
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-12 Issue-2, July 2023

 1

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.B76660712223

DOI: 10.35940/ijrte.B7666.0712223
Journal Website: www.ijrte.org

The Effectiveness of Code Reviews on Improving

Software Quality: An Empirical Study

D. I. De Silva, W.A.C Pabasara, S.V Sangkavi, Wijerathne L.G.A.T.D, Wijesundara W.M.K.H, Reezan

S.A

Abstract: This study intends to investigate how well code

reviews contribute to higher software quality. A group of

developers working on the study examine source code to find

flaws, improve readability, and guarantee compliance with coding

standards. The research on the effects of code review on defect

discovery, defect prevention, and code maintainability is given

together with a thorough overview of the literature on code review

and software quality. This study has shown that code review is a

highly efficient way to raise the caliber of software. According to

the study of several studies and trials, code review significantly

reduces flaws and improves code maintainability. Code review

helps to increase client satisfaction by making sure the product

satisfies their needs. The goal of this study is to highlight the value

of code review as a quality assurance technique in software

development workflows. The study's findings provide useful

information for software development teams by emphasizing the

advantages of code review for raising software quality and

customer satisfaction. The results of this study can assist software

development teams in incorporating code review into their

workflows as a normal procedure, which would improve software

quality and cut down on mistakes. In conclusion, this study shows

that code review is a highly efficient way to raise the caliber of

software. In terms of fault detection and prevention, code

maintainability, and customer satisfaction, the study underlines

the benefits of code review. This study can influence software

development teams to make code review a common practice by

highlighting its advantages, which would increase product quality

and client satisfaction.

Keywords: Code review, Software quality

Manuscript received on 06 May 2023 | Revised Manuscript

received on 17 May 2023 | Manuscript Accepted on 15 July 2023

| Manuscript published on 30 July 2023.
*Correspondence Author(s)

Dr. D. I. De Silva, Department of Computer Science and Software
Engineering, Sri Lanka Institute of Information Technology, Malabe,

Srilanka E-mail: dilshan.i@sliit.lk, ORCID ID: https://orcid.org/0000-0001-

6821-488X
W. A. C Pabasara, Department of Computer Science and Software

Engineering, Sri Lanka Institute of Information Technology, Malabe,

Srilanka E-mail: chamali.p@sliit.lk, ORCID ID: https://orcid.org/0009-
0000-6431-8251

S. V Sangkavi*, Department of Computer Science and Software

Engineering, Sri Lanka Institute of Information Technology, Malabe,
Srilanka E-mail: vithyasangkavi@gmail.com, ORCID ID:

https://orcid.org/0009-0002-6350-6714

Wijerathne L.G.A.T.D, Department of Computer Science and Software
Engineering, Sri Lanka Institute of Information Technology, Malabe,

Srilanka E-mail: thilakna@gmail.com, ORCID ID: https://orcid.org/0009-
0001-7635-7431

Wijesundara W.M.K.H, Department of Computer Science and Software

Engineering, Sri Lanka Institute of Information Technology, Malabe,
Srilanka E-mail: kaushanihw@gmail.com, ORCID ID:

https://orcid.org/0009-0007-1133-9842

Reezan S.A, Department of Computer Science and Software Engineering,
Sri Lanka Institute of Information Technology, Malabe, Srilanka E-mail:

imreezan@gmail.com, ORCID ID: https://orcid.org/0009-0003-5104-2059

© The Authors. Published by Blue Eyes Intelligence Engineering and

Sciences Publication (BEIESP). This is an open access article under the CC-

BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

I. INTRODUCTION

A. Background

Code review is a widely used method to find errors and

raise the quality of software during the development process.

A code review is a procedure where a piece of code is

examined by someone other than the author(s) [1]. Before it

is included into the main codebase, software code must be

reviewed for errors, bugs, and other problems. The purpose

of code review is to raise the general level of the software's

quality, lower the number of errors, and boost its

dependability. Code review can be done in two ways either

face to face review or online review such as google meets,

email and etc.

Every sophisticated software development project must

have a code review process that evaluates developer-

submitted code. One of the best QA procedures for software

projects is code review, which is seen as being quite

expensive in terms of time and effort but offers significant

value in terms of spotting errors in code modifications before

they are committed to the project's code base [2].

According to the survey done by our team 75% of the

experts have the habit of conducting code reviews frequently

while 25% conduct code reviews rarely. Code reviews can be

carried out either manually or automatically using tools.

Developers or team members review the code manually and

offer feedback based on their knowledge and experience.

Software tools are used in automated code review to examine

the code and find any potential problems. According to [3]

website 60% of Developers are using automated tools; 49%

are using them at least weekly.

Numerous studies have been conducted to investigate the

effectiveness of code review in improving software quality.

These studies have looked at a variety of elements of code

review, including how it affects maintainability, developer

productivity, and problem identification. As stated in a blog,

high quality, on boarding a new employee, knowledge

exchange, increased consistency and time saving are some

advantages of code review [4].

Creating a robust code review procedure lays the

groundwork for ongoing development and stops unstable

code from being released to users. In order to increase code

quality and make sure that every piece of code has been

reviewed by another team member, code reviews should be

incorporated into the workflow of software development

teams.

https://www.openaccess.nl/en/open-publications
https://www.doi.org/10.35940/ijrte.B7666.0712223
https://www.doi.org/10.35940/ijrte.B7666.0712223
http://www.ijrte.org/
mailto:dilshan.i@sliit.lk
https://orcid.org/0000-0001-6821-488X
https://orcid.org/0000-0001-6821-488X
mailto:chamali.p@sliit.lk
https://orcid.org/0009-0000-6431-8251
https://orcid.org/0009-0000-6431-8251
mailto:vithyasangkavi@gmail.com
https://orcid.org/0009-0002-6350-6714
mailto:thilakna@gmail.com
https://orcid.org/0009-0001-7635-7431
https://orcid.org/0009-0001-7635-7431
mailto:kaushanihw@gmail.com
https://orcid.org/0009-0007-1133-9842
mailto:imreezan@gmail.com
https://orcid.org/0009-0003-5104-2059
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijrte.B7666.0712223&domain=www.ijrte.org

The Effectiveness of Code Reviews on Improving Software Quality: An Empirical Study

 2

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.B76660712223

DOI: 10.35940/ijrte.B7666.0712223
Journal Website: www.ijrte.org

Another crucial step in transferring knowledge

throughout a company is the code review procedure. In

addition to these factors, 76% of developers who participated

in the 2022 Global DevSecOps Survey indicated code

reviews are "very valuable” [5].

Despite the potential advantages of code review, there are

some drawbacks to this process as well. For instance, code

review can take a lot of time and effort from developers. The

size of the codebase, the complexity of the code, and the

reviewers' level of experience are other variables that may

affect how effective code review is [6].

Given these factors, additional research is required to

examine the effectiveness of code review in various situations

and to discover how to best utilize this technique, with regard

to some quality criteria including maintainability, testability,

dependability, security, usability, correctness, efficiency, and

scalability. The goal of the current study is to advance this

field of study by systematically reviewing the body of

literature and analyzing the effectiveness of code review on

improving software quality.

B. Problem Statement

Software development is a process that involves several

stages, including requirements gathering, design, coding,

testing, and maintenance. The quality of the software

produced is essential to its success, and several quality

assurance practices are employed to ensure that the produced

software meets the quality standards. Code review is one such

practice that is used in the software development industry to

detect errors and improve software quality [9].

Code review is a process that check the source code by a

group of developers to identify defects and suggest

improvements. Code review can be performed manually,

where developers review code by reading through it, or it can

be automated, where tools are used to analyse the code and

identify defects automatically. Code review is also performed

at different stages of the software development process, such

as during coding, before testing, or during maintenance [9].

Even though the use of code review in software

development is very commonly practiced, its effectiveness in

improving software quality is still a topic of debate among

researchers. There’s very little research that were conducted

to address this problem. While some studies have reported

significant improvements in software quality metrics such as

defect density, code maintainability, and overall software

quality, others have found little or no improvement [7,10].

Furthermore, the effectiveness of code review might

depend on several factors, such as the type of code review,

the expertise of the reviewers, the complexity of the code, and

the tools used [8]. The lack of general agreement on the

effectiveness of code review in improving software quality

and the factors that influence its effectiveness makes the need

for further research in this area clear. Therefore, the goal of

this research paper is to investigate the effectiveness of code

review in improving software quality and to identify the

factors that influence its effectiveness. To achieve this goal,

the following research questions will guide the study:

1. What is the impact of code review on software quality?

2. What are the factors that affect the effectiveness of code

review in improving software quality?

3. How can code review best be implemented to improve

software quality?

To answer these questions, the study will conduct a

literature review of articles published in the last ten years that

investigate the effectiveness of code review in improving

software quality.

C. Significance of Study

In software development, code review is a critical practice

where developers examine the code for potential security and

quality issues [15]. The review process can take several

forms, including tool-assisted (TA), over-the-shoulder (OTS),

peer-to-peer, and pair programming [14]. Despite its

widespread use, there is still a lack of empirical evidence on

how different code review methods impact software quality

[12].

Previous research, including Bosu et al.'s work, has

examined some effectiveness factors of code review, such as

review duration, size, and the number of flaws found [16].

However, additional studies are required to analyze the

influence of various techniques and review size on code

review effectiveness, as pointed out by a study conducted by

Jureczko et al. [14].

The present study seeks to contribute to the software

development field by analyzing the effectiveness of various

code review methods in identifying quality attributes that

affect software quality. The authors surveyed software

engineers at hSenid Mobile Solutions to identify the most

critical quality attributes for code reviews, and selected eight

attributes that were highly rated for this study. The study aims

to compare the effectiveness of different code review

methods in addressing these quality attributes.

Code review methods can differ in their impact on the

selected quality attributes, as each method is conducted in a

unique way. Tool-assisted code review involves specialized

tools to facilitate the review process [17], while other

methods like over-the-shoulder, peer-to-peer, and lead code

reviews involve direct interaction between the author and the

reviewer [18]. By comparing the effectiveness of these

different methods, the study aims to identify which method is

best suited for detecting and addressing quality issues in

software development.

The expected outcomes of this study are:

• A better understanding of the strengths and weaknesses

of different code review methods in terms of software

quality and security.

• A set of guidelines and best practices for choosing and

applying code review methods in different contexts and

projects.

• A contribution to the improvement of software

development processes and practices that can enhance

the quality attributes discussed in this journal.

This study will benefit the academic community by

addressing a gap in empirical research on code review

methods. In addition to benefits for academia and the

software industry, this work will have larger impacts on

society.

https://www.doi.org/10.35940/ijrte.B7666.0712223
https://www.doi.org/10.35940/ijrte.B7666.0712223
http://www.ijrte.org/

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-12 Issue-2, July 2023

 3

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.B76660712223

DOI: 10.35940/ijrte.B7666.0712223
Journal Website: www.ijrte.org

High-quality software is crucial in numerous aspects of

modern life, such as healthcare, transportation, and banking

[17]. Improving code review procedures can enhance the

effectiveness, reliability, and safety of software products,

benefiting both users and society as a whole [18].

Software mistakes can have major effects on patients,

such as improper diagnosis or therapy. Software faults in the

transportation industry may result in mishaps or system

breakdowns with lasting effects [17]. This study offers the

ability to raise software’s safety and quality across a wide

range of sectors by enhancing code review procedures [18].

Moreover, this study may also have economic benefits.

Software flaws can be expensive, both in terms of the expense

of repairing them and the impact on users [19]. This study can

decrease the number of errors that reach the production stage

by identifying the most efficient code review techniques,

saving both software development teams and end users time

and money [19]. High-quality software development can also

give businesses a competitive edge.

D. Objectives

The primary objective of this research study is to

thoroughly investigate the effectiveness of code reviews in

improving software quality and to identify the different types

of code reviewing methods that are commonly used in the

industry itself. Generally, the intention of a code review is to

identify and fix errors and other issues in the code, which will

help to maintain and improve the overall quality of the

software.

In this study, the effectiveness of code review will be

thoroughly discussed, while existing studies are

comprehensively searched and examined. Additionally, a

survey will be conducted among software development

professionals to gather information on their opinions

regarding code reviews. The survey will include questions

about the preferred methods of conducting a code review, the

benefits of code review that most affect the improvement of

software efficiency, and how effective code review is in

improving software quality.

Another important objective of this study is to assess the

effectiveness of different types of code reviews on software

quality improvement. There are several code review methods

that are typically used such as tool assisted reviews,

automated reviews, peer reviews, walkthroughs, and formal

inspection.

Analyzing the effectiveness of these different methods of

code reviews is very important in order to learn how to

improve software quality.

This can help in reducing development time, help to

improve team collaboration and communication as well. The

ultimate goal of analyzing the effectiveness of different types

of code reviews is to identify the most efficient method that

is suitable for a particular developing environment.

Another goal of this research study is to identify the

critical components that affect the success of code reviews.

The success of code review may be influenced by other points

as well. One of the main key factors is reviewer expertise.

There are many studies that show that code reviewer expertise

is a major factor that affects the success of code reviewing as

well [15]. Other key factors are code review frequency, code

review process, code review tools.

The different types of code reviews methods that are

commonly used will be examined through this research paper

as well. There are several code review methods that are

typically used such as tool assisted reviews, over the

shoulder, walkthroughs, and formal inspection.

The impact of code review on various software quality

attributes, such as code maintainability, testability, reliability,

security, and usability, will also be discussed in this review.

Also, another objective of this study is to analyze and

discuss the relationship between code review and other

software engineering practices.

The aim of this study is to provide software developers

and managers with alternative advice on optimizing their

software development process and maintaining software

quality with the collaboration of code reviewing and other

software engineering practices.

E. Research Questions

1. What is the impact of code review on software quality?

2. What are the factors that affect the effectiveness of code

review in improving software quality?

3. How can code review best be implemented to improve

software quality?

The first research question will be answered by looking

into how code review affects the caliber of software. To

determine the advantages and disadvantages of code review

and to calculate its effect on software quality, it will be

necessary to analyze the current literature and case studies.

The impact of code review in raising software quality will

be examined in the second research question. In order to learn

more about software developers' experiences with code

reviews, including the types of reviews utilized, the

experience of reviewers, and the degree of automation

employed in the process, a survey of software developers will

be conducted. The factors that are most strongly linked to

successful code review will be found through statistical

analysis of the data. The third study topic will concentrate on

the most effective way to use code review to raise the caliber

of software. In order to do this, best practices for code review

will be created based on the answers to the first two research

questions. A controlled experiment will test these best

practices to determine whether they can actually raise

software quality.

In general, the research seeks to provide light on the

efficiency of code review in raising software quality and to

pinpoint tactics for enhancing its application. The study will

advance the discipline of software engineering and help with

current efforts to enhance software quality by providing

answers to these research topics.

II. LITERATURE REVIEW

Previous research has examined the methods of code

inspection and code review and how they help to raise the

caliber of software. Using the CAIS (Collaborative

Asynchronous Inspection of Software) tool, Stein et al. did

research on distributed, asynchronous code inspections [18].

https://www.openaccess.nl/en/open-publications
https://www.doi.org/10.35940/ijrte.B7666.0712223
https://www.doi.org/10.35940/ijrte.B7666.0712223
http://www.ijrte.org/

The Effectiveness of Code Reviews on Improving Software Quality: An Empirical Study

 4

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.B76660712223

DOI: 10.35940/ijrte.B7666.0712223
Journal Website: www.ijrte.org

They discovered that asynchronous inspections utilizing

CAIS were successful in locating flaws and raising the caliber

of software. As participants could evaluate code at their own

pace and on their own schedule, the authors discovered that

asynchronous inspections were more flexible and effective

than conventional synchronous inspections.

In a study he conducted on code inspection practices,

Laitenburger produced a taxonomy of different code

inspection methods [19]. Johnson looked into how open-

source software project managers' judgments were affected

by code review processes [19].

The study in question examines various facets of code

review, hence it has been broken up into several subsections,

each of which discusses a separate field of research. As was

done in the study by Jureczko et al. [14], the term "patch" has

been utilized in this study to refer to changesets for

consistency's sake.

A. Effectiveness of the Review Process

The success of code review is influenced by a number of

factors, which have been thoroughly investigated in

numerous studies. According to Porter et al. [17] and Sauer

et al. [21], the essential components in enhancing inspection

efficacy are the skill of the code reviewer and the adoption of

superior flaw detection tools. Sauer et al. found that two

reviewers are the ideal number for the most efficient code

review, and this result is in line with behavioral studies that

implies that expert pairs outperform larger groups [20].

According to Jureczko et al., over-the-shoulder code

reviews produce a higher rate of knowledge transfer than

tool-assisted code review approaches, which can ultimately

lead to superior software quality. To identify the proper areas

to which any of these strategies can contribute, more study is

required [14]. This study will be a longer version of that

study, and some of its facts and data may originate from it.

In a study of code reviews in two significant open-source

projects, Thongtanunam et al. [22] found a connection

between software quality and both code ownership and

reviewers’ skill. Code ownership refers to the concept that

certain developers have greater expertise and responsibility

for specific parts of the codebase. The study discovered that

when code ownership algorithms that consider review

activity were used, there was a positive impact on software

quality. Additionally, the study found a substantial and

upward trending link between the likelihood of post-release

errors and the percentage of reviewers lacking in knowledge.

This suggests that when reviewers lack knowledge or

expertise in the area of code they are reviewing, it can

increase the likelihood of errors being introduced into the

software after its release.

These findings imply that the effectiveness of code

reviewers and their involvement in the process are key

elements in increasing software quality through code reviews.

It is important for reviewers to possess the necessary

knowledge and expertise to effectively review the code and

provide valuable feedback.

In a separate investigation into the peer review procedures

used by the Apache HTTP server project, Rigby et al. [23]

found that smaller fixes were more likely to result in higher-

quality code and were therefore more likely to be accepted.

McIntosh et al. looked into the relationship between the

quality of software and the involvement in and coverage of

the modern code review process [24]. They found that there

is a strong correlation between code review participation and

program quality. There may be up to two and five more post-

release issues for components with low code review coverage

and involvement, respectively. This suggests that badly

reviewed code in a complex system can have a negative

impact on the caliber of software.

Similar to this, Morales et al. investigated the relationship

between software design quality and code review practices.

They found that software components with less review

coverage or involvement are typically more prone to anti-

patterns than those with more active code review methods

when measuring software design quality by the prevalence of

seven different types of anti-patterns. The open-source

programs Qt, VTK, and ITK were the basis for this case study

[22]. In a study of a major commercial project, Dos Santos

and Nunes [23] found that when there were a large number of

altered lines of code, the review process took longer and

received fewer comments. This suggests that when

developers made many changes to the code, it required more

time for reviewers to go through all the changes and provide

feedback.

The study also discovered that having more participating

teams and reviewers increased contributions to the review

process, but at the cost of time. This indicates that while

having more people involved in the review process can result

in more feedback and discussion, it can also take longer to

complete the review.

Ultimately, the study points out that for larger patches of

code, reviewers were less engaged and provided less

feedback. This implies that when there are many changes to

review, it can be more challenging for reviewers to

thoroughly examine all the changes and provide detailed

feedback. Communication during code reviews is another

important factor to consider. In their study on communication

in code review, Ebert et al. [24] found that confusion was a

common issue. The study explains that this confusion often

arose from a lack of clarity and explanation of non-functional

aspects of the solution. Non-functional aspects refer to

characteristics of the software that are not directly related to

its functionality, such as performance, security, and

maintainability. If these aspects are not clearly explained and

understood, it can lead to confusion during the review

process. Additionally, the study found that issues with tools

and communication could also contribute to confusion during

code reviews. For example, if there are disagreements or

unclear communicative objectives between developers, it can

lead to confusion and delays in the review process.

This confusion can have several negative effects on the

code review process. It can result in delays, less effective

reviews, increased discussions, and lower quality software.

To address these issues, it is important for developers to

communicate clearly and effectively during code reviews to

minimize confusion and ensure that the process is efficient

and effective.

https://www.doi.org/10.35940/ijrte.B7666.0712223
https://www.doi.org/10.35940/ijrte.B7666.0712223
http://www.ijrte.org/

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-12 Issue-2, July 2023

 5

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.B76660712223

DOI: 10.35940/ijrte.B7666.0712223
Journal Website: www.ijrte.org

In addition, some discussions may result in a greater

number of rejected comments. Thus, to some extent, this

study provides a calculated advantage code reviews can have

on determining software quality.

B. Classfication Of Reviews

The study's research has shown that different methods of

code reviews produce different amounts of pointless

comments. An extensive examination into the incidence of

such remarks in various code review methodologies was done

by Jureczko et al. According to the study, there were

significantly more or less nonsensical comments for various

review kinds. In comparison to over-the-shoulder reviews,

the researchers found that tool-assisted review procedures

produced fewer pointless comments [14]. These findings

imply that the effectiveness and efficiency of the code review

process can be considerably impacted by the choice of review

methodology.

In a research by Mäntylä and Lassenius, which looked at

23 student Java projects and nine commercial C/C++

programs, flaws were categorized. The study found 388 and

371 flaws in the student and industrial projects, respectively,

and showed that 75% of the flaws found during code review

had no effect on the software's apparent functionality. These

flaws were discovered to improve software evolvability by

increasing its understandability and modifiability. Code

reviews can thereby increase software quality by discovering

flaws that enhance program evolvability. Code reviews can

help to increase the software's evolvability and, as a result, its

overall quality by locating and fixing flaws that make it easier

to comprehend and modify.

An exhaustive mixed-methods study by Bosu, Greiler,

and Bird entitled "An Empirical Study at Microsoft" sought

to identify the elements that contribute to effective code

reviews. Three parts made up their study: first, they carried

out a qualitative analysis to determine the features of code

reviews that engineers found useful. Based on their

qualitative findings, they subsequently created and verified a

categorization model that could distinguish between relevant

and pointless code review feedback. To study the elements

that contribute to more effective code review feedback, they

utilized their classifier to analyze 1.5 million review

comments from five Microsoft projects [13].

The researchers found a number of variables that

influence the worth of code review feedback. For instance,

they discovered that during a reviewer's first year at

Microsoft, the proportion of valuable remarks they make

climbs dramatically, but after that, it tends to stagnate. They

also found that the proportion of code review comments that

will help the author of the change is negatively correlated

with the number of files in the modification. In addition, they

discovered that for some projects, comparing changes that

span more than 40 files to those made up of only one file

could result in a 10% drop in the number of meaningful

comments [14]. These results emphasize how crucial it is to

pinpoint the elements that lead to efficient code reviews in

order to increase their use and, ultimately, improve the quality

of the software being developed.

C. Transparency of code

The knowledge transparency of the code across various

reviewers and programmers is one of the critical elements

contributing to well-defined code reviews, according to

extensive study in this area. This suggests that code reviews

facilitate developer knowledge sharing and encourage a better

comprehension of the code base among teams. Developers

can improve the overall quality of the product and

significantly reduce the amount of coding errors by

exchanging expertise and spotting potential problems in the

code.

When compared to tool-assisted code reviews, Jureczko

et al. found that the over-the-shoulder method enhances

knowledge transfer in MCR. They did, however, note that this

does not always lead to evaluations of a better caliber. In

contrast to tool-assisted code reviews, they found that most

of the comments gathered through the over-the-shoulder

method were minor, indicating that they did not address any

significant functional changes that needed to be made to the

code [14]. However, the authors stress the importance of

taking knowledge transfer and review quality into account

when selecting a code review technique because each method

may have benefits and drawbacks depending on the demands

placed on it by the project and the team. The expectations,

results, and difficulties of the existing code review process

were examined by Bacchelli and Bird [11]. They emphasized

the importance of team members sharing knowledge and

working together during the code review process, even if they

did not directly address knowledge transfer through code

review. They found that code review promotes knowledge

sharing, high-quality code, and teamwork in addition to

finding problems. Additionally, they identified a number of

issues with code reviews, including the need for effective

tools and procedures, overcoming reviewer biases, and

juggling code reviews with other development tasks.

In their study "Knowledge Transfer in Modern Code

Review," Caulo et al. looked into whether developers'

contributions to open-source projects can get better over time

thanks to the code review procedure. They examined

numerous peer-reviewed pull requests that developers had

posted to GitHub, making the assumption that if a developer's

pull request had previously been reviewed, knowledge had

been passed on to that developer during the code review

process. They then evaluated whether, as more of their pull

requests were examined, the developer's contributions to

open-source projects got better over time. They failed to

uncover proof, nonetheless, that the code review procedure

improved the caliber of developers' contributions [25].

However, Jureczko et al. noted that Caulo et al. studied tool-

assisted reviews while Jureczko et al.'s tests showed that

over-the-shoulder reviews have a considerably bigger

influence on knowledge transfer [14] and that tool-assisted

reviews do enhance knowledge transmission to some level.

As a result, depending on the specific approach taken, the

efficiency of the code review process in raising software

quality and fostering knowledge transfer may differ.

The present study aims to provide insight into selected

quality attributes of software, informed by the findings of the

literature studies reviewed during its conduct.

https://www.openaccess.nl/en/open-publications
https://www.doi.org/10.35940/ijrte.B7666.0712223
https://www.doi.org/10.35940/ijrte.B7666.0712223
http://www.ijrte.org/

The Effectiveness of Code Reviews on Improving Software Quality: An Empirical Study

 6

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.B76660712223

DOI: 10.35940/ijrte.B7666.0712223
Journal Website: www.ijrte.org

III. METHODOLOGY

Based on a thorough analysis of the current literature, the

goal of this study is to determine how well code reviews

contribute to higher software quality. Below is a description

of the study's methodology.

Survey: An online survey was administered, which

consisted of questions pertaining to how code review

influences various software quality attributes such as

maintainability, testability, usability, correctness, reliability,

security, and efficiency. Additionally, participants were

asked to provide their demographic information, including

job role and level of experience. Some of the common

questions that this study covers through the journal are,

1. How often does the participant participate in code

reviews?

2. What is the most effective way to integrate code

review into the development process for maximum

efficiency?

3. Which benefit of code review do participants

consider the most significant for enhancing software

efficiency?

4. How much time does code review typically add to

the testing process for scalability?

5. When working on a security-related aspect of a

software application, how useful have code reviews

been in helping the participant understand their

mistakes and adopt safer coding practices.

6. How do you track and measure the correctness of

your software over time?

7. Which aspects of software reliability have

participants noticed the most significant

improvements due to code reviews, based on their

personal experiance?

Search Strategy: To conduct a systematic review of the

literature, a structured search strategy is used to identify

relevant studies: Google Scholar, Scopus, and other journals

and articles. Inclusion Criteria: Articles must adhere to the

following inclusion requirements in order to be considered

for this study:

1. Accentuate how successful code review is at

enhancing software quality.

2. Describe empirically how code review affects

software quality.

3. Published in conference proceedings or a peer-

reviewed journal.

4. Presented in English

Exclusion Criteria: The following exclusion criteria will

prevent articles from being included in this study:

1. Consider subjects other than code quality and code

review.

2. Don't include empirical information about how code

review affects the caliber of software.

3. Not included in conference proceedings or peer-

reviewed journals

4. Not in English but written in another language.

Ethics: This study adhered to ethical standards for human

subjects' research, which include gaining informed consent

from each participant and respecting their anonymity and

privacy. In conclusion, the study employed a mixed-methods

research design to investigate the contribution of code review

to higher software quality. Data was gathered through a

survey and analysis of the code review process, which will be

evaluated using a combination of qualitative and quantitative

techniques. The study's findings will enrich the existing

knowledge on the significance of code review and provide

suggestions on how to use it most efficiently in software

development.

IV. RESULTS

The study of source code by one or more people in order

to find and correct errors is known as code review, and it is a

crucial step in the software development process. Through

error detection and improved maintainability, code reviews

can raise the quality of software. The efficiency of code

reviews has been the subject of numerous research, which

have also revealed several variables that may affect the

review process's quality. A survey was conducted to gather

insights from software developers and practitioners on the

various methods of code review, their benefits and

challenges, and their impact on software quality. The poll

included a number of inquiries about code review and how it

affects the quality of software. ‘What is the most effective

way to integrate code review into the development process

for maximum efficiency? ‘, was one of the main questions

posted. Five alternatives were given to respondents:

Fig 1. Survey results on code review

https://www.doi.org/10.35940/ijrte.B7666.0712223
https://www.doi.org/10.35940/ijrte.B7666.0712223
http://www.ijrte.org/

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-12 Issue-2, July 2023

 7

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.B76660712223

DOI: 10.35940/ijrte.B7666.0712223
Journal Website: www.ijrte.org

56% of those polled said the best way to incorporate code

review into the development process was to evaluate the code

before merging it into the main branch. This method involves

analyzing code modifications before they are merged into the

main branch, assisting in the early detection of bugs and

issues.

18.8% of respondents thought that performing code

reviews on a frequent basis (weekly or monthly, for example)

was the best strategy. With the help of this method, which

entails periodically reviewing a set of changes, the codebase

can be reviewed in greater detail over time.

12.5% of those surveyed said that performing code

reviews after each commit was the best strategy. This method

requires analyzing each modification to the code as soon as it

is committed, giving quick feedback, and spotting mistakes

early.

The survey's findings can offer useful information about

how to incorporate code review into the development process

for maximum effectiveness and enhanced software quality.

Another main question that was asked focusing on the

quality attributes was ‘Which of the following benefits of

code review do you think is most important for improving

software efficiency’. Respondents were given four options

Fig 2. Survey results on quality attribute efficiency

Improved code quality, according to 81.3% of

respondents, is the primary advantage of code review for

increasing software effectiveness. This advantage includes

spotting flaws and problems at an early stage of development,

making sure the code is maintainable, and improving the

quality of the software product.

Better developer collaboration, according to 68.8% of

respondents, is the main advantage of code review. This

advantage entails encouraging developer collaboration and

communication, promoting knowledge sharing and

learning, and developing a sense of shared accountability

for code quality.

Most responders (43.8%) thought that lower maintenance

costs were the most significant advantage of code review.

Early bug detection reduces the need for time-consuming

debugging and maintenance labor, which eventually results

in time and cost savings.

Faster time-to-market was deemed the most significant

benefit of code review by 25% of respondents. This

advantage includes early error and problem detection,

decreased rework requirements, and eventually faster

software delivery.

Another important question that was asked in the survey

was ‘How can code review help to improve software

maintainability. ’Respondents were given with three options.

Fig 3. Survey results on quality attribute maintainability

https://www.openaccess.nl/en/open-publications
https://www.doi.org/10.35940/ijrte.B7666.0712223
https://www.doi.org/10.35940/ijrte.B7666.0712223
http://www.ijrte.org/

The Effectiveness of Code Reviews on Improving Software Quality: An Empirical Study

 8

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.B76660712223

DOI: 10.35940/ijrte.B7666.0712223
Journal Website: www.ijrte.org

According to the respondents, 81.3% said that the most

crucial method that code review can increase software

maintainability is by locating and addressing errors that may

have an impact on it. This entails going over code updates to

find any potential problems, including complicated code or

confusing logic, that can affect the software's capacity to be

maintained over time. Code review can help to guarantee that

the codebase is manageable and simple to work with in the

long run by identifying these problems early.

According to 87.5% of respondents, one significant way

that code review can increase software maintainability is by

making the code easier to read and understand. This entails

checking updated code to make sure it is simple to read and

comprehend and that it makes use of clear and breif naming

conventions, comments, and documentation. Code review

can make the codebase easier to read and understand, which

will make it easier to maintain and work with over time.

According to 75% of respondents, one significant way that

code review can increase software maintainability is by

ensuring that the code is compatible with the design and

specifications. This entails checking updated code to make

that it adheres to project specifications and is consistent with

the software's overall design. Code review can make it

simpler to maintain and update over time by verifying that the

codebase is consistent and in line with the project goals.

The findings of this survey can offer insightful

information about how code review can enhance software

maintainability, and they can assist firms in streamlining their

code review procedures to achieve this crucial objective.

Overall, by considering numerous elements such the

reviewer's experience, the use of diverse approaches, and the

involvement of reviewers in the process, the effectiveness of

code review can be increased. Code reviews are becoming

more and more crucial as software systems become more

complicated to ensure software quality and maintainability.

V. DISCUSSION

The results imply that code review is a crucial procedure

that can raise the quality of software. According to the

research analyzed in this paper, code review can reduce post-

release errors, help uncover issues, and increase knowledge

transfer.

The reviewers' level of experience is one of the main

variables affecting the efficiency of code review. Expert

reviewers are more adept at spotting errors and enhancing

software quality, according to the studies examined in this

paper. The number of reviewers also affects how effective a

code review is. Two reviewers have been shown to be the

ideal quantity for the most fruitful code review.

Asynchronous code review has the potential to be more

effective and adaptable than synchronous code review, which

is another significant discovery. Code reviews may be of

higher quality when conducted asynchronously since

participants can evaluate the code at their own leisure and on

their own time. Additionally, depending on the circumstance,

it may be beneficial to employ various code review

approaches such as tool-assisted and over-the-shoulder

reviews.

The results of this study indicate that code review is a

useful technique for raising software quality, although there

are some restrictions and difficulties to consider. One

drawback is that the size and complexity of the codebase

being examined may have an impact on how effective code

review is. Another drawback is that the review's quality can

be significantly impacted by the reviewers' experience and

engagement in the review process. Implementing code review

in practice may also be difficult due to time restrictions and

reluctance to change.

The study's findings show conclusively that code review

is a useful strategy for raising the quality of software. The

findings imply that asynchronous review and expert

reviewers can result in higher-quality reviews. But it's crucial

to consider the restrictions and difficulties associated with

actually putting code review into practice. Future studies

could examine the usefulness of code review in various

situations and investigate methods for resolving

implementation difficulties.

VI. CONCLUSION

 This study has produced convincing evidence in favour of

the usage of code review as a useful strategy for raising the

quality of software development after performing a thorough

analysis into the usefulness of code review on improving

software quality. The study's findings show that code review

can significantly raise software quality, especially when it

comes to lowering defect rates, making software more

maintainable, and boosting output.

The advantages of code review are numerous. First and

foremost, the code review procedure aids in the early

detection of errors in the development process, before they

can evolve into expensive and time-consuming issues. This is

crucial in the software development industry since even the

smallest mistakes can quickly add up to serious failures. Code

review can help issues get caught early and stop them from

getting out of hand, which will ultimately result in a more

effective development process.

Additionally, it has been demonstrated that code review is

a powerful tool for lowering software flaws. This is due to the

fact that code review promotes developer collaboration and

information sharing, which aids in finding mistakes and

potential defects that could have gone unnoticed during

individual coding efforts. Additionally, the comments and

recommendations made during a code review can assist raise

the calibre of the code and guarantee that best practices are

being followed.

Finally, code review can enhance the software's ability to

be maintained, making it simpler for engineers to update the

code over time. This is due to code review's role in ensuring

that code is well-structured, well-documented, and written in

a clear and understandable manner. Code review can assist

extend the life of software and guarantee that it stays useful

and relevant over time by enhancing maintainability.

The implementation of code review still faces difficulties

despite its many advantages. Constraints of time and

resources are a significant issue, especially in organizations

that are already overburdened with competing agendas.

https://www.doi.org/10.35940/ijrte.B7666.0712223
https://www.doi.org/10.35940/ijrte.B7666.0712223
http://www.ijrte.org/

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-12 Issue-2, July 2023

 9

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.B76660712223

DOI: 10.35940/ijrte.B7666.0712223
Journal Website: www.ijrte.org

As a result, it's crucial to create methods for streamlining

and increasing the efficiency of code review, such as by

employing automation tools or creating explicit rules for the

procedure. Future research has a lot of chances to build on the

findings of this study, in the future. For instance, more

research might look into how the effects of code review

change for other softw0are project types, such as large-scale

systems or safety-critical applications. Research may also

examine the effects of various ways to code review, such as

pair programming or tool-assisted code review. Future study

can assist improve and modify the practice of code review to

better fulfil the demands of software engineers and

organizations by examining these and other issues. In

conclusion, this study offers compelling evidence in favour

of the usage of code review as an effective method for raising

the calibre of software. Code review can help to guarantee

that software is of good quality and remains relevant over

time by finding problems early on, minimizing faults, and

enhancing maintainability. While implementing code review

still presents some difficulties, continuous research can assist

in overcoming these obstacles and improving the technique

to better meet the objectives of software engineers and

organizations.

DECLARATION

Funding/ Grants/

Financial Support
No, We did not receive.

Conflicts of Interest/

Competing Interests

No conflicts of interest to the

best of our knowledge.

Ethical Approval and

Consent to Participate

No, the article does not require

ethical approval and consent to

participate with evidence

Availability of Data

and Material/ Data

Access Statement

Not relevant

Authors Contributions
All authors having equal

contribution for this article.

REFERENCES

1. "Code Review Developer Guide," [Online]. Available:

https://google.github.io/eng-practices/review/.
2. O. B. L. G. Y. C. M. W. G. Oleksii Kononenko, "Investigating Code

Review Quality," p. 10, 2015.

3. "Best practices for reviewing a code," [Online]. Available:

https://www.codegrip.tech/productivity/best-practices-for-reviewing-

code/.

4. "Benefits of Code Review: Every Team Must Know [2022 Guides],"
[Online]. Available: https://gaper.io/benefits-of-code-review/.

5. [Online].Available:https://about.gitlab.com/topics/version-

control/what-is-code-
review/#:~:text=Code%20reviews%2C%20also%20known%20as,dev

elopers%20learn%20the%20source%20code.

6. [Online]. Available: https://www.freecodecamp.org/news/how-to-
avoid-code-review-pitfalls-that-slow-your-productivity-down-

b7a8536c4d3b/.

7. Bacchelli, A., & Bird, C. (2013). Expectations, outcomes, and
challenges of modern code review. IEEE Software, 30(4), 84-91. doi:

10.1109/MS.2012.175 [CrossRef]

8. Baltes, S., & Diehl, S. (2014). Improving software quality through code
review: A case study. IEEE Software, 31(4), 60-67. doi:

10.1109/MS.2013.104 [CrossRef]

9. Kemerer, C. F., & Porter, L. F. (1992). Improving software quality

through a formal technical review process. Journal of Systems and

Software, 19(2), 119-131. doi: 10.1016/0164-1212(92)90074-f

10. P. C. Rigby and C. Bird, “Convergent contemporary software peer
review practices,” in Proceedings of the 2013 9th Joint Meeting on

Foundations of Software Engineering (ESEC/FSE), 2013, pp. 202-212.

[CrossRef]

11. A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in Proceedings of the 2013 International

Conference on Software Engineering (ICSE), 2013, pp. 712-721.

[CrossRef]
12. Beller, M., Bacchelli, A., Zaidman, A., & Juergens, E. (2014). Modern

code reviews in open-source projects: which problems do they fix? In

Proceedings of the 11th Working Conference on Mining Software
Repositories (pp. 202-211). [CrossRef]

13. Bosu, A., Greiler, M., Bird, C.: ‘Characteristics of useful code reviews:

an empirical study at microsoft’. Proc. of the 20
14. M. Jureczko, Ł. Kajda, and P. Górecki, “Code review effectiveness: An

empirical study on selected factors influence,” IET Software, vol. 14,

no. 7, pp. 794–805, 2020. [CrossRef]
15. J. &. K. Y. Shimagaki, "The effect of reviewer's expertise on code

review outcomes," 2018.

16. Devart Software, “Code Review Benefits,” [Online]. Available:
https://www.devart.com/review-assistant/learnmore/benefits.html.

17. M. Stein, J. Riedl, S.J. Harner and V. Mashayekhi, “A Case Study of

Distributed Asynchronous Software Inspections,” in Proceedings of the
19th International Conference on Software Engineering, New York,

NY, USA: ACM Press, 1997, pp. 107-117. [CrossRef]

18. A. Sutherland and G. Venolia, "Can peer code reviews be exploited for
later information needs?," in Proceedings of ICSE, may 2009

[CrossRef]

19. O. Laitenberger, “A Survey of Software Inspection Technologies,” in
Handbook on Software Engineering and Knowledge Engineering, vol.

1, World Scientific Publishing Co., 2002, pp. 517-555. [CrossRef]
20. A. Porter, H. Siy, A. Mockus and L. Votta, “Understanding the sources

of variation in software inspections,” in ACM Transactions on

Software Engineering and Methodology, vol. 7, no. 1, pp. 41-79, Jan.
1998. [CrossRef]

21. Sauer, C., Jeffery, D.R., Land, L., et al.: ‘The effectiveness of software

development technical reviews: A behaviorally motivated program of
research’, IEEE Trans. Softw. Eng., 2000, 26, (1), pp. 1–14 [CrossRef]

22. R. Morales, S. McIntosh and F. Khomh, “Do code review practices

impact design quality? A case study of the Qt, VTK, and ITK projects,”
2015 IEEE 22nd International Conference on Software Analysis,

Evolution, and Reengineering (SANER), Montreal, QC, 2015, pp. 171-

180. [CrossRef]

23. Dos Santos, E.W., Nunes, I.: ‘Investigating the effectiveness of peer

code review in distributed software development’. Proc. of the 2017

Brazilian Symp. on Software Engineering, 2017, pp. 84–93 [CrossRef]
24. Ebert, F., Castor, F., Novielli, N., et al.: ‘Communicative intention in

code review questions’. Proc. of the 2018 IEEE Int. Conf. on Software

Maintenance and Evolution, 2018, pp. 519–523 [CrossRef]
25. Caulo, M., Lin, B., Bavota, G., Scanniello, G., & Lanza, M. (2020).

Knowledge Transfer in Modern Code Review. In Proceedings of the

28th International Conference on Program Comprehension, pp. 230-
240. [CrossRef]

AUTHORS PROFILE

Dr. Dilshan De Silva is a seasoned professional in the
field of Information Technology (IT) with a strong

background in Software Engineering. They obtained

their BSc. Special (Hons.) in Information Technology

(Software Engineering) between 2005 and 2009,

followed by an MSc. in Information Technology

(Software Engineering) from 2009 to 2012. With
extensive expertise and experience, Dr. Dilshan currently serves as a Senior

Lecturer (HG) in the Department of Computer Science and Software

Engineering at the Faculty of Computing, Sri Lanka Institute of Information
Technology. In this role, they impart their knowledge and mentor students in

the field of Software Engineering. Dr. Dilshan's research interests primarily

revolve around Software Complexity, Software Metrics, Machine
Translations, and Augmented Reality. They are deeply committed to

exploring these captivating areas and advancing the understanding of

software engineering practices. with a strong academic foundation,
combined with their practical experience and passion for innovative

technologies, Dr. Dilshan is well-equipped to contribute significantly to the

field of IT. Their expertise in software engineering, research acumen, and
dedication to teaching make them an invaluable asset in academia and

research projects.

https://www.openaccess.nl/en/open-publications
https://www.doi.org/10.35940/ijrte.B7666.0712223
https://www.doi.org/10.35940/ijrte.B7666.0712223
http://www.ijrte.org/
https://doi.org/10.1109/MS.2012.175
https://doi.org/10.1109/MS.2013.104
https://doi.org/10.1145/2491411.2491444
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1145/2597073.2597082
https://doi.org/10.1049/iet-sen.2020.0134
https://doi.org/10.1145/253228.253250
https://doi.org/10.1109/ICSE-COMPANION.2009.5070996
https://doi.org/10.1142/9789812389701_0023
https://doi.org/10.1145/268411.268421
https://doi.org/10.1109/32.825763
https://doi.org/10.1109/SANER.2015.7081827
https://doi.org/10.1145/3131151.3131161
https://doi.org/10.1109/ICSME.2018.00061
https://doi.org/10.1145/3387904.3389270

The Effectiveness of Code Reviews on Improving Software Quality: An Empirical Study

 10

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.B76660712223

DOI: 10.35940/ijrte.B7666.0712223
Journal Website: www.ijrte.org

W.A. Chamali Pabasara is a talented individual with
a passion for the field of Information and

Communication Technology (ICT). Currently

pursuing a Master of Science in Information
Technology at the University of Moratuwa, Chamali

holds a BSc (Special) degree in ICT from the

University of Sri Jayewardenepura. With a diverse
background in academia, Chamali has gained valuable

experience and expertise in the field. They are currently working as an

Assistant Lecturer in the Department of Computer Science and Software
Engineering at the Sri Lanka Institute of Information Technology.

Previously, they served as an Academic Instructor at the same institute and

as a Computer Instructor at the University of Sri Jayewardenepura. Chamali's
research interests lie in several exciting areas, including Internet of Things

(IoT), Data Mining, Machine Learning, Cloud Computing, and Computer

Vision. They are dedicated to exploring these domains and making
contributions to advance the understanding and application of these

technologies. with a strong academic foundation, practical experience, and a

genuine enthusiasm for emerging technologies, Chamali is poised to become
a valuable contributor to the field of ICT. Their commitment to learning and

their drive for innovation make them an asset to any research project or

academic endeavor.

Srirajan Vithya Sangkavi is a highly motivated

and ambitious 3rd year undergraduate student
specializing in Software Engineering at the Sri

Lankan Institute of Information Technology. With
a commendable CGPA of 3.4, Vithya demonstrates

a strong aptitude for academic excellence.

Passionate about technology and its impact on
society, Vithya actively engages in research

activities to broaden their knowledge and skills.

Vithya's research interests encompass various aspects of software
engineering, including software development methodologies, web app

developments, and mobile application development. They are keen on

exploring innovative approaches to improve software development processes
and enhance user experiences. Vithya have a proactive approach to learning

and seek opportunities to collaborate with peers and mentors to further

expand their knowledge and contribute to the field. Vithya's academic

achievements and dedication to research reflect their commitment to making

a meaningful impact in the software engineering domain. With their strong

work ethic, analytical thinking, and passion for innovation, Vithya aims to
make significant contributions to the field of software engineering in the

future.

L.G.A.T.D. Wijerathne is a student at the Sri

Lanka Institute of Information Technology

(SLIIT), pursuing a BSc (Hons) in Information
Technology with a specialization in Software

Engineering. With a passion for software

development, L.G.A.T.D. Wijerathne skillfully
combines their technical expertise with a love for

writing. Through their works, they provide unique

insights into the world of coding, programming, and software engineering,
aiming to inspire fellow students and technology enthusiasts alike. Join

L.G.A.T.D. Wijerathne on their journey as they explore the intersection of

technology and literature, illuminating the wonders of software engineering

through their words. L.G.A.T.D. Wijerathne's commitment to learning and

drive for innovation make them an asset to any research project or academic

endeavor, constantly pushing the boundaries of software engineering with
their insatiable curiosity and creative problem-solving skills.

Wijesundara W.M.K.H. is a third-year software
engineering student at the Sri Lanka Institute of

Information Technology (SLIIT). She is highly

interested in software development and all things
technological. Wijesundara has developed a strong

foundation in programming languages, algorithms,

data structures, and software design principles
during the course of her education. To obtain

expertise in realistic situations, she has worked on

a variety of projects both alone and in teams. Wijesundara actively looks for
chances to improve her expertise in software engineering. she has taken part

in hackathons and coding contests, displaying her inventiveness and capacity

for problem-solving. She has gained teamwork, communication, and time

management skills as result of these experiences. Her primary areas of

interest in study include the interactions between software engineering and
modern fields including data science, machine learning, and artificial

intelligence. She wants to help with the creation of innovative software

programs that use these technologies to solve problems in the real world.

As an author, Wijesundara approaches their work with precision.
She carries out in-depth study, exercise critical thinking, and maintain

academic integrity. With strong attention to detail and clear writing skills,

she effectively communicates her ideas to various audiences. Overall,
Wijesundara is a motivated and committed student who aspires to become a

successful software engineer. She is willing to share her talents and advance

the technological sector.

Reezan S.A. is an undergraduate student at the Sri

Lanka Institute of Information Technology (SLIIT),
pursuing a Bachelor of Science degree in Information

Technology with a specialization in Software

Engineering. Currently in his third year of studies,
Reezan demonstrates a keen interest in programming

and possesses experience in various programming

languages, including Java, JavaScript, and C. With a
passion for software development, Reezan has

successfully completed multiple programming projects and assignments,

consistently achieving commendable grades. His dedication to academic
excellence is evident as he has consistently maintained a top-ranked position

throughout his academic career, currently holding an impressive GPA of

3.84/4. In his free time, Reezan enjoys enriching his knowledge by reading
books on technology and programming. His commitment to staying updated

with the latest advancements in the field further fuels his passion for software

engineering. For any inquiries, collaboration opportunities, or further
information, Reezan can be reached at imreezan@gmail.com. He looks

forward to contributing to the ever-evolving world of technology and
software engineering.

Disclaimer/Publisher’s Note: The statements, opinions and

data contained in all publications are solely those of the

individual author(s) and contributor(s) and not of the Blue

Eyes Intelligence Engineering and Sciences Publication

(BEIESP)/ journal and/or the editor(s). The Blue Eyes

Intelligence Engineering and Sciences Publication (BEIESP)

and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods,

instructions or products referred to in the content.

https://www.doi.org/10.35940/ijrte.B7666.0712223
https://www.doi.org/10.35940/ijrte.B7666.0712223
http://www.ijrte.org/

