide its own PIM to expose its resources and 
associated data to the outside world and symbIoTe. This PIM must be fully compliant and 
aligned to the CIM. For details on the relation between PIM and CIM see Section 5.2. 

It is to notice that the CIM is developed in an iterative process and Figure 14 depicts the 
current version (v0.2) and not the final one. There are a number of open issues under 
discussion, e.g. how to properly model mobile and stationary sensors as they have different 
requirements regarding the relations between Sensor and Location as well as Observation 
and Location. Furthermore, the CIM will be extended with concepts regarding actuators in a 
later version. 

5.1.2.1 Why we need a new information model 

The design of the CIM was driven by two principles: on the one hand we wanted to be as 
explicit as needed to at least include all the concepts symbIoTe needs to understand to 



688156 - symbIoTe - H2020-ICT-2015              D2.1 – Semantics for IoT and Cloud resources 
  

 

 

Version 1.3  Page 31 of 46 
© Copyright 2016, the Members of the symbIoTe 

 

provide its functionality and services. In other words, we need the concept of a resource 
which has an identifier or the concept of a sensor and observations which must be 
associated to a location so that symbIoTe is able to support location-based search for 
sensors and observations. On the other hand, we need to be as abstract as possible, i.e., 
we must be careful not to introduce any concept and relation that is not really essential, as 
each introduced concept and relation reflects a design/modelling decision which needs to 
be shared by platforms that want to use symbIoTe. Thus adding any concept or relation that 
is not essential to the CIM can potentially exclude some platforms from using symbIoTe 
because they won’t be able to fit their internal information model with the CIM.  

Based on these two partially contradictory design principles we figured out that directly re-
using any existing ontology is not suitable for our needs. In general, there are mainly two 
types of IoT ontologies that could be considered for re-use. First, the more abstract type, 
e.g., the SSN ontology which resemble the CIM very closely. In fact, abstract ontologies are 
almost what we need (that is why they are so similar to the CIM) but existing ontologies are 
either too broad, i.e., containing concepts that are not relevant for symbIoTe or, which is 
worse, do not fully cover the needs of symbIoTe (e.g., support of moving sensors). However, 
the CIM is strongly influenced by the existing ontologies, especially the SSN ontology and 
the SensorThings API information model [32]. The second type of IoT ontologies are those 
which are on a more practical level. They often extend abstract ontologies with additional 
concepts for practical use, e.g., the IoT-Lite16 ontology which is based on the SSN ontology. 
Such ontologies are not suitable for symbIoTe as they are far too application specific and 
not abstract enough to be used as CIM. 

5.1.3 Meta Information Model (MIM) 

 

Figure 15 The symbIoTe Meta Information Model (v0.2). 

                                            
 
16 https://www.w3.org/Submission/iot-lite/ 

https://www.w3.org/Submission/iot-lite/
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The Meta Information Model (MIM) is used to store meta information about platforms in 
symbIoTe for internal use. It provides the concepts describing the platforms which are 
registered to symbIoTe: platform owner, endpoints for data access (URL of the Interworking 
Interface implementation/Resource Access Proxy), information model used by endpoints 
and definitions of the mappings between information models. The last concept is linked to 
an external ontology used to describe these mappings. We are currently considering to use 
the Expressive and Declarative Ontology Alignment Language (EDOAL) [33] [16] for this 
purpose. 

5.2 Platform-Specific Information Models / Extending the Core 
Information Model 

To make an IoT platform symbIoTe compliant, the platform must expose its resource 
metadata to the outside world based on a Platform-Specific Information Model (PIM). The 
PIM needs to be compliant with the CIM, which means that it must contain all concepts and 
relations that are defined in the CIM and is not allowed to alter them. Basically, any PIM can 
be seen as an extension to the CIM adding all concepts and relations that are necessary to 
completely describe the IoT domain and also platform-specific domains.  

As it may be a hard task for platform owners to define a PIM using RDF, especially if they 
are no experts in semantic technologies, to define such a PIM using RDF symbIoTe is 
considering to merge the concept of a best practice information model with the Core 
Information Model with Extensions approach. This means that symbIoTe would provide a 
Best Practice Information Model (BIM) which is compliant to the CIM and can be used by 
platforms as their PIM if it suits their needs. Additionally, platforms will automatically gain 
semantic interoperability to all other platforms also using the BIM without the need to define 
any mappings. This is expected to massively lower the entrance barrier for platform owners 
who are not that familiar with semantic technologies to make their platform symbIoTe-
compliant and enable interoperability to other platforms.  

However, using the symbIoTe-specific BIM should be optional so that platforms with special 
information models that are incompatible with BIM are not excluded from the symbIoTe 
ecosystem. Such platforms will rather have the possibility to define their own PIM and 
manually align it with other PIMs (as well as the BIM). 

5.3 symbIoTe Architecture from the Semantic Interoperability 
Perspective 

In this section, we provide details on how the chosen approach to semantic interoperability 
influences the symbIoTe architecture as defined in deliverable D1.2 “Initial Report on 
System Requirements and Architecture” [34]. We start from the component diagram defined 
for symbIoTe Level 1 compliance presented in D1.2 in Figure 16, and highlight all 
components in green that are affected by the proposed solution for semantic interoperability. 
The previously defined information models (MIM, CIM, PIM) have the strongest impact on 
the symbIoTe architecture. 

The most affected parts of the architecture are those that enable the interaction between 
the symbIoTe Core Services and symbIoTe-enabled IoT platforms, as well as between 
applications/enablers and IoT platforms. We can identify three main functionalities that 
directly depend on the information models: 1) registration of platform/resources, 2) search 
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for resources and 3) data acquisition from a platform. Further details on how each 
component is affected by the integration of semantic interoperability concepts are given in 
the following tables and they should be considered as expanded description of the 
components introduced in deliverable D1.2. Note that these descriptions are only a proposal 
on how to integrate semantic interoperability concepts within the next version of the 
symbIoTe architecture.  

 

Figure 16 symbIoTe component diagram for Level 1 compliance (taken from D1.2) with 
changes regarding semantic interoperability highlighted in green. 

 

Table 4 Changes of the Administration component introduced by semantic interoperability. 

Component Administration 

symbIoTe 
Domain 

APP 
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Description This component enables registration of a PIM through its interface. 
The PIM should be provided in the RDF format which can be verified 
to check if the PIM is aligned with the CIM. If the two models are 
aligned, the PIM can be stored in Registry.  
This component will also provide an interface to define a mapping 
between two PIMs. It allows a user to create a mapping between two 
PIMs to indicate relations between PIM entities by using an alignment 
language (e.g. EDOAL). The mappings defined through the 
Administration interface are stored in Registry and are later on used 
by Search Engine to retrieve results across multiple platforms even if 
they don’t use the same PIM. 

Provided 
functionalities 

 Provides an interface for registration of a PIM 
 Provides an interface for definition of the mapping between 

two PIMs  

Relation to other 
components 

Registry: stores PIMs and defined mappings between two PIMs. 

 

 

Table 5 Changes of the Registry component introduced by semantic interoperability. 

Component Registry 

symbIoTe 
Domain 

APP 

Description The component must provide unique symbIoTe identifiers to all resources 
registered within the symbIoTe Core Services. Uniqueness must be 
enforced both within and across IoT platform boundaries, which is critical, 
e.g., in the case of roaming IoT devices. The Id is also assigned to all 
metadata resources, such as: symbIoTe users, PIMs or mappings between 
PIMs. 
A core information model with extensions (i.e. PIM) must be supported by 
the Registry for the description of available resources across IoT platforms. 
The symbIoTe Core Information Model should be compatible with existing 
standards, prominent ontologies in the IoT space and should be aligned (if 
possible) with the data model of other IoT-EPI projects. The model must 
support geo-referenced information. It must distinguish IoT devices which 
are fixed (their geo-location does not change over time) and mobile (their 
geo-location continuously changes). The information generated by IoT 
devices must be annotated by standard units. The information model of an 
IoT platforms and enablers (i.e., PIM) registering their resources to 
symbIoTe should be aligned to the symbIoTe core information model (i.e., 
CIM). 
All interfaces should communicate using the Semantic Web technologies. In 
case of data manipulation (insertion, deletion, update), resources and 
resource metadata should be communicated in the RDF format (e.g., as 
payload of REST message). To execute a search query issued by the 
Search Engine, the Registry should offer an interface that accepts the 
SPARQL query. 



688156 - symbIoTe - H2020-ICT-2015              D2.1 – Semantics for IoT and Cloud resources 
  

 

 

Version 1.3  Page 35 of 46 
© Copyright 2016, the Members of the symbIoTe 

 

Provided 
functionaliti
es 

 Handles requests for resource registration and resource. 
 Stores resource metadata. All resources are described using the 

appropriate symbIoTe information model (platforms and devices 
using the PIM, PIM mappings using the MIM). 

Relation to 
other 
components 

Search Engine: uses platform, enabler and resource-related information 
(PIM) managed by the Registry and uses mappings between PIMs to 
execute re-written search queries. 

 

Table 6 Changes of the Search Engine component introduced by semantic interoperability. 

Component Search Engine 

symbIoTe 
Domain 

APP 

Description This component allows to search for registered resources across 
platforms registered to symbIoTe in a unified way. A query must be 
formulated against an information model known to symbIoTe, which 
can either be the Core Information Model (CIM), any Platform-
Specific Information Model (PIM) or the Best Practice Information 
Model (BIM), i.e., a special case of PIM that is used by multiple 
platforms. The goal is to return cross-platform results that satisfy the 
conditions of the query. When the query is formulated against the 
CIM than it can be answered by straightforward execution of the 
query against the Registry. Otherwise, if the query is formulated 
against a PIM (or, as special case, the BIM), the query is translated 
based on the mappings between the used PIM and other PIMs stored 
in the Registry using SPARQL query re-writing techniques to provide 
results from multiple platforms. The component’s primary interface 
accepts SPARQL queries, but to simplify its usage, it may also offer 
multiple pre-defined parameterisable search queries (such as: 
search for a property, location, owner, etc.), which will be 
subsequently transformed to the SPARQL query using pre-prepared 
templates before executing it in Registry. 

Provided 
functionalities 

 Searches for resources which match a specific query across 
registered platforms and their resources. 

Relation to other 
components 

Registry: provides platform, enabler and resource-related information 
(PIM) needed to perform the search operation, provides all defined 
mappings for the used PIM and performs a SPARQL execution on 
the storage. 
 

 

Table 7 Description of the Registration Handler component regarding the symbIoTe 
Information Model. 

Component Registration Handler (RH) 

symbIoTe 
Domain 

CLD 

Description This component will drive an IoT platform owner through the step of 
registering resources into the symbIoTe Core. Registration Handler 
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should monitor platform resources so that it can register them into the 
symbIoTe (eco)system. These resources can be an IoT Device or a 
Composite IoT Service and must be described using a PIM which is 
aligned with the CIM. Registration Handler at least needs to provide all 
information from the CIM: IoT Device or Composite IoT Service 
description, Location and its properties and Observed Property 
description and name. 

Registration using the PIM relies on the Semantic Web technologies 
(PIM and resource instances description should be provided in the RDF 
format for the general version of the API of this component but for ease 
of usability additional interfaces hiding the Semantic Web technologies 
can be added later on) so it can become an obstacle for platform owner 
to join the symbIoTe ecosystem. For that purpose, the Registration 
Handler will provide the BIM, i.e. Best-Practice Information Model, which 
is a Platform-Specific Information Model (PIM) aligned with the CIM and 
provided by symbIoTe for making it more easy for platform owners to 
make their platforms symbIoTe-compliant. The purpose of the BIM is to 
facilitate the registration of IoT platforms that do not use Semantic Web 
technologies, so that platforms can only provide raw data necessary to 
fill the BIM template (i.e. to describe its resources). The data provided 
for BIM needs to include the mandatory elements of CIM, to enable the 
basic functionalities of the symbIoTe Core Services (search, check 
availability). Platforms that use BIM are automatically interoperable with 
other platforms using the BIM without the need to define any mapping. 

Provided 
functionalities 

 Registers resources to the symbIoTe core, virtual and physical, 
using the PIM 

 Updates resource status and unregistered resources 

Relation to 
other 
components 

Registry (within symbIoTe Core Services): stores data about resource 
in the PIM, assigns unique symbIoTe IDs and maintains information 
about current resource status. 

 

Table 8 Description of the Resource Access Proxy component regarding the symbIoTe 
Information Model. 

Component Resource Access Proxy (RAP) 

symbIoTe 
Domain 

CLD 

Description This component enables symbIoTe-compliant access to resources 
within an IoT platform or (enabler acting as a platform). The data 
generated by IoT Services must be returned in accordance with the 
PIM. Since the PIM is an extension of the CIM, all requests made in-
line with the CIM will return valid results (also valid for the platforms 
that are using the BIM). Also, the component will return results if the 
query is in-line with the used PIM, but it does not guarantee to return 
results if a request is made using some other PIM. 

Provided 
functionalities 

 Ensures formatting of data generated by resources in 
accordance with the PIM 
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Relation to 
other 
components 

Application/Enabler: provides requested data 

 

5.4 Semantic Mapping and SPARQL Query Re-Writing 

As shown in Section 3.4, semantic mapping is not only about defining mapping between 
ontologies but also about using these mappings at runtime to mediate between them. This 
functionality is provided as an execution framework or a mediator as depicted in Figure 2. 
In symbIoTe this will be implemented using SPARQL query re-writing techniques [35] [36] 
[37]. How this works in detail is shown in Figure 17 which is an enhanced version of the 
sequence diagram describing the symbIoTe Core search functionality taken from D1.2 
“Initial Report on System Requirements and Architecture” (Figure 17). The implications on 
the existing sequence diagram and changes to it are based on the introduction of SPARQL 
query re-writing as the main approach to address semantic interoperability. These are 
described in detail in hereafter. 

Message 1 to 4 stay exactly the same, whereas for Message 5 we now know that the 
payload (referred to as search in the diagram) should be in the form of a SPARQL query 
under the assumption that all information models inside symbIoTe are formulated using 
RDF/OWL. We are aware that not all people are familiar with semantic technologies like 
SPARQL and that enforcing them to use semantic technologies can be quite an entry barrier. 
As SPARQL is only the direct interface to the Search Engine this doesn’t mean it must be 
the only one. To facilitate access to the Search Engine we are planning to also provide a 
simpler interface with a limited subset of functionality, e.g., a REST-based interface 
supporting multiple pre-defined parameterisable SPARQL queries. The rest of the 
messages stays the same except Message 11 which is now decomposed into multiple sub-
messages and operations. First of all, the Search Engine asks the Registry for all platforms 
that use an information model, called IMPlatform for which a mapping exists to from the 
information model the search SPARQL query Q is formulated in, called IMQuery (Message 
11a). As a result, the Registry will provide a list of platforms P1..n together with the mapping 
definition M1..n mapping between IMPlatform 1..n and IMQuery. Now for all found i = 1..n platforms 
the Search Engine executes the following steps: 

 Re-write SPARQL query Q based on mapping Mi to query Qi (Message 11b) 

 Execute query Qi against Registry (Message 11c) and receive query results QRi 
(Message 11d) 

 Re-write query result QRi based on mapping Mi to query result QRi,Query which is 
compliant with the information model of the original query IMQuery 

These steps are executed in parallel for each found platform. After all parallel tasks have 
finished, the re-written results are merged (⋃ 𝑄𝑅𝑖,𝑄𝑢𝑒𝑟𝑦

𝑛
𝑖=1 ) and returned (Message 12). 

Following this approach, symbIoTe is able to answer queries formulated against any 
(registered) information model with data from all platforms using an information model which 
is mapped to the one used in the query which essentially enables semantic interoperability. 
It is to notice that there exist multiple different types of ontology mismatches as described in 
Section 3.4 of which only a subset will be supported for SPARQL query re-writing by 
symbIoTe. This means that PIMs which extended the CIM in such a different way that they 
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have serious types of mismatches will probably not be able to interoperate in practice. As it 
is still an open research question how to overcome those serious types of ontology 
mismatches symbIoTe envisions to define clear interfaces for the components related to 
solving this issue to provide a framework to encourage researches to address these 
problems and to make it easy for them to integrate their new solutions into symbIoTe. This 
will also allow to clearly separate the part of symbIoTe that is guaranteed to be successfully 
and completely implemented and the research part of symbIoTe which outcome is open to 
some degree as it is the case with every scientific research question. Furthermore, this 
separation with a clearly defined interface allows to be open to collaboration, especially with 
other projects inside the IoT-EPI which will also need to somehow address the problem of 
semantic interoperability.   

 

Figure 17 Enhanced sequence diagram from D1.2 “Initial Report on System Requirements 
and Architecture” (Figure 18) describing the search functionality with respect to SPARQL 

query re-writing. 

5.5 Registering resources to the symbIoTe ecosystem 

Hereafter we will describe the registration process from an alternative point of view, 
depicting communication between components and transmitted data. A basic sequence 
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diagram for resource registration is taken from deliverable D1.2 [34] (Figure 14). Figure 18 
presents an enhanced sequence diagram for resource registration that presents two 
possible approaches of resource registration. Compared to the original diagram presented 
in deliverable D1.2 “Initial Report on System Requirements and Architecture”, only message 
12 is presented in more details because it is the only one that is affected by specification of 
the symbIoTe information model. A platform owner has two possibilities to register resources 
to the symbIoTe ecosystem, one using the semantic resource description (depicted with 
message 12.1) and second describing resources in plain text and using that description to 
fill the Best Practice Information Model (depicted with the messages 12.2). The first 
approach assumes that a platform is using Semantic Web technologies, and a PIM needs 
to be aligned with the CIM. In this case, a platform owner needs to expose its used data 
model via its PIM extending and aligned with the CIM (by adding appropriate relations), and 
such extended PIM (i.e. platform and resource description in the RDF format) is provided to 
Registration Handler which will forward it to the Registry and perform registration. If a 
platform owner does not want to use Semantic Web technologies and/or thinks that the BIM 
fits his/her needs well, he can instead just re-use the BIM as his/her PIM (this is very close 
to the approach of a Core Information Model as introduced in Section 4.2.1). As the used 
information model is completely defined by the BIM it is then possible to register resources 
via any kind of description (e.g. JSON, XML or even plain-text) via the Registration Handler. 
In both cases, Registration Handler uses the semantic description of resources in RDF 
format when it is communicating with Registry to perform registration. 

 

 



688156 - symbIoTe - H2020-ICT-2015              D2.1 – Semantics for IoT and Cloud resources 
  

 

 

Version 1.3  Page 40 of 46 
© Copyright 2016, the Members of the symbIoTe 

 

 

Figure 18 Enhanced sequence diagram from D1.2 “Initial Report on System Requirements 
and Architecture” (Figure 14) describing the resource registration.  
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6 Conclusions and Next Steps 

In this deliverable we presented the problem of semantic interoperability between multiple 
heterogeneous IoT platforms together with a formal analysis of the solution domain to this 
problem. We highlighted five different possible approaches to achieve semantic 
interoperability ranging from a “monolithic” approach where all platforms use a single 
completely agreed upon information model to a “distributed” approach where each platform 
defines their own information model and they can only exchange information via mappings 
between those information models. In addition, we have also presented the advantages and 
disadvantages of the proposed approached. We presented that symbIoTe is aware that the 
best suitable approach would be the Core Information Model with Extensions approach but 
as it may render too complex for implementation, symbIoTe will consider the Best Practice 
Information Model approach with a Best Practice Information Model aligned with a Core 
Information Model as a next feasible step.  

As semantics is essential for IoT platform interoperability (as explained in Section 3.1) we 
decided to build upon semantic technologies, e.g., RDF to describe information models. In 
Section 5.1 and its subsections we presented the symbIoTe Information Model (SIM) 
consisting of the Core Information Model (CIM) and the Meta Information Model (MIM) 
together with their design rationales. In addition, considerations on how this impacts the 
symbIoTe architecture is presented in D1.2 “Initial Report on System Requirements and 
Architecture” and also details on how SPARQL query re-writing can be used to solve the 
issue of semantic interoperability are provided in Section 5.3 and Section 5.4. 

We have identified multiple domains where future work is needed. As a next step, we will 
keep up with the iterative development of the CIM which will focus on the different modelling 
needs of mobile vs. stationary sensors as well as in-situ vs. remote observations and also 
actuators will be part of a next version of the CIM.  

Regarding SPARQL query re-writing as an approach to solve the problem of semantic 
interoperability we will focus on clearly separating the core functionality of symbIoTe from 
the research questions so that the success of the project is not dependant on the outcome 
of the research questions as real scientific research questions are never guaranteed to be 
completely solvable. This will also enable us to provide a partial solution to the research 
question of SPARQL query re-writing which will probably look like we’re providing this 
functionality to a limited subset of identified ontology mismatches. Therefore, a part of the 
research challenge will be to do an analysis of existing ontology mismatch classifications 
and to decide which of these can and will be supported within symbIoTe. 
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8 Acronyms 

API Application Programming Interface 

BIM Best Practice Information Model 

C-OWL Context OWL 

CIM Core Information Model 

EDOAL Expressive and Declarative Ontology Alignment Language 

IAM Identity & Access Management 

ID Identifier  

IM Information Model 

IoT Internet of Things 

IoT-EPI IoT-European Platforms Initiative 

JSON JavaScript Object Notation  

JSON-LD JSON-based Serialization for Linked Data 

KES Knowledge Engineering System 

LCIM Levels of Conceptual Interoperability Model 

MAFRA Ontology MApping FRAmework 

MIM Meta Information Model 

N3 Notation3 

OData Open Data Protocol 

OWL Web Ontology Language 

PIM Platform-Specific Information Model 

QoS Quality of Service 

QR Query Results 

RDF Resource Description Framework 

RDFa Resource Description Framework in Attributes 

RDFS RDF Schema 

REST Representational State Transfer 

SE Core Security Handler 

SIM symbIoTe Information Model 

SLA Service Level Agreement 

SPARQL SPARQL Protocol and RDF Query Language 

SPIN SPARQL Inferencing Notation 

SQL Structured Query Language 

SSN Semantic Sensor Network 
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SWRL Semantic Web Rule Language 

symbIoTe Symbiosis of Smart Objects across IoT Environments 

Turtle Terse RDF Triple Language 

UoM Units of Measurements 

URI Uniform Resource Identifier 

URL Uniform Resource Locator 

W3C World Wide Web Consortium 

WGS World Geodetic System 

WKT Well-Known Text 

XML Extensible Markup Language 

XSD XML Schema Definition 

 


