
688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 1 of 127
 © Copyright 2016, the Members of the symbIoTe

Symbiosis of smart objects across IoT
environments

688156 - symbIoTe - H2020-ICT-2015

Initial Report on System Requirements and
Architecture

The symbIoTe Consortium

Intracom SA Telecom Solutions, ICOM, Greece
Sveučiliste u Zagrebu Fakultet elektrotehnike i računarstva, UNIZG-FER, Croatia
AIT Austrian Institute of Technology GmbH, AIT, Austria
Nextworks Srl, NXW, Italy
Consorzio Nazionale Interuniversitario per le Telecomunicazioni, CNIT, Italy
ATOS Spain SA, ATOS, Spain
University of Vienna, Faculty of Computer Science, UNIVIE, Austria
Unidata S.p.A., UNIDATA, Italy
Sensing & Control System S.L., S&C, Spain
Fraunhofer IOSB, IOSB, Germany
Ubiwhere, Lda, UW, Portugal
VIPnet, d.o.o, VIP, Croatia
Instytut Chemii Bioorganicznej Polskiej Akademii Nauk, PSNC, Poland
NA.VI.GO. SCARL, NAVIGO, Italy

© Copyright 2016, the Members of the symbIoTe Consortium

For more information on this document or the symbIoTe project, please contact:
Sergios Soursos, INTRACOM TELECOM, souse@intracom-telecom.com

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 2 of 127
 © Copyright 2016, the Members of the symbIoTe

Document Control

Title: Initial Report on System Requirements and Architecture

Type: Public

Editor(s): Pavle Skočir

E-mail: pavle.skocir@fer.hr

Author(s): Ivana Podnar Žarko, Konstantinos Katsaros, Mario Kušek, Elena Garrido
Ostermann, Matteo Pardi, João Garcia, Aleksandar Antonić, Zvonimir Zelenika, Artur
Jaworski, Michal Pilc, Christoph Ruggenthaler, Luca de Santis

Doc ID: D1.2-v2.0

Amendment History

Version Date Author Description/Comments

v0.1 30/06/2016 Pavle Skocir (UNIZG-FER) Initial Table Of Contents

v0.2 22/07/2016 Ivana Podnar Žarko (UNIZG-FER) Updated ToC

v0.3 24/08/2016 Ivana Podnar Žarko (UNIZG-FER) Updated ToC with assignments and links to confluence pages which
will provide the initial input for the corresponding sections

v0.4 01/09/2016 Konstantinos Katsaros (ICOM), João
Garcia (UW), Ivana Podnar Žarko
(UNIZG-FER), Aleksandar Antonić
(UNIZG-FER), Pavle Skočir (UNIZG-
FER)

Updated ToC with assignments for Section 4, added content in
Sections 3.2 & 3.3, Sections 6.1.1, 6.1.2, 6.1.4, 6.2.1 & 6.3.3

v0.5 08/09/2016 Pavle Skočir (UNIZG-FER), João
Garcia (UW), Ivana Podnar Žarko
(UNIZG-FER), Zvonimir Zelenika (VIP)

Added content in Section 5 and 5.1.1, updated Section 6.2.1
(FIWARE), added content to Sections 6.1.5, 6.1.6, 6.1.7, inserted new
section in the Appendix Section 10.3 (IIRA overview)

v0.7 09/09/2016 Matteo Pardi (NXW), Michal Pilc
(PSNC), Artur Jaworski (PSNC),
Christoph Ruggenthaler (AIT),
Konstantinos Katsaros (ICOM)

Added content in Sections 3.1, 4.1, 4.4, 5.3, 5.4, 6.1.3, 6.1.4, 6.1.5,
6.3.2

v0.8 13/09/2016 Elena Garrido Ostermann (ATOS), Luca
de Santis (Navigo), Konstantinos
Katsaros (ICOM), Pavle Skočir (UniZG-
FER)

Added content in Sections 2, 4, 5.2, 6.3.1, 6.3.4, 6.3.6

v0.9 14/09/2016 Ivana Podnar Žarko (UniZG-FER),
Pavle Skočir (UniZG-FER), Matteo
Pardi (NXW)

Added content in Sections 5.1, 5.3, 6.2.2, 6.3.5, updated Sections 4,
5.2

v0.10 15/09/2016 Mario Kušek (UNIZG-FER), Pavle
Skočir (UNIZG-FER)

Added content in Sections 5.5, 6.2.3, 6.2.4

v1.0 16/09/2016 Ivana Podnar Žarko (UNIZG-FER),
Zvonimir Zelenika (VIP), Aleksandar
Antonić (UNIZG-FER)

Updated content in Sections 2, 3, 5, 6.1.1, 6.1.6, 10.1, 10.3,

v1.1 16/09/2016 Pavle Skočir (UNIZG-FER) Updated content in Section 5.1.2

v1.2 22/09/2016 Konstantinos Katsaros (ICOM), Elena
Garrido Ostermann

Updated Section 4, 5.2.2, updates throughout the document according
to comments from reviewers

v1.3 27/09/2016 Konstantinos Katsaros (ICOM), Ivana
Podnar Žarko (UNIZG-FER), Pavle
Skočir (UNIZG-FER)

Added subsection in Section 4, update of Sections 1, 2, 3, and 5.2

v2.0 29/09/2016 Ivana Podnar Žarko, Pavle Skočir,
Konstantinos Katsaros

Update of all sections

Legal Notices
The information in this document is subject to change without notice.
The Members of the symbIoTe Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The
Members of the symbIoTe Consortium shall not be held liable for errors contained herein or direct, indirect,

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 3 of 127
 © Copyright 2016, the Members of the symbIoTe

special, incidental or consequential damages in connection with the furnishing, performance, or use of this
material.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 4 of 127
 © Copyright 2016, the Members of the symbIoTe

Table of Contents

1 Executive Summary 9

2 Introduction 11

2.1 Purpose of this document 12

2.2 Terminology and definitions 13

2.3 Relation to other deliverables 15

2.4 Document structure 16

3 The symbIoTe Vision 17

3.1 symbIoTe's goals and challenges 17

3.2 Architecture overview 18

3.3 Compliance Levels 20

4 System Requirements 24

4.1 Framework 24

4.2 Methodology 25

4.3 Specified requirements 26

5 symbIoTe Architecture 35

5.1 Application Domain 35

5.1.1 General concepts 35

5.1.2 Component description 37

5.2 Cloud Domain 45

5.2.1 General concepts 45

5.2.2 Component description 46

5.3 Smart Space Domain and Smart Device Domain 52

5.3.1 Vision 52

5.3.2 Smart Space and visiting entities 53

5.3.3 Smart Device 53

5.3.4 L3 vs. L4 Compliance 53

5.3.5 General architecture 54

5.3.6 Components for L3/L4 Compliance 54

5.4 symbIoTe approach to security 55

5.5 Achieving Level 1 Compliance 57

5.5.1 Component diagram 57

5.5.2 Sequence diagrams 58

5.5.3 Interfaces 82

6 State of the Art Overview and Reference to symbIoTe 84

6.1 Reference architectures 84

6.1.1 AIOTI 84

6.1.2 oneM2M 86

6.1.3 IoT-A 90

6.1.4 Web of Things 92

6.1.5 OGC Sensor Web Enablement 93

6.1.6 Industrial Internet Reference Architecture 94

6.1.7 Reference Architecture Model Industrie 4.0 95

6.1.8 ISO/IEC Internet of Things Reference Architecture 96

6.2 Related projects and platforms 97

6.2.1 FIWARE 97

6.2.2 COMPOSE 98

6.2.3 CRYSTAL 99

6.2.4 iCore 100

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 5 of 127
 © Copyright 2016, the Members of the symbIoTe

6.2.5 Positioning of symbIoTe with regard to other IoT-EPI Projects 101

6.3 IoT Platforms contributed by symbIoTe partners 101

6.3.1 OpenIoT 101

6.3.2 Symphony 102

6.3.3 Mobility BaaS 103

6.3.4 BETaaS Platform 104

6.3.5 nAssist 104

6.3.6 Navigo Digitale 105

6.4 Summary of symbIoTe position in the IoT ecosystem context 106

7 Conclusion and Future Work 107

8 References 108

9 Abbreviations 110

10 Appendix 111

10.1 AIOTI high level architecture overview 111

10.2 oneM2M functional architecture overview 111

10.3 Industrial Internet Reference Architecture overview 115

10.3.1 Functional viewpoint 116

10.3.2 Implementation viewpoint 117

10.3.3 Key system concerns 119

10.4 COMPOSE platform overview 119

10.5 Crystal platform overview 122

10.6 iCore platform overview 123

10.7 FIWARE platform overview 125

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 6 of 127
 © Copyright 2016, the Members of the symbIoTe

Table of Figures

Figure 1 Sketch of the symbIoTe architecture, as proposed in Description of the Action

(DoA) .. 11

Figure 2 The symbIoTe high-level architecture ... 19

Figure 3 symbIoTe Compliance Levels .. 21

Figure 4 Level 1 Compliance .. 22

Figure 5 Platform cooperation: Level 1 Compliance ... 22

Figure 6 Platform collaboration: Level 2 Compliance ... 23

Figure 7 symbIoTe APP components ... 37

Figure 8 symbIoTe CLD components ... 46

Figure 9 Architecture of Smart Space and Smart Device Domains 54

Figure 10 An example of access policy enforced by three attributes 56

Figure 11 Component diagram for Level 1 Compliance 58

Figure 12 Legend – messages used in the following diagrams 59

Figure 13 Platform registration ... 59

Figure 14 Resource registration ... 60

Figure 15 Resource unregistration ... 63

Figure 16 Resource update .. 65

Figure 17 Monitoring resource availability .. 68

Figure 18 Search .. 71

Figure 19 Access to resources without reservation .. 74

Figure 20 Access to resources with reservation ... 77

Figure 21 Monitoring ... 80

Figure 22 Mapping between the AIOTI HLA and symbIoTe architecture 85

Figure 23 Mapping between the AIOTI HLA interfaces and symbIoTe architecture 86

Figure 24 Mapping of symbIoTe domains to oneM2M functional architecture ... 87

Figure 25 Mapping symbIoTe L1 Compliance to oneM2M 88

Figure 26 Mapping of symbIoTe Core Services to oneM2M CSEs 88

Figure 27 Mapping symbIoTe L1 Compliance to oneM2M 89

Figure 28 Mapping of symbIoTe CLD components to oneM2M CSEs 89

Figure 29 The IoT-A tree [8] ... 90

Figure 30 IOT-A reference architecture [8] ... 91

Figure 31 Mapping of symbIoTe to IoT-A reference architecture functional groups 92

Figure 32 Comparison between symbIoTe and IIRA achitecture 95

Figure 33 COMPOSE high level architecture [15] .. 99

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 7 of 127
 © Copyright 2016, the Members of the symbIoTe

Figure 34 iCore architecture [16] .. 100

Figure 35 Symphony platform concept ... 102

Figure 36 MoBaaS overall architecture... 103

Figure 37 AIOTI high level architecture [4] ... 111

Figure 38 oneM2M functional architecture [7] .. 112

Figure 39 Configurations supported by oneM2M architecture [7] 113

Figure 40 Common service functions [7] .. 114

Figure 41 Industrial Internet Consortium members [12] 115

Figure 42 The functional domains in the IIRA [11] .. 117

Figure 43 Three-tier general architecture [11] .. 118

Figure 44 Mapping of the three-tier architecture to functional domains [11] 119

Figure 45 COMPOSE high level architecture [15] .. 121

Figure 46 The COMPOSE open marketplace approach [15] 121

Figure 47 The Crystal IOS layered architecture [23] ... 122

Figure 48 iCore architecture [16] .. 125

Figure 49 FIWARE platform architecture [24] ... 127

Figure 50 FIWARE IoT service enablement platform [24] 127

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 8 of 127
 © Copyright 2016, the Members of the symbIoTe

Table of Tables

Table 1: System requirements .. 27

Table 2: Security system requirements .. 32

Table 3 Template for component description ... 35

Table 4 Administration .. 37

Table 5 Registry .. 38

Table 6 Search Engine ... 39

Table 7 Core Resource Monitor .. 40

Table 8 Core Resource Access Monitor ... 41

Table 9 Core Authentication and Authorization Manager 42

Table 10 Core Security Handler ... 43

Table 11 Core Bartering & Trading Component ... 44

Table 12 Registration Handler .. 46

Table 13 Resource Access Proxy ... 47

Table 14 Authentication and Authorization Manager .. 48

Table 15 Bartering and Trading Manager ... 49

Table 16 Monitoring .. 50

Table 17 Federation Manager .. 50

Table 18 Security Handler .. 51

Table 19 Interfaces ... 82

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 9 of 127
 © Copyright 2016, the Members of the symbIoTe

1 Executive Summary

The aim of Deliverable 1.2, entitled “Initial Report on System Requirements and
Architecture”, is to document the initial collection of the symbIoTe system requirements
and report a first version of the system’s functional architecture, with the respective
components, entities and interfaces. It reports the technical work performed in two tasks,
T1.3 (System Requirements, M4-M12) and T1.4 (System Architecture, M4-M18).
symbIoTe system requirements have been derived based on symbIoTe use cases
reported in deliverable D1.1, while the architecture is built in accordance with the initial
architectural sketch proposed in the Description of the Action (DoA).

symbIoTe addresses a challenging objective to create an interoperable Internet of Things
(IoT) ecosystem that will allow for the collaboration of vertical IoT platforms towards the
creation of cross-domain applications. Thus, it designs an interoperable mediation
framework to enable the discovery and sharing of connected devices across existing and
future IoT platforms for rapid development of cross-platform IoT applications. symbIoTe
allows for flexible interoperability mechanisms which can be achieved by introducing an
incremental deployment of symbIoTe functionality across the platform’s space, which will
in effect influence the level of platform collaboration and cooperation with other platforms
within a symbIoTe-enabled IoT ecosystem. Syntactic and semantic interoperability
represent the essential interoperability mechanisms in the future symbIoTe-enabled
ecosystem, while organizational/enterprise interoperability has different flavors within
symbIoTe (platform federations, dynamic Smart Spaces and roaming IoT devices) to
enable platform providers to choose an adequate interoperability model for their business
needs.

The document lists an initial collection of the system requirements with a focus on two
domains: Application Domain and Cloud Domain. These two domains need to
interconnect applications with platform-managed devices by a set of services enabling
application developers to identify and use devices from different platforms in a uniform
way. Devices are exposed to third-parties as services, where the management of devices
and associated services, both sensors and actuators, as well as access control stays on
the platform side. Furthermore, symbIoTe needs to enable organizational interoperability
in the Cloud Domain so that platforms can securely interoperate, collaborate and
share/trade devices and associated services.

The aforementioned requirements represent the main symbIoTe requirements that have
served as drivers to create an initial version of the symbIoTe functional architecture.
However, the list of identified requirements is extensive since it has been derived from five
symbIoTe use cases. We report a comprehensive list of requirements and put them in
relation to software components for the Application and Cloud Domain. The main task of
these components is to facilitate syntactic and semantic interoperability of IoT platforms
so that platforms offer an open API with a mapping of platform information models to the
symbIoTe information model1. In this document we include sequence diagrams depicting
component interaction for syntactic and semantic interoperability. Since security-related
requirements play a vital role in symbIoTe, security-related components implementing
attribute based access control have also been defined. These components are providing
authenticated and authorized access to platform devices. In addition, the Cloud Domain
specifies components for platform-to-platform interaction for bartering and trading of

1 The symbIoTe information model will be specified in deliverables D2.1 “Semantics for IoT and Cloud Resources” and

D2.4 “Revised Semantics for IoT and Cloud Resources”.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 10 of 127
 © Copyright 2016, the Members of the symbIoTe

devices. The document also reports an initial view on components and envisioned
functionality needed for the Smart Space and Smart Device domain. The aim in those two
domains is to offer dynamic reconfiguration of devices in environments hosting a number
of platforms, and to support roaming devices that can blend with visited environments not
operated by their home platforms.

Finally, the document analyzes relevant work in the area of IoT interoperability, with focus
on reference architectures by standardization bodies and their mapping onto the
symbIoTe architecture, projects with similar goals as symbIoTe, and platforms by
symbIoTe partners aiming to become part of the future symbIoTe-enabled IoT ecosystem.
We can conclude that the proposed functional architecture and its layered stack with four
domains (Application, Cloud, Smart Space and Smart Device domain) is in accordance
with the AIOTI reference architecture. It is motivated Figure by the oneM2M architecture,
but symbIote extends the scope by identifying features which go beyond the oneM2M
functional architecture: These are related to platform federations, bartering and trading as
well as device roaming.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 11 of 127
 © Copyright 2016, the Members of the symbIoTe

2 Introduction

In a world of smart networked devices, wearables, sensors and actuators, transparent and
secure access to and usage of the available resources across various Internet of Things
(IoT) domains is crucial to satisfy the needs of an increasingly connected society.
However, the current IoT ecosystem is fragmented: a series of vertical solutions exists
today which, on the one hand, integrates connected objects within local environments
using purpose-specific implementations and, on the other hand, connects smart spaces
with a back-end cloud hosting often dedicated proprietary software components. The
symbIoTe project steps into this landscape to facilitate the creation and management of
hierarchical, adaptive and dynamic IoT environments, and to devise an interoperability
framework across existing and future IoT platforms for seamless networking and rapid
cross-platform application development.

Figure 1 Sketch of the symbIoTe architecture, as proposed in

Description of the Action (DoA)

Figure 1 sketches an environment of the future symbIoTe ecosystem which is built around
a hierarchical IoT stack and spans over different IoT platforms. We assume that various
IoT devices are connected to IoT gateways within Smart Spaces, representing physical
environments with deployed “things”, while being operated by one or more collocated IoT
platforms. Those platforms provide IoT services locally in Smart Spaces and share the
available local resources (connectivity, computing and storage). Smart Spaces and local
platform services are connected to platform services running in the cloud (e.g. resource
discovery and management, data analytics). Thus, in addition to their local representation,
deployed physical things are also mapped to their virtual representations within the cloud,
and exposed as IoT services to third parties, e.g., mobile or web applications. The

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 12 of 127
 © Copyright 2016, the Members of the symbIoTe

symbIoTe architecture spans over the following four layered domains, as depicted in
Figure 1:

• Application Domain: enables the creation and management of cross-platform
virtual environments to allow unified view on various platforms and their resources;

• Cloud Domain: enables platform interoperability and creation of platform
federations or associations between two platforms so that platforms can securely
interoperate, collaborate and share resources;

• Smart Space Domain: enables dynamic discovery and configuration of resources
within local smart environments, even those already connected to different
platforms;

• Smart Device Domain: relates to heterogeneous IoT devices representing things
in smart spaces; IoT devices can be discovered in visited Smart Spaces and use
their resources in a controlled way (device roaming).

2.1 Purpose of this document

The purpose of deliverable D1.2 “Initial Report on System Requirements and Architecture”
is to document the initial collection of the system requirements and a first version of the
system’s functional architecture, based on the current progress in tasks T1.3 and T1.4.
The document reports the first version of system requirements and functional architecture
with focus on two symbIoTe domains: Application Domain and Cloud Domain. System
requirements have been carefully derived from the use case descriptions reported in
deliverable D1.1 through an iterative and collective process. Identified system
requirements have served as input to create an initial, but also quite comprehensive, list of
components, their features, and interfaces for the Application Domain and Cloud Domain.
Furthermore, this document reports on the symbIoTe security mechanisms which are
incorporated into component descriptions and corresponding sequence diagrams, as well
as an initial view on components and envisioned functionality needed for the Smart Space
and Smart Device Domain.

This document will be used as input to implementation tasks in WP2, WP3 and WP4. In
particular, task T2.2 designs and implements components for the Application Domain and
Cloud Domain to enable semantic and syntactic interoperability of IoT platforms. Tasks
within WP3, focusing on IoT Platform Federation, will use inputs from this deliverable as a
starting point for defining trading and bartering mechanisms (T3.1), security and access
scopes (T3.2), and will specify the design and implement components enabling IoT
federations (T3.3). WP4 will further elaborate on the initial vision describing the Smart
Space and Smart Sevice Domains presented in this document.

Tasks T1.3 (lasting until M12) and T1.4 (lasting until M18) will in the next period focus on
requirements and architecture for the Smart Space and Smart Device Domain, as well as
further refine (if needed) component descriptions for the Application and Cloud Domains.
In the next period we also expect further elaboration of enablers, while their design and
implementation is performed in task T2.3. The next version of this report (deliverable
D1.4, due in M18) will list all identified requirements and provide the functional
architecture of the entire symbIoTe system.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 13 of 127
 © Copyright 2016, the Members of the symbIoTe

2.2 Terminology and definitions

IoT-related terms and concepts used in this document are based on the AIOTI Domain
Model [3] which is derived from the IoT-A Domain Model [5]. However, we do not use the
term resource as it is defined in the IoT-A Domain Model, but rather base our definition
on the one proposed by oneM2M [6].

• Thing: represents a physical entity in the physical world with which a generic user
interacts indirectly via an IoT Service. It usually has sensing/actuation and
communication capabilities, as well as data capture, storage and processing
capabilities.

• IoT Device: interacts with a thing and exposes the capabilities of the actual
physical entity. Typical devices are sensors, actuators, tags or gateways (referred
to as intermediary devices in IoT-A).

• Virtual Entity: represents a thing (physical entity) in the digital world.
• IoT Service: is associated with a virtual entity and can interact with the

corresponding thing via its IoT device.
• Composite IoT Service: is associated to one or a group of virtual entities managed

by a single or multiple IoT platforms, but appears to the outside as a single IoT
service.

• Resource: is a uniquely addressable entity in symbIoTe architecture and, as a
generic term, may refer to IoT devices, virtual entities, network equipment,
computational resources and associated server-side functions (e.g., data stream
processing). This definition is on purpose highly generic and abstract to allow its
unified, recursive use across all layers of the envisioned symbIoTe stack.

• System: the set of APIs, interfaces, services and in general all components of the
software realization of the symbIoTe architecture.

Stakeholders.

• IoT Platform Provider: offers IoT services managed by an IoT platform (reside
within symbIoTe Cloud Domain).

• Application Developer: build IoT applications based on the IoT services exposed
by various IoT platforms (reside at the symbIoTe Application Domain).

• End User: an individual user of an symbIoTe-supported IoT application.
• Infrastructure Provider: physically deploys the necessary hardware and software

infrastructure within smart spaces.
• Prosumer: is a stakeholder (e.g. platform or end user) which at the same time

produces/provides resources/goods but also consumes resources/goods provided
by other producers or prosumers.

• Consumer: Does not provide any resources/goods. Can participate only in trading
transactions which allow him/her to gain access to resources registered within the
symbIoTe Core Services.

• Producer: Provides resources/goods within the Symbiote ecosystem. He/she can
engage in trading and bartering transactions.

Security-related definitions.

• Public IoT service: IoT service without access restrictions
• Restricted IoT service: IoT service to which only specific users have access,

platforms grant access rights to their IoT services

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 14 of 127
 © Copyright 2016, the Members of the symbIoTe

• IoT device metadata: resource description maintained within symbIoTe core to
perform the search functionality; access to resource metadata may also be
restricted to a selected group of users

• IoT service access policy: rules for accessing an IoT service defined by a
platform per each IoT service or a set of services, can be used to filter out search
results to which an app/enabler does not have access rights

• Token: represents a digital object used as a container for security-related
information. It can be used for authentication and/or authorization purposes. In
general, it appears as a list of elements. Each element contains an assertion that
further specifies properties assigned to the owner of the token or to the token itself
(i.e., issuer of the token, issuing time, expiration date, subject and so on).
Moreover, a token contains one or more attributes, assigned to the owner of the
token itself. Finally, it also contains an element (generally stored at the end) that
certifies its authenticity and integrity, namely a sign.

• Attribute: it is a specific property assigned to an entity, i.e. role, permission or
feature, which can be assigned after a successful authentication procedure. An
entity in the system is characterized through a set of attributes, potentially assigned
by different platforms at different time instants. One or more attributes are carried
within tokens and they are used when accessing resources in the system.

• Multi-Factor Authentication: Users/devices/applications are authenticated by
presenting two or more different type of evidence factors. Types can be: knowledge
(something you know), possession (something you have) and inherence
(something you are) or location.

symbIoTe-specific definitions.

• symbIoTe Compliance Level: four interoperability aspects coverd within the
symbIoTe project.

• Level-1 Compliant IoT Platform (L1): offers an open symbIoTe-defined platform
interface; platform devices are searchable within the symbIoTe Core Services.

• Level-2 Compliant IoT Platform (L2): implements functionality needed for platform
federation.

• Level-3 Compliant IoT Platform (L3): supports dynamic smart spaces.
• Level-4 Compliant IoT Platform (L4): supports device roaming in visited domains;

a smart device can use services in a visited smart space.
• IoT Platform Federation: an association of two platforms enabling secure

interoperation, collaboration and sharing of resources.
• Smart Space: physical environment (e.g. residence, campus, vessel, etc.) with

deployed things where one or more IoT platforms provide IoT services.
• Smart Device: a device that can directly interact with a Smart Space.
• symbIoTe Core Services: services implemented by symbIoTe components at the

Application Domain which enable the interaction between third-party applications
and platforms.

• Interworking Interface: symbIoTe defined interface which opens up platform
resources as IoT Services in the Cloud Domain.

Performance indicators.

• Registration response time: the time required for the completion of the IoT
service registration process.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 15 of 127
 © Copyright 2016, the Members of the symbIoTe

• Search response time: the time required for the system to return the results of
IoT service search.

• IoT service access latency: the time required for the first use of an IoT service,
including initial authentication/authorization processes; it does not include access to
data (or instruction to an actuator).

Bartering and Trading related definitions.

• Bartering: refers to economic mechanisms whereby prosumers get access to
desired external resources and grant access to own resources requested by other
prosumers without monetary compensation.

• Trading: refers to economic mechanisms (e.g. auctions, direct negotiations)
whereby producers come to an agreement with consumers about providing
goods/resources for which they are paid.

• B2B: platform to platform, prosumers (have IoT services to share)
• B2C: platform to consumer/application that don't have IoT services to share (only

buy access)
• Forward Auction: The producer initiates the auction by creating an offer. Other

producers or consumers can start bidding. In this auction the price keeps
increasing. The winner will be the entity which bids the highest price.

• Reverse Auction: The consumer (or producer) initiates the auction by defining a
need. Producers who wish to fulfill the need can start bidding. In this auction the
price keeps going down. The winner will be the producer which bids the lowest
price.

• Vouchers: digital objects comprised of:
1. The Service Level Agreement (SLA) which contains the available

commodity/resources/goods (e.g., air quality sensors in Vienna, access for
one week, beginning with a date, etc.).

2. The authorization token with access rights mapped in accordance to the
SLA.

3. The issuers desired SLA (e.g.: willing to exchange own voucher for a
voucher containing humidity sensors and other attributes).

4. A validity date (expiration date).
5. A unique Identifier.

2.3 Relation to other deliverables

System requirements reported in this document are derived from deliverable D1.1 “Initial
Report on Use Cases” while the architecture definition is in line with the initial vision of
symbIoTe architecture presented in DoA. The process of defining system requirements
and architecture follows a two-step approach: Initial requirements and architecture are
created in the first step with focus on Application Domain and Cloud Domain (reported in
this deliverable D1.2). The second step will be reported in D1.4 “Final Report on System
Requirements and Architecture” with focus on Smart Space and Smart Device
requirements and architecture.

This deliverable introduces the functional architecture of symbIoTe. The symbIoTe
Information model, which is being developed in T2.1 in parallel with tasks T1.3 and T1.4,
will be presented in D2.1 (M10) “Semantics for IoT and Cloud Resources.” Domain-
specific enablers mentioned in this deliverable will be elaborated on and specified within
T2.3, and reported in D2.3 (M12) “Report on symbIoTe Domain-Specific Enablers and
Tools.” Bartering and trading mechanisms, as well as security aspects introduced in this

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 16 of 127
 © Copyright 2016, the Members of the symbIoTe

document will be documented in more detail within D3.1 (M11) “Resource Trading
Mechanisms and Access Scopes”. An initial vision of Smart Spaces and Smart Devices
presented within this deliverable will be extended through activities in WP4 (Dynamic
Smart Spaces) and reported in D4.1 (M12) “symbIoTe Middleware Tools, Protocols and
Core Mechanisms.”

2.4 Document structure

Section 2 presents the purpose of this document, as well as its relation to other
deliverables within the project. Section 3 elaborates on symbIoTe goals and challenges,
and provides details of symbIoTe domains and their relation to the four symbIoTe-specific
interoperability aspects referred to as Compliance Levels. System requirements are
presented in Section 4, while system architecture with the respective components, entities
and interfaces is introduced in Section 5. Section 6 describes state of the art overview,
with focus on reference architectures by standardization bodies, projects with similar goals
as symbIoTe, and platforms by symbIoTe partners aiming to become part of the future
symbIoTe-enabled IoT ecosystem.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 17 of 127
 © Copyright 2016, the Members of the symbIoTe

3 The symbIoTe Vision

The symbIoTe vision is to participate in the IoT ecosystem of the future by providing an
interoperable mediation framework integrating heterogonous IoT platforms that will allow
for the rise of next-generation cross-platform IoT applications. Considering the fact that
there are many different IoT platforms already in the market, with various requirements
and business goals, symbIoTe proposes a flexible interoperability concept (translated into
four interoperability-related Compliance Levels) so that platform providers can choose an
appropriate one to match their needs.

3.1 symbIoTe's goals and challenges

In a highly fragmented IoT ecosystem which is faced with an increasing number of new
IoT platforms in the market2, there is a need for a viable interoperability framework
enabling platform cooperation so that a new generation of IoT services and applications is
built on top of various platforms managing huge numbers of heterogeneous devices.
symbIoTe aims to devise an interoperability framework which will provide an abstraction
layer for a "unified view" on various platforms and their resources so that platform
resources are transparent to application designers and developers. The IoT resources will
be organized in a hierarchical manner with Smart Spaces interacting with IoT platform
back-end running in the cloud environment. Dynamic discovery, reconfiguration and
migration of IoT devices will be supported by Smart Spaces to provide dynamicity and
adaptability. In addition, symbIoTe also chooses the challenging task of implementing IoT
platform federations so that IoT platforms can securely interoperate, collaborate and share
resources for the mutual benefit. Moreover, symbIoTe envisions the implementation of
use case-specific high-level APIs (enablers), which will further foster a simplified IoT
application and service development process over interworking IoT platforms.

Finally, satisfying security requirements also occupies an important place in symbIoTe's
design principles. symbIoTe aims to design and develop mechanisms assuring secure IoT
platform interworking, to offer resource access schemes based on security scopes and to
devise an identity management solution for IoT resources which integrates security
features and avoids potential attacks. To this end, specialized security components are
identified in various architectural domains.

Main technological challenges:

• Unified and secure access to physical and virtualized IoT devices: such access is
required for the next-generation of cross-platform applications.

• Device discovery across various IoT platforms: symbIoTe needs to offer search
mechanisms to efficiently discover devices across platforms which are accessible
to third parties.

• Security: access scopes and identity management represent key requirements for
authorized access to varios devices across platforms.

• Platform federation for collaborative sensing/actuation tasks: platforms should be
enabled to securely interoperate for the trading/sharing of resources as well as to
control the terms under which roaming devices are allowed to use resources in
visited domains.

2 Beecham Research estimates around 300 IoT platforms to be on the market by the end of 2016 [25].

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 18 of 127
 © Copyright 2016, the Members of the symbIoTe

• Hierarchical, adaptive and dynamic IoT environments: it should be possible to
dynamically reconfigure devices in Smart Spaces so that they connect to different
gateways, or even to different platforms collocated in the same environments.

• Seamless roaming of Smart Devices across Smart Spaces: roaming devices should
be enabled to use resources from a local surrounding environment and in
accordance with Service Level Agreements (SLAs) between a platform managing
the visited domain and the platform which operates the roaming device.

3.2 Architecture overview

The symbIoTe approach is built around a layered IoT stack connecting various devices
(sensors, actuators and IoT gateways) within Smart Spaces with the Cloud. Smart Spaces
share the available local resources (connectivity, computing and storage), while platform
services running in the Cloud will enable IoT Platform Federations and open up the
Interworking Interface shown in Figure 2 to third parties. The architecture comprises four
layered domains, 1) Application Domain, 2) Cloud Domain, 3) Smart Space Domain and
4) Device Domain, as depicted in Figure 2. Hereafter we list the main functional objectives
for each of these domains:

1. Application Domain (APP): enables platforms to register IoT devices which they
want to advertise and make accessible via symbIoTe to third parties, while
symbIoTe provides the means for discovery of IoT devices across platforms. It also
hosts domain-specific back-end services (enablers) which are designed to ease the
process of cross-platform and domain-specific application development (specifically
for mobile and web applications).

2. Cloud Domain (CLD): provides a uniform and authenticated access to virtualized
IoT devices exposed by platforms to third parties through an open API
(Interworking interface). In addition, it builds services for IoT Platform Federations
enabling close platform collaboration, in accordance with platform-specific business
rules.

3. Smart Space Domain (SSP): provides services for discovery and registration of
new IoT devices in dynamic local smart spaces, dynamic configuration of devices in
accordance with predefined policies in those environments, and well- documented
interfaces for devices available in smart spaces.

4. Smart Device Domain (SDEV): relates to smart devices and their roaming
capabilities. We assume that devices have the capabilities to blend with a
surrounding smart space while they are on the move. In other words, smart devices
can interact with devices in a visited smart space, which are managed by a visited
platform, in accordance with predefined access policies.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 19 of 127
 © Copyright 2016, the Members of the symbIoTe

Figure 2 The symbIoTe high-level architecture

APP is designed to offer a unified view on different platforms to a new generation of
cross-platform IoT applications. This is achieved by the symbIoTe Core Services which
enable the discovery of IoT devices across platforms. It relies on a common semantic
representation of IoT resources (services or devices) which uses an expressive yet
minimalistic information model3 so that resources are searchable across platforms in a
uniform way. Note that the Core Services store and manage only IoT resource
descriptions (i.e. resource metadata), while the access to those resources (e.g., sensor
data and actuation primitives) is provided by the underlying platforms. Thus, the symbIoTe
Core Services are in close interaction and collaboration with the services provided within
the Cloud Domain which offer the actual access to virtualized IoT resources. In addition to
the search functionality, the Core Services implement symbIoTe specific authentication
and authorization methods providing the means for secure access to underlying platform-
specific resources.

In addition to Core Services, we also envision domain-specific enablers to be placed in
APP. Enablers offer value-added services on top of IoT services which are managed and
offered by “native” IoT platforms. For example, an enabler can gather and process all air
quality related data for a certain country and provide data analytics on top of the data set
acquired from various sources and administrative domains. In principle, an enabler can be
regarded as a virtual IoT platform since it does not possess the actual hardware, but
rather offers value-added services on top of the IoT services and devices being accessed
through symbIoTe Core Services. For symbIoTe Core Services an enabler thus plays a
dual role: 1) it is an application using symbIoTe Core Services to find adequate IoT
services, and 2) it acts as another IoT platforms offering domain-specific IoT services to
applications.

3 The symbIoTe information model will be specified in deliverables D2.1 “Semantics for IoT and Cloud Resources” and

D2.4 “Revised Semantics for IoT and Cloud Resources”.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 20 of 127
 © Copyright 2016, the Members of the symbIoTe

CLD hosts the Cloud-adjusted building blocks of specific platforms (e.g., a data store, data
analytics and stream processing tools, tools for platform management, etc.). To enable a
unified and secure access to platform resources, the symbIoTe Interworking Interface and
corresponding API is defined and implemented to expose open platform resources which
have previously been registered with the symbIoTe Core Services. We mark such IoT
resources as open symbIoTe-enabled resources. CLD services also implement specific
functionality for the exchange of information between two collaborating IoT platforms, e.g.,
for bartering and trading between platforms, and a specific protocol for the exchange of
information between platforms.

SSP comprises various IoT devices, IoT gateways as well as local computing and storage
resources available within, e.g., a home environment or campus building. We assume that
IoT platform-specific gateways are setup in SSP. To enable dynamic sensor discovery
and configuration in SSP as well as dynamic sharing of the wireless medium, symbIoTe
adds a new software component, symbIoTe middleware, to SSP, possibly at the gateway
level. The symbIoTe middleware exposes a standardized API for resource discovery and
configuration of devices within a Smart Space, and implements a sensor-discovery
protocol for a simplified integration of sensors with platforms hosted in particular Smart
Space Domains. After the initial interaction with the symbIoTe middleware, an IoT device
is connected to and configured with the platform gateway serving the domain. Note that
the device may be located either in a home or visited space. This protocol will also enable
that an IoT device entering a visited space becomes part of a new smart space, enabling
thus device roaming. An SLA needs to be in place between the platforms serving home
and visited spaces, which also specifies services exposed to the roaming device in a
visited space.

SDEV spans over heterogeneous devices which may use proprietary link layer protocols,
or ZigBee and 6LoWPAN, while it can be expected that future IoT devices will also
support application-layer protocols such as HTTP, CoAP and MQTT. Devices should be
capable to dynamically blend with a surrounding space and get discovered by the
symbIoTe middleware which performs the initial "introduction'' of devices within a Smart
Space. Smart Devices can self-organize and can be configured on the fly to be integrated
with different IoT platforms hosted within the Smart Space, preventing thus the lock-in of
customers to a specific IoT platform and IoT provider. We envision that device-specific
symbIoTe clients will be running on, e.g., smartphones, to realize these properties.

3.3 Compliance Levels

symbIoTe allows for flexible interoperability mechanisms which can be achieved by
introducing an incremental deployment of symbIoTe functionality across the listed
architectural domains (APP, CLD, SSP and SD). This approach will enable platform
providers to choose an appropriate level of integration of symbIoTe-specific services
within their platforms, which will in effect influence the level of platform collaboration and
cooperation with other platforms within a symbIoTe-enabled ecosystem. For example, a
platform may only choose to expose its Interworking Interface and selected IoT services to
third parties in order to advertise them by using the symbIoTe Core Services, or it may opt
for a closer collaboration with another platform by forming a platform federation. Platform
federations require additional symbIoTe components to be included and integrated within
a platform space in CLD.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 21 of 127
 © Copyright 2016, the Members of the symbIoTe

Figure 3 symbIoTe Compliance Levels

We define four different Compliance Levels for IoT platforms, as depicted in Figure 3.
They reflect different interoperability modes, which an IoT platform can support. Different
interoperability modes affect the functionality which needs to be supported by platforms,
and require specific symbIoTe components to be integrated within different domains.

• Level 1 symbIoTe Compliant Platform (L1 Platform): This is a "lightweight"
symbIoTe Compliance Level since a platform opens up only its Interworking
Interface to third parties in order to advertise and offer its virtualized resources
through the symbIoTe Core Services. It enables the syntactic and semantic
interoperability of IoT platforms in a symbIoTe ecosystem, and affects only APP
and CLD.

• Level 2 symbIoTe Compliant Platform (L2 Platform): This level assumes that
platforms federate, which requires additional functionality to be included in CLD, for
example for sharing/bartering of devices. The functionality provided at this level
enables the so-called enterprise interoperability.

• Level 3 symbIoTe Compliant Platform (L3 Platform): This Compliance Level
assumes that platforms integrate symbIoTe components within their smart spaces
to simplify the integration and dynamic reconfiguration of IoT devices within local
spaces.

• Level 4 symbIoTe Compliant Platform (L4 Platform): This level offers support for
device roaming and can enable the interaction of smart objects with visited smart
spaces. A prerequisite for this level is that a platform is already Level 1, 2 & 3
Compliant, so that smart spaces can discover new visiting devices and integrate
them (e.g., grant access to certain local resources) in accordance with SLAs
between platforms. Those platforms should thus be in a federation (Level 2), while
smart spaces need the functionality for dynamic reconfiguration (Level 3).

Note that L1 Compliance can be directly mapped to semantic and syntactic
interoperability, as identified in the ETSI Whitepaper [1], and subsequently adopted by
IERC [2]. L2, L3 and L4 platforms can clearly be categorized as systems supporting
organizational interoperability. symbIoTe proposes here an original approach with finer
granularity of organizational interoperability by placing specific interoperability concepts in
the CLD for L2, in the SSP for L3 as well as in both SSP and SDEV for L4 Compliance. In
particular, L2 platforms form platform federations, L3 platforms support dynamic and
reconfigurable smart spaces, while L4 platforms support roaming of smart devices which

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 22 of 127
 © Copyright 2016, the Members of the symbIoTe

can use services in visited smart spaces. To achieve L2 Compliance, a platform should
first adhere to L1 Compliance, while an L4 platform requires a full symbIoTe framework
(i.e., an L4 platforms is also L1, L2 and L3 Compliant).

L1 Compliance relates to services placed in two domains, APP and CLD, as depicted in
Figure 4. IoT platforms which want to become part of the symbIoTe ecosystem need to
integrate the symbIoTe Interworking Interface with its existing components running in the
Cloud Domain. This will enable semantic interoperability and open access to IoT services
which a platform chooses to register and make discoverable via the symbIoTe Core
Services. The access to those devices will stay under the control of a platform provider,
while being enabled through the Interworking Interface. In addition to open access,
symbIoTe also supports authenticated and authorized access to IoT services (more
information is provided in Section 5.4).

Figure 4 Level 1 Compliance

Figure 5 shows the benefits of symbIoTe and its interoperability concept by an example
depicting two L1 platforms (platform A and platform B) using the symbIoTe Core Services.
The figure depicts the process when an application searches for IoT devices, and after it
identifies the adequate ones, the application accesses the identified devices offered by
two platforms through the interworking interface. In other words, cross-platform
applications i) use the symbIoTe Core Services to find adequate devices across platforms
and ii) access, integrate and use those devices through a uniform and open interface.
Note that symbIoTe stores only resource metadata within the Core Services to provide
adequate search mechanisms, while cross-platform applications access and use
resources directly at the platform side.

Figure 5 Platform cooperation: Level 1 Compliance

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 23 of 127
 © Copyright 2016, the Members of the symbIoTe

L2 Compliance involves components placed both in APP and CLD, but requires a
significant extension of an existing platform deployment to enable a closer collaboration
between two platforms, i.e., platform federation. This collaboration should adhere to a
specified SLA and support symbIoTe-specific bartering and trading mechanisms. Figure 6
illustrates an example platform federation where it is possible to expose certain IoT
services from platform A within the space of platform B. This creates an opportunity that
an existing application (“native application”) expands the set of available services within
platform B since they appear as “native services” to an existing application built
exclusively for platform B.

Figure 6 Platform collaboration: Level 2 Compliance

L3 and L4 Compliance mainly affect platform software which is deployed within a Smart
Space, and may require specific software also at the level of IoT devices. Features similar
to the ones appearing in APP and CLD are needed within SSP, but with quite a different
and reduced scope since the platform needs to manage local resources (devices, storage,
wireless medium) within the same environment. We assume that a number of platforms
can occupy the same smart space. L3 Compliance refers to dynamic reconfiguration of
devices within a Smart Space, so that a new device is reconfigured on the fly to become
part of an SSP deployment within the smart space. L4 Compliance relates to
interoperability at the smart device level. An example is when a device registered in
platform A visits an environment operated by platform B. The device can use the
surrounding infrastructure operated by platform B in accordance with an SLA between the
two platforms.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 24 of 127
 © Copyright 2016, the Members of the symbIoTe

4 System Requirements

4.1 Framework

The specification of system requirements in symbIoTe aims at driving the design of the
symbIoTe architecture, based on a thorough assessment of the considered use cases in
the context of the identified project goals (see Section 3.1). In this effort, special attention
has been paid in capturing the requirements posed by the various stakeholders in the
symbIoTe landscape i.e., IoT Platform Providers, Application Developers, End Users,
Infrastructure Providers, Prosumer. Towards these ends, the specification of the
requirements has been structured according to the identified Compliance Levels thus
resulting in the Application Domain, Cloud Domain and Smart Space and Smart Device
Domain requirements. During the reported period, the project first focused on the
specification of the Application and Cloud Domain requirements, so as to support the
corresponding architectural design. However, a preliminary investigation of the
requirements for the Smart Space and Smart Device Domains has also been conducted.
Paying particular attention to security, the project has separately focused on the
specification of the corresponding requirements, by forming a team of security experts
within the consortium.

In order to structure the specification of the system requirements, we have identified the
following set of requirement attributes.

Domain: Following the structure of the symbIoTe stack, each requirement relates to one
or more domains, namely: Application, Cloud, Smart Space, Smart Device. In several
cases, requirements may apply to more than one domains. These are reported within the
set of the highest Compliance Level / domain they apply to.

Type: Two types of requirements are initially defined:

• Functional: requirements describing the behavior of the symbIoTe system i.e., what
the symbIoTe architecure should do.

• Non-Functional: requirements describing properties of the symbIoTe architecture
and system operation.

Category: A set of thematic categories is defined with the purpose of assisting grouping
requirements of similar nature and later guide the architectural design of the symbIoTe
system. Each requirement may fall into more than one categories. Namely:

• Interface: refers to the methods employed to enable the interaction between
different entities in the symbIoTe architecture, within and across domains, as well
as between the symbIoTe system and end users and/or clients.

• Monitoring: refers to the collection of information describing the current and past
status of resources in symbIoTe.

• Management: refers to all types of functional and non-functional requirements
related to the handling/control of resources in symbIoTe. This does not include
management aspects withing each existing symbIoTe-enabled IoT platform.

• Performance: refers to non-functional requirements including Key Performance
Indicators (KPIs) that will assist in establishing an evaluation framework for
symbIoTe but also take into account potential performance bottleneck during

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 25 of 127
 © Copyright 2016, the Members of the symbIoTe

implementation. This shall also include scalability aspects i.e., linking KPIs with
(work)loads expected.

• Security: encompasses all security aspects of the symbIoTe architecture including
authentication, authorization, privacy, etc.

Importance: Each requirement is characterized by its importance level with respect to its
fulfillment by the symbIoTe architecture and system. The level of each requirement is
expressed within the corresponding description text (see next) using the appropriate
terminology. Following Best Current Practice to Indicate Requirement Levels [26] we
consider the following levels:

• MUST (SHALL): this is an absolute requirement i.e., it is mandatory for the
symbIoTe architecture and system to conform to this requirement.

• SHOULD (RECOMMENDED): there may exist valid reasons within particular
circumstances to ignore this requirement.

• MAY (OPTIONAL): a requirement for a feature or a property of the symbIoTe
architecture that presents low priority within the project and may or may not be
fulfilled, subject to time constraints. Usually such features are selected by different
vendors subject to their market positioning.

Use case: We report the use cases each system requirement applies to. These are
indicated via the following indexes:

1. Smart Residence,

2. Edu Campus,

3. Smart Stadium,

4. Smart Mobility & Ecological Routing,

5. Smart Yachting:

In some cases a requirement may appear to apply to none of the selected use cases;
such requirements are specified for the broader, targeted environment of symbIoTe where
additional use cases are envisioned to be supported.

4.2 Methodology

Based on the above framework, the specification of the system requirements followed an
iterative process whose purpose was to derive the key requirements across the various
Compliance Levels. In this process, special attention was paid to finding the common
ground across the involved use cases, instead of merely identifying the key needs of a
particular example case, so as to pave the way for the support of additional use cases by
the symbIoTe system, not currently considered within the project.

Starting from Level 1 Compliance, the iterative process included the following steps:

Step 1: Revisit the previous level's requirements within the current Compliance Level (if
applicable).

The purpose of this step is to identify requirements that pertain across Compliance Levels.
Such requirements bear the potential of leading to more a efficient architectural design
that identifies key functional components across the considered domains, further
promising a modular design.

This step is carried out asynchronously with the help of the Confluence collaboration tool.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 26 of 127
 © Copyright 2016, the Members of the symbIoTe

Step 2: Introduce domain specific requirements

The introduction of domain specific requirements starts with the preliminary input from the
leader of the corresponding project task, with the purpose of identifying key areas that
should be explored. This is followed by a more elaborate input from the partners leading
the considered use cases. Upon the completion of this stage, all use case owners, along
with all other partners, inspect the derived requirements providing additional input in the
form of:

• Additional requirements
• Assessment on whether a requirement derived by one use case also pertains to

some other. This also includes comments on the generality of the introduced
requirements.

• Any other comment, including comments regarding the precise specification of the
intended meaning.

• This step is carried out asynchronously with the help of the Confluence
collaboration tool. At this stage, the Task Leader of T1.3 consolidates all comments
and identifies grey areas to be discussed.

Step 3: Finalize requirements

This last iteration step aims at finalizing all requirement attributes, ensuring the description
is precise, the associated set of use cases has been correctly identified and the
importance level within the overall project efforts has been correctly and realistically
specified. This step is carried out with a conference call, in which each individual
requirement is assessed and potential disputes are resolved. Due to the different nature of
the various types of requirements, the above iterative process is followed in three parallel
instances, namely for:

• Functional requirements
• Non-functional requirements
• Security requirements

4.3 Specified requirements

Table 1 below lists the set of specified requirements for the symbIoTe system, each
appropriately annotated with its attributes values. Table 2 subsequently presents the
security system requirements as specified by the formed security team.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 27 of 127
 © Copyright 2016, the Members of the symbIoTe

Table 1: System requirements

Index Domain Type Category Importance Description Use
Cases

1 Application,
Cloud

Functional Interface MUST IoT platform providers MUST be enabled to register the available
(composite) IoT services to the symbIoTe system. The system MUST
allow IoT platform operators to update and revoke (unregister) their
registrations.

1,2,3,4,5

2 Application Functional Interface MUST The system MUST expose the available (composite) IoT services to
application developers and other IoT platforms. Directory listings and
text search are examples of potential interfaces to application
developers and platform providers.

1,2,3,4,5

3 Application,
Cloud

(Non-
)Functional

Interface MUST The system MUST support a common information model for the
description of available IoT services across IoT platforms.

1,2,3,4,5

4 Application Non-
Functional

Interface SHOULD IoT services SHOULD appear to application developers in a
homogeneous manner i.e., the interface for application developers
should not differentiate across IoT platforms. Data source/identity shall
be exposed to application developers.

1,2,3,4,5

5 Application,
Cloud

Functional Monitoring MUST The system MUST monitor the availability of the IoT services registered
by IoT platform operators.

1,2,3,4,5

6 Application,
Cloud

Functional Monitoring SHOULD The system SHOULD monitor the load on the registered IoT services.
Related information can be directly retrieved by IoT platforms (if
supported). Additionally, the system can keep track of the IoT services
assigned to applications/enablers during the mediation process e.g.,
when an application developer has identified, requested and has been
granted access to IoT services for the intended application. The
retrieved information can be used to estimate service load, service
popularity (useful for ranking).

2,3,4

7 Application,
Cloud

Functional Monitoring MAY The system MAY perform functional performance tests on registered IoT
services.

2,3,4

8 Application,
Cloud

Functional Management MUST The system MUST not allow the allocation of IoT services to applications
or other IoT platforms if their availability and the potentially associated
QoS cannot be guaranteed by the underlying IoT platforms. This
requirement applies to IoT service types with exclusive access rights
(e.g., actuators).

2,3

9 Application,
Cloud

Functional Management MAY The system MAY be able to reserve IoT services and associated
resources for the future, for IoT platforms that support such feature.

2

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 28 of 127
 © Copyright 2016, the Members of the symbIoTe

10 Application,
Cloud

Functional Management MUST The system MUST support the exclusive use of IoT services , for
underlying IoT platforms that support such feature.

2,3,4

11 Application,
Cloud

Non-
Functional

Interface MUST The information from IoT services and IoT devices MUST have the units
in which the data is described associated to standard unit of the
common information model (meters, kg, etc.). The encoding of units
should adhere to a standard (e.g. UCUM).

1,2,3,4,5

12 Application,
Cloud

Functional Interface MUST The common information model MUST support geo-reference
information.

1,2,3,4,5

13 Application,
Cloud

Functional Management SHOULD The system SHOULD enable the prioritization access to IoT services if
the underlying IoT platforms support prioritization, e.g., users with
premium rights or who paid for access have priority over basic users
when attempting concurrent access to some IoT services.

3

14 Application,
Cloud

Functional Management SHOULD The system SHOULD enable the control of access to the advertised IoT
services for reasons related to local legislation, current overload, security
issues, etc., if the underlying IoT platforms support it.

1,3,4,5

15 Application,
Cloud

Non-
Functional

Interface SHOULD The information model of the system SHOULD comply to standardized
ontologies where possible and SHOULD try to be compatible to the data
model of the other IoT-EPI projects. An example ontology here is the
Semantic Sensor Network Ontology (SSNO).

1,2,3,4,5

16 Application,
Cloud

Functional Interface MUST The information model of an IoT platform registering its IoT services to
symbIoTe MUST be aligned to the symbIoTe information model.

1,2,3,4,5

17 Application,
Cloud

Functional Interface SHOULD The system SHOULD provide best practices for the alignment of an IoT
platform's information model with the symbIoTe information model, e.g.,
detailed examples documenting alignment procedures.

1,2,3,4,5

18 Application,
Cloud

Functional Interface MUST The system MUST provide unique identifiers of the (registered) IoT
services within the system. Uniqueness MUST be enforced within and
across IoT platform boundaries, including the case of mobile IoT
devices.

1,2,3,4,5

19 Application,
Cloud

Functional Interface MUST symbIoTe MUST distinguish IoT devices which are fixed (geo-location
does not change over time) and mobile (their location changes).

1,3,4,5

20 Application Functional Management MUST The system MUST offer domain-specific enablers that hide from
application developers the existence of multiple IoT platforms and
resources targeted to a specific domain. The system must manage all
the underlying resources, include the required logic, ensure the required
quality, performance, etc (see Requirements 2, 5-12)

1,2,3,4,5

21 Application Functional Management SHOULD The system SHOULD allow application developers to create their own
enablers (focusing on a single domain or be cross-domain), defining
their own logic, etc. These "user-owned enablers" should be available at

1,2,3,4,5

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 29 of 127
 © Copyright 2016, the Members of the symbIoTe

least to their creators.
22 Application Functional Management MAY The system MAY allow application developers to share their custom

enablers with other application developers. Trading mechanisms may be
in place to govern the use of custom enablers.

1,2,3,4

23 Application,
Cloud

Functional Interface MUST The system MUST recommend IoT services based on the search
criteria defined by an application developer or IoT platform provider.

1,4,5

24 Cloud Functional Management MUST The system MUST provide application-agnostic support for trading,
bartering and cooperation of different IoT platforms. This MUST include
an Auction System for businesses, customers and prosumers.

2,3,4

25 Application,
Cloud

Non-
Functional

Performance SHOULD Registration response time: SHOULD be in the order of minutes,
depending on the volume of registered IoT services.

1,2,3,4,5

26 Application,
Cloud

Non-
Functional

Performance SHOULD Search response time: SHOULD scale with the volume of results data
and the volume of available data (with an upper limit). It should be in the
order of a few seconds.

1,2,3,4,5

27 Application,
Cloud

Non-
Functional

Performance SHOULD IoT service access latency: SHOULD have an upper limit of maximum 1-
2 seconds.

1,2,3,4,5

28 Application,
Cloud

Non-
Functional

Performance SHOULD Volume of IoT services supported: the system SHOULD target large
volumes of meta-data (big data) provided by IoT platforms.

1,3,4

29 Application,
Cloud

Non-
Functional

Performance SHOULD Number of IoT platform instances/enablers: the system SHOULD scale
in the order of thousands of instances.

2,3,4

30 Application,
Cloud

Non-
Functional

Performance SHOULD Number of applications/enablers: it SHOULD scale in the order of
thousands of instances.

2,3,4

31 Application,
Cloud

Non-
Functional

Performance SHOULD Volume of search queries: expressed as a search query rate. The
system SHOULD support several hundreds of queries per second under
the search response time requirement.

1,2,3,4

32 Application,
Cloud

Non-
Functional

Performance SHOULD Volume of monitoring information: refers to aggregated data collected
and provided by the underlying IoT platforms. The system SHOULD
target large volumes of data (big data) provided by IoT platforms.

4

33 Application,
Cloud

Functional Management MUST The system MUST support the ranking of the IoT service search results
according to multiple criteria e.g., availability, performance, etc.

1,3,4,5

34 Application,
Cloud

Functional Management SHOULD The system SHOULD enable IoT platforms to control whether their IoT
services appear in search results, subject to the access rights of the
query issued to these services i.e., whether the application developer or
enabler is registered with the respective IoT platform.

1,2,3,4,5

35 Application,
Cloud

Functional Management, Interface MAY The system MAY enable IoT platforms to define access rules to their IoT
services during the registration process. Such access rules refer to the
intended availability of the IoT services to applications/enablers e.g.,
maxium 10 times per day, only from 7p.m. to 7a.m..

36 Application, Functional Management MAY The system MAY periodically check the long term availability of 1,3,4

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 30 of 127
 © Copyright 2016, the Members of the symbIoTe

Cloud registered IoT services with the purpose of purging or invalidating the
corresponding registrations.

37 Application,
Cloud

Functional Management MAY The system MAY support the registration of applications/enablers to
underlying IoT platforms. This requirement pertains to cases where the
search results contain IoT services that the query issuer does not
currently have access rights for. An example mechanism for the
intended symbIoTe support, is the redirection to the IoT platform
registration interface.

1,4

38 Application,
Cloud

Functional Management MUST The system MUST allow applications to subscribe to IoT services to
continuously receive the generated data/information, in addition to active
requests for information from a used IoT service (when supported by the
underlying IoT platform). In this mode of operation the application
receives the data whenever this is pushed (published) by the
corresponding IoT device.

1,2,3,4,5

39 Application,
Cloud

Functional Management SHOULD The system SHOULD support registration updates i.e., IoT platform
operators/enablers should be able to update their registered IoT services
with symbIoTe. For example, updating provided information upon
sensor/actuator upgrades.

1,2,3,4,5

40 Application,
Cloud

Functional Interface MUST The system MUST support hierarchically structured unique identifiers for
the purpose of identification, trading, security and accounting.
(E.g. the hierarchical information inherent in the domain names
(cosy.computersciences.univie.ac.at) could be used)

1,2,3,4,5

41 Application,
Cloud

Functional Management MAY The system MAY support notifications for updated results on past
queries i.e., applications/enablers which have issued queries in the past,
may be notified about the availability of new IoT services matching their
registered past continuous queries.

2,3,4

42 Application,
Smart space

Functional Management/Security MUST The system MUST support "multi-domain access rights composition",
which means that an application registered in different IoT domains may
be granted access to IoT services available in other domains.
Specifically, the application is authenticated in each IoT domain where it
has been registered, thus collecting a set of 'attributes'. Then, the
application can combine attributes obtained in different contexts and be
granted access to another IoT service exposed in a new IoT domain.

2,3,4

43 Application,
Cloud, Smart
space

Functional Management MUST The system MUST support an 'attribute mapping functionality' through
which it is possible to map attributes generated/released in one IoT
domain to the same/similar attributes valid in different IoT domains.

1,2,3,4

44 Application,
Cloud

Functional Interface MUST The system MUST allow the registration of IoT platforms with the
purpose of subsequently enabling them to register their IoT services
(Req.1). The system MUST allow to unregister an IoT Platform.

1,2,3,4,5

45 Application, Functional Interface SHOULD Enablers SHOULD be regarded as high-level IoT platforms that can 1,2,3,4,5

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 31 of 127
 © Copyright 2016, the Members of the symbIoTe

Cloud register their domain-specific services to the system, similar to native IoT
platforms.

46 Application,
Cloud

Functional Management MUST Bartering and trading MUST be available for B2B and B2C transactions. 2,3,4

47 Cloud Functional Management SHOULD Businesses and consumers SHOULD be able to issue Vouchers
(including predefined Service Level Agreements (SLA)), which they offer
or require.

2,3,4

48 Cloud Functional Management MUST Forward auctions MUST be available. 3,4
49 Cloud Functional Management SHOULD Reverse auctions SHOULD be available. 3,4
50 Application,

Cloud
Functional Management/Monitoring MAY symbIoTe MAY support the fine grained monitoring of the availability of

the IoT services engaged in established bartering/trading agreements
(associated with SLAs), and the subsequent audit-proof archiving of the
monitoring information.

3,4

51 Cloud Functional Management/Monitoring SHOULD Any Voucher consumer SHOULD be able to retrieve, from symbIoTe,
the monitoring data associated with the acquired Voucher.

3,4

52 Cloud Functional Interface SHOULD The search results in symbIoTe SHOULD indicate the possibility of
accessing the chosen resources by means of B&T.

2,3,4

53 Cloud Functional Management/Security SHOULD The B&T transactions (B2C) SHOULD assure the anonymity of end
users.

3,4

54 Smart Space Functional Interface MUST The system MUST enable the discovery and registration of a new device
that is willing to register with symbIoTe compatible platform middleware.

1,2,3,5

55 Smart Space,
Smart Device

Functional Interface MUST Any piece of equipment which needs to be integrated with symbIoTe is
required to have a documented digital interface, providing either a
standard or a properly described protocol

1,2,3,5

56 Smart Space Functional Management SHOULD The system SHOULD be able to prioritize the information send in the
platform (IMPORTANT information 1st)

1,3,5

57 Smart Space Non-
Functional

Interface SHOULD The system SHOULD support the dynamic configuration of a subset of
commercial sensors.

1,3

58 Smart Space Functional Interface MAY Inside Smart Space multiple gateways MAY be used as an alternative
fallback router for a given device.

1,2,3

59 Smart Space Functional Management SHOULD SymbIoTe smart spaces SHOULD be able to operate without a
permanent Internet connection.
(see Security Requirement 22)

1,2,3,5

60 Smart Space Functional Management / Interface MAY Different local IoT Platforms MAY be able to interact locally (i.e. without
mediation from cloud-based L2 symbIoTe components).

1,2,3,5

61 Smart Space Functional Management / Interface SHOULD Different collocated IoT platforms SHOULD (or even MUST) be able to
interact locally with mediation from symbIoTe CLD components.

1,2,3,5

62 Smart Space Functional Management SHOULD A device running a symbIoTe app or a Smart Device SHOULD be able
to access a Smart Space even if Internet connectivity is not available

1,2,3

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 32 of 127
 © Copyright 2016, the Members of the symbIoTe

63 Smart Space Functional Management MUST A device running a symbIoTe app, when already associated to a Smart
Space, MUST be able to access a Smart Device in that same Space
even if Internet connectivity is not available.

1,2,3

64 Smart Space Functional Management MUST An L4-Compliant Smart Device MUST have a globally unique identifier. 1,3
65 Smart Space Functional Management / Interface SHOULD An app/enabler SHOULD be able to receive a notification whenever an

L4-Compliant resource it is using changes Smart Space association
1,2,3

66 Smart Space Functional Management / Interface SHOULD There SHOULD be a way for a local symbIoTe app to directly interface
with the hosting Smart Space, that is by accessing it through the LAN
rather than the Internet.

1,2,3,5

67 Smart Space,
Smart Device

Functional Management/Interface MUST SymbIoTe MUST accept visiting devices to be merged in the visited
Smart Space.

1,2,3,5

68 Cloud Non-
Functional

Performance SHOULD The establishment of an SLA SHOULD complete within 1 sec, when an
offering is already available.

3,4,5

69 Application,
Cloud

(Non-
)Functional

Interface MUST The system MUST support arbitrary extensions of the common
information model for the description of available IoT services across
different IoT platforms.

1,2,3,4,5

70 Application,
Cloud

(Non-
)Functional

Interface SHOULD The system SHOULD support mappings between two different
extensions of the common information model.

1,2,3,4,5

Table 2: Security system requirements

Index Domain Type Category Importance Description Use Cases

1 All Functional Security MUST The system MUST offer mechanisms for the authentication of symbIoTe
entities/actors i.e., users/application developers, IoT platforms, developed
applications and clients.

1,2,3,4,5

2 All Functional Security MUST The system MUST offer mechanisms for the authorization of symbIoTe
entities/actors i.e., users/application developers, IoT platforms, developed
applications and clients.

1,2,3,4,5

3 Application Functional Security MUST The SymbIoTe ecosystem must offer mechanisms to establish trust
relationships - and thus implicitly trust levels - prior to applying security
mechanisms for the first time. This information must be stored in a secure
datastore. e.g. by PKI infrastructure.
(E.g. online or offline means for verifying the true identity of the respective
user/platform/software/...? shall be defined and put in place)

 2

4 Smart Space Functional Security SHOULD The authentication to a smart space SHOULD work even if the smart space
is disconnected from the Internet.

1,2,3,5

5 Application/Cloud Functional Security MUST The system MUST support the revocation of access rights to
users/application developers, IoT platforms. (Comment: Although in the

1,2,3,4

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 33 of 127
 © Copyright 2016, the Members of the symbIoTe

Yachting use case it might only be revoked when the system comes online
again.)

6 Application/Cloud Functional Security MUST The system MUST explicitly support access rights expiration. 1,2,3,4
7 Cloud Functional Security MUST The authentication mechanisms of the system MUST support identity

federation (e.g. single sign-on).
1,2,3,4

8 Application / Cloud Functional Security MUST The system MUST preserve end-user privacy. (E.g. locations of end users /
sent sensor data and their identity, e.g. via data anonymization)

1,2,3,4,5

9 Smart Space Functional Security MUST The system MUST support encrypted data communication between all
involved entities on level 1 and 2 (e.g. the SymbIoTe core, platforms, etc.).

1,2,3,4,5

10 Smart Space Non-
Functional

Security MUST The system MUST ensure privacy protection on each layer, do not publicly
expose e.g., devices information or application used by applications.

1,2,3

11 Application, Cloud Functional Security MUST The system MUST support fine-grained and standardised access rights to
registered IoT resources, including also aggregated resources e.g.,
resources provided by enablers.

E.g. it must be possible to identify individual sensors (which also allows
tracking their wearers) for the layer which interpolates the air quality from
individual sensors. This functionality is done on a domain specific layer. The
output of this will not give data from sensors away but for other entities (like
street segments).
E.g. In the smart stadium use case, the "normal" user should not be allowed
to see locations of individuals. Certain personal security might need access
to this information.

1,2,3,4

12 Application / Cloud Non-
Functional

Security MAY The system MAY provide best practices guide for applications to set-up end-
user security in order to function in a secure and privacy-preserving way.

2,3

13 Application / Cloud Functional Security MUST The system MUST provide the possibility to let users / entities choose where
(enablers/IoT platforms) their data is being used and processed. The
users/entities MUST be able to modify the privacy parameters regarding
their data.

1,2,3,4

14 Application/Cloud Non-
Functional

Security SHOULD symbIoTe SHOULD detect and propagate any security error notifications
through the system to application/enablers/end user.

1,2,3,4,5

15 Application Non-
Functional

Security MAY The terminology used to describe the system status must not be overly
technical so that users can understand without having a technical
background. symbIote MAY create best practices with unified terminology
for developers of applications and enablers.

16 All layers Functional Security MUST Access rules MUST be defined as an access policy.
17 All layers Functional Security MUST The system MUST allow entities to delegate access to specific resources to

other entities (e.g. by the usage of bearer access tokens)
1,2,3,4

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 34 of 127
 © Copyright 2016, the Members of the symbIoTe

18 Application/Cloud Functional Security MUST The system MUST support the authentication of the user without implied
authorization for a specific resource.
(E.g. it must be possible for platform B to have a user of platform A
authenticated (by platform A) in a secure way while roaming in platform B)

2.4

19 Application Functional Security
and
Usability

MAY Symbiote MAY support Multi-Factor Authentication towards if the underlying
platform supports it. (e.g. Authentication using password and PIN)

20 Application Functional Security MUST? Mutual authentication must be supported by all security mechanisms.
(I.e. NOT only the user/application/software/... must be authenticated
against the platform but also vice versa in order to facilitate malicious
platform detection)

4

21 Application/Smart
space

Functional Security MUST The access to resource MUST be handled through 'Attribute-Based Access
Control (ABAC)' schemes. An 'attribute' refers to a generic
property/role/permission that the application grants during the authentication
phases.

1 (MAY)

22 Smart Space Functional Security MUST Within smart spaces it must be possible to run a local symbIoTe core
instance for privacy and security reasons (e.g. a symbIoTe core instance
installed in a smart residence). This instance might not be connected to the
Internet (but could). If connected to the Internet it might expose sensors to
another remote symbIoTe core instance.

2,3(SHOULD)

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 35 of 127
 © Copyright 2016, the Members of the symbIoTe

5 symbIoTe Architecture

This section presents details of the symbIoTe architecture, with focus on two domains:
Application Domain (APP) and Cloud Domain (CLD), as well as the functionality required
for L1 Compliance. We introduce an extensive list of components and associated features
which have been identified for APP (Section 5.1) and CLD (Section 5.2) based on the
requirements presented in Section 4. The template for component descriptions is given in
Table 3, in Compliance with the template recommended in IEEE STANDARD 1016:
Software Design Specification [27]. In this document we focus on component descriptions,
list of features and related requirements, while detailed component design will be provided
in respective design and implementation tasks. Note that we define the components
based on the domain in which they are placed, rather than which set of functions or
Compliance Level they enable. Currently, the APP contains mostly components for L1
Compliance and some components required for L2 Compliance, while the CLD hosts
mainly components required for L2 Compliance and some for L1 Compliance. As we
further progress with identification of features required for L2, L3 and L4 Compliance, new
components as well as component extensions will be defined with proper labeling of
provided functionality with respect to symbIoTe Compliance Levels.

Section 5.3 presents an analysis of requirements for the Smart Space (SSP) and Smart
Device Domains (SDEV) to identify a list of components for the two domains as well as to
put them in context with APP and CLD components. Since security requirements play a
vital role for symbIoTe, Section 5.4 describes and analyses the symbIoTe approach to
security4. The final subsection goes a step further towards component design for the APP
and CLD components and puts both the required APP and CLD components as well as
security-related technical decisions into the context of L1 Compliance. We introduce
interface definitions and sequence diagrams depicting component interactions to achieve
semantic and syntactic interoperability within symbIoTe in Section 5.5.

Table 3 Template for component description

Component Name of the component

Compliance Level L1, L2, L3, or L4
symbIoTe Domain Application (APP), Cloud (CLD), SmartSpace (SSP) or SmartDevice (SDEV)
Description Short description of the component
Provided functionalities List of functionalities provided by this component
Relation to other components How will this component interact with other components?
Related use cases Use cases in which the component is applied.
Related requirements List of requirements from T1.3 that are addressed by the component

5.1 Application Domain

5.1.1 General concepts

The Application Domain (APP) components will enable symbIoTe to become a mediator
between applications and IoT platforms so that applications can use platform devices

4 Note that security-related components are identified and described in previous subsections (Section 5.1 and Section

5.2).

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 36 of 127
 © Copyright 2016, the Members of the symbIoTe

exposed as IoT services by various platforms in a uniform manner. The basic functionality
needed for this domain is that of a registry service which maintains a repository of
platforms which are symbIoTe-enabled, their services and properties. In addition to native
IoT platforms, we envision that the registry will also maintain enabler-related information
describing enabler value-added services. This will enable application developers to
choose IoT services and devices adequate for their applications. In addition, APP
components need to enable efficient search techniques. If we make an analogy to a web
search engine, symbIoTe should act as an IoT search engine which finds and
recommends adequate resources5 to applications/enablers. There are already some
relevant search techniques proposed in the Web of Things space [19], and commercial
attempts: Thingful6 and Shodan7.

The general concept of symbIoTe is to maintain only resource metadata, i.e., descriptions,
within the APP, while applications and enablers will be directed to native platforms and
enablers when accessing the corresponding resources. IoT platforms and enablers have
the power to select resources which they want to expose to third parties, and they control
the access to those resources. To do so, platforms need to extend their existing system
with an open API and to comply with certain symbIoTe requirements in order to create an
environment with uniform open APIs across various platforms. The open API and
components required on the platform side are further discussed in Section 5.2 while we
further explain the details of APP and CLD interaction for L1 Compliance in Section 5.5.

Since the quality of search results is vital for APP, as well as for the adoption of symbIoTe
in practice, symbIoTe needs to ensure that resources which it recommends and list in
search results are indeed online and available, while its ranking function should take into
account parameters such as QoS, resource popularity, etc. Thus, the APP components
and their features are defined to enable continuous monitoring of registered resources.

Another important aspect is covered by APP components: semantic interoperability.
symbIoTe chooses to follow an approach which requires that all registered resources are
defined using a minimalistic core information model which all platforms need to adhere to,
while further resource details are can be described using platform-specific information
models. This provides a lot of flexibility for platform owners, but may represent a
weakness for the symbIoTe ranking function if it does not understand the details about the
resources. We envision that a mapping solution will be available to map an information
model which symbIoTe does not understand to the one which symbIoTe understands.
Further details regarding the symbIoTe information model and approach to semantics will
be provided in deliverable D2.1.

The components deployed in APP shown in Figure 7 are the following:
• Administration: facilitates the control of symbIoTe Core Services via a web-based

GUI;
• Registry: stores data about registered resources offered to applications or

enablers by using the symbIoTe core information model;
• Search Engine: enables applications/enablers to find relevant resources registered

within the Registry;

5 We use the term resource hereafter to reffer to various addressable services offered by both IoT platforms and

enablers, as defined in Section 2.2
6 https://thingful.net/
7 https://www.shodan.io/

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 37 of 127
 © Copyright 2016, the Members of the symbIoTe

• Core Resource Monitor (Core RM): tracks availability of registered resources in
order to ensure their availability;

• Core Resource Access Monitor (Core RAM): tracks information about resource
popularity, i.e., which registered resources are being used by applications/enablers;

• Core Authentication and Authorization Manager (Core AAM): ensures that
trusted platforms register resources with symbIoTe, while mapping resource access
rights to proper credentials;

• Core Security Handler (Core SH): provides a set of generic security-related
features required for the attribute based access control;

• Core Bartering and Trading Component (Core BarT): comprises all bartering
and trading functionalities for L2 Compliance that need to be centralized, and are
thus deployed within APP.

Figure 7 symbIoTe APP components

5.1.2 Component description

Hereafter we identify the core components for the Application Domain (symbIoTe Core
Services). For some of the components, examples are provided showing how the
component can be used.

Table 4 Administration

Component Administration

Compliance
Level

L1

symbIoTe
Domain

APP

Description This component facilitates the control and administration of the symbIoTe Core Services
by providing a web-based GUI. symbIoTe administrators will have access to a control
panel that allows them to perform management actions and update parameters related
to symbIoTe Core Services, such as removing specific platforms from the registry or
changing the values of search engine variables to improve ranking. Furthermore,

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 38 of 127
 © Copyright 2016, the Members of the symbIoTe

administrators will have access through the web-based interface to internal information,
e.g. logs, IoT service popularity data, platform usage/status data or unauthorized user
access attempts.
This component will also provide features to non-administrator users. It will enable IoT
platforms and applications to register with symbIoTe and to receive credentials which
are required for the subsequent usage of symbIoTe services. We envision guest/trial,
regular and premium registrations. We envision that enablers will also register with
symbIoTe with two possible roles: 1) as platforms offering domain-specific IoT-related
services and 2) as applications which use symbIoTe to find and access IoT services
provided by symbIoTe-enabled platforms. The system should enable IoT platforms and
enablers to control whether their resources appear in search results, subject to the
access rights of the query issued to these services i.e., whether the application
developer or enabler is registered with the respective IoT platform.

Provided
functionalities

• Provides a web GUI for administrators to manage platforms, resources, and
other internal or database properties.

• Presents logs and internal information to administrators.
• Provides an interface for manual registration of IoT platforms, enablers and

applications with symbIoTe.
• Enables IoT platforms and enablers to control whether their resources appear in

search results.
• Supplies adequate credentials to IoT platforms, enablers and applications by the

Core AAM.
Relation to other
components

Registry: manages platform/enabler/application-related data, handles requests for
registry-related changes/actions.
Core Resource Monitor: provides additional performance-related information for display.
Core Resource Access Monitor: provides additional usage-related information and
internal data for display.
Core Authentication and Authorization Manager: Handles authentication of users and
administrators.

Related use
cases

All

Related
requirements

34, 44, 45, S1, S5

Example 1: Platform registration
An instance of the OpenIoT platform running in Zagreb wants to register its resources to
be searchable and accessible through symbIoTe. The required platform-specific
registration data (platform-specific metadata) is as follows:

• Name: IoT-FER
• Type: OpenIoT
• Location: Croatia
• Resource Types: CO, NO2, SO2, T, H, P
• DataEndpoint: iot.fer.unizg.hr:12345/resources/
• Interworking API: iot.fer.unizg.hr

Note: All IoT platforms that will be symbIoTe-enabled should declare the metadata
needed to register a platform instance with symbIoTe

Table 5 Registry

Component Registry
Compliance
Level

L1

symbIoTe
Domain

APP

Description This component must enable the registration of (composite) IoT services which are

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 39 of 127
 © Copyright 2016, the Members of the symbIoTe

offered by IoT platforms to be discoverable through symbIoTe. In addition, the component
should enable the registration of enabler domain-specific services which are offered
through symbIoTe. Only IoT platforms and enablers which are symbIoTe Compliant and
registered using the Administration component can register their resources. In addition,
only entities providing adequate credentials should be enabled to register resources.
The component should support resource registration updates generated by entities
providing adequate credentials, i.e., IoT platforms and enablers should be able to update
their registered resources with symbIoTe. Examples are adding/removing IoT services,
updating resource metadata upon sensor/actuator upgrades, etc.
Registration response times i.e., the time required for the completion of the IoT service
registration process should be in the order of minutes.
The component must provide unique symbIoTe identifiers to all resources registered
within the symbIoTe Core Services. Uniqueness must be enforced both within and across
IoT platform boundaries, which is critical, e.g., in the case of roaming IoT devices.
A core information model with extensions must be supported by the Registry for the
description of available resources across IoT platforms. The symbIoTe core information
model should be compatible with existing standards, prominent ontologies in the IoT
space and should be aligned (if possible) with the data model of other IoT-EPI projects.
The model must support geo-referenced information. It must distinguish IoT devices which
are fixed (their geo-location does not change over time) and mobile (their geo-location
continuously changes). The information generated by IoT devices must be annotated by
standard units. The encoding of units should adhere to a standard (e.g. UCUM). The
information model of an IoT platforms and enablers registering their resources to
symbIoTe should be aligned to the symbIoTe information model.

Provided
functionalities

• Handles requests for resource registration and resource updates.
• Assigns symbIoTe-specific unique identifiers to resources.
• Stores resource metadata. All resources are described using the symbIoTe

information model.
• Receives resource availability information from the Core RM and updates

resource status (e.g. online/offline).
Relation to
other
components

Search Engine: uses platform, enabler and resource-related information managed by the
Registry.
Core Resource Monitor: monitors availability of registered resources and pushes this
information to the Registry.

Related use
cases

All

Related
requirements

1, 3, 11, 12, 15, 16, 18, 19, 25, 39, 45, S1, S2

Example 2: Resource registration
An air quality sensor managed by an OpenIoT instance registers with symbIoTe. The
required data to register/update a resource is as follows:

• Location: [45.8 N; 16 E]
• Features: CO, NO2, T, H, P
• Id: 2321-2312-abcd
• symbIoTe-platform-UId: OpenIoT-xxxx-yyyy-zzzz
• Description: CO is measured in mg/m^3, Temperature is measured in Celsius. Raw

data obtained from sensor nodes is open access.
Note: All resources will be described using the symbIoTe information model.

Table 6 Search Engine

Component Search Engine
Compliance
Level

L1

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 40 of 127
 © Copyright 2016, the Members of the symbIoTe

symbIoTe
Domain

APP

Description This component enables application and enabler developers to search for resources
available through symbIoTe Core Services using a web-based GUI. Search requests
should specify metadata and relevance criteria for a search request, as well as
application/enabler credentials.
The component uses metadata associated to registered resources maintained by the
Registry to calculate resource scores concerning a query. Resource metadata and
annotations regarding their origin (i.e. particular platform or enabler) must be exposed in
search results. Access policies associated to resources must also be exposed and should
be used to filter the results taking into account credentials provided together with the
query. In search results, sensors which are fixed and mobile should be distinguished.
The component uses a ranking function which takes into account resource metadata and
relevance criteria defined in a search request, and should take into account various
parameters (e.g. resource cost, availability, performance, offered service level).

Provided
functionalities

• Searches for resources which match a specific query.
• Finds the available resources and provides "snippets" describing resources which

include "symbIoTelized" URLs which are subsequently used to access the
selected resources.

• Ranks resources relevant to a query in accordance with a symbIoTe-specific
ranking model.

• Filters resources for which a user does not have access rights.
Relation to other
components

Registry: provides platform, enabler and resource-related information needed to perform
the search operation.
Core Resource Access Monitor: serves as a proxy for URLs appearing in search results.

Related use
case sections

All

Related
requirements

2, 4, 19, 23, 26, 31, 33, S1, S2

Example 3: Search example
A Smart Mobility and Ecological Routing enabler needs to find available sensors that
measure air quality in Zagreb. An example query could be defined as follows.

• Location: [45.8 N; 16 E]
• Features: CO, T

Note: We need to identify metadata relevant to search queries across different use cases.

Table 7 Core Resource Monitor

Component Core Resource Monitor (Core RM)
Compliance
Level

L1

symbIoTe
Domain

APP

Description This component must monitor the availability of registered resources to regularly update
resource status (online/offline/unavailable) maintained by the Registry. This will ensure
that symbIoTe search results do not contain resources if their availability cannot be
guaranteed, e.g., IoT service types with exclusive access rights (e.g., actuators) are
marked unavailable if being used and will thus not appear in search results. It uses
scheduled tasks to check resource status. Either resource registrations or application-
generated monitoring requests can trigger the scheduling of a monitoring task per
resource (or a group of resources).
The component needs to provide appropriate credentials when checking resource status.
In addition, it should monitor the load on the registered resources, either in a push or pull
style, if IoT platforms and enablers support such functionality. The component may
perform functional performance tests on registered resources.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 41 of 127
 © Copyright 2016, the Members of the symbIoTe

The component should be designed to target large volumes of monitoring information.
Provided
functionalities

• Checks the availability of newly registered resources.
• Monitors the availability of all resources registered within symbIoTe according to a

specified schedule
• Monitors the load of registered resources

Relation to other
components

Registry: manages resource-related monitor information.
Search Engine: uses performance-related data obtained by the Core RM for creating and
annotating search results.

Related use
cases

All

Related
requirements

5, 6, 7, 8, 32, S1, S2

Example 4: Core Resource Monitor
When an air quality sensor is registered with symbIoTe as shown in Example 1, the Core
Resource Monitor tries to access the registered resource end point to check its status.

Table 8 Core Resource Access Monitor

Component Core Resource Access Monitor (Core RAM)
Compliance
level

L1

symbIoTe
Domain

APP

Description This component must monitor which resources are selected in search results to maintain
resource popularity information within the Core Services. It acts as a proxy which redirects
applications and enablers to the actual resources offered by symbIoTe-enabled platforms.
It should keep track of the resources assigned to applications/enablers. Such information
is vital to mark resources with exclusive rights as unavailable, enable prioritized access to
resources, and may be useful to estimate resource load.
The component must grant exclusive use of IoT resources, for underlying IoT platforms
that support such feature. Thus, it will not redirect applications and enablers to resources
if their availability the potentially associated QoS cannot be guaranteed by the underlying
IoT platforms. This applies in particular to resource types with exclusive access rights
(e.g., actuators) or computing/storage/network resources supporting the delivery of
information generated by resources.
It should enable the prioritization access to IoT services if the underlying IoT platforms
support prioritization, e.g., users with premium rights have priority over basic users when
attempting concurrent access to some IoT services. It should enable the control of access
to the advertised IoT services for reasons related to local legislation, current overload,
security issues, etc., if the underlying IoT platforms support it.
It may be able to reserve registered resources for the future, for IoT platforms and
enablers which support such feature.

Provided
functionalities

• Keeps track of which application/enabler uses which resources in a best-effort
fashion.

• Redirects applications/enablers to the actual resource offered by an IoT platform.
• Estimates resource popularity
• Grants exclusive access to a particular resource (if the platform/enabler supports

such feature)
• Enables resource reservation (if the platform/enabler supports such feature)
• Enables prioritized access to a resource (if the platform/enabler supports such

feature)
• Enables control of access to the advertised resources according to local

legislation, current overload, security issues etc.
Relation to other
components

Resource Search: uses resource popularity information for ranking.
Resource Access Proxy (CLD): Core RAM redirects resource access requests to a
specific platform/enabler RAP.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 42 of 127
 © Copyright 2016, the Members of the symbIoTe

Related use
cases

All

Related
requirements

6, 8, 9, 10, 13, 14, 27

Example 5: Core Resource Access Monitor
When the Smart Mobility application chooses the air quality sensor introduced in Example
2 from search results, this action will be noted by the Core RAM as (SmartMobilityUID,
uses resource: iot.fer.unizg.hr:12345/2321-2312-abcd/). The application request is
forwarded to resource endpoint iot.fer.unizg.hr:12345/2321-2312-abcd/.

Table 9 Core Authentication and Authorization Manager

Component Core Authentication and Authorization Manager (Core AAM)
Compliance
Level

L1

symbIoTe
Domain

APP

Description This component must offer mechanisms for the authentication and authorization of
symbIoTe entities/actors, i.e. users/application developers, IoT platforms, developed
applications and clients.
The component must provide functionalities for configurable trust relationships between
symbIoTe and symbIoTe-based applications, through the use of X.509 certificates.
It must authenticate components belonging to a given IoT platform federated with
symbIoTe, that would like to use services offered by the core layer (i.e., resource
registration, resource unregistration, resource update, monitoring of the resource
availability, search, resource access).
It must authenticate applications registered in both core layer or in an IoT platform
federated with symbIoTe, that would like to search and access to resources.
It must issue “core tokens” for components and applications that successfully complete
the authentication procedure in the core layer. Core tokens contain attributes (i.e., roles,
properties, permissions) that are used to access to resources and/or services, according
to the Attribute Based Access Control (ABAC) paradigm.
It must also revoke “core tokens” when the “expiration date” indicated in the token expires
or, asynchronously, when an abnormal or frequent unauthorized use is detected.
When the authentication in the core layer is initiated by a component belonging to a given
IoT platform federated with symbIoTe or by an application registered within a given IoT
platform federated with symbIoTe, it MUST:

• validate the “home token” previously generated in the aforementioned IoT
platform,

• perform the check revocation procedure
• convert home tokens in core tokens by translating the set of attributes assigned

to an entity in a given platform to another set of attributes that characterize the
entity in the core layer (this operation is called Attribute Mapping Function)

It may manage a Token Revocation List (TRL), that contains all the tokens that have been
revoked by AAMs module in each IoT platform before the expiration date indicated in the
token itself.

Provided
functionalities

• Authenticates a user registered in symbIoTe core within symbIoTe.
• Releases a set of tokens storing trusted attributes, if the authentication process

was successful.
• Validates access tokens that it has released, by verifying that the token is

authentic (by checking the integrity of its sign) and that the expiration date
indicated herein has not expired. This procedure is called "token validation".

• Verifies that a valid token (i.e., a token that successfully passed the token
validation procedure) has not been revoked asynchronously, before the expiration
date indicated herein, through the use of a TRL or by communicating directly with
the AAM that generated this token. This is called "check revocation procedure".

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 43 of 127
 © Copyright 2016, the Members of the symbIoTe

• Verifies that the entity using a given token is really the entity for which that token
has been issued (application's authentication), by a “challenge-response
procedure”.

• Translates the set of attributes included in the token in a new set of attributes
which are valid within the core layer, if an entity that is not registered within the
core layer is in possession of a valid token. This procedure is called “Attributes
Mapping Function”.

Relation to other
components

All symbIoTe components and resources requiring authentication and authorization within
the Core Services.

Related use
case sections

All

Related
requirements

14, 34, 35, 37, 40, 42, 43, 52, 59, S1, S2, S3, S5, S7, S19, S20

Table 10 Core Security Handler

Component Core Security Handler (Core SH)
Compliance
Level

L1

symbIoTe
Domain

APP

Description This component provides a set of libraries implementing security functionalities. It must
manage security material (i.e., usernames, passwords, certificates, received tokens etc.)
of the component or the application that uses its functionalities. It must perform
authentication procedures on behalf of the component or application that uses its
functionalities. In this case, the security functionalities include:

• Application authentication;
• Managing and forwarding of home tokens to obtain core tokens or foreign tokens
• Performing of cryptographic operations using the private key in a challenge-

response procedure
• Validation of X.509 certificates provided by foreign components.

It must verify the authenticity of components or applications that try to access to the
component that uses its functionalities. In this case, the security functionalities include:

• Validation of core tokens, through the check of the expiration date and the sign of
the token;

• Initiation of the challenge-response procedure using the public key of the
requesting entity, included in the token;

• Checking of any asynchronous revocation of the token with the Core AAM
• Comparison between the set of attributes included in a set of tokens and the

access policy required to access a given resource.
It must validate X.509 certificates when an entity belonging to an IoT platform federated
with symbIoTe sends a message to a component in the core layer that uses its
functionalities. This is necessary to authenticate that entity. It must check the matching
between attributes stored in a set of tokens and the access policy associated to a given
resource.

Provided
functionalities

• Authenticates with the Core AAM or foreign AAM on behalf of the entity that uses
its functionalities.

• Manages core tokens and foreign tokens assigned to the entity that uses its
functionalities.

• Performs the “validate access tokens” procedure when one or more core tokens
are provided to the entity that uses its functionalities.

• Performs the “check revocation procedure” with the Core AAM when one or more
core tokens are provided to the entity that uses its functionalities.

• Initiates the “Challenge-Response Procedure” to verify that the component or
application using the core tokens is effectively the component or application for
which they have been released by the Core AAM, in case one or more core

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 44 of 127
 © Copyright 2016, the Members of the symbIoTe

tokens are provided to the entity that uses its functionalities.
• Manages cryptography operations on behalf of a component using its

functionalities, when such component or application provides a set of tokens to a
component in a given IoT platform federated with symbIoTe.

• Performs the “Check Access Policy” procedure to verify that the tokens supplied
by the applications satisfy the access policies of the resources when the Search
Engine is used by an application.

• Performs the “Validate Certificate” procedure on behalf of the component or
application that uses its functionalities.

Relation to other
components

Core AAM, Core Resource Monitor, Search Engine

Related use
cases

All

Related
requirements

14, 34, 35, 37, 40, 42, 43, 52, 59 and S1, S2, S3, S5, S7, S19, S20

Table 11 Core Bartering & Trading Component

Component Core Bartering & Trading Component (Core BarT)
Compliance
Level

L2

symbIoTe
Domain

APP

Description This component comprises all bartering and trading functionalities which need to be
centralized and coordinated by the symbIoTe Core Services, including the following:

• Auctioning: this subcomponent performs forward and reverse second price
auctions according to the offers and requests of producers and consumers

• Trading: Registration of producer offers which are subject to direct (non-auction)
trading afterwards

• Bartering: Registration and matching of prosumer vouchers + sending resulting
authentication tokens to both prosumers after a bartering transaction has been
concluded

Provided
functionalities

Auctioning:
• Publishes new auctions based on SLAs (Service Level Agreements) received

from producers (forward auction) or consumers (reverse auction)
• Accepts offer bids (forward auction) from consumers or request bids (reverse

auction) from producers for a specific auction
• Determines the winner of a second-price auction and the corresponding price

(second-price)
• Sends resulting authentication token to the winner after the payment process has

been concluded
Trading:

• Producer offers (SLA) are registered and made searchable
Bartering:

• Registers prosumer vouchers (including offered SLA, desired SLA, authorization
token, validity date, ID)

• Matches vouchers (offered SLA1 = desired SLA2)
• Sends out corresponding authorization tokens after completing a matching

procedure
Relation to
other
components

Bartering and Trading Manager (CLD), Registration Handler (CLD), Federation Manager
(CLD), Resource Access Proxy (CLD)

Related use
cases

ALL (needs confirmation)

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 45 of 127
 © Copyright 2016, the Members of the symbIoTe

Related
requirements

46-53

5.2 Cloud Domain

5.2.1 General concepts

The Cloud Domain (CLD) components will enable IoT Platform Providers to register
desired resources to symbIoTe Core Services. In addition, the components will enable
applications/enablers to access those resources, found through the symbIoTe Core
Services, in a unified and secure way. These functionalities are a prerequisite for
achieving symbIoTe L1 Compliance. Furthermore, the components will implement specific
functionality for the exchange of information between two collaborating IoT platforms, thus
enabling IoT Platform Federation and symbIoTe L2 Compliance.

The components within CLD are shown in Figure 8. Each IoT Platform Provider will need
to install a set of tools containing these components on the platform side in order to
integrate their resources with symbIoTe. The CLD components are the following:

• Registration Handler (RH): enables IoT Platform Provider to register resources to
symbIoTe Core Services

• Resource Access Proxy (RAP): receives requests for resource access from
application/enabler who found resource metadata by using symbIoTe Core
Services

• Authentication and Authorization Manager (AAM): enables a common
authentication and authorization mechanism for all L2 Compliant Platforms and
applications

• Bartering and Trading Manager (BTM): manages bartering and trading actions in
advance to establishing federations

• Monitoring: monitors status of IoT Devices and records when
applications/enablers access IoT Devices/Composite IoT services

• Federation Manager (SLA): offers SLA (Service Level Agreement) between IoT
Platforms to create a federation, monitors if SLA is being respected

• Security Handler (SH): provides a set of libraries implementing security
functionalities

The aforementioned tools will be an umbrella to the underlying platform specific
components and translate the interaction using the symbIoTe core information model
defined in WP2. The tools will provide a unified access to symbIoTe core and hide the
heterogeneity from the IoT platform. The platforms might have their own monitoring
system, their own SLA, etc. Somehow, all these platform tools must be unified for
symbIoTe. On the other hand, we do not want to force a platform to include all their
devices within symbIoTe. These tools allow the platform provider to select a subset of
devices to be used within symbIoTe and to set specific SLAs, bartering & trading and
security rules just for symbIoTe.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 46 of 127
 © Copyright 2016, the Members of the symbIoTe

Figure 8 symbIoTe CLD components

Some of the tools, due to close relation with the platform, must be installed within the
platform. We have, for example, the Resource Access Proxy that will have an intensive
interaction with the underlying platform and its devices. In this case, it makes sense to
deploy such a tool within the platform near the devices. Other components placed in the
Cloud Domain will mainly use data from the underlying platform and are very platform
oriented, like the Bartering and Trading Manager or the Authentication and Authorization
Manager.

5.2.2 Component description

Hereafter we identify the components for Cloud Domain.

Table 12 Registration Handler

Component Registration Handler (RH)
Compliance
Level

L1, L2

symbIoTe
Domain

CLD

Description This component will drive an IoT Platform Provider through the step of registering resources
into the symbIoTe Core. Registration Handler should monitor platform resources so that it
can register them into the symbIoTe (eco)system. These resources can be an IoT Device or
a Composite IoT Service and must be described using the symbIoTe information model.
The Registration Handler component should map the platform information model to the
symbIoTe information model. Some domain-specific properties of a resource can be
reported during the registration process by using the platform information model, but they
have to be formatted in a manner of an extension of the symbIoTe information model.
Registration Handler needs to provide the following information from the symbIoTe

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 47 of 127
 © Copyright 2016, the Members of the symbIoTe

information model: IoT Device or Composite IoT Service description, Location and its
properties and Observed Property description and name.

Registration Handler signs into the symbIoTe system through the Core Authentication &
Authorization Manager with security credentials obtained during the platform registration
process, so that the Registry can verify the origin of the registration request. Registry
accepts the registration requests, and replies to the Registration Handler with a list of IDs
generated by symbIoTe system for those resources. A similar process is occurring in the
event of unregistration of a resource or update of the resource information. Both processes
can be triggered by the Registration Handler. Additionally, the Registration Handler can
invoke (force) resource availability updating and checking, by triggering the appropriate
command in the Core Resource Monitor which eventually leads to the resource availability
check and status update of a resource within the symbIoTe (eco)system.

The IoT Platform Provider must be able to define which of its resources are available to use,
and under which conditions. A platform does not have to expose all of its resources to
symbIoTe. Instead, they may opt to reveal just a subset. An IoT Platform Provider might
also set the rules for access to its resources (e.g. a maximum of 10 times per day, only from
7p.m. to 7a.m., only to administrators of other platforms etc.). The platform provider can set-
up access rules and access scope in the Authentication & Authorization Manager. Rules
regarding the bid and usage of a resource are configured through Bartering and Trading
Manager, while set-up of SLA of a resource is done in cooperation with Federation
Manager. The Registration Handler serves as mediator in communication of IoT Platform
Provider with symbIoTe (and its specific components). All updates about resources and its
features should also be handled by Registration Handler.

Provided
functionalities

• Registers resources to the symbIoTe core, virtual and physical, using the symbIoTe
information model

• Updates resource status and unregistered resources
• Registers SLA information of a resource
• Registers pricing of a resource
• Registers security information (access rules)
• Handles configuration of exposition from resources/service
• Synchronizes the information with symbIoTe core

Relation to
other
components

Registry (within symbIoTe Core Services): stores data about resource, assigns unique
symbIoTe ID and keeps information about current resource status

Bartering and Trading Manager: stores data regarding pricing of a resource

Authentication and Authorization Manager: stores security information of a resource

Federation Manager (SLA): stores data regarding SLA of a resource

Core Resource Monitor (within symbIoTe Core Services): performs availability check/update
Related use
cases

ALL

Related
requirements

1, 3, 5, 14, 16, 17, 18, 19, 24, 25, 28, 34, 35, 36, 39, 42, 43, 54, 61

Table 13 Resource Access Proxy

Component Resource Access Proxy (RAP)
Compliance
Level

L1, L2

symbIoTe
Domain

CLD

Description This component enables symbIoTe-compliant access to resources within an IoT platform or
(enabler acting as a platform).

It must receive incoming access requests from applications/enablers using a symbIoTe-

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 48 of 127
 © Copyright 2016, the Members of the symbIoTe

compliant communication protocol and data format. A request must contain a unique
identifier assigned to a resource. It must check that a token included in the request is valid
and that access to a particular resource can be granted. Also, if an SLA is involved, it
should be verified. Furthermore, the component will check with the Bartering and Trading
Manager if the user has quota or will be able to pay for the access. Access to the resource
will be provided when all previous conditions are satisfied. The component may check the
type of resource which is being accesses (e.g., whether it is a “simple” IoT Service or
Composite IoT Service). In case of a Composite IoT Service RAP will retrieve the unique
identifies for a set of IoT Services that are grouped under the umbrella of the composite
service. The invocation to these underlying IoT Services will be done by this component.

The data generated by IoT Services must be returned in a format which complies with the
symbIoTe information model.

The component must support subscriptions to resources so that applications or enablers
can continuously receive the generated data/information. In this mode of operation the
application/enabler receives the data whenever it is pushed (published) by the
corresponding resource.

When several access requests arrive at the same time, prioritization of requests should be
supported.

Provided
functionalities

• Enables authorized access to platform/enabler resources and should enable
request prioritization

• Supports one-time requests for data delivery and subscription-based continuous
data delivery

• Ensures formatting of data generated by resources in accordance with the
symbIoTe information model

Relation to
other
components

Bartering and Trading Manager (L2)
Authentication and Authorization Manager (AAM) (L1, L2)
Federation Manager (SLA) (L2)

Related use
cases

ALL

Related
requirements

13, 14, 27, 38, 56

Table 14 Authentication and Authorization Manager

Component Authentication and Authorization Manager (AAM)

Compliance
Level

L1, L2

symbIoTe
Domain

CLD

API Interworking API
Description This component enables a common authentication and authorization mechanism for

symbIoTe L1 and L2 Compliant IoT Platforms and applications.

The AAM abstracts the native user and rights management functionality of each IoT
platform and provides a uniform representation and structure of each user token.

Each user token covers relevant user information, access rights per platform and common
symbIoTe attributes with additional cryptographic entries to guarantee integrity and
authenticity of the data itself. This approach enables an efficient and reliable access and
policy validation workflow across all participating IoT platforms within the symbIoTe
ecosystem.

Another responsibility of the AAM is the management of the user token which include sign
in, validation and verification, revocation and sign out features.

If the current user token does not reflect the actual access permissions of the platform, the
AAM will add the missing/changed attributes to it and return the modified token back to the

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 49 of 127
 © Copyright 2016, the Members of the symbIoTe

application user.
Provided
functionalities

• Map native user and rights management to common symbIoTe structure and format
(user token)

• Authenticate (sign in) users from symbIoTe Compliant Applications and issue
respective user token

• Validate/Verify symbIoTe Compliant user tokens plus integrity & authenticity
• Enable sign out functionality for users from symbIoTe Compliant Applications
• Check user token for any revocation/update in home and/or foreign platform
• Enrich/modify valid user token with access rights for home platform

Relation to
other
components

Application/Enabler

Registration Handler (L1, L2)

Core Authentication & Authorization Manager (L1)

Core Resource Access Monitor (L1)

Resource Access Proxy (L1, L2)

Federation Manager (L2)

Monitoring (L1, L2)
Related use
cases

All use cases

Related
requirements

14, 35, 37, 40, 42, 43, 52, 80, 81, S1, S2, S3, S5, S6, S7, S9, S11, S16, S17, S18, S19,
S20, S22

Table 15 Bartering and Trading Manager

Component Bartering and Trading Manager (BTM)
Compliance
Level

L2

symbIoTe
Domain

CLD

Description The component manages the bartering and trading between IoT platforms as far as this can
happen in a decentralized way. Each IoT platform will be able to set up SLAs for its
resources (including charges for using them and further rules to 'sell' them). It should be
able to set different rules for the same resources depending on which platform is trying to
access to the resource, kind of access (prioritized or not), time that is accessed (daytime,
nighttime), how long the resource is used (camera used during half an hour or 5 minutes).

The bartering and trading algorithm should only take into account the resources and
services that will be exposed to 3rd parties, the information of the exposed
resources/services can be retrieved from the registration handler.

The module should register the access done to the different resources from the platform
and associate a price to this access. Therefore, it will need the information of who and from
which platform is accessed. Bartering algorithm is applied when a user from another IoT
platform tries to access a resource or just trading when the user is from an application.

For bartering it can exchange quota of access with 3rd party platforms. This component can
access to the Bartering and Trading Manager from 3rd part platforms in order to request
more quota in case there is no remaining one.

Provided
functionalities

• Cost calculation from the resources
• Access registration
• Check quota of access

Relation to
other
components

Resource Access Proxy (L1, L2)

Registration Handler (L1, L2)

3rd part Bartering and Trading Manager (L2)

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 50 of 127
 © Copyright 2016, the Members of the symbIoTe

Central Bartering and Trading component (L2)
Related use
cases

 ALL

Related
requirements

41, 42, 46-53

Table 16 Monitoring

Component Monitoring

Compliance
Level

L1, L2

symbIoTe
Domain

CLD

Description This component is responsible for two different tasks: monitoring the status of resources
and monitoring the access to resources from applications/enablers.

The component will monitor periodically the status of the resources that are being exposed
to symbIoTe. It will receive from Registration Handler the id of the resources that must be
monitored. These ids can belong to IoT Devices or (Composite) IoT services. Prior to
monitoring the Composite IoT Service the component will need to get the ids belonging to
the virtual entities that comprise this Composite IoT Service. When symbIoTe offers a group
of IoT Devices in a single Composite IoT Service, the status of this Composite IoT Service
must be determined. The information from the monitoring will be forwarded to the Resource
Monitor at symbIoTe (eco)system.

Regarding the access to resources, the component will record when applications/enablers
use the IoT Devices/(Composite) IoT services. The Resource Access Proxy will emit a
signal when the actual access is started and finished. This way it might be possible to check
the response times from the resources.

Provided
functionalities

• Resource monitoring
• Record of start and end of the access to a resource

Relation to
other
components

Registration Handler (L1, L2)

Resource Access Proxy. (L1, L2)
Related use
cases

ALL

Related
requirements

5, 6, 32

Table 17 Federation Manager

Component Federation Manager (SLA)
Compliance
Level

L2

symbIoTe
Domain

CLD

Description This component must be able to handle SLA offerings and SLA agreement.

The SLA offering is a proposal done by the IoT Platform Provider. These IoT Platform
Providers should be able to create generic offerings e.g: they don't need to specify which
sensor will comply to which conditions; the IoT Platform Provider should be able to specify
that a temperature sensor will comply to some specific condition like a response time lower
than 10ms for example.

Prior to the actual access to a resource, an agreement has to be created. The agreement
will be between the IoT Platform Provider and an application/enabler/user. The agreement
will contain the specific resources the application/enabler/user will access.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 51 of 127
 © Copyright 2016, the Members of the symbIoTe

When an agreement has been created, it must be monitored that no violations are taking
place. If violations take place the Bartering and Trading Manager can be informed in order
to offer a reward/punishment to the user/platform/application.

Provided
functionalities

• SLA offering creation
• SLA agreement creation when access is requested to the resources
• SLA agreement monitoring

Relation to
other
components

Bartering and Trading Manager (L2)

Monitoring (L1, L2)
Related use
cases

ALL

Related
requirements

33, 35

Table 18 Security Handler

Component

Security Handler (SH)

Compliance
Level

L2

symbIoTe
Domain

CLD

Description This component provides a set of libraries implementing security functionalities.

It MUST manage security material (i.e., usernames, passwords, certificates, received
tokens etc.) of the component or the application that uses its functionalities.

It MUST perform authentication procedures on behalf of the component and application that
uses its functionalities. In this case, the security functionalities include:

• Application authentication;

• Managing and forwarding of home tokens to obtain core tokens or foreign tokens;

• Performing of cryptography operations using the private key in a challenge-
response procedure;

• Validation of X.509 certificates provided by components in the core layer or in a
foreign IoT platform.

It MUST verify the authenticity of components or applications that try to access to the
component that uses its functionalities. In this case, the security functionalities include:

• Validation of home and foreign tokens, through the check of the expiration date and
the sign of the token;

• Initiation of the challenge-response procedure using the public key of the requesting
entity, included in the token;

• Checking of any asynchronous revocation of the token with the home and/or foreign
AAM;

• Comparison between the set of attributes included in a set of tokens and the access
policy required to access a given resource.

It MUST validate X.509 certificates when a component belonging to another IoT platform
federated with symbIoTe or to symbIoTe core sends a message to the component that uses
its functionalities. This is necessary to authenticate that entity.

When a RAP uses its functionalities, it MUST check the matching between attributes stored
in a set of tokens and the access policy associated to a given resource.

Provided
functionalities

• The L2 Security Handler module authenticates with the home AAM, Core AAM or
foreign AAM on behalf of the component or application that uses its functionalities.

• The L2 Security Handler module manages home tokens, core tokens and foreign

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 52 of 127
 © Copyright 2016, the Members of the symbIoTe

tokens assigned to the component or application that uses its functionalities.
• When one or more home or foreign tokens are provided to the component that uses

its functionalities, the L2 Security Handler module performs the “validate access
tokens” procedure.

• When one or more home or foreign tokens are provided to the component that uses
its functionalities, the L2 Security Handler module performs the “check revocation
procedure” with the Home AAM.

• When one or more home or foreign tokens are provided to the component that uses
its functionalities, the L2 Security Handler module initiate the “Challenge-Response
Procedure” to verify that the component or application using the core tokens is
effectively the component or application for which they have been released by the
home AAM.

• When a component or application using its functionalities provides a set of tokens
to a component hosted in a given IoT platform federated with symbIoTe, the L2
Security Handler manages cryptography operations on behalf of this component
using its functionalities.

• When the RAP is used by an application, the L2 Security Handler module performs
the “Check Access Policy” procedure to verify that the tokens supplied by the
applications satisfy the access policies of the resources.

• The L2 Security Handler module performs the “Validate Certificate” procedure on
behalf of the component or application that uses its functionalities.

Relation to
other
components

Registration Handler (L1, L2)

Resource Access Proxy (L1, L2)

Authentication and Authorization Manager (L1, L2)

Federation Manager (L2)
Related use
cases

ALL

Related
requirements

35, 37, 40, 42, 43, 53, 60, 61 and S1, S2, S3, S5, S6, S7, S8, S9, S17, S18, S19, S20

5.3 Smart Space Domain and Smart Device Domain

5.3.1 Vision

Smart Spaces are environments (residence, campus, vessel, …) where one or more IoT
platforms provide services. In order for such environments to be integrated into symbIoTe,
we need to deploy proper software adapters (that we generically refer to as symbIoTe
Smart Space Middleware, or S3 Middleware).

Some IoT platforms have a split local / cloud architecture, whereas others have only local
or only cloud components. Depending on each IoT platform’s architecture, the S3
Middleware will need to be deployed either as a cloud component or as one of the Smart
Space’s appliances (or part thereof). Since the idea is to follow an approach as general as
possible, though, the aim would be designing a software architecture that can be deployed
in either way with no significant modifications. The functionality is duplicated at various
domains, in Cloud Domain and Smart Space Domain (e.g. device management in the
CLD and SSP): what differs is the scope and the available hardware.

More specifically, the goal is:
• to keep the same architecture for software components breakdown, interfaces and

communications paradigm

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 53 of 127
 © Copyright 2016, the Members of the symbIoTe

• to maximize code reuse (e.g. by creating libraries)
• to reuse entire software components, if possible
• to keep components as modular as possible, to be able to just plug platform

specific code for each specific IoT platform.

The Smart Space as a whole will expose (i.e. register, provide access to) the resources it
contains, regardless of which "local" IoT platform they belong to; therefore, Smart Devices
associated to the SS will also be exposed directly, that is without being "mediated" by any
of the local platforms. symbIoTe Compliant local IoT platforms within a SS will be able to
access all the resources associated to that SS, provided that the required AA policies are
in place. This includes both resources provided by any co-located IoT platforms, and
those provided by the locally associated Smart Devices. In this way, the interoperability
role played by symbIoTe will be fully functional also at the SS level. When more than one
IoT platform is active in a SS, the S3 Middleware shall thus be acting as a local resource
interchange.

5.3.2 Smart Space and visiting entities

Smart Spaces must be able to accommodate both incoming apps (a user with a
smartphone or tablet running a symbIoTe app) and incoming devices (symbIoTe Smart
Devices). In both cases, the incoming entity should be identified, authorized and given a
way to access the Smart Space’s facilities. This must be possible even in case of
temporary failure or degradation of Internet connectivity.

5.3.3 Smart Device

In the context of symbIoTe, a “Smart Device” (SD) is a device that can directly interact
with a Smart Space:

• “directly” means that the device should not require any external components to
communicate with the symbIoTe Smart Space. Third-party devices which are not
symbIoTe-enabled can be considered an SD, if taken as a whole with the additional
components can interact with a SS. (e.g.a commercial IP controlled electric plug
coupled with a custom symbIoTe gateway is an SD);

• “interact” refers to a bidirectional exchange of information with the Smart Space,
more specifically implementing the sequence of actions described in the following
paragraphs.

According to this definition, any mobile device (smartphone, tablet) running a proper
symbIoTe app can be considered an SD. The containing SS shall allow the SD to be
accessed by components (apps, enablers) outside the SS itself, and by components
inside it (an app associated to the same SS): in the latter case, no Internet connectivity
shall be required. SymbIoTe Compliant local IoT platforms shall also be able to access an
SD residing in the same SS, without the assistance of any cloud component.

5.3.4 L3 vs. L4 Compliance

As regards L3 vs. L4 Compliance, the distinguishing features of the two levels are
dynamic configuration (L3) and roaming (L4). Hence, an SD will be considered L3
Compliant if it can be attached to a Smart Space and be dynamically configured (i.e.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 54 of 127
 © Copyright 2016, the Members of the symbIoTe

registered to a symbIoTe Compliant platform and thus become searchable and
accessible). The SD will be considered L4 Compliant if it can also move across different
Smart Spaces and still be recognized as the same object it was before. In other words:

• device identity is the main characterizing aspect of an L4 SD: if the device can be
uniquely recognized independently of the Smart Space it is connected to, it is
actually roaming across platforms. Otherwise, there is no way to distinguish said
device from another identical device;

• maintaining identity only makes sense if there is a service (symbIoTe enabler) or
application which needs to track the device, either because it is associated with a
specific service or user, or because the history of the device is meaningful for the
purpose it is used for.

The only strict requirement for an SD to be L4 Compliant, thus, is having a unique
identifier (e.g. MAC address or symbIoTe-generated UUID). The choice of using the SD as
an L3 or L4 device, though, is up to the specific service and may even change over time,
as the SD is being used for different purposes. Hence, an L4 Compliant SD does not
necessarily always roam.

An L3 SD (identified by a given UUID, accessed through a given URL) will be accessed
via a different URL each time it connects to a new Smart Space, whereas an L4 SD will
always keep the same URL.

5.3.5 General architecture

Figure 9 Architecture of Smart Space and Smart Device Domains

5.3.6 Components for L3/L4 Compliance

• Innkeeper: it is used to connect app or Smart Device to the Smart Space.
o It notifies a new app that it has entered a symbIoTe Compliant Smart Space.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 55 of 127
 © Copyright 2016, the Members of the symbIoTe

o It registers a new device to the local SS.
o It keeps a register of locally registered apps and Smart Devices.
o It maps global URIs to local URIs.

• Resource scanner: it has the task of scanning the local network for well-known
devices and device gateways.

• Local RAP: it allows direct access to the Smart Space’s resources without going
through the cloud components, so it is the local access point for symbIoTe
applications running in the Smart Space.

• Local AAM: it authenticates and authorize symbIoTe applications and Smart
Devices to allow access the Smart Space when no Internet connectivity is available.

• SD RAP proxy: it provides a resource access point for SDs to be addressable from
outside the Smart Space and it provides a local RAP to access SDs from within the
SS.

• SymbIoTe client: allows a symbIoTe-aware IoT platform to access Smart Devices
registered in the same Smart Space. This component would allow a platform not
only to expose its own devices to the symbIoTe ecosystem, but also to become a
“client” (like an app or an enabler) and access foreign resources.

The Resource Scanner is in charge of scanning the local network for well-known devices
and device gateways. Once a new (not already registered) device/gateway is detected, an
association procedure is started and the device is attached to the symbIoTe middleware.
So the Innkeeper (if possible) queries the symbIoTe core to know if the device shall be
registered as a new device (L3 behavior) or as a roaming device (L4 behavior), and then
registers it with the Core Registration Handler. The Innkeeper also provides the SD with
the URI for the SD RAP Proxy, to which the SD connects immediately afterwards. If the
Smart Space could be accessed only locally, the new Smart Devices or the new app can
authenticate and obtain the authorization from the Local AMM.

When an app or a Smart Device is associated to the Smart Space, it can access to the
Smart Space’s resources through Local Rap, without passing through the cloud. There is
also the possibility that an application outside the Smart Space may want to access the
Smart Device: the SD RAP proxy is the module which is in charge to provide a resource
access point for that Smart Devices.

To be able to access to Smart Devices registered in the same Smart Space of an IoT-
platform, a symbiote client can be installed locally into the platform itself, becoming a
client to access to that foreign resources.

5.4 symbIoTe approach to security

Provision of data and system security in distributed, hierarchical systems like symbIoTe
requires sophisticated mechanisms of user authentication and authorization. Security
requirements described in Section 4 stem from the main use case when Smart Devices
are interconnect with applications, while devices are managed by different IoT platforms.
Attribute based access control (ABAC) fulfills these requirements unlike role based access
control (RBAC). The latter method of authorization known from local computer networks,
which assigns each user a role like ‘administrator’ or ‘normal user’, is impractical in
distributed IoT environments [17]. Security in a symbIoTe network of IoT platforms is
achieved more effectively with ABAC, whose paradigm falls within wide set of logical

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 56 of 127
 © Copyright 2016, the Members of the symbIoTe

access control schemes. Their goal is the protection of sensitive data or services from
unauthorized operations like discovering, reading, writing, creating files and so on.

ABAC is based on the assignment of ‘attributes’ to each client application and entity in the
system. An ‘attribute’ is defined as a particular property, role or permission associated to
an entity in the system, assigned after an authentication procedure by the system
administrator.

In ABAC, in contrast to other access control methods, the access to resources is
controlled through Access Control Policies. An access policy defining a specific
combination of attributes needed to grant access to resources is assigned to each
resource by the producer of that resource. Therefore, a client application may be granted
access to a resource only if it possesses a set of attributes that match the predefined
access policy. In symbIoTe this policy can contain at the same time attributes assigned to
users and objects and also particular environment conditions connected to the request.

The prevalence of ABAC over traditional access control schemes like Identity Based
Access Control or Group Based Access Control (GBAC) is due to the efficiency, simplicity
and flexibility of the access rules. In fact, complex policies can be created and managed
without directly referencing potentially numerous users, applications and objects.
Moreover, the structure of the policy can be independent from the number of users within
the system, with an enhanced flexibility especially in distributed environments, where the
specific domains can avoid any form of synchronization to create consistent access
control policies.

Figure 10 An example of access policy enforced by three attributes

For instance, with reference to the access policy depicted in the figure below, an
application may access to the resource if and only if:

• the list of its attributes contains at least Attribute 1;
• the list of its attributes contains at least Attribute 2 and Attribute 3;

In symbIoTe, we have that:

• attributes are stored in token(s) and are generated by the AAMs in the Home
Platform;

• a token ensures the authenticity of attributes it contains;
• attributes could be modified when accessing a foreign IoT platform, according to

the 'attribute mapping function' implemented by the AAM;
• the "access policy checking" between attributes of the consumer and access policy

established by the producer is handled by the RAP.

Further details related to symbIoTe approach to security will be provided in deliverable
D3.1 “Basic Resource Trading Mechanisms and Access Scopes” due in M11.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 57 of 127
 © Copyright 2016, the Members of the symbIoTe

5.5 Achieving Level 1 Compliance

As already stated in Section 3.3, L1 Compliance means platform syntactic and semantic
interoperability. It is a prerequisite for any kind of IoT platform interoperability, and requires
an open but controlled access to IoT platform services. There are two major requirements
for platforms that want to become L1 Compliant:

1. the existing platform-specific information model needs to be mapped to the
symbIoTe information model (semantic interoperability), and

2. the platform must integrate the symbIoTe interworking interface to open up its
northbound interface and provide access to IoT services (syntactic interoperability).

Here we focus on the second requirement, since the first requirement will be analyzed in
D2.1. We identify the components that need to be integrated with existing platform
components in CLD, as well as the Core Service components in the APP required for an
interoperable IoT ecosystem offering IoT services across platforms. Since authenticated
and authorized access to offered services is vital for an IoT ecosystem, we include here
also security-related components.

The component diagram of a symbIoTe ecosystem which includes L1 Compliant Platforms
is presented in Section 5.5.1. It also identifies component interfaces. Sequence diagrams
specifying L1 functionalities are included in 5.5.2, while Section 5.5.3 correlates messages
exchanged between components with defined interfaces.

5.5.1 Component diagram

Component diagram with specified interfaces is shown in Figure 11. For Level 1
Compliance, symbIoTe system defines four interfaces:

• Application Interface used by symbIoTe core components to interact with
applications or enablers

• Core Interface used by applications or enablers to interact with symbIoTe core
components

• Cloud-Core Interface used by a symbIoTe Compliant Platform to interact with
symbIoTe core components

• Interworking Interface used by symbIoTe core components to interact with
symbIoTe Compliant Platform, and used by applications or enablers to interact with
a symbIoTe Compliant Platform (a subgroup of interworking interface is named
Application-Cloud Interface)

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 58 of 127
 © Copyright 2016, the Members of the symbIoTe

Figure 11 Component diagram for Level 1 Compliance

5.5.2 Sequence diagrams

The functionalities defined for symbIoTe Level 1 Compliance are the following:

• Platform registration

• Resource registration

• Resource unregistration

• Resource update

• Monitoring resource availability

• Search

• Access to resources (with and without registration)

• Monitoring

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 59 of 127
 © Copyright 2016, the Members of the symbIoTe

Hereafter all functionalities are presented in the form of UML sequence diagrams, with
detailed description of the exchanged messages. Figure 12 shows the legend for
messages used in the diagrams.

Figure 12 Legend – messages used in the following diagrams

5.5.2.1 Platform registration

Platform registration is executed by a symbIoTe core administrator or IoT platform
provider by using the administrative web application.
An enabler has two roles in the registration process:

• Platform role - registers the same way as another IoT platform for exposing
composite IoT services;

• Application role - registers the same way as an Application for using IoT services
which are searchable and exposed by symbIoTe Core Services.

Figure 13 Platform registration

Description:

• Message 1: IoT Platform Provider sends a request for symbIoTe usage by using
the Administration web application. The request is either for a trail or normal
registration.

• Message 2: Administration sends request to the Core Authentication and
Authorization Manager which requests credentials for the platform.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 60 of 127
 © Copyright 2016, the Members of the symbIoTe

• Message 3: Core Authentication and Authorization Manager returns the generated
certificate and applicationId to Administration.

• Message 4: Administration web application returns certificate and applicationId to
IoT Platform Provider. The Platform Provider can subsequently configure the
platform to become L1 Compliant.

5.5.2.2 Resource registration

Figure 14 Resource registration

Description:

• Message 1: generated by the Registration Handler and sent to the Resource
Access Proxy in the same IoT platform. It is used to register the resource on the
Resource Access Proxy, along with the access policy to access it;

• Message 2 (optional): generated by the Registration Handler and sent to the
Security Handler. It is used to trigger the recovery of the core token(s). If the
Registration Handler is already logged in, this step is not needed.

• Message 3 (optional): generated by the Security Handler and sent to the home
(platform) AAM in which the Registration Handler is registered. It is used to

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 61 of 127
 © Copyright 2016, the Members of the symbIoTe

authenticate the Registration Handler. If the Registration Handler is already logged
in, this step is not needed.

• Message 4 (optional): generated by the home (platform) AAM in the IoT platform
and sent to the Security Handler. It is used to provide the home token(s) with
attributes included. If the Registration Handler is already logged in, it is not
necessary.

• Message 5 (optional) (PlatformAAInterface): generated by the Security Handler and
sent to the Core AAM in the core layer. It is used to trigger the operations for
obtaining the core token(s). If the Registration Handler already has valid core
token(s), it is not necessary.

• Procedure 6 (optional) (SecurityInterface): procedure that allows the Security
Handler that is acting on behalf of the Registration Handler to demonstrate that it is
the real owner of the token(s). If the Registration Handler already has valid core
token(s), it is not necessary.

• Procedure 7 (optional): verification of the time validity, authenticity and integrity of
the provided token(s). If the Registration Handler already has valid core token(s), it
is not necessary.

• Procedure 8(optional) (AAInterface): verification of any asynchronous revocation of
the token(s) (i.e., if any token(s) have been revoked by the home AAM before the
expiration time indicated within the token itself). If the Registration Handler already
has valid core token(s), it is not necessary.

• Procedure 9(optional): procedure that, in case it is needed, translates attributes that
the Registration Handler has in the home IoT platform in a new set of attributes that
it has in the core layer. If attributes are the same or the Registration Handler
already has valid core token(s), it is not necessary.

• Message 10(optional): generated by the Core AAM and sent to the Security
Handler. It is used to deliver the core token(s) with the new attribute(s). If the
Registration Handler already has valid core token(s), it is not necessary.

• Message 11(optional): generated by the Security Handler and sent to the
Registration Handler. It is used to forward the core token generated at the previous
step.

• Message 12 (RegPlatformInterface): generated by the Registration Handler and
sent to the Registry. It's main purpose is to provide the metadata describing a
resource or a set of resources which the platform exposes to the Registry. In
addition to the registration message, it also provides the core token(s) containing
the attributes assigned to the Registration Handler.

• Message 13: generated by the Registry and sent to the Core Security Handler. It is
used to ask to the security handler to verify the complete validity of the token.

• Procedure 14 (SecurityInterface): procedure that allows the Security Handler that is
acting on behalf of the Registration Handler to demonstrate that it is the real owner
of the token(s).

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 62 of 127
 © Copyright 2016, the Members of the symbIoTe

• Procedure 15: verification of the time validity, authenticity and integrity of the
provided token(s).

• Procedure 16: verification of any asynchronous revocation of the token(s) (i.e., if
any token(s) have been revoked by the Core AAM before the expiration time
indicated within the token itself).

• Message 17: generated by the Security Handler in the core layer and sent to the
Registry. It is used to communicate the outcome of the token validation procedures
performed by the Core Security Handler.

• Message 18: stores registrations to database and generates ID for that resource

• Message 19: Registry send message to Core Resource Monitor to add to the
schedule task for checking availability of registered resources. Core Resource
Monitor will in the future check availability (messages 24-28) and asynchronously
inform Resource Handler about availability with updated status list (message 31).

• Message 20: Registry returns: IDs of registered resources, status list and certificate
(used to demonstrate the identity of the entity generating the message, for
authentication purposes, the certificate must be validated by the Security Handler
of the component)

• Message 21: Registration Handler forwards certificate to Security Handler for
validation

• Procedure 22: Security Handler validates certificate

• Message 23: Security Handler returns status of validation

• Messages 24-28 is checking of availability of each resource

• Message 24 (AccessResourceInterface): Core Resource Monitor sends message
to Resource Access Proxy in order to check availability. It includes certificate as
well (used to demonstrate the identity of the entity generating the message, for
authentication purposes, the certificate must be validated by the Security Handler
of the component).

• Message 25: Resource Access Proxy sends certificate to Security Handler for
validation

• Procedure 26: Security Handler validates certificate

• Message 27: Security Handler returns status of validation

• Message 28: Resource Access Proxy returns availability status

• Message 29: Core Resource Monitor collects all availability statuses, make a status
list and send it to Registry

• Procedure 30: Updates availability in database

• Message 31 (optional): Registry sends asynchronous message with availability list
and certificate to Registration Handler

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 63 of 127
 © Copyright 2016, the Members of the symbIoTe

• Message 32 (triggered by 31) (RegistrationHandlerInterface): Registration Handler
forwards certificate to Security Handler for validation

• Procedure 33: Security Handler validates certificate

• Message 34: Security Handler returns status of validation

5.5.2.3 Resource unregistration

Figure 15 Resource unregistration

Description:

• Message 1: generated by the Registration Handler and sent to the Resource
Access Proxy in the same IoT platform. It is used to unregister the resource on the
Resource Access Proxy;

• Message 2 (optional): generated by the Registration Handler and sent to the
Security Handler. It is used to trigger the recovery of the core token(s). If the
Registration Handler is already logged in, it is not necessary.

• Message 3 (optional): generated by the Security Handler and sent to the home
AAM in which the Registration Handler is registered. It is used to authenticate the
Registration Handler. If the Registration Handler is already logged in, it is not
necessary.

• Message 4 (optional): generated by the home AAM in the IoT platform and sent to
the Security Handler. It is used to provide the home token(s) with attributes
included. If the Registration Handler is already logged in, it is not necessary.

• Message 5 (optional) (PlatformAAInterface): generated by the Security Handler and
sent to the Core AAM in the core layer. It is used to trigger the operations for
obtaining the core token(s). If the Registration Handler already has valid core
token(s), it is not necessary.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 64 of 127
 © Copyright 2016, the Members of the symbIoTe

• Procedure 6 (optional) (Security Interface): procedure that allows the Security
Handler that is acting on behalf of the Registration Handler to demonstrate that it is
the real owner of the token(s). If the Registration Handler already has valid core
token(s), it is not necessary.

• Procedure 7 (optional): verification of the time validity, authenticity and integrity of
the provided token(s). If the Registration Handler already has valid core token(s), it
is not necessary.

• Procedure 8 (optional) (AAInterface): verification of any asynchronous revocation of
the token(s) (i.e., if any token(s) have been revoked by the home AAM before the
expiration time indicated within the token itself). If the Registration Handler already
has valid core token(s), it is not necessary.

• Procedure 9 (optional): procedure that, in case it is needed, translates attributes
that the Registration Handler has in the home IoT platform in a new set of attributes
that it has in the core layer. If attributes are the same or the Registration Handler
already has valid core token(s), it is not necessary.

• Message 10(optional): generated by the Core AAM and sent to the Security
Handler. It is used to deliver the core token(s) with the new attribute(s). If the
Registration Handler already has valid core token(s), it is not necessary.

• Message 11 (optional): generated by the Security Handler and sent to the
Registration Handler. It is used to forward the core token generated at the previous
step.

• Message 12 (RegPlatformInterface): generated by the Registration Handler and
sent to the Registry. It is used to provide, along with the unregistration
message, the core token(s) containing the attributes assigned to the Registration
Handler.

• Message 13: generated by the Registry and sent to the Core Security Handler. It is
used to ask to the security handler to verify the complete validity of the token.

• Procedure 14 (SecurityInterface): procedure that allows the Security Handler that is
acting on behalf of the Registration Handler to demonstrate that it is the real owner
of the token(s).

• Procedure 15: verification of the time validity, authenticity and integrity of the
provided token(s).

• Procedure 16: verification of any asynchronous revocation of the token(s) (i.e., if
any token(s) have been revoked by the Core AAM before the expiration time
indicated within the token itself).

• Message 17: generated by the Core Security Handler and sent to the Registry. It is
used to communicate the outcome of the token validation procedures performed by
the Core Security Handler.

• Procedure 18: Registry deletes resource in database

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 65 of 127
 © Copyright 2016, the Members of the symbIoTe

• Message 19: Registry sends message to Core Resource Monitor to delete
availability and possibly scheduled task that check availability of specified resource

• Message 20: returns call

• Message 21: Registry informs Core Resource Access Monitor that specific source
is unregistered and that the users of that resource needs to be informed

• Message 22 (optional) (ApplicationInterface): Core Resource Access Monitor
informs each reachable (open connection or registered endpoint)
Application/Enabler that uses specific resource about deletion of resource

• Message 23: Registry returns deleted IDs and certificate to Registration Handler
(certificate is used to demonstrate the identity of the entity generating the message,
for authentication purposes, certificate must be validated by the Security Handler of
the component)

• Message 24: Registration Handler forwards certificate to Security Handler for
validation

• Procedure 25: Security Handler validates certificate

• Message 26: Security Handler returns status of validation

5.5.2.4 Resource update

Figure 16 Resource update

Description:

• Message 1: generated by the Registration Handler and sent to the Resource
Access Proxy in the same IoT platform. It is used to update the resource on the
Resource Access Proxy;

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 66 of 127
 © Copyright 2016, the Members of the symbIoTe

• Message 2 (optional): generated by the Registration Handler and sent to the
Security Handler. It is used to trigger the recovery of the core token(s). If the
Registration Handler is already logged in, it is not necessary.

• Message 3 (optional): generated by the Security Handler and sent to the home
AAM in which the Registration Handler is registered. It is used to authenticate the
Registration Handler. If the Registration Handler is already logged in, it is not
necessary.

• Message 4 (optional): generated by the home AAM in the IoT platform and sent to
the Security Handler. It is used to provide the home token(s) with attributes
included. If the Registration Handler is already logged in, it is not necessary.

• Message 5 (optional) (PlatformAAInterface): generated by the Security Handler and
sent to the Core AAM in the core layer. It is used to trigger the operations for
obtaining the core token(s). If the Registration Handler already has valid core
token(s), it is not necessary.

• Procedure 6 (optional) (SecurityInterface): procedure that allows the Security
Handler that is acting on behalf of the Registration Handler to demonstrate that it is
the real owner of the token(s). If the Registration Handler already has valid core
token(s), it is not necessary.

• Procedure 7 (optional): verification of the time validity, authenticity and integrity of
the provided token(s). If the Registration Handler already has valid core token(s), it
is not necessary.

• Procedure 8 (optional) (AAInterface): verification of any asynchronous revocation of
the token(s) (i.e., if any token(s) have been revoked by the home AAM before the
expiration time indicated within the token itself). If the Registration Handler already
has valid core token(s), it is not necessary.

• Procedure 9 (optional): procedure that, in case it is needed, translates attributes
that the Registration Handler has in the home IoT platform in a new set of attributes
that it has in the core layer. If attributes are the same or the Registration Handler
already has valid core token(s), it is not necessary.

• Message 10 (optional): generated by the Core AAM and sent to the Security
Handler. It is used to deliver the core token(s) with the new attribute(s). If the
Registration Handler already has valid core token(s), it is not necessary.

• Message 11 (optional): generated by the Security Handler and sent to the
Registration Handler. It is used to forward the core token generated at the previous
step.

• Message 12 (RegPlatformInterface): generated by the Registration Handler and
sent to the Registry. It is used to provide, along with the update message, the core
token(s) containing the attributes assigned to the Registration Handler.

• Message 13: generated by the Registry and sent to the Security Handler in the core
layer. It is used to ask to the security handler to verify the complete validity of the
token.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 67 of 127
 © Copyright 2016, the Members of the symbIoTe

• Procedure 14 (SecurityInterface): procedure that allows the Security Handler that is
acting on behalf of the Registration Handler to demonstrate that it is the real owner
of the token(s).

• Procedure 15: verification of the time validity, authenticity and integrity of the
provided token(s).

• Procedure 16: verification of any asynchronous revocation of the token(s) (i.e., if
any token(s) have been revoked by the Core AAM before the expiration time
indicated within the token itself).

• Message 17: generated by the Security Handler in the core layer and sent to the
Registry. It is used to communicate the outcome of the token validation procedures
performed by the Core Security Handler.

• Procedure 18: Registry updates resource in database

• Message 19: Registry ends request to Core Resource Monitor to update availability
and to schedule availability check

• Message 20: Core Resource Monitor schedules task for checking availability for
specified resources

• Message 21: returns call

• Message 22: Registry sends message to Core Access Resource Access Monitor to
inform current user of updated resources

• Message 23 (optional) (ApplicationInterface): Core Resource Access Monitor
informs each reachable (open connection or registered endpoint)
Application/Enabler that uses specific resource about resource update

• Message 24: Registry returns updated IDs including certificate

• Message 25: Registration Handler forwards certificate to Security Handler for
validation

• Procedure 26: Security Handler validates certificate

• Message 27: Security Handler returns status of validation

5.5.2.5 Monitoring resource availability

Monitoring can be started by Application (yellow part of sequence diagram - messages 1-
12) or by Registration Handler (orange part of sequence diagram - messages 13-33). The
result is scheduled task for checking availability. Blue part of sequence diagram shows
what happened when scheduled task starts executing (messages 34-41).

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 68 of 127
 © Copyright 2016, the Members of the symbIoTe

Figure 17 Monitoring resource availability

Description:

• Message 1 (optional): generated by the Application/Enabler and sent to the
Application Security Handler. It is used to trigger the recovery of the core token(s).
If the Application/Enabler is already logged in, it is not necessary.

• Message 2 (optional) (AppAAInterface): generated by the Application Security
Handler and sent to the Core (home) AAM in which the Application/Enabler is
registered. It is used to authenticate the Application/Enabler. If the
Application/Enabler is already logged in, it is not necessary.

• Message 3 (optional): generated by the Core (home) AAM in the IoT platform and
sent to the Application Security Handler. It is used to provide the home token(s)
with attributes included. If the Application/Enabler is already logged in, it is not
necessary.

• Message 4 (optional): generated by the Application Security Handler and sent to
the Application/Enabler. It it is used to deliver the core token(s).

• Message 5 (ResAvailabilityInterface): generated by the Application/Enabler and
sent to the Core Resource Monitor. It is used to forward the update message and
the core token(s) to the Core Resource Monitor.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 69 of 127
 © Copyright 2016, the Members of the symbIoTe

• Message 6: generated by the Core Resource Monitor and sent to the Core Security
Handler in the core layer. It is used to ask to the security handler to verify the
complete validity of the token.

• Procedure 7 (AppSecurityInterface): procedure that allows the Application Security
Handler that is acting on behalf of the Application/Enabler to demonstrate that it is
the real owner of the token(s).

• Procedure 8: verification of the time validity, authenticity and integrity of the
provided token(s).

• Procedure 9: verification of any asynchronous revocation of the token(s) (i.e., if any
token(s) have been revoked by the Core AAM before the expiration time indicated
within the token itself).

• Message 10: generated by the Core Security Handler in the core layer and sent to
the Core Resource Monitor. It is used to communicate the outcome of the token
validation procedures performed by the Core Security Handler.

• Message 11: Core Resource Monitor schedules task for checking availability of
specifies IDs

• Message 12: returns status of scheduling task for checking availability

• Message 13 (optional): generated by the Registration Handler and sent to the
Security Handler. It is used to trigger the recovery of the core token(s). If the
Registration Handler is already logged in, it is not necessary.

• Message 14 (optional): generated by the Security Handler and sent to the home
AAM in which the Registration Handler is registered. It is used to authenticate the
Registration Handler. If the Registration Handler is already logged in, it is not
necessary.

• Message 15 (optional): generated by the home AAM in the IoT platform and sent to
the Security Handler. It is used to provide the home token(s) with attributes
included. If the Registration Handler is already logged in, it is not necessary.

• Message 16 (optional) (PlatformAAInterface): generated by the Security Handler
and sent to the Core AAM in the core layer. It is used to trigger the operations for
obtaining the core token(s). If the Registration Handler already has valid core
token(s), it is not necessary.

• Procedure 17 (optional) (SecurityInterface): procedure that allows the Security
Handler that is acting on behalf of the Registration Handler to demonstrate that it is
the real owner of the token(s). If the Registration Handler already has valid core
token(s), it is not necessary.

• Procedure 18 (optional): verification of the time validity, authenticity and integrity of
the provided token(s). If the Registration Handler already has valid core token(s), it
is not necessary.

• Procedure 19 (optional) (AAInterface): verification of any asynchronous revocation
of the token(s) (i.e., if any token(s) have been revoked by the home AAM before the

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 70 of 127
 © Copyright 2016, the Members of the symbIoTe

expiration time indicated within the token itself). If the Registration Handler already
has valid core token(s), it is not necessary.

• Procedure 20 (optional): procedure that, in case it is needed, translates attributes
that the Registration Handler has in the home IoT platform in a new set of attributes
that it has in the core layer. If attributes are the same or the Registration Handler
already has valid core token(s), it is not necessary.

• Message 21 (optional): generated by the Core AAM and sent to the Security
Handler. It is used to deliver the core token(s) with the new attribute(s). If the
Registration Handler already has valid core token(s), it is not necessary.

• Messages 22: returns core token to Registration Handler

• Message 23 (MonitorResInterface): generated by the Registration Handler and sent
to the Core Resource Monitor. It is used to provide, along with the update message,
the core token(s) containing the attributes assigned to the Registration Handler.

• Message 24: generated by the Core Resource Monitor and sent to the Core
Security Handler. It is used to ask the security handler to verify the complete validity
of the token.

• Procedure 25 (SecurityInterface): procedure that allows the Security Handler that is
acting on behalf of the Registration Handler to demonstrate that it is the real owner
of the token(s).

• Procedure 26: verification of the time validity, authenticity and integrity of the
provided token(s).

• Procedure 27: verification of any asynchronous revocation of the token(s) (i.e., if
any token(s) have been revoked by the Core AAM before the expiration time
indicated within the token itself).

• Message 28: generated by the Core Security Handler and sent to the Core
Resource Monitor. It is used to communicate the outcome of the token validation
procedures performed by the Core Security Handler.

• Message 29: schedules task for checking availability of specified resources (IDs)

• Message 30: returns status of availability scheduling and certificate (used to
demonstrate the identity of the entity generating the message, for authentication
purposes, the certificate must be validated by the Security Handler of the
component)

• Message 31: Registration Handler sends certificate to Security Handler for
validation

• Procedure 32: validate certificate

• Message 33: returns result of certificate validation

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 71 of 127
 © Copyright 2016, the Members of the symbIoTe

• Message 34 (AccessResourceInterface): when the availability checking task is
executed it starts with this message from Core Resource Monitor to Resource
Access Proxy (includes certificate)

• Message 35: Resource Access Proxy sends certificate for validation to Security
Handler

• Procedure 36: validates certificate

• Message 37: returns result of certificate validation

• Message 38: Resource Access Proxy returns result of availability to Core Resource
Monitor

• Message 39: Core Resource Monitor collects all availability results, creates status
list and send it to Registry

• Procedure 40: updates availability in database

• Message 41: returns call

5.5.2.6 Search

Figure 18 Search

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 72 of 127
 © Copyright 2016, the Members of the symbIoTe

Description:

• Message 1 (optional): generated by the Application/Enabler and sent to the
Application Security Handler. It is used to trigger the recovery of the core token(s).
If the Application/Enabler is already logged in, it is not necessary.

• Message 2 (optional) (AppAAInterface): generated by the Application Security
Handler and sent to the Core AAM in which the Application/Enabler is registered. It
is used to authenticate the Application/Enabler. If the Application/Enabler is already
logged in, it is not necessary.

• Message 3 (optional): generated by the Core AAM in the IoT platform and sent to
the Application Security Handler. It is used to provide the home token(s) with
attributes included. If the Application/Enabler is already logged in, it is not
necessary.

• Message 4 (optional): generated by the Application Security Handler and sent to
the Application/Enabler. It is used to deliver the core token(s).

• Message 5 (SearchInterface): generated by the Application/Enabler and sent to the
Search Engine. It sends search query and the core token(s) to the Search Engine.

• Message 6: generated by the Search Engine and sent to the Core Security
Handler. It is used to ask to the security handler to verify the complete validity of the
token.

• Procedure 7 (AppSecurityInterface): procedure that allows the Application Security
Handler that is acting on behalf of the Application/Enabler to demonstrate that it is
the real owner of the token(s).

• Procedure 8: verification of the time validity, authenticity and integrity of the
provided token(s).

• Procedure 9: verification of any asynchronous revocation of the token(s) (i.e., if any
token(s) have been revoked by the Core AAM before the expiration time indicated
within the token itself).

• Message 10: generated by the Core Security Handler and sent to the Search
Enginge. It is used to communicate the outcome of the token validation procedures
performed by the Core Security Handler.

• Message 11: generated by the Search Engine and sent to the Registry. It is used to
search available resources.

• Message 12: generated by the Registry and sent to the Search Engine. It is used to
return the result of the search operation, containing resources and associated
access policies.

• Message 13: generated by the Search Engine and sent to the Core Security
Handler. It is used to deliver the core token(s) previously verified and the results of
the search operation.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 73 of 127
 © Copyright 2016, the Members of the symbIoTe

• Procedure 14: procedure that checks, for each resource, if the attributes contained
in the core token(s) satisfy the access policy associated to that resource.

• Message 15: generated by the Core Security Handler and sent to the Search
Engine. It is used to deliver the result of the previous procedure.

• Message 16: generated by the Search Engine and sent to the Application/Enabler
asynchronously. It is used to deliver the result of the search operation (available
resources).

• Procedure 17: executes ranking of food resources

• Message 18 (ApplicationInterfce): asynchronously sends ranking update to
Application/Enabler

• Message 19 (ApplicationInterfce): asynchronously sends message about the end of
initial ranking

• Message 20 (ApplicationInterfce): synchronously sends message of the end of final
ranking

5.5.2.7 Access to resources

Access to resources is defined for two possible cases. In the first case, shown in Figure
19, Application or Enabler attempts to access resources without reservation, while in the
second case, shown in Figure 20, Application or Enabler attempts to access resources
with reservation.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 74 of 127
 © Copyright 2016, the Members of the symbIoTe

Figure 19 Access to resources without reservation

Description:

• Message 1 (optional): generated by the Application/Enabler and sent to the
Security Handler. It is used to trigger the recovery of the core token(s). If the
Application/Enabler is already logged in, it is not necessary.

• Message 2 (optional) (AppAAInterface): generated by the Security Handler and
sent to the home AAM in which the Application/Enabler is registered. It is used to
authenticate the Application/Enabler. If the Application/Enabler is already logged in,
it is not necessary.

• Message 3 (optional): generated by the home AAM in the IoT platform and sent to
the Security Handler. It is used to provide the home token(s) with attributes
included. If the Application/Enabler is already logged in, it is not necessary.

• Message 4(optional): generated by the Security Handler and sent to
the Application/Enabler. It it is used to deliver the core token(s).

• Message 5 (optional): generated by the Application/Enabler and sent to Application
Security Handler. It is used to trigger the operations for obtaining the foreign
token(s) from IoT platform. If the Application/Enabler already has valid foreign
token(s), it is not necessary.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 75 of 127
 © Copyright 2016, the Members of the symbIoTe

• Message 6 (optional) (AAInterface): generated by the Application Security Handler
and sent to the foreign AAM in IoT platform. It is used to trigger the operations for
obtaining the foreign token(s). If the Application/Enabler already has valid foreign
token(s), it is not necessary.

• Procedure 7 (optional) (AppSecurityInterface): procedure that allows the Security
Handler that is acting on behalf of the Application/Enabler to demonstrate that it is
the real owner of the token(s). If the Application/Enabler already has valid foreign
token(s), it is not necessary.

• Procedure 8 (optional): verification of the time validity, authenticity and integrity of
the provided token(s). If the Application/Enabler already has valid foreign token(s),
it is not necessary.

• Procedure 9 (optional) (PlatformAAInterface): verification of any asynchronous
revocation of the token(s) (i.e., if any token(s) have been revoked by the home
AAM before the expiration time indicated within the token itself). If the
Application/Enabler already has valid foreign token(s), it is not necessary.

• Procedure 10 (optional): procedure that, in case it is needed, translates attributes
that the Application/Enabler has in the home IoT platform in a new set of attributes
that it has in the core layer. If attributes are the same or the Application/Enabler
already has valid foreign token(s), it is not necessary.

• Message 11 (optional): generated by the foreign AAM and sent to the Application
Security Handler. It is used to deliver the foreign token(s) with the new attribute(s).
If the Application/Enabler already has valid foreign token(s), it is not necessary.

• Message 12 (optional): generated by the Application Security Handler and sent to
the Application/Enabler. It is used to forward the foreign token generated at the
previous step.

• Message 13 (ChooseResInterface): Application/Enabler sends request access to
selected resources to Core Resource Access Monitor. Message includes foreign
token obtained in previous message

• Message 14: Core Recoure Access Monitor returns list of URLs for selected
resources in IoT platform

• Message 15 (AccessResourceInterface): generated by the Application/Enabler and
sent to the Resource Access Proxy in the foreign IoT platform. It is used to access
resources, while providing the foreign token previously obtained.

• Message 16: generated by the Resource Access Proxy and sent to the Security
Handler in the foreign IoT platform. It is used to ask to the security handler to verify
the complete validity of the token.

• Procedure 17 (AppSecurityInterface): procedure that allows the Application Security
Handler that is acting on behalf of the Application/Enabler to demonstrate that it is
the real owner of the token(s).

• Procedure 18: verification of the time validity, authenticity and integrity of the
provided token(s).

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 76 of 127
 © Copyright 2016, the Members of the symbIoTe

• Procedure 19: verification of any asynchronous revocation of the token(s) (i.e., if
any token(s) have been revoked by the home AAM before the expiration time
indicated within the token itself).

• Message 20: generated by the Security Handler in the foreign IoT platform and sent
to the Resource Access Proxy. It is used to communicate the outcome of the token
validation procedures performed by the Foreign Security Handler.

• Message 21: generated by the Resource Access Proxy and sent to the Security
Handler. It is used to deliver the core token(s) previously verified and the access
policy of the requested resource to the Security Handler.

• Procedure 22: it is used to check if the attributes included in the core token(s)
satisfy the access policy associated to the requested resource.

• Message 23: generated by the Security Handler and sent to the Resource Access
Proxy. It is used to deliver the result of the operation executed at the previous step.

• Message 24: (ReportUsageInterface) asynchronously emit resource usage per
use/per stream start

• Message 25: (ApplicationInterface) this message can be synchronous, then
Resource Access Proxy returns data. If it is asynchronously then it can emit async
messages for some time

• Message 26: (ReportUsageInterface) if previous message is asynchronous then
this message informs Core Resource Access Monitor when the stream is ended

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 77 of 127
 © Copyright 2016, the Members of the symbIoTe

Figure 20 Access to resources with reservation

Description:

• Message 1 (optional): generated by the Application/Enabler and sent to the
Application Security Handler. It is used to trigger the recovery of the core token(s).
If the Application/Enabler is already logged in, it is not necessary.

• Message 2 (optional) (AppAAInterface): generated by the Application Security
Handler and sent to the Core AAM in which the Application/Enabler is registered. It
is used to authenticate the Application/Enabler. If the Application/Enabler is already
logged in, it is not necessary.

• Message 3 (optional): generated by the Core AAM in the IoT platform and sent to
the Application Security Handler. It is used to provide the home token(s) with
attributes included. If the Application/Enabler is already logged in, it is not
necessary.

• Message 4 (optional): generated by the Application Security Handler and sent to
the Application/Enabler. It it is used to deliver the core token(s).

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 78 of 127
 © Copyright 2016, the Members of the symbIoTe

• Message 5 (optional): generated by the Application/Enabler and sent to the
Application Security Handler. It is used to trigger the operations for obtaining the
foreign token(s). If the Application/Enabler already has valid foreign token(s), it is
not necessary.

• Message 6 (optional) (AAInterface): generated by the Application Security Handler
and sent to the foreign AAM in the foreign IoT platform. It is used to trigger the
operations for obtaining the foreign token(s). If the Application/Enabler already has
valid foreign token(s), it is not necessary.

• Procedure 7 (optional): procedure that allows the Application Security Handler that
is acting on behalf of the Application/Enabler to demonstrate that it is the real
owner of the token(s). If the Application/Enabler already has valid foreign token(s),
it is not necessary.

• Procedure 8 (optional) (AppSecurityInterface): verification of the time validity,
authenticity and integrity of the provided token(s). If the Application/Enabler already
has valid foreign token(s), it is not necessary.

• Procedure 9 (optional) (PlatformAAInterface): verification of any asynchronous
revocation of the token(s) (i.e., if any token(s) have been revoked by the Core AAM
before the expiration time indicated within the token itself). If the
Application/Enabler already has valid foreign token(s), it is not necessary.

• Procedure 10 (optional): procedure that, in case it is needed, translates attributes
that the Application/Enabler has in the home IoT platform in a new set of attributes
that it has in the core layer. If attributes are the same or the Application/Enabler
already has valid foreign token(s), it is not necessary.

• Message 11 (optional): generated by the foreign AAM and sent to the Application
Security Handler. It is used to deliver the foreign token(s) with the new attribute(s).
If the Application/Enabler already has valid foreign token(s), it is not necessary.

• Message 12 (optional): generated by the Application Security Handler and sent to
the Application/Enabler. It is used to forward the foreign token generated at the
previous step.

• Message 13 (Access Resource Interface): generated by the Application/Enabler
and sent to the Resoruce Access Proxy in the foreign IoT platform. It is used to
reserve resources, while providing the foreign token previously obtained.

• Message 14: generated by the Resource Access Proxy and sent to the Security
Handler in the foreign IoT platform. It is used to ask to the security handler to verify
the complete validity of the token.

• Procedure 15 (AppSecurityInterface): procedure that allows the Application Security
Handler that is acting on behalf of the Application/Enabler to demonstrate that it is
the real owner of the token(s).

• Procedure 16: verification of the time validity, authenticity and integrity of the
provided token(s).

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 79 of 127
 © Copyright 2016, the Members of the symbIoTe

• Procedure 17: verification of any asynchronous revocation of the token(s) (i.e., if
any token(s) have been revoked by the AAM before the expiration time indicated
within the token itself).

• Message 18: generated by the Security Handler in the foreign IoT platform and sent
to the Resource Access Proxy. It is used to communicate the outcome of the token
validation procedures performed by the foreign Security Handler.

• Message 19: generated by the Resource Access Proxy and sent to the Security
Handler. It is used to deliver the core token(s) previously verified and the access
policy of the requested resources to the Security Handler.

• Procedure 20: it is used to check if the attributes included in the core token(s)
satisfy the access policy associated to the requested resources.

• Message 21: generated by the Security Handler and sent to the Resource Access
Proxy. It is used to deliver the result of the operation executed at the previous step.

• Message 22: merge reservation results

• Message 23: Resource Access Proxy returns reservation results to
Application/Enabler

• Message 24 (AccessResourceInterface): Application/Enabler sends confirm/decline
resource reservation message to Resource Access Proxy. The message contains
foreign token(s) and attributes.

• Procedure 25: Resource Access Proxy confirms or cancels reservation in the
platform

• Message 26: return call

• Message 27 (ChooseResInterface): Application/Enabler sends request access to
selected resources to Core Resource Access Monitor

• Message 28: Core Recoure Access Monitor returns list of URLs for selected
resources in IoT platform

• Message 29 (AccessResourceInterface): generated by the Application/Enabler and
sent to the Resource Access Proxy in the foreign IoT platform. It is used to access
resources, while providing the foreign token previously obtained.

• Message 30: generated by the Resource Access Proxy and sent to the Security
Handler in the foreign IoT platform. It is used to ask to the security handler to verify
the complete validity of the token.

• Procedure 31: it is used to check if the attributes included in the core token(s)
satisfy the access policy associated to the requested resource.

• Message 32: generated by the Security Handler and sent to the Resource Access
Proxy. It is used to deliver the result of the operation executed at the previous step.

• Message 33 (ReportUsageInterface): emit resource usage per use/per stream start

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 80 of 127
 © Copyright 2016, the Members of the symbIoTe

• Message 34 (MonitorResInterface): Resource Access Proxy informs Core
Resource Monitor that the resource is busy

• Message 35 (ApplicationInterface): this message can be synchronous, then
Resource Access Proxy returns data. If it is asynchronously then it can emit async
messages for some time

• Message 36 (ReportUsageInterface): if previous message is asynchronous then
this message informs Core Resource Access Monitor when the stream is ended

• Message 37 (MonitorResInterface): Resource Access Proxy informs Core
Resource Monitor that the resource is released and status can be changed to
available

• Message 38: returns call

5.5.2.8 Monitoring

This process is triggered by the platform at suitable times.

Figure 21 Monitoring

Description:

• Message 1 (optional): generated by the Monitoring and sent to the Security
Handler. It is used to trigger the recovery of the core token(s). If the Monitoring is
already logged in, it is not necessary.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 81 of 127
 © Copyright 2016, the Members of the symbIoTe

• Message 2 (optional): generated by the Security Handler and sent to the home
(platform) AAM in which the Monitoring is registered. It is used to authenticate the
Monitoring. If the Monitoring is already logged in, it is not necessary.

• Message 3 (optional): generated by the home (platform) AAM in the IoT platform
and sent to the Security Handler. It is used to provide the home token(s) with
attributes included. If the Monitoring is already logged in, it is not necessary.

• Message 4 (optional) (PlatformAAInterface): generated by the Security Handler and
sent to the Core AAM in the core layer. It is used to trigger the operations for
obtaining the core token(s). If the Monitoring already has valid core token(s), it is
not necessary.

• Procedure 5 (optional) (SecurityInterface): procedure that allows the Security
Handler that is acting on behalf of the Monitoring to demonstrate that it is the real
owner of the token(s). If the Monitoring already has valid core token(s), it is not
necessary.

• Procedure 6 (optional): verification of the time validity, authenticity and integrity of
the provided token(s). If the Monitoring already has valid core token(s), it is not
necessary.

• Procedure 7 (optional) (AAInterface): verification of any asynchronous revocation of
the token(s) (i.e., if any token(s) have been revoked by the home AAM before the
expiration time indicated within the token itself). If the Monitoring already has valid
core token(s), it is not necessary.

• Procedure 8 (optional): procedure that, in case it is needed, translates attributes
that the Monitoring has in the home IoT platform in a new set of attributes that it
has in the core layer. If attributes are the same or the Monitoring already has valid
core token(s), it is not necessary.

• Message 9 (optional): generated by the Core AAM and sent to the Security
Handler. It is used to deliver the core token(s) with the new attribute(s). If the
Monitoring already has valid core token(s), it is not necessary.

• Message 10(optional): generated by the Security Handler and sent to the
Monitoring. It is used to forward the core token generated at the previous step.

• Message 11 (ReportUsageInterface): Monitoring generates usage report and sent it
to the Core Resource Access Monitoring.

• Message 12: generated by the Core Resource Access Monitoring and sent to the
Core Security Handler. It is used to ask to the security handler to verify the
complete validity of the token.

• Procedure 13 (SecurityInterface): procedure that allows the Security Handler that is
acting on behalf of the Monitoring to demonstrate that it is the real owner of the
token(s).

• Procedure 14: verification of the time validity, authenticity and integrity of the
provided token(s).

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 82 of 127
 © Copyright 2016, the Members of the symbIoTe

• Procedure 15: verification of any asynchronous revocation of the token(s) (i.e., if
any token(s) have been revoked by the Core AAM before the expiration time
indicated within the token itself).

• Message 16: generated by the Security Handler in the core layer and sent to the
Core Resource Access Monitoring. It is used to communicate the outcome of the
token validation procedures performed by the Core Security Handler.

• Message 17: stores report data to database

• Message 18: returns call

5.5.3 Interfaces

Interfaces have been defined for the components of the Application and Cloud Domain
enabling symbIoTe Level 1 Compliance, as it can be seen in Figure 11. Table 19 shows
those interfaces, components within which they are implemented, as well as messages
with input and output data exchanged when using those interfaces.

Table 19 Interfaces

Component Interface Message Input Output

Application/Enabler ApplicationInterfce ID deleted ID
 ID updated ID
 ranking update ranking update,

query id

 initial ranking
finished message

query id

 final ranking
finished message

query id

 data resource ID,
data

Application
Security Handler

AppSecurityInterface challenge-response
procedure

security
challenge data

security
response
data

Registry RegPlatformInterface registration registration
resource data,
core token

resource
IDs,
resource
status list,
certificate

 unregister resource IDs,
core token

deleted
resource
IDs,
certificate

 update resource IDs,
core token

updated
resource
IDs,
certificate

Core Resource
Monitor

ResAvailabilityInterface update resources IDs,
state, core
token,
attributes in core

 MonitorResInterface update resources IDs,
state, core
token,
attributes in core

OK,
certificate

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 83 of 127
 © Copyright 2016, the Members of the symbIoTe

Search Engine SearchInterface search query, core
token,
attributes in core

available
resources,
query id

Core
Resource
Access Monitor

ChooseResInterface update resource ID,
state, core
token,
attributes in core

 request access resource IDs,
foreign token,
attributes in IoT
platform

list of access
URLs
in IoT
platform

 ReportUsageInterface resource usage resource IDs,
usage status

 resource usage
ended

resource IDs

 usage report report, core
token,
attributes in core

Core
Authentication
and Authorization
Manager

AppAAInterface sign in
application/enabler

username,
password

core token,
attributes in
core

 PlatformAAInterface request core token home token,
attributes in
home

core token,
attributes in
core

 check revocation core token status
Registration
Handler

RegistrationHandlerInterface availability update status list,
certificate

Resource
Access Proxy

AccessResourceInterface check availability resource ID,
certificate

availability
status

 access resources resource ID,
foreign token,
attributes in IoT
platform

resource
data

 reservation resource IDs,
foreign token,
attributes in IoT
platform

reservation
status

 confirm/decline
resource
reservation

resource IDs
with
confirm/decline
status, foreign
token,
attributes in IoT
platform

Security Handler SecurityInterface challenge-response
procedure

security
challenge data

security
response
data

Authentication
and Authorization
Manager

AAInterface check revocation home token status

 request foreign
token

core token,
attributes in core

foreign
token,
attributes in
IoT platform

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 84 of 127
 © Copyright 2016, the Members of the symbIoTe

6 State of the Art Overview and Reference to symbIoTe

This section presents the reference architectures defined by standardization authorities as
well as projects and platforms with similar goals as symbIoTe. We put them into the
context of the symbIoTe architecture and provide mappings (where applicable) to the
symbIoTe architecture. IoT platforms contributed by symbIoTe partners are also
mentioned, with plans for their integration within the future symbIoTe-enabled IoT
ecosystem. Finally, we conclude the section with a short summary of the symbIoTe
positioning in the current IoT ecosystem.

6.1 Reference architectures

Defining the reference architecture for IoT has been in focus of various organizations and
projects. Hereafter we present a selected list or relevant initiatives (AIOTI, oneM2M, Web
of Things, OGC), specific reference models (Industrial Internet Reference Architecture,
Reference Architecture Model Industrie 4.0, ISO/IEC IoT Reference Architecture), and
projects (IoT-A) in order to put them in relation to the symbIoTe architecture.

6.1.1 AIOTI

The Alliance for Internet of Things Innovation (AIOTI) consortium, initiated by the
European Commission, brings together stakeholders across the IoT universe. AIOTI has
developed a High Level Architecture (HLA) for IoT [1] that serves as the basis for
discussion within AIOTI. Due to its generic form, the architecture can be used as
reference architecture for IoT platforms. An overview of AIOTI HLA is given in Appendix
(Section 10.1), while hereafter we concentrate on mapping of the AIOTI layers to the
symbIoTe architecture.

Figure 22 depicts a mapping between the symbIoTe architecture and AIOTI HLA. The
Application Layer of AIOTI HLA corresponds to an Application or Enabler within the
symbIoTe architecture. The Application Layer consists of one or more Application Entities
that can be considered as a single Application/Enabler entity. Also, multiple instances of
the Application Entity can be built-in into a single symbIoTe Application/Enabler (e.g. an
application that uses an enabler is also an Application Entity). The IoT layer, as defined by
AIOTI, stretches through the symbIoTe Application Domain and Cloud Domain
components, containing all symbIoTe Core Services and symbIoTe-specific extensions of
a platform. The two components of the Smart Space domain (the Inkeeper and Local
Authentication and Authorization component), which assists in the Smart Space domain
management, can be considered as part of the IoT Entity functionality. All those
components mainly serve as support functions to provide IoT services (e.g., discovery of
appropriate data sources, collaboration with other platforms). The AIOTI Network Layer,
which spans through the Smart Space and Smart Device domain, is responsible for device
management, ensures the connectivity of smart devices and provides support for device
mobility and roaming.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 85 of 127
 © Copyright 2016, the Members of the symbIoTe

Figure 22 Mapping between the AIOTI HLA and symbIoTe architecture

Figure 23 depicts a mapping between the interfaces defined in AIOTI HLA and symbIoTe
functional components. Instead of providing the exact origin and end-point of
communication between components, we map only component end-points to AIOTI
interface. The number in bracket corresponds to the interface label used in the AIOTI HLA
description. An Application/Enabler listens for input from end-users or third parties, which
is marked as Commands(1) in Figure 23. Components that support various IoT services
(such as resource registration, resource search, resource monitoring, and security
component) implement interfaces corresponding to AIOTI IoT interfaces(2). In addition to
the IoT interfaces, a very important interface of the symbIoTe architecture is the Horizontal
services interface. The interface is used for cross-platform communication, i.e. direct
communication between platforms without third-party mediation. The horizontal services
interfaces are used in symbIoTe for bartering and trading of resources, or they serve for
telemetry communication in a device-roaming scenario. The Central Bartering and Trading
component can have also the interface to communicate with other external third-party
systems, such as banking in case of charging service. The Network control plain
interfaces are mostly present in the Smart Space Domain to take care of device

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 86 of 127
 © Copyright 2016, the Members of the symbIoTe

management and monitoring within local environments. The data plain interfaces are used
by an Application/Enabler to access resource-generated data: They can be located at the
CLD and/or SSP, depending on the implementation. The Resource Access Proxy except
the Data plain interface can have the Big Data interface, which can be used as data
provider to a Big Data processing system.

Figure 23 Mapping between the AIOTI HLA interfaces and symbIoTe architecture

6.1.2 oneM2M

oneM2M is a global standardization body for the machine-to-machine (M2M)
communications and IoT which has been established in 2012 following an initiative from
the European Telecommunications Standards Institute (ETSI). It is formed as an alliance
of standardization organizations with 200 member companies from across the world
working together “to develop a single horizontal platform for the exchange and sharing of
data among IoT devices and applications” [6]. oneM2M focuses on standardization of
platform interfaces and aims to provide an interworking framework across different

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 87 of 127
 © Copyright 2016, the Members of the symbIoTe

sectors. The telecommunications industry is clearly leading the oneM2M standardization
efforts, but the membership includes a broad range of industries. However, mechanisms
for interaction between different platforms are only vaguely addressed.

The first release of oneM2M specifications was published in January 2015, with an
updated edition in March 2016. The released standards cover requirements, architecture,
application programming interface (API) specifications, security solutions and mapping to
common industry protocols such as CoAP, MQTT and HTTP. One of the major oneM2M
contributions in Release 1 is the definition of oneM2M functional architecture which
identifies the main components (called nodes in the oneM2M language) within the field
domain, which spans over various devices and gateways, and infrastructure domain,
which refers to cloud resources. oneM2M pays special attention to the interworking of non-
oneM2M devices with one-M2M compliant devices and identifies a special component, an
interworking proxy, which is responsible for the full semantic interworking that includes the
mappings of data models and protocols. Further details on oneM2M functional
architecture are provided in the Appendix (10.2).

The symbIoTe architecture is motivated by the oneM2M functional architecture, and thus it
is straightforward to map symbIoTe architectural domains to oneM2M nodes Figure 24
depicts this mapping: Entities within the Infrastructure Node related to applications (IN-AE)
can be mapped to APP, while Common Service Entities (CSE) within the Infrastructure
Node map to the CLD. SSP relates to the oneM2M Middle Node, while Application
Service/Dedicated node clearly maps to SDEV.

Figure 24 Mapping of symbIoTe domains to oneM2M functional architecture

Hereafter we present the mapping of oneM2M Common Service Entities (CSE), which
define the features of oneM2M-compliant platforms, to symbIoTe components and their
envisioned functionalities. The current focus is on functionalitis related to symbIoTe L1
and L2 compliance. In the case of L1, a symbIoTe application is running outside the
platform, while using CSEs provided by the platform, as shown in Figure 25. CSEs

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 88 of 127
 © Copyright 2016, the Members of the symbIoTe

provided by a platform may include access to sensor data, activation of subscriptions, etc.
within the oneM2M Infrastructure Node that maps to symbIoTe CLD. However, to access
platform CSEs, external applications first use the symbIoTe Core Services which are not
envisioned within the oneM2M infrastructure domain. Those services would thus need to
be specified at the level of Infrastrusture Node-Application Entity (IN-AE).

Figure 25 Mapping symbIoTe L1 Compliance to oneM2M

However, oneM2M specifies some of the functionalities within a single platform which are
comparable to the functions envisioned within symbIoTe Core Services to work across
platforms. The major difference is in the scope, symbIoTe Core Services work across a
number of platforms, while oneM2M CSEs are defined for a single platform. Figure 26
shows the symbIoTe Core Services and their relation to oneM2M CSEs (listed in
Appendix, Section 10.2). We have identified the following relationship between symbIoTe
components and CSEs: Registry – Data Management and Repository; Core Resource
Monitor (limited in functionality since it only monitors resources being offered by
symbIoTe, but cannot manage the actual IoT devices and associated services) – Device
Management; Search Engine – Discovery; Core Resource Access Monitor – Service
Charging and Accounting; Core Authentication and Authorization Manager and Core
Security Handler – Security.

Figure 26 Mapping of symbIoTe Core Services to oneM2M CSEs

In the case of L2, existing (native) applications use CSEs within the platform space and
reuse resources of other platforms within a platform federation, as shown in Figure 27.
oneM2M already identifies an interaction between two platforms and names this interface

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 89 of 127
 © Copyright 2016, the Members of the symbIoTe

Mcc’, but no further details are currently provided regarding the functionaility enabled
though this interface. symbIoTe CLD components which are required for L2 Compliance
are not yet envisioned in oneM2M standards, and could thus be used to extend the
existing CSEs of oneM2M-compliant platforms, especialy the ones related to bartering and
trading.

Figure 27 Mapping symbIoTe L1 Compliance to oneM2M

Figure 28 shows the symbIoTe CLD components and their mappings to oneM2M CSEs.
Those components would need to be integrated within existing CSEs of a oneM2M-
compliant platform and to extend their functionalities. They can be mapped to oneM2M
CSEs as shown in Figure 28: Registration Handler – Registration; Resource Access Proxy
– Communication management & delivery handling, and Subscription and notification;
Authentication and Authorization Manager, and Core Security Handler – Security.

Some of the components in the CLD are also used to achieve L1 symbIoTe Compliance:
For example, Registration Handler, Resource Access Proxy and Monitoring need to be
implemented by L1 platforms.

Figure 28 Mapping of symbIoTe CLD components to oneM2M CSEs

As it can be seen in Figure 27, CSEs of different platforms can communicate through the
Mcc' reference point. For instance, CSE Registration can communicate with Registration
of another platform using this reference point. However, the process of creating an IoT
Federation is currently not specified in the oneM2M functional architecture, and thus

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 90 of 127
 © Copyright 2016, the Members of the symbIoTe

symbIoTe components for Bartering and Trading or Federation cannot be mapped to
oneM2M CSEs. This functionality proposed by symbIoTe has potential to be proposed for
standardization within the oneM2M standardization process.

Further analysis of the oneM2M standardization and its relation to the symbIoTe Smart
Space and Smart Device Domain will be provided in the next and final version of this
deliverable (Deliverable 1.4, “Final report on system requirements and architecture”).

6.1.3 IoT-A

Authors of IoT-A noticed a trend in the IoT world that steered towards each IoT system
manufacturer to produce its own, isolated IoT platform architecture. As a result, numerous
IoT systems currently available on market cannot communicate with each other. IoT-A
refers to this situation as an Intranet of Things, rather than Internet of Things, and has
tried to come up with a solution that would facilitate creating applications which use
multiple, heterogeneous platforms. As a result, they have created a set of guidelines, best
practices and, most of all, the reference architecture, to help IoT system developers to
make their platforms interoperable [8]. As symbIoTe’s main goal is to transform existing
(and future) IoT platforms to become interoperable, the experience gained by the IOT-A
team is valuable for the symbIoTe development process.

IoT-A, in its definition, compares the IOT world to a tree. Roots are various hardware
devices, providing different functionalities and data using numerous transmission
protocols, whereas leaves are concrete application use-cases, e.g. Smart City, Retail,
Logistics. IoT-A places itself in a role of a trunk, thus providing architecture needed to
connect roots (devices) with leaves (software applications).

Figure 29 The IoT-A tree [8]

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 91 of 127
 © Copyright 2016, the Members of the symbIoTe

To accomplish this task, IoT-A provides a Reference Architecture. As said before, the
architecture provides a link between applications and devices using different Functional
Components (FC), assembled together to form Functional Groups (FG).

Figure 30 IOT-A reference architecture [8]

The main responsibilities of the Functional Groups, and their symbIoTe counterparts, are
as follows [8]:

• The IoT Process Management FG is responsible for transforming traditional
business processes into the IoT world. It provides the tools needed to model and
execute complex business scenarios. Enablers in symbIoTe architecture provide
this type of functionality, gathering data from multiple IoT platforms and offering
them to applications.

• The Service Organization FG contains all the necessary functionalities for dealing
with numerous services that construct IoT platforms. symbIoTe module with similar
functionalities is the Search Engine, which glues together all the data concerning
different platforms, their services, metadata etc.

• The Virtual Entity (VE) FG deals with discovering services that allow interacting and
provide information about IoT platforms. It is also responsible for finding and
managing VE associations. Cloud Domain modules deal with these responsibilities.
However, besides working with a single platform, it also allows different platforms to
communicate with each other.

• The IoT Service FG is responsible for handling low, device-level IoT services.
Responsibilities of this FG are handled by Resource Access Proxy, which provide a
uniform abstraction for interacting with different, heterogeneous IoT platforms.

• The Communication FG acts as a backbone, providing communication all the way
from user applications, via IoT platform infrastructure, up to low-level devices. It
provides uniform method of communication regardless of physical communication
type. It is obvious that this FG links majority of other components, but main
modules handling its responsibilities in symbIoTe are Smart Space and Device
Domains.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 92 of 127
 © Copyright 2016, the Members of the symbIoTe

• The Security FG provides mechanisms, that allow to perform secure and trusted
interaction between system modules. All these mechanisms are provided by
symbIoTe Authentication and Authorisation Manager (AAM) and Security Handler
(SH).

• The Management FG takes care of managing the whole system, i.e. configuration,
member management and monitoring. Most of these functionalities are handled by
symbIoTe Core components: Registry keeps track of all member (users, platforms,
resources) information and Resource Monitor checks current system statuses.

Mapping of symbIoTe modules to IoT-A Functional Groups is depicted in Figure 31.

Figure 31 Mapping of symbIoTe to IoT-A reference architecture functional groups

6.1.4 Web of Things

Web of Things (WoT) intends to allow “things” to be part of the Web, enabling them to
communicate with each other and become accessible through standard Web
technologies. This is accomplished by reusing and extending the software architectures
and well-known Web standards, while taking into account thing-to-thing interaction
patterns, which are quite different from the ones we have today on the Web [9]. W3C has
launched the Web of Things Interest group at the start of 2015 which has focused on
gathering information on existing WoT-related solutions, and is now proposing to launch a
Web of Things Working Group to standardize those aspects that the Interest Group
believes are mature enough to progress to W3C Recommendations [10].

The WoT approach is based upon the fundamentals of Web architecture [10]:

• URIs for identifying Things and their descriptions

• A variety of protocols for accessing Things, since no one protocol will be
appropriate in all contexts

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 93 of 127
 © Copyright 2016, the Members of the symbIoTe

• Metadata for describing Things as a basis for interoperability and discovery, and
playing an analogous role to HTML for Web pages

The listed principles also apply to the symbIoTe architecture, since the corresponding
requirements have been identified in Section 4. However, in contrast to the WoT approach
which extends things so that they become interoperable, where thing-to-thing interaction is
vital for dynamic and context-aware environments, symbIoTe assumes that things are
managed by and shielded from third party applications and other platforms by platform-
specific software components.

The WoT approach focuses on two abstraction layers within the communication stack
[10]:

• Application layer: Programs that either implement a thing's behavior, or which
interact with a thing, e.g. exposing or utilizing APIs for control of sensors and
actuators, and access to associated metadata.

• Thing layer: Software objects that expose the compound state of devices or digital
services; data and interaction model, metadata, semantic annotation, Thing
Description.

Transfer-specific and networking functions are assumed to be in the focus of platform
developers. symbIoTe takes here quite a different position, since our assumption is that
platforms also focus on the “Thing layer”, and thus their existing components and APIs
cannot be neglected. Thus symbIoTe integrates platforms as a whole, and not things as
single entities, into an interoperable IoT ecosystem. Another important distinction is
related to the interoperability focus of WoT. WoT clearly deals with syntactic and semantic
interoperability, while issues related to organizational interoperability, which is of vital
importance to symbIoTe, are currently out of scope.

Note that WoT has so far focused on integrating sensors.

6.1.5 OGC Sensor Web Enablement

The Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) activities focus
on enabling WoT functionality by connecting all types of Web/Internet accessible sensors,
instruments, and other real world objects. The vision is to foster interoperability within
different sensor networks and platforms, as well as to define and approve the standards
for plug-and-play web-based networks. The goal can be achieved by SWE’s offer of
integration of several different standards. These SWE standards are already integrated
and implemented in several projects in the domain of Sensor Web, as are SANY and
OSIRIS, and in the global monitoring system (GEOSS), to name a few. These applications
have contributed to the improvement of the existing standards’ specifications. For
symbIoTe, the following OGC standards8 are relevant, since they define services, models
and interfaces that are also in focus of symbIoTe:

• SWE Common Data Model Encoding – Specifies a low-level data model and
encoding in order to define and package sensor related data in a self-describing
and semantically enabled way.

8 The full list can be found on http://www.opengeospatial.org/standards/

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 94 of 127
 © Copyright 2016, the Members of the symbIoTe

• Sensor Model Language (SensorML) – Defines a data model and encoding to
describe processes and processing components associated with the measurement
and post-measurement transformation of sensor observations.

• Observations and Measurements (O&M) – Definition of a data model and
schema for encoding measurements and observations

• Sensor Observation Service (SOS) –Service model and interface encoding to
provision sensor measurements and observations, from simple sensors to complex
sensor systems, both physical and virtual

• Sensor Planning Service (SPS) – Defines a service model and interface encoding
for the execution of sensor tasking and parameterization requests. It is used to
manage sensors and sensor networks and to influence the measurement process
according to specific needs and requirements.

• Sensor Alert Service (SAS) – Defines an interface to connect to a sensor with a
publish/subscribe model to be notified about alerts from the sensor.

• Sensor Event Interface (SES) – Defines an interface to be informed about sensor
events (like the availability of new observations) in a publish/subscribe model.

• Web Notification Service (WNS) – This service offers to inform clients about
notifications (alerts or events) from a sensor or from other elements within a
processing chain.

These OGC SWE standards can be used to remove the entry barrier for anyone who
wants to develop a WoT system, i.e., connect different devices and real world objects for
interoperability and accessibility purposes. On the other hand,, the OGC SWE services
rely on fairly complex and “heavy” protocols. This implies an enormous challenge to
implement these protocols on current IoT hardware with existing energy and memory
constraints. Therefore, the OGC SWE standards may be more relevant in the context of
stationary sensors or gateway servers which provide a link to underlying sensor networks,
while symbIoTe requirements specify support for mobile IoT devices and actuators which
are not in the focus of OGC SWE standards.

6.1.6 Industrial Internet Reference Architecture

The objective of the Industrial Internet Reference Architecture (IIRA) is to “create broad
industry consensus to drive product interoperability and simplify development of Industrial
Internet systems that are better built and integrated with shorter time to market, and at the
end better fulfil their intended uses” [11]. The driving force behind IIRA is the Industrial
Internet Consortium (IIC), which is an open membership organization and was founded as
a program by the Object Management Group®. It is an international organization with
members around the world including many major players in the industrial automation
domain.

The IIRA is based on the ISO/IEC/IEEE 42010:2011 standard for systems and software
engineering architecture description. Following the conventions of this standard, the IIRA
is using viewpoints to model the involved stakeholders and their concerns. When
comparing the symbIoTe approach to IIRA, the most relevant viewpoint is the functional
viewpoint. A driving idea behind the functional viewpoint is the observation of the
unification of two different domains, the Information Technology (IT) and the Operations
Technology (OT).

In general, Operations Technology (OT) has traditionally been controlled by closed
systems, based on SCADA (Supervisory Control And Data Acquisition) systems and is

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 95 of 127
 © Copyright 2016, the Members of the symbIoTe

now experiencing a transformation towards systems based on the Internet Protocol (IP),
with important changes happening in the visibility of such systems, their intelligence and
interoperability. Thus, IIRA aims to define all viewpoints and considerations that have to
be taken into account in this transformation of industrial systems towards IoT.

A mapping between the symbIoTe architecture and three-tier IIRA Implementation
viewpoint general architecture and definition of functional domains is rather
straightforward:

• symbIoTe Application Domain corresponds to IIRA Enterprise Tier (in both
Business and Application Domains)

• symbIoTe Cloud Domain corresponds to IIRA Platform Tier (where platforms
include Information Domain and Operations Domain).

• symbIoTe SmartSpace and symbIoTe Device Domain both correspond to IIRA
Edge Tier as both gateways and endpoints belong to IIRA Edge Tier, with
distinction that device-to-gateway communication belongs to Proximity Network
while gateway-to-platform communication is function of Access Network. In IIRA the
Edge Tier has a single functional domain – Control Domain.

Figure 32 Comparison between symbIoTe and IIRA achitecture

Further details on IIRA are given in Section 10.3.

6.1.7 Reference Architecture Model Industrie 4.0

The Reference Architecture Model Industrie 4.0 (RAMI4.0) [13] is an outcome of the
cooperation between the VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik
(GMA) and the Zentralverband Elektrotechnik- und Elektronikindustrie e.V (ZVEI). These
two organizations are representing members from the German automation industry and
the information and communication technology domain. Joint working groups from these
organizations are developing the RAMI4.0.

According to the authors of RAMI4.0, the global IoT trend in Germany is driven by the so-
called Industrie 4.0. The driving vision behind Industrie 4.0 is that real-time availability of
all relevant information within the complete value chain, throughout all business layers and
on all aggregation levels, will trigger a new industrial revolution. RAMI4.0 is supposed to

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 96 of 127
 © Copyright 2016, the Members of the symbIoTe

enable this vision by providing a unified approach to describe the complete automation
landscape and to select appropriate standards or, when necessary, to provide
requirements for additional standards. It is planned to be a German Norm, DIN SPEC
91345, which is currently being developed.

Like IIRA, RAMI4.0 also introduces a layered architecture concept to separate
interoperability aspects. Starting from the lowest Asset Level and Integration Level which
are dedicated to the integrability of system components, followed by the Communication
and Information Level dedicated to the semantic interoperability, finally the Functional and
Business Level is defined to support the composability of application units (see Figure 1 in
[13]).

One important feature of RAMI4.0 is the integration of the office floor and the shop floor.
In the past, these two layers have been mostly separated by different communication
infrastructures as well as different types of information models. However, the interactions
between both areas are becoming more and more important, and require more general
information concepts. Because of that development, RAMI4.0 introduces a so-called
Industrie 4.0 Component (I4.0) to encapsulate the individual building blocks of an
automation application. These I4.0 components are based on a common semantic model
between shop floor and office floor, and can be considered as a key feature of the
RAMI4.0 approach. This common information model plays a primary role for the reference
model. This concept is even introduced as a reference architecture model for semantic
technologies.

Just as in the Internet of Things domain everything is considered to be a Thing, RAMI4.0
considers every automation component to be a Thing. In order to create a common
information model, every automation component (Thing) becomes an I4.0 component by
being surrounded with an Administration Shell (see Figure 8 in [13]). This shell contains
the virtual representation and the technical functionality of the component. By wrapping all
components into an Administration Shell, a common information and communication
model is established, which is the backbone of the RAMI4.0 semantic interoperability
concept.

When comparing RAMI4.0 to other reference and functional architectures, a Thing
surrounded with an Administration Shell has conceptual similarities to a WoT thing, or
oneM2M Application Node. In contrast to RAMI4.0, symbIoTe does not focus on the
automation industry, nor it considers individual interoperable things as building blocks of
the future interoperable IoT ecosystem, but rather integrates the services offered by IoT
platforms and their device management tools through open APIs providing authenticated
and authorized access to those IoT-based services.

6.1.8 ISO/IEC Internet of Things Reference Architecture

The International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC) are worldwide standardization organizations
responsible for many international standards used in a broad field of application areas.
The concept of the Internet of Things has been studied for many years and has constantly
gained momentum. In the past these developments have been done without any
dedicated IoT standards. Now the ISO/IEC has decided that it is time for a guiding
standard in order to achieve interoperability between different types of IoT systems. In
2014, the Working Group Sensor Networks (WG7) and Working Group Internet of Things
(WG10) from ISO/IEC Joint Technical Committee 1 published a Working Draft on the topic

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 97 of 127
 © Copyright 2016, the Members of the symbIoTe

of IoT standardization called Internet of Things Reference Architecture (IoT RA) [14] which
is currently still under development. The document is distributed only for review and
comments and may not be referred to as an international standard. The IoT RA shall
serve the following goals:

• describe the characteristics and aspect of IoT systems;
• define the IoT domains;
• describe the reference model of IoT systems; and
• describe interoperability of IoT entities.

In this early state, only a few design concepts are defined. One is the introduction of a
common vocabulary service to be used by all layers. Context-awareness, discoverability
and plug-and-play capability are considered major characteristics of an IoT system. This
requires a common model for the IoT entities to provide a shared conceptualization for the
architecture elements.

As the document is in an early stage, the focus is on the definition of terms and general
concept, while interoperability and technical details are not yet well covered. Thus at this
point is it still not possible to relate the symbIoTe to the emerging ISO/IEC RA.

6.2 Related projects and platforms

This section presents a short overview on platforms and projects which are relevant to
symbIoTe goals and architecture. Following projects have been analysed: Fiware,
Compose, Crystal, iCore and IoT-EPI projects.

6.2.1 FIWARE

FIWARE is a set of open-source components directed at Future Internet that can be used
in any system that you might want to build. It can be applied in a variety of areas, such as
smart cities or environment sustainability. Due to its modularity, it is very simple to use,
only needing to make use of the components that you are interested in. The components
that FIWARE provides can be accessed via REST APIs, facilitating the process of
developing IoT applications. It provides replicability capabilities, allowing, for example, for
a solution developed for one city to be deployed in another city easily.

Hereafter we list a set of FIWARE components that are the most relevant to the symbIoTe
architecture:

• Orion Context Broker
9 provides NGSI910 and NGSI1011 interfaces that allow:

o The registration of resources (e.g. temperature sensor);

o For updates regarding the resources to be sent (e.g. temperature changes);

o For notifications to be sent with a given frequency or when a change
happens (e.g. temperature changes);

o Querying the context broker to obtain up-to-date information provided by the
sensors.

9 http://catalogue.fiware.org/enablers/publishsubscribe-context-broker-orion-context-broker
10 https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_NGSI-9_Open_RESTful_API_Specification
11 https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_NGSI-10_Open_RESTful_API_Specification

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 98 of 127
 © Copyright 2016, the Members of the symbIoTe

Orion can be relevant to symbIoTe by enabling the registration of resources to
symbIoTe and for symbIoTe to provide a way for application developers to obtain
data from sensors.

• KeyRock
12 provides identity management functionality. It provides common

functionalities needed to handle users’ access to networks, services and
applications such as secure and private authentication, authorization and trust
managemet, user profile management and Single Sign-On. It is relevant for
symbIoTe as a tool used to handle users’ life-cycle functions. In symbIoTe, this
functionality is to be implemented in Authentication & Authorization Manager (AAM)
and Security Handler (SH).

• IDAS
13

 is a backend device management. It translates protocols specific to the IoT
into NGSI contect information protocol, ready to be consumed by Orion. This allows
devices to be represented in a FIWARE platform. The component can be relevant
to symbIoTe as it has functionalities similar to Registration Handler (RH), and
Resource Access Proxy (RAP). Additionally, since it enables registration of devices,
it could also be relevant in Smart Space and Smart Device Domain (SSP, SSDEV).

Several of these enablers can be deployed using already built images. FIWARE also
provides an enhanced OpenStack-based cloud environment. The usage of these popular
projects can be relevant to the deployment and maintenance of the symbIoTe ecosystem.

6.2.2 COMPOSE

COMPOSE (Collaborative Open Market to Place Objects at your Service) is an open-
source ecosystem aiming at transforming the Internet of Things into an Internet of
Services [20]. The main vision of the project is to integrate the IoT with the IoS (Internet of
Services) through an open marketplace, in which data from Internet-connected objects
can be easily published, shared, and integrated into services and applications. The
marketplace provides all the necessary technological enablers, organized into a coherent
and robust framework covering both delivery and management aspects of objects,
services, and their integration. The platform offers connectivity to IoT devices
accompanied by advanced data management capabilities, including real-time data
processing capabilities. The project develops novel approaches for virtualizing smart
objects into services and for managing their interactions. This includes solutions for
managing knowledge derivation, secure and privacy preserving data aggregation and
distribution, dynamic service composition, advertising, discovering, provisioning, and
monitoring. To validate different aspects of the platform COMPOSE addresses the
following application areas: smart shopping spaces, smart city and smart territory.

12 http://catalogue.fiware.org/enablers/identity-management-keyrock
13 http://catalogue.fiware.org/enablers/backend-device-management-idas

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 99 of 127
 © Copyright 2016, the Members of the symbIoTe

Figure 33 COMPOSE high level architecture [15]

The architecture of COMPOSE system is shown in Figure 33. When mapping it to
symbIoTe architecture, it is obvious that COMPOSE Platform is actually similarly designed
as symbIoTe Core Services. The upper level comprises external applications, while the
layer below comprises things/devices available from different sources. Web objects,
physical external resources, open data from Figure 33 can be mapped to IoT services
offered by L1 IoT platforms.

Service objects are an internal representation of physical external resources or web
objects. Registry component has the similar functionality as the component with the same
name from symbIoTe – it holds semantic metadata for service objects hosted by the
platform, and enables discovery of those objects by external applications. Apart from that,
COMPOSE hosts the composition services engine to help external developers combine
the base service objects and applications into workflows and external applications.

6.2.3 CRYSTAL

Crystal (CRitical sYSTem engineering AcceLeration) aims at establishing and pushing
forward an Interoperability Specification (IOS) and a Reference Technology Platform
(RTP) as a European standard for safety-critical systems [21]. The goal of the project is to
reduce complexity of the integration process, i.e. to enable interlinking and sharing data
between different systems based on standardized and open Web technologies. Such
solution should enable interoperability among various life cycle domains.

The main idea of the so-called Interoperability Specifications (IOS) is to rely on common
interoperability services, providing a common ground for integrating lifecycle and
engineering tools across different engineering disciplines and from multiple stakeholders
involved in the development of large scale safety-critical systems (i.e. the projects focuses
on four domains: the automotive, aerospace, rail and health sector). The common
denominator of the IOS is based on a lightweight and domain-agnostic approach,
providing basic capabilities for handling the whole lifecycle of engineering artefacts
manipulated throughout the development of safety-critical embedded systems.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 100 of 127
 © Copyright 2016, the Members of the symbIoTe

Even though Crystal is not focusing on IoT platforms but rather on engineering processes
and allows data sharing between them, it is related to symbIoTe goals as it ensures a data
repository that allows different system to access the data, providing also the necessary
semantics for each system to use the data. The results from this project are related to
symbIoTe component Registry which stores data from different sources and enables a
unified access to this stored data from external applications. However, symbIoTe covers
an enlarged scope in terms of interoperability aspects than Crystal.

6.2.4 iCore

The iCore initiative addresses two key issues in the context of the Internet of Things (IoT),
namely how to abstract the technological heterogeneity that derives from the vast amounts
of heterogeneous objects, while enhancing reliability and how to consider the views of
different users/stakeholders (owners of objects and communication means) for ensuring
proper application provision, business integrity and, therefore, maximize exploitation
opportunities [22]. To validate the proposed solutions, iCore addresses the following use
cases: ambient assisted living, smart office, smart transportation, and supply chain
management.

The iCore architecture comprises three levels of functionality: virtual objects (VOs),
composite virtual objects (CVOs) and functional blocks for representing the
user/stakeholder perspectives, as shown in Figure 34. VOs are representations of real
world objects that can be aggregated and merged in order to create new Virtual
Composite Objects (VCOs) that extend and generalize real world objects’ functionalities
and features. They are semantically described by using RDF triplets. On top of VOs and
VCOs, service enabling functions offer services to applications via API such as data
analysis ets.

Figure 34 iCore architecture [16]

Architecture of iCore is similar to symbIoTe core architecture, except that symbIoTe core
does not store the data provided by real-world objects, it is only a mediator between
applications and data provided by physical objects that is stored on IoT platforms.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 101 of 127
 © Copyright 2016, the Members of the symbIoTe

6.2.5 Positioning of symbIoTe with regard to other IoT-EPI Projects

At this point in time it is possible only to provide a preliminary analysis and comparison of
the symbIoTe architecture to other IoT-EPI projects, namely AGILE, BIG-IoT, bIoTope,
VICINITY, Inter-IoT and TagItSmart14, since the corresponding architectures are still being
defined and documented. In terms of the holistic and cross-domain approach which
covers both devices, gateways, cloud services and applications, symbIoTe has most
similarities with Inter-IoT which also considers interoperability at various levels of the IoT
stack. When looking at the symbIoTe Core Services developed for the Application
Domain, they are relevant and comparable to the BIG-IoT architecture which develops an
IoT Marketplace with a significantly broader scope than the symbIoTe Core Services. The
envisioned symbIoTe Smart Space middleware can be put into relation to the AGILE
galetway which supports various devices and communication protocols. A preliminary
analysis of potential IoT-EPI project synergies shows that potential points for collaboration
and common agreement are open APIs being defined at the platform level (symbIoTe
Interworking API) and gateway level (symbIoTe Smart Space API).

6.3 IoT Platforms contributed by symbIoTe partners

Platforms by symbIoTe partners will be included in the symbIoTe ecosystem. In this
section their most important features are mentioned, as well as plans for their integration.

6.3.1 OpenIoT

The OpenIoT platform is an open source IoT platform enabling the semantic
interoperability of IoT services in the cloud. At the heart of OpenIoT lies the W3C
Semantic Sensor Networks (SSN) ontology, which provides a common standards–based
model for representing physical and virtual sensors. OpenIoT includes also sensor
middleware that eases the collection of data from virtually any sensor, while at the same
time ensuring their proper semantic annotation. It o
ers visual tools that enable the development and deployment of IoT applications with
almost zero programming. Another key feature of OpenIoT is its ability to handle mobile
sensors, thereby enabling the emerging wave of mobile crowd sensing applications. The
platform is currently available as an open source project
(https://github.com/OpenIotOrg/openiot/) and supported by an active community of IoT
researchers, while being extensively used for the development of IoT applications in areas
where semantic interoperability is a major concern. As of June 2014, it consists of nearly
400.000 lines of code. In February 2015 there we 25 active registered contributors to the
OpenIoT source code and 66 users registered in developers mailing list. OpenIoT
received an award from Black Duck15, as being one of the top ten open source project that
emerged in 2013.

Within symbIoTe project, specific wrappers for the OpenIoT platform will be implemented
to enable symbIoTe L1 Compliance. Additionally, OpenIoT will be integrated within the
symbIoTe IoT federation, enabling L2 Compliance.

14 For short project descriptions visit http://iot-epi.eu/.
15 https://www.blackducksoftware.com/about/news-events/releases/black-duck-announces-open-source-rookies-of-year-

winners

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 102 of 127
 © Copyright 2016, the Members of the symbIoTe

6.3.2 Symphony

Symphony is the Nextworks platform for the integration of home/building control
functionalities, devices and heterogeneous subsystems. Symphony can monitor,
supervise and control many different building systems, devices, controllers and networks
available from third-party suppliers. By intelligently correlating cross-system information, a
flexible and highly efficient platform is delivered to the stakeholders. The system is a
service-oriented middleware integrating several functional subsystems into a unified IP-
based platform. As hardware/software compound, Symphony encompasses media
archival and distribution, voice/video communications, home/building automation and
management, and energy management.

6.3.2.1 Architecture

The concept schematic of the Symphony suite is depicted in the following two pictures.
Being the platform a commercial product whose IPR belongs to Nextworks, internal details
cannot be disclosed.

Figure 35 Symphony platform concept

Nextworks is currently evolving the Symphony platform to further pursue functional
decomposition and allow service modules to be distributed out of the stand-alone system
over a wide area (i.e. local cloud, public cloud), in a truly flexible IoT paradigm. The next
planned step for Symphony is to include energy management options and become highly
distributed on a variety of hosting systems (e.g. domestic NAS or micro servers hosted at
home or at providers’ curbs or in the cloud) and highly flexible to incorporate more and
more technology drivers for sensor/actuators.

Within symbIoTe, Symphony will aim to achieve Level-3 Compliance, thus enabling
creation of dynamic smart spaces. The symbIoTe architecture and its smart residential
collaboration application scenario are key enablers of this strategy, allowing to open the
system to the interoperation with other IoT systems and inspiring the development of key
features like:

• Generalized abstract model for all the ICOs (smartphones, printers, sensors,
actuators, etc.) with APIs to implement context-driven decisions/actions

• Automatic resource discovery and dynamic configuration of services

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 103 of 127
 © Copyright 2016, the Members of the symbIoTe

• Seamless multi-protocol adaptation, control of various systems, publishing of large
amounts of unstructured data (BigData) across the various and distributed decision
points

• Seamless use and integration with diverse local area / personal area connectivity
media like Zigbee, Z-Wave, Bluetooth LE

• Distributed execution of the platform middleware across any locally available
devices (e.g. mobile devices, residential devices, local routers)

6.3.3 Mobility BaaS

Nowadays cities are looking to implement systems that will allow them to actively get a
feel of their surroundings so that they can act in real time. The problem is that most of the
time, these type of systems do not integrate very well with each other, either because they
are from different vendors or because they are open-source projects built by independent
developers which need some work to integrate with the rest of the backend. With this in
mind, the Mobility Backend as a Service (MoBaaS) offers a set of services, in the form of
APIs, which intend to eliminate the friction created by having services from multiple
vendors.

MoBaaS will be a symbIoTe-enabled platform aiming to achieve L1 Compliance, used in
smart city use-case. It enables integration of data from many sources, focusing on the
mobility aspect of the city. Figure 36 shows which types of services the MoBaaS offers
and which kind of devices can be connected to it.

Figure 36 MoBaaS overall architecture

Figure 36 represents the overall architecture of the MoBaaS and is divided into three
layers. The first layer, on the bottom, represents the devices that can be connected to the
MoBaaS and send data to the backend. These devices range between a sensor placed
somewhere in the city to a wearable that anybody can use. The middle layer is the

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 104 of 127
 © Copyright 2016, the Members of the symbIoTe

MoBaaS itself, which provides services via REST APIs. The MoBaaS provides many
services, ranging from APIs which grant access to devices to APIs that provide events for
those devices. For instance, if there are parking devices registered, the API will have
access to the check-ins and check-outs of vehicles (i.e. the timestamp a vehicle entered
and left a parking spot) during the time that the device is online. Additionally, it also offers
a routing engine which intends to broaden the spectrum of possible applications to be
developed. For example, it enables the possibility of having the optimal route to a specific
parking spot. The MoBaaS also offers an API that is not directly related to the mobility
scene, but that can be of great value for routing purposes. This API provides air quality
events which allow for applications with optimal ecological routing to be designed.

Lastly, the top layer provides an easy way for everyone to integrate their applications via
well-defined REST APIs and start using the MoBaaS.

6.3.4 BETaaS Platform

BETaaS platform is an open-source platform that aims to overcome the limitations of
cloud-centric IoT architectures through the design and development of a horizontal
platform that leverages a distributed architecture to move the intelligence to the edge, i.e.,
close to the physical environment. BETaaS overcomes the limitations of current M2M
applications platforms. It provides a runtime that simplifies the deployment and execution
of content-centric M2M applications with a horizontal abstraction, which relies on a local
cloud of gateways, enabling the use of Things as a Service over heterogeneous things.
The platform offers built-in support for several non-functional requirements: Context
Awareness, Quality of Service, Security, Big Data Management and Virtualization. The
software is based on Java OSGi, a framework specifically designed to build modular
platforms with a highly dynamic structure.

BETaaS will not create federations as other IoT platforms. Atos will use the experience
gained while developing this platform to contribute to the symbIoTe platform architecture
and the developed components. BETaaS was designed to integrate heterogeneous
devices, and within symbIoTe we will have heterogeneous platforms, so similarities exist
within both solutions. symbIoTe can take advantage of the experience gained while
developing BETaaS and its adopted solution.

6.3.5 nAssist

nASSIST is a software platform designed and conceived to allow agile, continuous
management of data in the energy efficiency, security and automation fields. nAssist is a
complete tool with which powerful solutions can be built whilst ensuring scalability,
flexibility, integrity and system security. The platform integrates various drivers, embedded
systems, SDKs, databases (NoSQL, MS Sql, Cloud Storage), Web applications, mMobile
applications and other software components (Scheduler, Complex event processing unit
and Event Manager). It is built following a Service Oriented Architecture paradigm and has
been designed to be easily adapted to different areas of application that use, or implicitly
need, data collection and data processing from logical or physical devices (sensors and
actuators).

nASSIST has modular design allowing for rapid expansion of the system. It is fully
prepared for large networks situated in different locations with high reliability and

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 105 of 127
 © Copyright 2016, the Members of the symbIoTe

redundant services as well as to support multiple customer. The platform interface has
been developed from day one for individual client customizations and for access from all
standard web browsers and mobile devices. nASSIST can be connected to different
platforms that generate alarms and incidences, positioning or sensor measurements by
means of specific drivers. The communication with hardware platforms is bidirectional,
allowing remote control of devices and systems.

Within symbIoTe project, the nAssist platform will be used in Smart Space Domain for the
practical deployment of demos, pilots and trials in the context of the Smart Homes
services, and in the creation of IoT Federations.

6.3.6 Navigo Digitale

The Navigo Digitale IoT Platform (ND) is a platform created to manage digital assets
pertaining to harbours used for boating and yachting. Its scope embraces both physical
entities (objects) and immaterial entities (documents and workflows).

It consists of a distributed platform, with instances associated to different ports across
Europe and running part in the cloud, and part on premise.

The ultimate purpose of ND is to provide services to the harbour’s activities (B2B) and to
its end-users (B2C).

The services of ND are created from the combination of functions and information made
available by physical and immaterial entities.

For example, a service can be based on one or more workflows which are triggered and
driven by data and actions provided by one or more physical objects. Such objects are
either monolithic (e.g. a weather report station or a water/petrol station instrumented with
remote control interfaces) or composite, that is "container" objects which in turn are made
of different objects (e.g. a building or a yacht equipped with a control platform). In order to
build its services, ND will need to be able to access all of these types of objects and to
extract the relevant information they can provide in a seamless way.

If we abstract physical and immaterial entities and consider them all as "network
controllable objects", we can see that ND is in a broad sense an IoT platform.
Furthermore, since its objects can be in turn governed by "inner" IoT platforms, we may
consider ND as an IoT meta-platform, or IoT hierarchical platform. For such objects, the
data model seen by ND is linked to the foreign platform's data model for that specific
object. For example, if a yacht (Vessel object in ND) is equipped with a symbIoTe
Compliant system (e.g. Nextworks’ Symphony), the latter system’s data will be exposed in
the ND Vessel object, including information about lights, sensors, engine control room’s
monitoring, etc.

Access to inner IoT platforms will be possible for any symbIoTe Compliant Platform: for
example, if ND needs to access a vessel’s fuel tank level (say, to propose a convenient
fuel provider or suggest a route) and the vessel is equipped with a symbIoTe Compliant
Platform, ND will be able to search for the resource, get authorization to access it, and
communicate with the vessel’s RAP to retrieve the data. In the symbIoTe ecosystem, ND
has a functionality of an enabler, it uses symbIoTe core to access the resources offered
by IoT platforms connecting devices in vessels.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 106 of 127
 © Copyright 2016, the Members of the symbIoTe

6.4 Summary of symbIoTe position in the IoT ecosystem context

In this subsection we summarize the main findings of the analysis that has compared the
symbIoTe approach and its proposed architecture with other projects and initiatives in the
IoT space.

When comparing the symbIoTe architecture to the prominent reference architectures, we
can conclude that the symbIoTe architecture is in line with both the AIOTI and IoT-A
reference architectures. In fact, we can map the interfaces defined in AIOTI HLA to the
symbIoTe functional components, while IoT-A functional groups have their counterparts in
symbIoTe components. However, it should be noted that symbIoTe aims as implementing
functionalities for IoT device discovery, look-up, and name resolution across different
platforms which do not necessarily follow the IoT-A reference architecture, but rather
decide to expose their devices as Virtual Entities accessible through REST-based
interfaces.

The symbIoTe architecture is motivated by the oneM2M functional architecture, but
symbIote extends the scope by identifying additional features, in particular those related to
platform federations, bartering and trading as well as device roaming. In oneM2M,
platforms are supposed to interact only through the Cloud Domain and a corresponding
interface, but oneM2M does not provide many details on the particularities of platform-to-
platform interaction. symbIoTe specifies this process in more detail by defining
mechanisms for platform interaction (Bartering & Trading, SLA agreement). Additionally,
symbIoTe provides platforms with the possibility to share their resources to third-party
applications by using symbIoTe Core Services, which is a feature not envisioned in
oneM2M.

When comparing symbIoTe to other related projects listed in Section 6.2, the major
difference of symbIoTe is in the enlarged scope of interoperability concepts covered by
symbIoTe. Projects such as COMPOSE, CRYSTAL, iCore and a recent project FIESTA-
IOT16 focus on syntactic and semantic interoperability, but not on organizational
interoperability. symbIoTe considers original features related to organizational
interoperability than the aforementioned projects by supporting the creation of IoT
Federations for secure interoperation, collaboration and sharing of resources between two
platforms, as well as IoT Device Roaming. There are also certain differences in the
proposed approaches when comparing them to L1 Compliance as specified by symbIoTe.
The major difference when comparing symbIoTe L1 solution to iCore is in the fact that
iCore stores the data provided by platform devices, while symbIoTe stores only their
metadata required for effective search. The COMPOSE project is not actually focusing on
IoT platforms but rather on the engineering processes and allows data sharing between
them, while Crystal is targeting safety-critical systems

16 http://fiesta-iot.eu/

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 107 of 127
 © Copyright 2016, the Members of the symbIoTe

7 Conclusion and Future Work

This document presents the initial collection of the symbIoTe system requirements and
reports a first version of the system’s functional architecture, with the respective
components, entities and interfaces. System requirements have been derived during an
iterative process and based on symbIoTe use cases. They are related to a wide range of
features across the IoT stack, from smart devices and gateways to cloud-based platform
components and applications. Some important symbIoTe specific requirements are as
follows: the system must support both sensors and actuators, and allow them to be mobile
and change location; mobile devices should be able to interact with their surrounding
environment in visited domains; access to both sensors and actuators is provided directly
through the platforms managing those devices while symbIoTe serves as an intermediary
between applications and platforms; access to platform devices needs to be authenticated
and authorized.

The document sets the foundations of the symbIoTe functional architecture in the context
of various interoperability aspects which are being supported by the symbIoTe
interoperability framework (syntactic, semantic and organizational interoperability).
symbIoTe defines an interoperability framework for IoT platforms and thus does not strive
to become another “superplatform”: It does not store any sensor-generated data outside
of IoT platform boundaries, but rather acts as a mediator between applications and
platforms ensuring secure and uniform access to platform resources through well-defined
interfaces. The functional architecture is built around a layered stack in accordance with
the AIOTI reference architecture, and defines four domains: Application, Cloud, Smart
Space and Smart Device domain. It is motivated by the oneM2M architecture, but
symbIote extends the scope by identifying features which go beyond the oneM2M
functional architecture: These are related to platform federations, bartering and trading as
well as device roaming.

In this document we have focused on defining the components for the Application and
Cloud domain based on the corresponding requirements and have modeled system
behavior supporting syntactic and semantic interoperability (L1 compliance). In the next
phase we will define sequence diagrams describing component interactions between
platforms forming federations and provide further details about the components for the
Smart Space and Smart Device domain. The corresponding sequence diagrams will also
be specified to depict the interaction enabling dynamicity in Smart Spaces and roaming of
IoT devices.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 108 of 127
 © Copyright 2016, the Members of the symbIoTe

8 References

[1] H. van der Veer, A. Wiles. Achieving Technical Interoperability – the ETSI Approach.
ETSI White Paper No.3, 3rd edition, April 2008

[2] IERC. IoT Semantic Interoperability: Research Challenges, Best Practices,
Recommendations and Next Steps. Position Paper, March 2015

[3] Murdock, P., Elloumi, O. (eds). AIOTI High Level Architecture. Release 2.0, 2015

[4] Murdock, P., Elloumi, O. (eds). AIOTI High Level Architecture. Release 2.1, 2016

[5] Carrez, F. (ed). Final architectural reference model for the IoT v3.0. Release 3.0, July
2013

[6] oneM2M. The interoperability enabler for the entire M2M and IoT ecosystem. oneM2M
whitepaper, 2015

[7] oneM2M. M2M Functional Architecture. Technical specification, 2015, URL:
http://www.onem2m.org/images/files/deliverables/TS-0001-Functional_Architecture-
V1_6_1.pdf

[8] IoT-A. Deliverable D1.5 – Final architectural reference model for the IoT v3.0.
Technical specification, 2013

[9] J. Heuer, J. Hund, O. Pfaff. Toward the Web of Things: Applying Web Technologies to
the Physical World. IEEE Computer, 48(5): 34-42, 2015

[10] W3C White Paper for the Web of Things, 2016, URL:
https://www.w3.org/2016/09/IoTW/white-paper.pdf

[11] Industrial Internet Consortium. Industrial Internet Reference Architecture Technical
Report, 2015, URL: http://www.iiconsortium.org/IIRA-1-7-ajs.pdf

[12] R. M. Soley. First European testbed for the Industrial Internet Consortium. Bosch
Blog, 2015, URL: http://blog.bosch-si.com/categories/manufacturing/2015/02/first-
european-testbed-for-the-industrial-internet-consortium/

[13] VDI/VDE, ZVEI. Reference Architecture Model Industrie 4.0 (RAMI4.0). Status
Report, 2015, URL:
http://www.zvei.org/Downloads/Automation/5305%20Publikation%20GMA%20Status%
20Report%20ZVEI%20Reference%20Architecture%20Model.pdf

[14] International Organization for Standardization. ISO/IEC AWI/WD 30141/20.00
Internet of Things Reference Architecture (IoT RA). 2016, URL:
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=6569
5

[15] COMPOSE project. Deliverable D1.2.2 – Final COMPOSE architecture document
v1.0. Technical specification, 2014

[16] iCore project. Deliverable D2.3 Architecture Reference Model. Technical
specification, 2013

[17] L. Macvittie. ABAC not RBAC, Welcomne to the (IoT) world of contextual security.
2015

[18] V. Hu, D.Ferraiolo, R. Kuhn, A. Schnitzer, K.Sandlin, R.Miller, K.Scarfone. Guide to
Attribute Based Access Control (ABAC) - Definition and Considerations. NIST Special

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 109 of 127
 © Copyright 2016, the Members of the symbIoTe

Publication, 2014, URL:
http://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.sp.800-162.pdf

[19] Zhou Y, De S, Wang W, Moessner K. Search Techniques for the Web of Things: A
Taxonomy and Survey. Sensors, 16(5), p. 600, 2016

[20] COMPOSE – Collaborative Open Market to Place Objects at your SErvice, URL:
http://www.compose-project.eu/, access: September 2016

[21] CRYSTAL – Critical sYSTem engineering AcceLeration, URL: http://www.crystal-
artemis.eu/, access: September 2016

[22] iCore – Empowering IoT through Cognitive Technologies, URL: http://www.iot-
icore.eu/, access: September 2016

[23] Crystal project. Deliberable D601.021: Interoperability Specification v1, 2014
[24] Fi-ware project. Deliverable D2.2: High-level Description. Technical specification,

2011
[25] G. Malim. Looking for a Benchmarking Framework for IoT platforms. IoT global

network, 2016, URL: http://www.iotglobalnetwork.com/iotdir/2016/02/16/looking-for-a-
benchmarking-framework-for-iot-platforms-1031/

[26] Network Working Group. Key words for use in RFCs to Indicate Requirement
Levels. Request for Comments 2119, 1997, URL: https://www.ietf.org/rfc/rfc2119.txt

[27] IEEE Standards Association. IEEE Standard for Information Technology – Systems
Design – Software Design Descriptions. Active standard, 2009, URL:
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5167255

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 110 of 127
 © Copyright 2016, the Members of the symbIoTe

9 Abbreviations

AAM Authentication and Authorization Manager

APP Application

BarT Bartering & Trading component

CLD Cloud

DoA Description of the Action

GA Grant Agreement

IIRA Industrial Internet Reference Architecture

IoE Internet of Everything

IoT Internet of Things

JSON JavaScript Object Notation

KPI Key Performance Indicator

Lx (1-4) Level x (1 to 4) symbIoTe Compliance

RA Reference Architecture

RAP Resource Access Proxy

RAM Resource Access Monitor

RAMI4.0 Reference Architecture Model Industrie 4.0

RM Resource Monitor

S3 symbIoTe Smart Space

SDEV Smart Device

SLA Service Level Agreement

SOTA State of the art

SSP Smart Space

QoE Quality of Experience

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 111 of 127
 © Copyright 2016, the Members of the symbIoTe

10 Appendix

10.1 AIOTI high level architecture overview

The AIOTI HLA architecture consists of three layers (application, IoT and network layer)
and five interfaces defined between layer entities as shown on Figure 37. The App Entity
implements IoT application logic. It is part of the Application layer but it can be deployed
on devices, gateways or servers. The IoT Entity exposes IoT functionalities through two
interfaces: the interface to IoT capabilities is used by the App Entity, while the Horizontal
services interface is used by other IoT Entity (i.e. by other IoT platform). Interfaces for
data acquisition (labeled as 3) and interface for network control (labeled as 4) are used in
communication between the IoT Entity and Networks. The Networks is an entity in the
Network layer that transparently comprise lower layers regarding the network technologies
and device management. In the document v. 2.1 [4] the AIOTI HLA is extended with two
additional interfaces used to integrate with third-party solutions. The E-1 interface is used
for integration with BigData frameworks, while the E-2 interface is used to exchange
context information with other systems, such as location, maps, banking, etc.

Figure 37 AIOTI high level architecture [4]

10.2 oneM2M functional architecture overview

oneM2M is a standardisation initiative whose main goal is to develop standards for M2M
and the Internet of Things. It was established as an association of major standardization
organizations from all over the world: ARIB (Japan), ATIS (USA), CCSA (China), ETSI
(Europe), TIA (USA), TSDSI (India), TTA (Korea) and TTC (Japan). Apart from

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 112 of 127
 © Copyright 2016, the Members of the symbIoTe

standardization organizations, a large number of technical companies (Cisco, Intel,
Huawei, ...) also participates in standards development.

As officially stated, the purpose and goal of oneM2M is to develop technical specifications
which address the need for a common M2M Service Layer that can be readily embedded
within various hardware and software, and relied upon to connect the myriad of devices in
the field with M2M application servers worldwide.

oneM2M is involved in the preparation of a large number of specifications and reports, a
few of the most important ones are listed below:

• use cases and requirements for a common set of Service Layer capabilities;
• Service Layer aspects with high-level and detailed service architecture, in light of an

access independent view of end-to-end services;
• protocols/APIs/standard objects based on this architecture (open

interfaces&protocols);
• security and privacy aspects; and
• information models and data management

This brief overview of oneM2M efforts presents oneM2M functional architecture, i.e.
Service Layer aspects with high-level and detailed service architecture, in light of an
access independent view of end-to-end services.

oneM2M Layered Model for supporting end-to-end (E2E) M2M Services comprises three
layers: Application Layer, Common Services Layer and the underlying Network Services
Layer. oneM2M functional architecture, shown in Figure 38, comprises the following
functions:

• Application Entity (AE) that implements application service logic (e.g. instance of
a fleet tracking application, a power metering application etc.)

• Common Services Entity (CSE) that represents an instantiation of a set of
common service functions, i.e. services exposed to other entities through Mca and
Mcc reference points. Examples of such services include Data management,
Device management, Service subscription management.

• Network Services Entity (NSE) provides services from the underlying network to
CSE. Examples of such services include Device management, Location services,
Device triggering. Data transport services from underlying network are not included
in NSE.

Figure 38 oneM2M functional architecture [7]

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 113 of 127
 © Copyright 2016, the Members of the symbIoTe

Reference points defined between entities of functional architecture (Mca, Mcc, Mcn,
Mcc') consist of one or more interfaces of any kind. They enable communication between
entities, forwarding data or using the functionalities of other entities. The standard defines
various procedures that can be used through those reference points, which will not be
elaborated within the scope of this overview.

Configurations supported by oneM2M architecture are shown in Figure 39. Specified
nodes (IN, MN, ADN, ASN, ...) are logical entities. Their physical mapping is the following:

• Infrastructure Node (IN): M2M Service Infrastructure
• Middle Node (MN): M2M Gateway
• Application Service Node (ASN) and Application Dedicated Node (ADN): M2M

Device
Nodes are either CSE-capable or non-CSE-capable. A CSE-capable node is a logical
entity that contains at least one oneM2M CSE. Examples of such nodes are ASN, IN and
MN. A non-CSE-capable node contains no oneM2M CSEs. CSEs that reside in different
nodes can be different and are dependent on the services supported by the CSE and the
characteristics of the physical entity that contains the CSE's node.

Within CSE reside services provided by the Common Services Layer in the M2M System,
and are referred to as Common Service Functions (CSFs).

Figure 39 Configurations supported by oneM2M architecture [7]

Common Service Functions (CSFs) residing within CSE are shown in Figure 40. They
provide services to the AEs via the Mca reference point and to other CSEs via the Mcc
reference point. Underlying network functions are accessed through Mcn reference point.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 114 of 127
 © Copyright 2016, the Members of the symbIoTe

Figure 40 Common service functions [7]

Common Services Functions are the following:

• Application and Service Layer Management is responsible for management of
AEs and CSEs on the ADNs, ASNs, and INs. The functionalities it provides are
configuring, troubleshooting and upgrading of CSEs and AEs.

• Communication Management and Delivery Handling is responsible for
communication with other CSEs, AEs and NSEs. It chooses the appropriate
communication connection for delivering data, manages buffering and forwarding,
and delivery handling policies.

• Data Management and Repository is responsible for collecting, converging and
storing data for analytics and semantic processing. Some of the data types stored
in this repository are contextual information, semantic information, time stamps and
location data.

• Device Management function is responsible for management of device capabilities
on MNs, ASNs and ADNs that reside within an M2M Area Network. It defines
specific protocols and data models according to the needs of AEs and CSEs. In
order to manage entities in the field domain, Management Server needs to be
deployed on IN, while Management Proxy and Management Client need to be
deployed on MN/ASN

• Discovery function is responsible for searching information about applications and
services. It depends on filter criteria which is subject to access control policy.

• Group management enables bulk operations on multiple devices, applications or
resources. It is responsible for creating, retrieving, updating and deleting the group,
adding and removing group members, creating subscriptions and data forwarding.

• Location function allows AEs to obtain geographical location information of the
nodes. Location server in the network is responsible for storing and updating this
information, while GPS modules need to be deployed on devices.

• Network Service Exposure, Service Execution and Triggering manages
communication with the underlying networks for accessing network service
functions. It is responsible for device triggering, small data transmission, location
notification, policy rule settings and device management.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 115 of 127
 © Copyright 2016, the Members of the symbIoTe

• Registration function is responsible for delivering AE or CSE information to
another CSE in order to use M2M services. AEs register with local CSEs. CSEs
register with higher-level CSEs (ASN CSE with MN CSE, MN CSE with IN CSE).

• Security function is responsible for sensitive data handling, access control
(identification, authentication, authorization, identity management).

• Service Charging and Accounting is responsible for charging functions for the
Service Layer such as online real-time credit control and charging policies. It
captures chargeable events, and generates charging records. The function
supports subscription and event based charging.

• Subscription and Notificiation handles subscriptions from AEs and CSEs, and
provides notifications. Hosting CSE sends notifications to subscribers when
modifications to a resource are made.

oneM2M specifies information flows for some of the functionalities of the CSF, but they
are not considered in this brief overview.

10.3 Industrial Internet Reference Architecture overview

The Industrial Internet Architecture Framework builds on top of ISO/IEC/IEEE
40201:2011, which aims to standardize the practice of architecture description by defining
standard terms and vocabulary and presents a conceptual foundation for expressing,
communicating and reviewing architectures and specifying requirements that apply to
architecture descriptions, architecture frameworks and architecture description languages.
Vocabulary definitions based on 40201:2011 are noted in italics.

Figure 41 Industrial Internet Consortium members [12]

One aspect is that, by solving the so-called symbol-grounding problem in the IT-domain,
the OT domain can benefit from the explicit and transparent provision of the meaning and
the context of data. Symbol grounding in that context is a paraphrase for the problem to
give symbols used in computer programs or communication their unambiguous meaning
in an explicitly defined and preferably computer processable way. This observation
stresses the importance of the capability to deal with semantics.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 116 of 127
 © Copyright 2016, the Members of the symbIoTe

Various topics of interest (concerns) related to identified stakeholders are grouped in four
architecture viewpoints, which deal with different aspects of the concerns, as stated by
various stakeholders:

• Business viewpoint – concerns on business visions, values and objectives.

• Usage viewpoint – concerns of system engineers to achieve system capabilities.

• Functional viewpoint – interactions and interfaces to other systems.

• Implementation viewpoint – technologies needed to implement functions.

In all viewpoints, special care has been given to security by defining security concerns,
activities, functions and secure implementations, as the issue of security is crucial in the
Industrial Internet due to new nature of openness of previously closed Industrial Control
Systems (ICS).

10.3.1 Functional viewpoint

The Functional Viewpoint explains that Industrial Control Systems (ICS), widely deployed
to enable industrial automation are currently in a major transformation, from usually closed
systems operated by Supervisory Control and Data Acquisition (SCADA) systems towards
open systems, utilizing Internet Protocol and Internet architecture, capable of
communicating and collaborating with other distributed systems. Two major themes of
transformation are identified:

• Increasing local collaborative autonomy: New sensing and detection technologies
provide more, and more accurate, data. Greater embedded computational power
enables more advanced analytics of these data and better models of the state of a
physical system and the environment in which it operates. Moreover, ubiquitous
connectivity between peer systems enables a level of fusion and collaboration that
was previously impractical.

• Increasing system optimization through global orchestration: Collecting sensor data
from across the control systems and applying analytics, including models
developed through machine learning, to these data, we can gain insight to a
business’s operations. With these insights, we can improve decision-making and
optimize the system operations globally through automatic and autonomous
orchestration.

Functionalities of the system are further grouped in five functional domains which are top-
level functional decompositions of any Industrial Internet System, each providing a distinct
functionalities in the overall system. General model of functional domains does not
necessarily fit all industrial verticals, thus different implementations are possible due to
emphasis of any industrial vertical – functional domains can all be implemented within a
single system, or can be implemented split up over several sub-systems.

• Control (asset) domain

• Operations domain

• Information domain

• Application domain

• Business domain

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 117 of 127
 © Copyright 2016, the Members of the symbIoTe

Relationships between Functional domains are given in the Figure 42 The functional
domains in the IIRA [11] (Green arrows indicate data/information flow, grey/white arrows
indicate decision flows and red arrows indicate command/request flows).

Figure 42 The functional domains in the IIRA [11]

10.3.2 Implementation viewpoint

The Implementation Viewpoint defines general architecture of Industrial Internet System,
its structure and the distribution of components, and the topology by which they are
interconnected. It also includes technical description of the components, including
interfaces, protocols, behaviours and ther properties. Provides implementation map for the
key system characteristics and ativities as defined and indetified in Usage Viewpoint.

General architecture defines a three-tier architecture, consisting of:

• Edge tier – collects data from the edge nodes, using the proximity network (network
connecting the edge nodes to edge gateways)

• Platform tier – receives and forwards control commands between the tiers, it
consolidates processes and and analyzes data frlow from edge to enterprise tier.

• Enterprise tier – implements domain-specific applications, decision support systems
and interfaces to end-users and other systems.

Architecture also defines three different network environments, each one with its
specific functions:

• Proximity network - connection between edge nodes (sensors, actuators,
devices, control systems and assets) and edge gateways – bridging short-range
communication towards edge nodes towards other networks.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 118 of 127
 © Copyright 2016, the Members of the symbIoTe

• Access network – connection between Edge gateways and Platforms – can
include closed corporate network, overlay private network or public Internet
(both fixed or mobile access).

• Service network – connectivity between Platform and Applications, usually an
overlay private network over public Internet or Internet network itself.

Figure 43 Three-tier general architecture [11]

A Nice view provided by the IIRA incporates concepts of Functional domains from
Functional Viewpoint and three-tier general architecture from Implementation Viewpoint,
providing additional layer of definition of composition of Functional domains and data flows
between domains and accross platform tiers.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 119 of 127
 © Copyright 2016, the Members of the symbIoTe

Figure 44 Mapping of the three-tier architecture to functional domains [11]

10.3.3 Key system concerns

Apart from domains and general architecture, IIRA also defines (in Part II of the IIRA)
key system concerns as groups of problems that need to be taken in consideration when
designing or developing IIS system, in the perspective of the transition of IIS systems from
closed system to open and interoperable systems:

• Safety

• Security, trust and privacy

• Resilience

• Integrability, interoperability and composability

• Connectivity

• Data management

• Analytics

• Intelligent and resilient control

• Dynamic composability and automatic integration

10.4 COMPOSE platform overview

COMPOSE is an open-source ecosystem that aims at enabling new services that can
seamlessly integrate real and virtual worlds through the convergence of the Internet of
Services (IoS) with the Internet of Things (IoT). This is achieved through the provisioning
of a scalable marketplace infrastructure, in which data from Internet-connected objects
can be easily published, shared, and integrated into services and applications. The
marketplace provides all the necessary technological enablers, organized into a coherent
and robust framework covering both delivery and management aspects of objects,
services, and their integration. The platform offers connectivity to IoT devices
accompanied by advanced data management capabilities, including real-time data
processing capabilities. The project develops novel approaches for virtualising smart
objects into services and for managing their interactions. This includes solutions for
managing knowledge derivation, secure and privacy preserving data aggregation and
distribution, dynamic service composition, advertising, discovering, provisioning, and
monitoring. To validate different aspects of the platform COMPOSE addresses the
following application areas: smart shopping spaces, smart city and smart territory.
COMPOSE project will end by November 2015.

IoT aspects covered:

• Object virtualization: enabling the creation of standardized service objects
• Interaction virtualization: abstract heterogeneity while offering several interaction

paradigms
• Knowledge aggregation: creating information from data
• Discovery and advertisement of semantically-enriched objects and services

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 120 of 127
 © Copyright 2016, the Members of the symbIoTe

• Data Management: handle massive amounts and diversity of data/metadata
• Ad hoc creation, composition, and maintenance of service objects and services
• Security, heterogeneity, scalability, and resiliency incorporated throughout the

layers

The COMPOSE platform consists of:

• Service Objects: an internal digital representation of the Smart Object (real-world
internet connected physical objects – presented as Digital Resources [15]).
COMPOSE service objects communicate with the smart object via a web object,
which is a smart object component that interacts with the COMPOSE platform using
the COMPOSE protocol.

• Registry: holds semantic metadata in the RDF store for the different entities hosted
by the platform. The ultimate goal of the registry is to enable discovery of
COMPOSE components to developers and end-users. In addition, the platform
provides an assisted composition services engine to help external developers
combine the base service objects and applications into workflows and external
applications.The security architecture of COMPOSE is based on security metadata
which captures security policies of users specifying the privacy level the system
must maintain for them.

• COMPOSE Applications: re-usable assets built by external developers using the
COMPOSE platform IDE and SDK.

• COMPOSE Workflows: contain business logic, provided by a developer, and may
combine data stemming from Service Objects, with capabilities provided by various
COMPOSE applications.

• Developer’s portal: the main component which external developers encounter when
dealing with COMPOSE. Contains basic components such as a SDK, an IDE, a
GUI and a marketplace for the final IoT applications.

• External applications: not really COMPOSE entities but rather can be viewed as
consumers of COMPOSE entities.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 121 of 127
 © Copyright 2016, the Members of the symbIoTe

Figure 45 COMPOSE high level architecture [15]

Figure 46 The COMPOSE open marketplace approach [15]

How can symbIoTe take advantage/complement/extend this platform:
Advantages:

• layered architecture
• support for semantic representation and discovery of smart objects
• data management and real-time analytics on incoming data streams
• support for security and standardisation protocols

Disadvantages:

• it is not clear how and which real-time analytics on incoming data streams can be
performed

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 122 of 127
 © Copyright 2016, the Members of the symbIoTe

10.5 Crystal platform overview

CRYSTAL aims at the Establishment of Recognized International Open Standards of
Lifecycle Tool & Data Integration Platforms for Systems Engineering. Integration and
interconnection of tools is a required prerequisite in order to support the collaboration
within a development process as well as with customers and suppliers. Interoperability is
therefore getting more and more crucial for successful and efficient product engineering.
The main technical challenge in addressing this problem is the lack of open and common
interoperability technologies.

The main idea of the so-called Interoperability Specifications (IOS) is to rely on common
interoperability services, providing a common ground for integrating lifecycle and
engineering tools across different engineering disciplines and from multiple stakeholders
involved in the development of large scale safety-critical systems (i.e. the projects focuses
on four domains: the automotive, aerospace, rail and health sector). The common
denominator of the IOS is based on a lightweight and domain-agnostic approach,
providing basic capabilities for handling the whole lifecycle of engineering artefacts
manipulated throughout the development of safety-critical embedded systems.

Figure 47 The Crystal IOS layered architecture [23]

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 123 of 127
 © Copyright 2016, the Members of the symbIoTe

CRYSTAL is not focusing on IoT platforms but rather on engineering processes that allow
embedded systems and management platforms to share the same data across different
engineering processes, mainly handled by proprietary and close systems. The vision of
CRYSTAL is not to create APIs across system to exchange data but rather to create a
data repository that allows different systems to access the data, providing also the
necessary semantics for each system to use the data. In this sense, CRYSTAL is not
close to IoT, but the general concept of sharing data among different systems, which in
the IoT domain are the smart objects and the external Cloud services, can be worth
investigating.

CRYSTAL refers to several approaches with respect to the interoperability of data across
different systems. Such examples are i) Open Services Lifecycle Collaboration (OSLC)
approach (http://open-services.net/specifications/) and ii) the ReqIF data exchange format
(www.omg.org/spec/ReqIF/).

Moreover, CRYSTAL claims that it builds upon and extends the Interoperability
Specifications (IOS), initially defined by former ARTEMIS projects (i.e., iFEST
(http://www.artemis-ifest.eu), MBAT (http://www.mbat-artemis.eu)). IOS consists of a
specification for achieving common Tool & Data Interoperability in heterogeneous
Systems Engineering development environments. In particular, it encompasses the
specification of three main aspects:

• The specification of communication paradigms and protocols to be used for
exchanging information between integrated Tools and Data repositories,

• The specification of data exchange formats (or syntax, referring to the formats used
for serializing data as strings, e.g., RDF/XML, XMI/XML, JSON, etc.), and

• The specification of the semantics of the information to be interpreted and
exchanged across these Tools and Data repositories (or abstract syntax, referring
to the definition of sets of concepts for lifecycle integration, defined with their
properties and relationships).

Since resource semantics are important to symbIoTe, it may be worth investigating further
into the aforementioned approaches. However, a paradigm shift will be required since
these technologies do not refer to the IoT and smart objects domain.

10.6 iCore platform overview

The iCore platform provides a cognitive management framework that facilitates and
supports Internet-connected objects. The platform conceals the technological
heterogeneity of IoT resources, while supporting application provision and business
integrity in line with the perspective of various users/stakeholders. The framework is based
on the layered architecture, consisting of virtual objects (VOs), composite virtual objects
(CVOs) and functional blocks (service level) for representing the user perspectives, where
VOs are cognitive virtual representations of legacy real-word objects and digital objects,
CVOs are cognitive mash-ups of semantically interoperable VOs that combine information
and services from the lower layer in order to provide building relationships and achieve
added value, while the topmost layer provides unified functional parts for each service.
Each layer offers scalable mechanisms for the registration, look-up and discovery of
entities, and the composition of services handles the management of events as well as
cooperation between objects. The iCore platform is equipped with security
protocols/functionality, which span all levels of the framework, and consider the ownership

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 124 of 127
 © Copyright 2016, the Members of the symbIoTe

and privacy of data, as well as controlling the actual access to objects. To validate the
proposed solutions iCore addresses the following application areas: ambient assisted
living, smart office, smart transportation and supply chain management.

The EU iCore project won the Best Exhibit Award at IoT360 Summit in 2014.

IoT aspects covered:

• Virtual representation of physical sensors/digital devices
• Dynamic sensor discovery
• Semantic representation of virtual objects (RDF triplets)
• Intelligent decisions based on cognitive properties

The iCore architecture comprises several levels of functionality:

• Virtualization and composition of objects. Real World Objects (RWO) can be
represented as simple Virtual Objects (VOs) that can be aggregated and merged in
order to create new Virtual Composite Objects (VCOs) that extend and generalize
RWOs functionalities and features. RWOs are semantically described using RDF
triplets.

• Segmentation and aggregation of functions. Objects are framed in three levels.
At each level, the iCore architecture envisages an increasing number of
functionalities and systematic entities used to support the architecture.

• Functional and systematic view of objects. Any single object provides interfaces
and functions that support integration of the object into the system.

• Cognition. iCore is structured as a cognitive cycle in which knowledge is derived
from observing the external environment which is continually evolving and decisions
are inferring its future behavior based on different criteria. iCore uses different
machine learning techniques, semantic reasoning and pattern recognition
techniques.

• Security and privacy. iCore can authenticate users and authorize them against
VOs/CVOs.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 125 of 127
 © Copyright 2016, the Members of the symbIoTe

Figure 48 iCore architecture [16]

How can symbIoTe take advantage/complement/extend this platform:
Advantages:

• layered organization with virtual objects and composite virtual objects
• support for semantic representation of virtual objects
• various cognitive mechanisms.

Disadvantages:
• the layered organization does not easily map to the symbIoTe hierarchical

organization with local IoT domains (cloudlets) and the cloud domain
• it is unclear which “cognitive mechanisms” are available and whether they are

indeed scalable or not

10.7 FIWARE platform overview

FIWARE is an open initiative aiming to create a sustainable ecosystem to grasp the
opportunities that will emerge with the new wave of digitalization caused by the integration
of recent Internet technologies. The high-level goal of the FIWARE project is to build the
Core Platform of the Future Internet that will dramatically increase the global
competitiveness of the European ICT economy by introducing an innovative infrastructure
for cost-effective creation and delivery of versatile digital services, providing high QoS and
security guarantees. As such, it will provide a powerful foundation for the Future Internet,
stimulating and cultivating a sustainable ecosystem for (a) innovative service providers
delivering new applications and solutions meeting the requirements of established and
emerging Usage Areas; and (b) end users and consumers actively participating in content
and service consumption and creation. The entire FI WARE platform is based upon
different elements (i.e. General Enablers, GEs) which offer reusable and commonly
shared functions serving a multiplicity of Usage Areas across various sectors. Key goals of
the FI-WARE project are the identification and specification of GEs, together with the
development and demonstration of reference implementations of identified GEs. Any

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 126 of 127
 © Copyright 2016, the Members of the symbIoTe

implementation of a GE comprises a set of components and will offer capabilities and
functionalities which can be flexibly customized, used and combined for many different
Usage Areas, enabling the development of advanced and innovative Internet applications
and services.

FIWARE initiative consists of several parts: FIWARE platform, FIWARE Lab, FIWARE
Ops, FIWARE Accelerate and FIWARE Mundus.

IoT aspects covered:

• scalable discovery and look-up of IoT resources
• data management
• semantic data annotation
• scalable, elastic and high performing management of the IoT
• mobility of IoT resources
• QoS and security

The Core Platform provided by the FIWARE project is based on GEs linked to the
following areas:

• Cloud Hosting – the fundamental layer which provides the computation, storage
and network resources, upon which services are provisioned and managed.

• Data/Context Management – the facilities for effective accessing, processing, and
analyzing massive volume of data, transforming them into valuable knowledge
available to applications. Main components are Publish/Subscribe Broker GE,
Complex Event Processing GE, Big Data Analysis GE, Query Broker GE, Semantic
Annotation GE, Meta-data pre-processing GE, etc.

• Applications, Services and Data Delivery – the infrastructure to create, publish,
manage and consume FI services across their life cycle, addressing all technical
and business aspects.

• Internet of Things (IoT) Service Enablement – the bridge whereby FI services
interface and leverage the ubiquity of heterogeneous, resource-constrained devices
in the Internet of Things. Main IoT GEs are IoT Communication, IoT Resources
Management, IoT Data Handling and IoT Process Automation.

• Interface to Networks and Devices (I2ND) – open interfaces to networks and
devices, providing the connectivity needs of services delivered across the platform.

• Security – the mechanisms which ensure that the delivery and usage of services is
trustworthy and meets security and privacy requirements.

• Advanced Web-based User Interface – new user input and interaction capabilities,
such as interactive 3D graphics and immersive interaction with the real and virtual
world.

688156 - symbIoTe - H2020-ICT-2015 D1.2 – Initial Report on System Requirements and Architecture
 Public

Version 2.0 Page 127 of 127
 © Copyright 2016, the Members of the symbIoTe

Figure 49 FIWARE platform architecture [24]

Figure 50 FIWARE IoT service enablement platform [24]

How can symbIoTe take advantage/complement/extend this platform:
Advantages: data management and real-time event processing capabilities, support for
semantic data annotation, security, reusable GEs

Disadvantages: it is not intuitive how to use GEs implemented within the FIWARE Lab

