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Abstract
Let p,, be the nth smallest prime and d,, := pn4+1 —pn the gap between p,, and p,,11.
For any fixed ¢ > 0, we conjecture that the estimate

|{pn <z:dpyr/dp > c}| =(c+ 1) () + O(a:(log:c)fg/2+6)

holds for any ¢ > 0, and we give a heuristic argument to support this conjecture
which is based on a strong form of the Hardy-Littlewood conjectures.

1. Introduction

Let p; == 2 < pg := 3 < p3 :=5 < --- be the sequence of prime numbers. The
Prime Number Theorem implies that the nth prime gap

dy = Pn+1 — Pn

has length log p,, on average; in other words, the nth normalized prime gap

dn = dn/Ingn
takes the value one on average. For any fixed number ¢ > 0, heuristics based on
Cramér’s probabilistic model of the primes lead to the conjecture that
lim N71|{HSN:&\”ZC}|:676. (1)

N—oc0

Thus, we expect that the normalized prime gaps are distributed according to a
Poisson process. We refer the reader to the expository article [7] of Soundararajan
for an excellent account of these intriguing statistics.

The conjectural relation (1) also leads to a natural conjecture concerning ratios
of consecutive prime gaps. More specifically, it seems likely that for any fixed ¢ > 0
the following relation holds:

lim N_l‘{nSN:dn_H/ancH =(c+1)7". (2)

N—o0
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Indeed, (1) suggests that for any fixed 2 > 0 the normalized prime gap c?n lies in the
infinitesimal interval (z, z 4+ dx) with probability e~* dx. The probability that both
events c?n € (z,z + dz) and c?n_H € (y,y + dy) happen simultaneously is therefore
e~ "7 Y dx dy, assuming these two events are independent. Integrating over all pairs
(z,y) with y > cx, we expect that

]\}i_r>nooN_1|{n§N:3n+1/3n20}‘:/0 /gﬂ e " Vdydr = (c+1)"".

Since log p,+1 = logp,, + o(1) as n — oo, it follows that Jn+1/&\n — dpy1/dn, and
in this way we arrive at the conjectural relation (2).

Note that (2) can be reformulated as follows. Let 7(z) denote the prime counting
function, and for any fixed ¢ > 0 let 7.(x) be the function given by

Te(x) = |{pn <z:idpt1/dn > c}|
Then (2) is equivalent to the conjectural relation
7e(z) ~ (c+ 1) tn(x) (z — 00). (3)

In this note, we present a heuristic argument, based on a quantitative form of the
Hardy-Littlewood prime k-tuple conjecture, to support the following stronger form
of the conjecture (3).

Conjecture 1. For any ¢ > 0 and € > 0, one has the estimate
me(x) = (c+ 1) tn(x) + O(a:(logx)_3/2+5),
where the implied constant depends only on ¢ and €.

The results of the present paper are inspired by a celebrated work of Lemke Oliver
and Soundararajan [4] that studies the surprisingly erratic distribution of pairs of
consecutive primes among the ¢(q)? permissible reduced residue classes modulo g.
In [4] a conjectural explanation for this phenomenon is offered, which is based on a
strong form of the Hardy-Littlewood conjecture (see [4, Equation (2.4)]).

2. Preliminaries

2.1 Notation

Let P denote the set of primes in N.
For an arbitrary set S, we use 1s to denote its indicator function:

1s(n) = 1 ifnes,
S0 itnes.
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Throughout the paper, implied constants in symbols O, < and > may depend
(where obvious) on the parameters ¢ and € but are independent of other variables
except where indicated. For given functions F' and G, the notations FF < G, G > F
and F' = O(Q) are all equivalent to the statement that the inequality |F| < k|G|
holds with some constant k > 0.

2.2 The Modified Singular Series

Gallagher [2] has shown that the relation (1) is a consequence of Hardy and Little-
wood’s [3, p. 61] quantitative version of the prime k-tuple conjecture, which asserts
that for every finite subset H of Z one has

S I A +R) =(&H)+o(1)z  (x— ). (4)

n<x heH

Here, A is the von Mangoldt function, and &(H) is the singular series defined by

oo (- 220ty

p

To prove (1), Gallagher showed that for any fixed ¢ > 1 one has

S s ~ (”‘2 1) (n — o0). (5)
HC[0,n]
|H|=¢
In other words, the singular series has an average value of one.

In their study of the distribution of primes in longer intervals, Montgomery and
Soundararajan [6] employ a more precise form of the Hardy-Littlewood conjecture
(4), which is supported by results in their earlier paper [5]: If H is any finite set of
integers, then

ST I te(n+n) =6H) /2 (d“ + O(a/2+%).

H
n<z heH logu)‘ |
In [6] the authors also introduce the modified singular series

So(H) = > (-1 HIs®),

H'CH

which satisfies

S(H) = > So(H),

HCH
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with 6(&) = G¢(&) = 1. The modified singular series arises naturally in the
following formulation of the Hardy-Littlewood conjecture (regarding the elements
of H as being small relative to x): If A is any finite set of integers, then

SI <1ﬂ»(n+h) — lo;n> = Go(H) /27” (logd:j)m +O(aV/?e). (6)

n<x heH

Here, the term 1/logn being subtracted from 1p(n + h) represents the probability
that the “random number” n + h is a prime number.

2.3 Essential Estimates

Montgomery and Soundararajan [6, Theorem 2] gave the following refinement of
Gallagher’s estimate (5):

Z So(H) = %(—nlogn + An)*? + 0, (nZ/Q_l/(”)JFE),
HC[0,n] ’
|H|=¢

showing that the modified singular series exhibits square-root cancellation in each
variable. Here, py is the fth moment of the standard Gaussian:

)13 (-1 if ¢ is even,
P10 if £ is odd,

and A is given by
A:=2—Cy— log2m (7)

with Cy the Euler-Mascheroni constant. For small values of ¢, one can be more
precise; in particular, [6, Equation (16)] implies for the case £ = 2:

> &o(H) = —3nlogn+ 3An+ O(n'/?t¢). (8)

HC[0,n]
|H|=2

Throughout the sequel, we denote (as in [4])

afu) =1-— lojgu (u>1).

Taking into account that |a(u)| < % for u € [2,3] and 0 < a(u) < 1 for all u > 3,
the following is a straightforward variant of Banks and Guo [1, Lemma 2.3].

Lemma 1. Let f be an arithmetic function such that

[ fllso := sup{| f(n)] : n > 1} < o0.
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Uniformly for 2 <u <z and y > (logx)3 we have

S fma) =Y f)aw)™ + Oz fll),
e !

where the implied constant is absolute.

Lemma 2. Let ¢ > 0 be fived. Uniformly for 2 <u < x and y > (logx)? we have

> ()™ = (4e+4) 7 ((logu)* + O(log u)),

m,n<y
2|m, 2|n
n>cm

where the implied constant depends only on c.

Proof. Writing « := a(u) we have

. a2[cnz/2]
Z =2
n>1
2|n, n>cm
Since
|a‘cm < |a|2[cnz/2] < |a|cm—2’ 04_2 -1 —I—O((logu)_l),
and

1 —a? =2(logu) ™! + O((logu)~2),
it follows that
Z o = 1a(logu + O(1)). 9)

n>1
2|n, n>cm

Using Lemma 1 with f := 1y we see that

g(m) == Z o = Z Q"+ 0z = %acm logu + O(a™ + 7 1);
n<y n>1
2|n,n>cm 2|n,n>cm

in particular, ||g|lcc < logu. A second application of Lemma 1 with f := g gives

Z QM = Z g(m)a™ = Z g(m)a™ + O(z log u)

m,ny m<y m>1
2|m, 2|n 2|m 2|m
n>cm

= > (3a" ™ ogu + 0TI 4 a™az™h)) + O(z ™ log u)
m2>1
2|m
la20+2 X
- m(logu +0(1)) + O(z™ " logu).



INTEGERS: 23 (2023) 6

Since
1, 2¢+2 1 2c+2
50[ §(logu — 1) 1
= =(dc+4)""1 O(1
I—a2+2  (logu)2ct? — (logu — 1)2¢+2 (4c +4)" " logu + O(1),
the result follows. O

The following statement is a straightforward extension of [1, Lemma 2.4].

Lemma 3. Fizx 0 >0,£=0o0r1, and A > 0. For all u > 2 the sums

F(9,¢&,\u) = E n? (logn)Sa(u)*"
n>1
2|n

and

G(& N u) =Y So({0,n})na(u)™"

n>1
2[n

satisfy the estimates

F(0,0,Xu) = IA"0F9D(1 + 0) (logu) ™ + O((log u)?), (10)
F(0,1,\u) = 220D (log 2)I(1 + 0) (log u) ' ¥ + O((log w)?), (11)
G(0,\;u) = X" logu — Lloglogu + O(1), (12)
G(1, A u) = A 2(logu)® + O(log u), (13)
where the implied constants depend only on 6, £ and .
Lemma 4. For any set Z C [0,n] of cardinality k := | Z| we have
DY So(AUB) = 0u(n'/?F) (14)
ACZ BC[0,n]\Z
[Al=1 |B|=1
and
Z So(B) = —inlogn + 1 An+ Op(n/?+9), (15)
BClo, n]\z

|B|=
where A is defined by (7).

Proof. Let s, u be arbitrary integers such that 0 < s < u < n. Using the translation-
invariance of the singular series and applying [1, Lemma 2.2], we see that

S el Y Sul(0.th € (um o)

s<t<u 0<t<u—s

Y Go({tub) = Y So({t,u—s}) < (u—s)/?TE < nl/2rE

s<t<u 0<t<u—s

(16)
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Next, let x,y be arbitrary integers such that 0 < x < y < n. Suppose that a € Z
and a & (z,y). Then

Z 60({a b}) — Za<t<y 60({% t}) - Za<t<x 60({&, t}) if a S xT;
be(z,y) Y wcica ©o({t,a}) — Zy<t<a So({t,a}) if a >y,
hence from (16) it follows that
>~ So{a,b}) < nl/2t, a7
be(z,y)

Now suppose Z = {z1,..., 2} with
zo=—1<2z1 <+ <z <21 :=n+1.

For j =1,...,klet (z;,y;) be the open interval with z; := z; and y; := z;41. Using
(17) we have for each a € Z:

Z 60 {CL b} Z Z 60 {a b} ( 1/2+8).

be[0,n]\Z j=1be(x;,y;)

Summing this bound over all a € Z, we obtain (14).
To prove (15), we observe that

Z 60( ) = Z &o(B) - Z Z So(AUB) — ZGO

BC[0,n] BC[0,n] ACZ BC[0,n]\Z ACZ
\BI— |B|=2 [Al=1 |B|=1 |A]=2

= Sl - SQ — S3 (say).

By (8) we have
S1=—inlogn+ $An+ O(nt/?+e).

By (14) we also have Sy = Oy (n'/?*). Finally, S3 = Ox(loglogn) since the trivial
bound Sy(H) < loglogn holds for any H C [0,n] with |%| = 2. Combining all of
these estimates, we derive (15). O

3. The Heuristic Argument
We denote

ghk(n) == 1p(n)lp(n + h)lp(n + h + k) H (1—1p(n+1)),
O<tsie
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so that
(n) = 1 ifn=pn,€eP, dy ="hand dp1 =k;
Ihik 0 otherwise.
Then
=> "> gns(n).
n<z h,k>1
k>ch

Taking into account the trivial bound

[{pn < 2 : max{6,,6p11} > (logz)’}| < z(logz) 2,

it follows that

Te(®) = [{pn <z : max{6n,6n41} < (loga)?, 6y > cbp}| + O(z(logz)~?)
= Z Sh.r(x) + O(m(logm)_s),
h,k<(log )3
20k, 2/k
E>ch
where

Shi(@) = gni(n)

n<x

For now, fix two even integers h, k € [1, (log2)?]. Put Z = 2, == {0,h, h+k} and
write 1p(n) := 1p(n) — 1/logn. Then

Sh.k(z ZHl]p’rL—Fl H (1—1P(n+m))

nlzleZ me[0,h+k]\Z
1 -
zn(b +1ﬂ»n+z>> T (1 gy Tem)
n<lzleZ me[0,h+k]\Z
‘ | 3—| A 1 h+k—2—|B|
] .
DS S(mr) (-5 [T T+

ACZ BC[0,h+k]\Z n<a te AUB

(cf. [4, Equations (2.5) and (2.6)]). Using the Hardy-Littlewood conjecture (6) and
partial summation, we expect that the estimate

> (logn) @ [T 1e(n + 1) = () /x(log w)~MI=C gy 4 O(a1/2+¢)
n<z teH 2

holds for any fixed C' > 0 and any set H of nonnegative integers bounded above by
2°M as & — oo; in particular, we expect that Sh.i(2) is approximately

Y. Y. (1)FegauB /w(logu)fgf‘Bla(u)hM*z"B‘ du,

ACZ BC[0,h+k]\ Z 2
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with an error not exceeding O(xl/ 2+¢). For every integer L > 0 we now denote

Drpr(u):=> Y (=1)FI&(AUB)(a(u)logu)Bla(u)"+*,
ACZ BC[0,h+k]\ 2
(JA|+|B|=L)
so that

htk+l g
Shi(x) = Z /2 (log u)_?’a(u)_QDth’L(u) du + O(x1/2+5)_
L=0

Next, arguing as in [4] (see also [1]) we conjecture that terms with L > 3 con-
tribute no more than O(z(logz)~%/2) to the quantity m.(z). Noting that Dy, 5 ; is
identically zero (since G(H) = 0 for any singleton set H), this leaves only terms
with L = 0 or L = 2. Collecting terms according to the values |A| and |B|, and
summing over the variables h and k, we arrive at the estimate

4 z
me(x) = Z/ (logw) 3 (u) "2 F;(u) du + O(xt/?+e), (18)
j=1"2
where
Fiw) =Y a"
h,k<(log z)?
2|h, 2|k
k>ch
Folu):= > Y. &o({ar,ash)a(u)"
h,k<(logz)® a1,02€Zn k
2|h, 2|k aiF#az
k>ch
Fs(u) = —(a(u)logu) ™! Z Z Z So({a,b})a(u)*,

h,k<(log2)® a€Zn i bE[0,h+K\Zp 1
2[h, 2|k
k>ch

Fa(u) = (a(u)logu)™> > > So({b1, b2 })a(u)" .
h,k<(log ) b1,b2€[0,h+k]\ 2,k
2|h, 2|k b1 7#b2
k>ch

According to Lemma 2 we have
Filu) = (de +4)" ((log u)? + O(log u),

and thus the corresponding contribution to m.(z) is

’ -3 —2 = (4c “lr(z a:
/2 (logw)Pa(u) " Fi(u)du = (de +4) " m( )+O((logx)2)' (19)
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The second function F»(u) splits naturally as a sum
Fo(u) = Gi(u) 4+ Ga(u) + Gs(u),
where

Gi(u) -

> &o({0,h)a(u)"
h,k<(logz)®
2|h, 2|k
kE>ch

> ({0, b+ k}a(u)"TF,
h,k<(logz)?
2|k, 2|k
k>ch

Gs(w):= > So({hh+k})a(uw)".
h,k<(log z)®
2|h, 2|k
k>ch

Ga(u) :

To estimate G;(u) we apply Lemma 1 together with (9) to the inner sum over k,
deriving that

Gi(u) = (3 logu+ O(1)) Z So({0, h})ar(w) TR,
h<(log z)®
2|h
Using Lemma 1 again followed by (12) (with A := ¢+ 1), we have
Gi(u) = (4c+4) " ((logu)? + O(log uloglog u)).

Hence, the corresponding contribution to m.(x) is

(20)

/z(log w)a(u)"*Gi (u) du = (4 +4)"w(w) + O (xloglogx>
2

(log x)?

To estimate Ga(u), we write m := h+k and use Lemma 1 along with (10), (13) and
the trivial bound &¢({0,m}) < loglogm:

Ga(w) = Y G({0,mPa()™ 1

m<2(log z)® h<(log z)®
2|m 2|h
m2(ct+1)h
et Y Sol(0,mpa(w m + O)
m<2(log z)3
2|m

= (4c+4)"*(logu)? + O(log ulogloglog ).
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The contribution to m.(x) is

x log log log x)

(log x)? (21)

/ (logu) " Ba(u)"2Ga(u) du = (4c +4) " 7 (z) + O(
2
By the translation-invariance of the singular series we have

Gs(w) = Y So({0,kDa(w) > a(w)

k<(log x)® h<(log )
2|k 2|h
h<k/c

Using Lemma 1 together with (9) (with 1/c in place of ¢) it follows that

Yo aw'=) aw' - Y aw'+0@E™

h<(logz)® h>1 h>1
2|h 2|h 2|h, h>k/c
h<k/c

__aw?
1 — a(u)?
=1logu— }a(u Y¥/elogu + O(1)

— La(u)¥/¢(logu+O(1)) + O(a™")

uniformly for u in the range 2 < u < z; hence, taking into account the trivial bound
S0({0,k}) < loglogk and applying Lemma 1 again, we see that G3(u) is equal to

logu (ZGO {0,k})a 260 {0, k})a(u )(1+1/C ) +O(IOglng>.
E>1 E>1 x
2[k 2[k

Using estimate (12) of Lemma 3 we have

Gs(u) = (%logU) (G(O, Lu) — G(0,141/¢ u)) + 0<1031x°g”3>
= (4c+4) " (logu)? + O(log u),

and thus the corresponding contribution to m.(z) is

/2 (log u)~3a(u) 2Gs(u) du = (4¢ + 4) " 'x(z) + O ((logxm)2> . (22)
To bound F3(u) we apply Lemma 4 (using (14) with k := |2, x| = 3) to deduce
that
Fs(u) < (logu)™! Z (h+ k)2 (),
h,k<(log z)?

2lh, 2|k
k>ch
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Setting m := h 4+ k and using Lemma 1 and the estimate (10), we have

-7:3(“) < (log u)_l Z m1/2+€a(u)m Z 1

m<2(log )3 h<(log z)*
2|m 2|h
(c+1)h<m
< (logu)™! Z m3/? ea(u)™ < (logu)®/?*+¢;
m<2(logz)®
2|m

hence the contribution to 7.(x) is

/j(log u) Po(u) A F(u) du < (23)

__r
(log 7)3/2—=

Finally, to bound the quantity F4(u) we apply Lemma 4 (using the estimate (15)
with k := |2}, ;| = 3), which gives

Fi(u) < (logu) ™2 Z (h+ k) log(h + k)a(u)"+*.
h,k<(log z)?

2|h, 2[k
k>ch

Writing m := h + k as before and using Lemma 1 and the estimate (11) it follows
that

Fa(u) < (loguw)™ Y mlogm)a(w)™ Y 1

m<2(log z)® h<(logz)®
2|m 2|h
(c+1)h<m
< (logu)™2 Z m?(logm)a(u)™ < logu.
m§2(logw)3
2|m

Hence, the corresponding contribution to m.(x) is
x
(log2)?

Combining all of the estimates (18)—(24) above, we arrive at the statement of
Conjecture 1.

/;(log u) Bau) T2 Fy(u) du < (24)
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