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Abstract: Deep learning and neural networks have become 

increasingly popular in the area of artificial intelligence. These 

models have the capability to solve complex problems, such as 

image recognition or language processing. However, the memory 

utilization and power consumption of these networks can be very 

large for many applications. This has led to research into 

techniques to compress the size of these models while retaining 

accuracy and performance. One of the compression techniques is 

the deep compression three-stage pipeline, including pruning, 

trained quantization, and Huffman coding. In this paper, we apply 

the principles of deep compression to multiple complex networks 

in order to compare the effectiveness of deep compression in terms 

of compression ratio and the quality of the compressed network. 

While the deep compression pipeline is effectively working for 

CNN and RNN models to reduce the network size with small 

performance degradation, it is not properly working for more 

complicated networks such as GAN. In our GAN experiments, 

performance degradation is too much from the compression. For 

complex neural networks, careful analysis should be done for 

discovering which parameters allow a GAN to be compressed 

without loss in output quality. 

Keywords: Neural Network, Network Compression, Pruning, 

Quantization, CNN, RNN, GAN. 

I. INTRODUCTION 

In recent years, deep learning and neural networks have 

become increasingly popular in the field of artificial 

intelligence. These models have the ability to solve complex 

problems, such as image recognition or language processing. 

However, the memory utilization and power usage of these 

networks can be prohibitively large for many applications. 

This has led to research into techniques to compress the size 

of these models while retaining accuracy and performance 

[1][2][3]. While many pruning or compression techniques 

have been created, they often require specialized tools to 

achieve their full effect. One of these techniques is the deep 

compression three-stage pipeline, including pruning, trained 

quantization, and Huffman coding, which can be 

implemented through the use of widely available tools [1]. 
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 In this paper, we apply the principles of deep compression 

to multiple complex networks using Keras with Tensorflow 2 

in order to make the models more suitable for deployment on 

embedded devices and other devices with limited resources. 

We use deep compression to three complex neural networks, 

CNN (Convolutional Neural Network), RNN (Recurrent 

Neural Network), and GAN (Generative Adversarial 

Network). Based on the experimental results, we compare the 

effectiveness of deep compression in terms of compression 

ratio and the quality of the compressed network. While the 

deep compression pipeline is effectively working for CNN 

and RNN models to reduce the network size with small 

performance degradation, it is not properly working for more 

complicated networks such as GAN. In our GAN 

experiments, performance degradation is too much from the 

compression. For complex neural networks, we need to come 

up with different compression methodologies.  

The rest of the paper is organized as follows. In Section II, 

we describe related work. The deep compression pipeline and 

implementation for this research are presented in Section III. 

In Section IV, we describe the modeling of complex neural 

networks. Experimental results are presented in Section V, 

and we conclude with Section VI. Section VII includes future 

work. 

II. DEEP COMPRESSION PIPELINE 

A deep compression pipeline is a powerful tool for 

reducing the size of large deep learning models while 

retaining their accuracy. It consists of three steps: pruning, 

trained quantization, and Huffman coding as shown in Figure 

1 below. 
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Fig. 1. Deep Compression Pipeline Steps [1] 

A. Implementation of Pruning 

Pruning is the first step in the deep compression pipeline 

and involves removing redundant or unnecessary parameters 

from the model to reduce its size without losing any important 

nodes and weights. In general, pruning can either be done 

through weight pruning, which removes connection weights 

between nodes, or through neuron pruning which removes 

entire nodes from layers of the network. When pruning a 

network, weights near 0 are selected to be removed because 

they have little effect on the output of a network. Once 

weights or neurons are pruned, the network can be retrained 

to compensate for the changes caused when the selected 

weights were removed. Keras contains a compression 

interface that allows trained pruning on most layer types. The 

code for pruning used in our experiment is shown in Figure 2 

[5]. 

 
Fig. 2. Keras code for pruning 

B. Implementation of Trained Quantization 

The second step in the compression pipeline is called 

trained quantization [6]. In this step, n centroids are uniformly 

selected between the min and max network weights, and a 

lookup table is created for the values. For each weight, if the 

nearest value entry in the lookup table is found, the weight is 

replaced by a reference to the table. Because the quantization 

lookup table space is much smaller than the real numbers, the 

bit width of each weight not including lookup table overhead 

can be reduced to ceil (logbase(2, num_centroids)) bits. Once 

the initial quantization step is complete, the centroids can 

then be trained in the same way as normal weight values. An 

example of quantized weights is shown in Table 1. 

C. Implementation of Huffman Coding 

     The final step in the deep compression pipeline is Huffman 

coding. In this step, a model is losslessly compressed using 

variable length codes and a prefix-free binary tree. When the 

frequency of each byte of the saved model is found, the high-

frequency values are then converted into shorter values that 

can then be referenced back to a code tree to reconstruct the 

original model. Huffman coding is used in many common file 

compression algorithms such as deflate. 

     Keras also includes an interface to allow a model to be 

quantized and trained. The code for quantization in Keras is 

included in Figure 3. 

Table I. Quantization Example 

Weights 
32-bit floating-point 

value 

Quantized 

(2 bits) 

weight 1 1.127 0 
weight 2 5.133 1 

weight 3 2.769 0 

weight 4 6.953 2 
weight 5            13.444 3 

… … … 
weight N            12.763 3 

 

Lookup Table 
Centroid value (32-bit floating-

point number) 

0 1.872 

1 5.102 
2 7.003 

3                13.120 

 
Fig. 3. Keras code for trained quantization 
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When evaluating the effectiveness of pruning and 

quantization in Tensorflow 2, compressing the model using 

Huffman coding is necessary. This is because TensorFlow 

saves all parameters of a model including those which are 0 

due to pruning. To evaluate each model, the gzip compression 

algorithm was used in our experiment and the size of the 

compressed model was used for evaluating in size. The code 

for compressing a model is shown in Figure 4. 

 

Fig. 4. Model compression using gzip 

III. MODELING OF COMPLEX NETWORKS 

A. Convolutional Neural Network 

Convolutional Neural Networks are designed to use a 

stack of convolutional filters to pick out features in images. 

For the experiment of deep compression, we choose a non-

sequential CNN which used residual blocks [4]. These blocks 

combine the input data to a convolutional layer with its 

convolved output, essentially passing the input forward to the 

next layer. The structure of a residual layer is shown in Figure 

5. This allows the network to be trained more efficiently and 

results in lower training errors for very deep networks. The 

reason why we choose this type of network is that it creates 

better performance than a standard convolutional neural 

network. It is also a good test for the compression pipeline 

because of its increased complexity. 

 

 

 

Fig. 5. Residual layer structure 

     The final network used is a 12-layer network with 15,634,994 parameters. It accepts RGB-color, 227x227 pixel images. 

These images are first passed through 2 standard convolutional layers. The outputs are then passed through 5 residual 

convolutional layers. The output from these layers is finally passed through 4 dense layers that classify the images into 10 

different categories of the CIFAR-10 image data.  

B. Recurrent Neural Network 

We applied deep compression to investigate its effectiveness in Recurrent Neural Networks (RNNs). RNNs are a type of 

neural network that is particularly well-suited for processing sequential data, making them useful in a wide range of 

applications such as natural language processing, speech recognition, machine translation, and image captioning. By 

compressing the size of RNNs, we hoped to improve their portability and performance. For the evaluation of the deep 

compression pipeline to RNN, we use a Long Short-Term Memory (LSTM) model to perform sentiment analysis on a dataset 

of movie reviews. LSTM networks are a type of RNN that is well-suited for this task [7]. Due to the memory cells in LSTM 

models, they can better analyze the overall sentiment of a longer piece of text as the sentiment of text may not be immediately 

apparent from individual words or short phrases. Additionally, LSTM networks can effectively handle input data of varying 

lengths rather than RNN networks which are limited to fixed-sized input. LSTMs have more logics to remember or forget 

some information, which means LSTMs have more complexity. The movie review dataset we used is a built-in Keras dataset 

of 50,000 movie reviews classified with positive or negative sentiment from the website IMDb. The words from the review 

were filtered to include the first 20,000 most frequent words but eliminate the 10 most frequent words. The reviews were then 

padded to a max length of 500 words, which means that any review less than 500 was padded with empty values, and any 

review over 500 was truncated. The RNN platform has three layers: Embedding, LSTM, and a Dense layer. In total, there were 

2,690,433 parameters. The embedding layer hosts 2,560,000 parameters, the LSTM layer holds 131,584 layers, and the dense 

layer holds 129 parameters. The embedding layer is massive due to the 20,000-long library each with 128 nodes.  

C. Generative Adversarial Network 

 The third type of network evaluated is a Generative Adversarial Network (GAN) [8]. This model is designed for generating 

images that are similar to an input dataset. To do this, it utilizes two separate models. The first of these models is called the 

discriminator. This model is designed to determine if an input image is real or fake. The second model is called the generator. 

The generator is creating images that are indistinguishable from real images. An example of the GAN architecture is shown in 

Figure 6. 
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Fig. 6. Generative Adversarial Network Architecture 
  

     This type of network is very complicated to train because 

it must be done in two passes. In the first pass, the 

discriminator network is trained to determine if an image is 

real or fake. In the second pass, the generator is trained to 

create images that the discriminator believes are real. Because 

two networks are trained against each other, the loss for each 

can change dramatically during each training step. This can 

make it difficult to determine network convergence. Once the 

network is trained, the discriminator can be discarded and just 

the generator is used. This network is chosen to evaluate the 

compression pipeline because of its training behavior. Since 

it trains two networks simultaneously, we expect that the 

result of trained pruning and quantization might be worse 

than expected. Due to the complexity of the desired output, 

we observe that the small changes caused by the pruning 

might result in an unrecognizable output. Unfortunately, 

while this network type provides good performance from its 

adversarial structure, it is very difficult to quantitatively 

evaluate due to its structure. The GAN we applied is a 

convolutional generative adversarial neural network. For the 

generator, a 6-layer network was used. The input layer 

accepted 100 randomly generated values. It then passes the 

values through a dense layer of size 4x4x256. This initial 

image is then upscaled through 4 sets of conv2d transpose 

layers to create the final 32x32x3 image. For the 

discriminator, another 6-layer network is used. The input to 

this network is a 32x32x3 color image. This is then passed 

through 4 layers of convolutional filters. Finally, a single 

dense layer is used to output if the input was generated or real. 

The initial parameter count for this network is 1,988,612. 

IV. EXPERIMENTAL RESULTS 

 We investigate the effectiveness of deep compression, 

including network size after compression along with the 

performance afterward. 

A. Convolutional Neural Network 

 The CNN Model is able to be compressed successfully 

over multiple stages of deep compression. Table 2 shows the 

size of the network on each step, along with the total 

compression up to that point and the compression from that 

specific step. Quantization shows the greatest compression 

ratio, followed by pruning, and then the gzip Huffman coding. 

The network started at 125.25 MB and is reduced from 62.66 

MB after pruning. Quantization was then applied, which 

further reduced the size of the network to 25.68 MB. Finally, 

Huffman coding is used to compress the network to 13.05 

MB, achieving a total compression of 9.6x saving 112.20 MB 

of memory as shown in Figure 7. This significant size 

reduction allows the network model to be more easily 

deployed on resource-constrained devices, improving its 

usability and accessibility.  The compression of the network 

barely affected accuracy. The accuracy drop of the network 

after all compression steps is 2.6% which is not negligible but 

is a small amount. 

Table II. CNN Compression Results 

Compression 

Stage 
Size (MB) 

Stage 

Compression 

Total 

Compression 

(accumulated) 

Original 125.252 1.000 1.000 

Pruning   62.665 1.998 1.998 

Quantization   15.678 3.996 7.988 
Huffman coding   13.047 1.201 9.599 

 

 

Fig. 7. Comparison Ratio for CNN 

B. Recurrent Neural Network 

 The LSTM model was able to be compressed very well 

by the deep compression pipeline. In total, the deep 

compression framework compressed the LSTM network by 

21.69x. This is due largely to Quantization which decreased 

the size by the largest amount of all stages. As shown in Table 

3, Pruning compressed the file from 32.32 MB to 10.78 MB 

(2.99x compression). Quantization compressed the file 

further to 2.7 MB, with 3.98x compression from the Pruning 

step. Finally, Huffman coding compressed it to the final 1.49 

MB with 1.81x compression from the Quantization step and 

give the final 21.69x compression rate as shown in Figure 8. 

Additionally, the compression affected the accuracy, going 

from 87.49% to 85.38% for a loss of 2.11% accuracy. 

Similarly to the CNN network this is not negligible but is a 

small amount that can be ignored for most applications. 
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Table III. RNN Compression Results 

Compression 

Stage 
Size (MB) 

Stage 

Compression 

Total 

Compression 

(accumulated) 

Original 32.319 1.000 1.000 

Pruning 10.781 2.997 2.997 
Quantization      2.704 3.985 11.948 

Huffman coding   1.490 1.815 21.690 
 

 

Fig. 8. Comparison Ratio for RNN 

C. Generative Adversarial Network 

 Since the GAN network creates new images from random 

values, it is difficult to quantitatively analyze. In order to 

analyze the performance of the network, 5 images were 

selected from the best outputs. The GAN was initially trained 

on the CIFAR-10. This dataset is made up of color images of 

animals, cars, and planes. Some example images are shown 

in Figure 9.  
 

 

Fig. 9. CIFAR-10 dataset sample 

      When trained on this dataset, the GAN is able to create 

images that are somewhat similar. Note that because of the 

way GAN functions the generated images will not be of real 

animals or objects. The generated images contain shapes that 

look like animals and vehicles. The images also had 

colorations that were close to the input dataset and were 

detailed. A set of the 5 best-generated images are shown in 

Figure 10. 

 

Fig. 10. GAN-generated images 

 The performance of the network diminished significantly 

after pruning. Because a GAN is made up of two networks 

and only the generator is used after training. Only the 

generator is pruned in our experiment. After pruning to .6 

sparsity, the output images show much lower quality. Even in 

the best output cases, the objects in the image are less detailed 

and even look blocky. The output image color is also 

degraded and most images contained more blue and green 

than expected. Examples of these images are shown in Figure 

11.  

 

Fig. 11. Pruned GAN-generated images 

 The model was also negatively affected by quantization. 

In this step, only the generator was quantized for the same 

reason as in the pruning step. After quantization, the images 

lost even more detail and color depth. Many of the images 

after quantization also became extremely noisy. Examples of 

the generated images are shown in Figure 12.  
 

 

 Fig. 12. Pruned + Quantized GAN generated images 

 The compression rate for the network after pruning and 

quantization is also lower than expected. During the pruning 

step, the network could not be reduced beyond .6 sparsity or 

its error would increase towards infinity during the fine-

tuning step. While quantization worked correctly, it also 

negatively affected the quality of the output. After pruning, 

quantization, and Huffman coding, a total compression of 

only 4.941 times smaller than the base model could be 

achieved. 

V. CONCLUSION 

Because of limitations within Keras and Tensorflow 2, the 

pruning and quantization steps could not be finely controlled 

to create the smallest possible networks. One problem that 

occurred with using network compression in Tensorflow 2 is 

that saved networks include all parameters including those 

removed by pruning and quantization. Because of this, no 

benefits from compression could be seen until the saved 

output file is compressed using Huffman coding. The 

frameworks used also cause problems with compression 

because no quantization beyond 32 to 8-bit is supported by 

the software. These problems cause our best results to have 

about 4x less compression than the theoretical max 

compression found in the Deep Compression paper [1]. 

Compressing the CNN network provides decent overall 

results. It was compressible down to 9.6x its original size. 

Additionally, accuracy only suffered a 1.6% decrease. This 

makes the pipeline a vital tool for resource-constrained 

devices. While this is a great result, if the Keras tools were 

expanded for n-bit quantization, the results could have been 

even greater. Compressing the RNN network yields the most 

impressive results of all the networks. Through the deep 

compression pipeline, the network, which was originally 

32.32 MB in size, is reduced to just 1.49 MB; demonstrating 

the effectiveness of the pipeline. Furthermore, the experiment 

shows that the compressed LSTM is able to achieve 

comparable accuracy on sentiment analysis tasks to the 

original only losing 2.11% accuracy.  

 

 

 

https://www.openaccess.nl/en/open-publications
http://doi.org/10.35940/ijsce.C3613.0713323
http://www.ijsce.org/


 

Implications of Deep Compression with Complex Neural Networks 

                                       6 

Published By: 

Blue Eyes Intelligence Engineering 

and Sciences Publication (BEIESP) 
© Copyright: All rights reserved. 

Retrieval Number: 100.1/ijsce.C36130713323 

DOI: 10.35940/ijsce.C3613.0713323 

Journal Website: www.ijsce.org 

This is significant enough for many networks to be 

implemented in memory-scarce infrastructure which would 

not be able to handle the large size of the networks. 

Compressing the GAN network generates poor overall 

results. It was only compressible to about 5x smaller than the 

original model. Throughout the compression process, a 

significant amount of quality is also lost. Some of these 

problems may have been due to the non-symmetrical 

compression done to the network. Because only the generator 

is compressed into a more simple network, it is possible that 

the discriminator network is able to fit itself to the generator 

more quickly. The poor compression could also have been 

due to the overall complexity of producing convincing fake 

images. This complexity may have allowed small changes to 

the internal weights to cascade into large problems with the 

output data.  

While the deep compression pipeline is effectively 

working for CNN and RNN models to reduce the network 

size with small performance degradation, it is not working for 

more complicated networks such as GAN. In our GAN 

experiments, performance degradation is too much from the 

compression. For complex neural networks, we need to come 

up with different compression methodologies.  

VI. FUTURE WORK 

 To improve network compression performance, the 

Tensorflow 2 and Keras APIs can be modified. Within these 

libraries, the code for quantization support can be updated to 

allow n-bit quantization. In order to do this, the Tensorflow 

light-embedded kernel would also need to be updated to 

support the same levels of quantization. Saved model support 

can also be improved to save weight matrices in a sparse row 

or sparse column format instead of including every variable 

as a floating point value. Because of the poor performance 

of the compression pipeline on the GAN network, there is a 

significant amount of work that can be performed. More 

analysis and work should be done for discovering what 

parameters allow a GAN to be compressed without loss in 

output quality. Testing should also be done to determine if 

compressing both the generator and discriminator networks 

improves the output quality. For the CNN and RNN networks, 

the future work would be to fine-tune each stage of the 

compression pipeline more and create more specialized tools 

to be able to do so. 
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