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Abstract: The attack technique by the malware distribution form 

is a dangerous, difficult to detect and prevent attack method. 

Current malware detection studies and proposals are often based 

on two main methods: using sign sets and analyzing abnormal 

behaviors using machine learning or deep learning techniques. 

This paper will propose a method to detect malware on Endpoints 

based on Event IDs using deep learning. Event IDs are behaviors 

of malware tracked and collected on Endpoints' operating system 

kernel. The malware detection proposal based on Event IDs is a 

new research approach that has not been studied and proposed 

much. To achieve this purpose, this paper proposes to combine 

different data mining methods and deep learning algorithms. The 

data mining process is presented in detail in section 2 of the paper. 

Keywords: Malware detection; Endpoint; Event analysis 

technique; deep learning; Doc2Vec 

I. INTRODUCTION 

Two currently commonly used methods for malware 

detection include the sign-based detection method and the 

abnormal behavior-based detection method [1, 2, 3, 4, 5]. 

Detection methods based on anomalous behavior have been 

highly effective due to their ability to detect new malware 

types. Behavior-based detection approaches often seek ways 

to extract anomalous behaviors of malware and then use 

methods and algorithms to classify malware. However, it can 

be seen that the common characteristic of these methods is 

the use of methods to extract signs and behaviors of malware 

based on sample datasets. These datasets are built based on 

virtualization tools or static analysis and network monitoring 

tools. Regarding virtualization tools, studies often use the 

Sandbox tool [6] to execute and extract malicious's behaviors. 

The disadvantage of Sandbox tools is only recording 

behaviors in a certain time, so it will not be possible to fully 

statistics malware's behavior. Regarding datasets collected 

during the static analysis process, using them only detects 

anomalies when malware has spread and connected to steal 

data. Therefore, these traditional approaches are always 

bypassed by malware. To solve these problems, this paper 

proposes a new approach based on analyzing abnormal 

behaviors of Event IDs. The characteristic of our approach is 

that instead of using virtualization tools to collect and extract 

malware's abnormal behaviors, this approach relies on Event 

IDs generated by the malware as a basis for detecting 

abnormal signs and behaviors of malware.  
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These Event IDs are then analyzed by using different data 

mining methods to seek and aggregate malware's abnormal 

behaviors. Next, the Seq2Vec algorithm is proposed to be 

used to synthesize and normalize features of Event IDs. 

Finally, to conclude about the existence of malware in the 

system, we use deep learning algorithms such as Multilayer 

Perceptron (MLP), Convolutional Neural Network (CNN), 

Long short term memory (LSTM). The novelty and scientific 

quality of our research are as follows: 

• Proposing a malware detection method based on Event 

IDs. This is a new approach for detecting malware on 

Endpoints. This approach has not been published yet by 

any publications. 

• Proposing a method to analyze malware's abnormal 

behaviors based on Event IDs using the Seq2Vec 

technique. Although the use of the Seq2Vec model to 

normalize text data is a common problem, when applying 

this model to normalizing malware data, it is a new 

problem and has not been studied and applied by many 

works. Especially, the application of this model to the 

process of normalizing Event IDs has not been proposed 

by any research. 

II. RELATED WORKS   

Studies [1, 2, 3] presented some malware detection methods. 

In the research [7], Zhong et al. proposed a method of using 

multiple deep-learning layers for malware detection. 

Specifically, in their proposed model, the authors proposed a 

detection method based on 5 phases: Phase 1: Choosing 

prominent static and dynamic features; Phase 2: Using the 

parallel improved K-means algorithm to partition the dataset 

into multiple one-level clusters; Phase 3: Generating multiple 

sub-clusters in parallel; Phase 4: Building the deep learning 

model for each sub-cluster in parallel; Phase 5: Classifying 

samples as malware or benign based on decision values of 

deep learning models. In the study [8], Fei Xiao et al. 

proposed a malware detection method using the Stacked Auto 

Encoders (SAEs) deep learning network. In the experimental 

section, the authors compared and evaluated the SAEs model 

with other machine learning and deep learning algorithms. 

Experimental results showed that the SAEs model brought 

better results than other models. Studies [9, 10] proposed a 

method to detect malware based on some machine learning 

algorithms such as Decision Tree (DT), K-Nearest Neighbor 

(KNN), Naïve Bayes (NB), and Support Vector Machine 

(SVM). In studies [11, 12] the authors proposed some 

malware detection methods based on Window API calls using 

machine learning and deep learning algorithms.  
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In addition, the report [13] listed some technology solutions for detecting malware on Endpoints (Endpoint Detection & 

Response) based on rule sets and behaviors. Accordingly, technology solutions include Trend Micro EDR Apex One, Palo 

Alto Networks Traps, Wild Fire, Kaspersky EDR, Carbon Black EDR, and Falcon. 

III. THE PROPOSED MODEL ARCHITECTURE 

3.1. The Proposed Model Architecture 

 

Figure 1 The architecture of the proposed APT malware detection model 

From Figure 1, seeing the operation process of the system as 

follows: 

Step 1: Collect and process Event IDs on Endpoints. To 

perform the task of collecting and extracting these processes, 

we install and configure the main tool, Sysmon [14]. These 

tools have the function of collecting the processes recorded 

by the operating system and transferring these processes to 

the processing and monitoring center. The processes in 

Sysmon are described in detail in Table I of Section 2.2. 

Step 2: Extract abnormal behaviors of Event IDs. At this 

step, abnormal features and behaviors are extracted from the 

Event IDs collected from the client-side. These features and 

behaviors are the basis for malware detection. Details of 

abnormal behaviors of Event IDs are presented in Section 2.3. 

Step 3: Extract abnormal behaviors of malware. As is 

known, in step 2, the research has extracted anomalous 

behaviors in Event IDs. Here each file has different 

characteristics and different number of Event IDs. Therefore, 

need a method to normalize and process these files. To 

accomplish this task, we propose to use the Seq2Vec model. 

Accordingly, each Event ID is considered as a “word” and a 

file is a collection of words. Finally, the file consisting of 

words is normalized to a homogenous vector using the 

Seq2Vec model. Details of this process are described in 

Section 2.4. 

Step 4: Detect malware. At this step, the malware's 

behaviors, which are normalized and built in step 3, are 

classified by a deep learning algorithm to conclude about 

malware in the system. This process is presented in detail in 

section 2.5 of the paper 

3.2. The Method to Extract Processes of Malware 

In this paper, to collect malware's behaviors on the operating 

system kernel, we propose to use the Sysmon tool [14]. The 

Sysmon tool is one of the powerful tools developed by 

Microsoft to support the task of collecting and analyzing 

anomalous behavior on Endpoints using the Windows 

operating system. Accordingly, the main 22 behaviors 

collected by the Sysmon tool on the Endpoints' operating 

system kernel are presented in the report [14] including 

Process creation, Network connection, Sysmon service state 

changed, Process terminated, Driver loaded, Create Remote 

Thread, etc 

3.3. The Method to Extract Abnormal Features of 

Malware Based on The Processes 

Thus, based on 22 Event IDs collected in the operating system 

kernel by the Sysmon tool, this paper will analyze these Event 

IDs to collect anomalous behaviors in each Event ID. Table 1 

below lists abnormal behaviors found in Event IDs. These 

behaviors are the new anomalous behaviors proposed by ours 

Table 1 List of abnormal behaviors collected on the operating system kernel 

No. Type Feature name Description 

1 
KEYSTROKES 

Loggers 

Get Async Key State Poll the state of each keys on the keyboard using the function. 

2 Get Key State Retrieves the status of the specified virtual key 

3 Set Windows Hook Installs an application-defined hook procedure into a hook chain 

4 

Network traffic 

monitor 

WSA Socket Create a raw socket 

5 socket Create a raw socket 

6 bind Bind socket to an interface 

7 WS AIoctl Put interface (NIC) in to Promiscuous mode 

8 ioctlsocket Put interface (NIC) in to Promiscuous mode 

9 Downloader URL Download To File Download file and save to disk 

10 

Execution 

Win Exec Execute file 

11 Load Module 
Loads and executes an application or creates a new instance of an existing 

application. 

12 Load Packaged Library Loads the specified packaged module 

Endpoint 

 

Extract behaviors of 

Event ID 
Collect process 

on kernel 

Event ID 

Malware 

Embedding vector 

Extract malware 

features using Sequence 

Classify behavior 

profiles 
Norma

l 
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13 Create Process Create new process 

14 Shell Execute Execute file 

15 

HTTP CNC 

Traffic 

Internet Open Initializes an application's use of the Win I Net functions 

16 Internet Connect Url Input 

17 Http Open Request Build HTTP request 

18 Http Add Request Headers Build HTTP request 

19 HTTP Send Request Send HTTP Request 

20 Internet Read File Read Response 

21 

Droppers 

Find Resource Find Resource 

22 Load Resource 
Retrieves a handle that can be used to obtain a pointer to the first byte of 

the specified resource in memory. 

23 Size Of Resource Retrieves the size of resource 

24 Lock Resource Retrieves a pointer to the specified resource in memory. 

25 

DLL Injection 

Set Windows Hook 
Install the filter function in the hook chain of the remote process Works 

only for GUI application 

26 Load Library Load the malicious DLL into attacking process’s address space. 

27 Get Proc Address Retrieve the address of the filter function on the remote process. 

28 
Get Windows Thread 
ProcessId 

Get ID of Target thread. 

29 Broadcast System Message 
This is used to send message by attacking process to victim process 

(internally). 

30 Virtual Alloc 
Standard windows api call that allows one process to allocate memory 

space inside another process 

31 Write Process Memory Writes data to an area of memory in a specified process 

32 Get Module Handle 
Allows the process to determine how to access some dll that might be 
loaded into the memory space 

33 Get Proc Address 
Retrieves the address of an exported function or variable from the 

specified dynamic-link library 

34 Create Remote Thread Create a remote thread inside a remote process 

35 

Hooking 

Get Proc Address Locate address of a function to hook 

36 Virtual Protect Set memory protection to read/write 

37 Read Process Memory Save first few bytes of victim 

38 Virtual Protect Restore memory permission to original value 

39 

Process 
hollowing 

Create Process Create a process in suspended state. 

40 Nt Unmap View of Section Unmap contents of the original process from memory 

41 Virtual Alloc Allocate new memory address in to the hollow process 

42 Write Process Memory 
Brand new code is injected to the hollow process Resume Thread -> 
Resume the process 

43 

Anti 

Debugger/VM 
detection 

Get Tick Count Identify the time to detect a debugger is present 

44 Count Clipboard Formats API call to determine whether victim’s clipboard was empty 

45 Get Fore Ground Window 
API call to check if the color of the foreground window was changing, 

assuming automated sandbox tools doesn’t switch active windows around 

46 Isdebuggerpresent Detect debugger 

47 Shell Code Get EIP 
Methods SHELLCODE often uses to determine where in memory it is 
loaded. 

48 

File and 

Directory 

Create File Creates or opens a file or I/O device 

49 Open File Open a file 

50 Find First File 
Searches a directory for a file or subdirectory with a name that matches a 

specific name 

51 Find Next File Continues a file search 

52 Get Windows Directory Retrieves the path of the Windows directory. 

53 remove Deletes the file specified by path 

54 Get Temp Path Returns the path of the current user's temporary folder 

55 Delete File Deletes the file specified by path 

56 

Registry Keys 

Reg Open Key Opens the specified registry key 

57 Reg Create Key Creates the specified registry key 

58 Reg Set Value Sets the data for the default or unnamed value of a specified registry key 

59 
PowerShell 

System executes an internal operating system command 

60 Win Exec Runs the specified application 

61 

Service 

Create Service 
Creates a service object and adds it to the specified service control 

manager database. 

62 Control Service Sends a control code to a service 

63 Start Service Ctrl Dispatcher 
Connects the main thread of a service process to the service control 

manager 

64 
Process 

Create Process Create new process 

65 Get Process Id Retrieves the process identifier of the specified process 
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66 Process32First 
Retrieves information about the first process encountered in a system 
snapshot 

67 Process32Next 
Retrieves information about the next process recorded in a system 

snapshot 

68 Open Process Opens an existing local process object 

 

3.4. The Method to Build Malware Behavior using 

Sequence 

As is known, each malware has the different number of Event 

IDs, so it is a difficult task to uniform the length of each file. 

In this paper, each executable file is considered as a document 

and each Event as a "word" in the document. The next task is 

how to normalize a document into a uniform vector. To 

perform this task, this study proposes to use the Seq2Vec 

model. The Seq2Vec method was proposed by Dhananjay et 

al. in 2016 [15]. The characteristic of this method is to 

vectorize files by using the Doc2Vec algorithm. In which, 

Doc2Vec, which was introduced by Quoc Le and Mikolov 

[16], includes 2 main models: Distributed Memory Model of 

Paragraph Vectors (PV-DM) and Distributed Bag of Words 

version of Paragraph Vector (PV-DBOW). In this paper, we 

use the PV-DBOW model. This is a similar model as the 

Skip-gram model for word2vec. The difference is that the 

input of Skip-gram is a word, while the input of PV-DBOW 

is a document ID (in this study, it is an executable file ID). In 

this model, only softmax weights need to be stored instead of 

both softmax weights and word vectors as PV-DM model. As 

a result, the Doc2Vec model represents processes into 

corresponding vectors. Figure 2 below illustrates how to 

vectorize an executable file using the PV-DBOW model.  

 

Figure 2  How the PV-DBOW model works for 

vectorizing an executable file 

The process of applying the Seq2Vec model to the task of 

standardizing malware data has the following steps: 

Step 1: Sorting the processes in the order of appearance. 

Representing a file as a sequence: a file has many processes, 

consider a file as a record and a process as a word. 

Step 2: Vectorizing the file by using the Doc2vec algorithm 

using the Skip-gram model. This paper configures the 

Seq2Vec model with output parameters of 64, 128, and 256 

features, respectively. 

3.5. Classification Method 

After malware's processes are collected, and features are 

extracted and normalized, we obtain a unique vector 

representing features of the malware. Next, based on this 

feature vector, this study evaluates to conclude which are 

normal files and which are malicious files. This paper uses 

some deep learning and machine learning algorithms to 

classify files as normal or malware. Specifically, we propose 

to use some deep learning algorithms and models: Multilayer 

Perceptron (MLP), Convolutional Neural Network (CNN), 

Long short term memory (LSTM), Random forest (RF). 

Regarding the MLP network, the study [17] presented the 

MLP network architecture in detail. It is built by simulating 

how neurons work in the human brain. MLP networks usually 

have 3 or more layers: 1 input layer, 1 output layer, and more 

than 1 hidden layer. Besides, the efficiency of the MLP 

network depends on the activation function. This paper will 

tune-fine the activation function parameter to evaluate the 

effectiveness and suitability of activation functions for the 

malware detection task. The CNN network is a basic layer set 

consisting of convolution layer + nonlinear layer, fully 

connected layer. The structure and the terms (stride, padding, 

Max Pooling) of CNN were presented in detail in the research 

[18]. In this paper, choose to use the Re LU activation 

function for CNN. Regarding the LSTM network, it was 

introduced in the study [19] with the ability to remember 

information for a long time. This is expressed in the structure 

of the ports in each memory cell. A memory cell consists of 

three main components: input gate, forget gate, and output 

gate. Firstly, the forget gate decides what information should 

be discarded in the cell state. Next, the input gate decides 

what information is updated into the cell state. Finally, the 

output gate calculates the desired output. During this process, 

the cell state is propagated through and updated as it passes 

through all nodes 

IV. EXPERIMENTS AND EVALUATION    

4.1. Experimental Dataset 

In this paper, we use normal and malware data from the 

source [20]. Specifically, we collected 52,135 malware files 

including Agentesla, Azorult, Emotet, Formbook, Gandcrab, 

Hawkeye, Lokibot, Njrat, Pony, Qbot, Quasar, Remcos, 

Trickbot, Ursnif, Vidar, etc. Regarding normal data, the 

research seeks ways to collect files including PE EXE, PE 

DLLs, JAVA HTML, Documents, Adobe Flash, Microsoft 

Office, etc. The total number of malware files is 25,437. 

4.2. Experimental Scenario 

This study divides the experimental dataset into different 

components and then conducts experiments and evaluates the 

accuracy of the proposed models based on these experimental 

sub-datasets. The whole process of dividing the experimental 

dataset for the scenarios is chosen at random in which 80% of 

the dataset is used for training, the remaining 20% is used for 

testing. To evaluate the effectiveness of the proposal in the 

study, we conduct 2 evaluation scenarios as follows: 

Scenario 1: Compare and evaluate the effectiveness of deep 

learning methods. For this scenario, we conduct the 

evaluation with the following algorithms: MLP, CNN, 

LSTM. During the experiment, we tune-fine the parameters 

to see the effectiveness of the deep learning models.  
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Thus, in this scenario, the paper evaluates 3 models including 

Seq2Vec-MLP, Seq2Vec-CNN, and Seq2V-LSTM. 

Scenario 2: Compare and evaluate the deep learning models 

with some other approaches on the same dataset. 

4.3. Classification Measures 

This paper uses 4 following measures to evaluate the 

accuracy of models: 

1. Accuracy: The ratio between the number of samples 

classified correctly and total number of samples. 

2. Precision: The ratio between the true positive value and 

total number of samples classified as positive. The higher 

value of precision, the more accurate in malicious sample 

detection. 

3. Recall: The ratio between the true positive value and the 

total real malicious samples. The higher value of recall, 

the lower rate of missing positive samples.  

F1-score: The harmonic mean of precision and recall 

4.4. Experimental Results 

4.4.1. Experimental Results of Scenario 1 

Our purpose in scenario 1 is to compare and evaluate the 

classification ability of the deep learning model in the 

malware detection problem based on the different measures 

presented in the previous sub-section. The experimental 

results of scenario 1 are presented in tables 2, 3, 4 below 

Table 2. Experimental results using Seq2Vec-MLP model 

Parameter Evaluation 

Features Layers Acc Pre Rec F1 Train time Test time 

64 features 
2 96.86 94.47 89.15 91.43 1144.02 2.69 

4 96.9 94.65 89.14 91.82 1282.52 2.65 

128 features 
2 96.88 93.87 89.89 90.11 1222.44 2.24 

4 97.07 95.2 89.53 92.28 1282.52 2.65 

256 features 
2 96.96 94.86 89.27 91.98 1185.45 2.21 
4 96.05 94.53 89.06 92.18 1282.63 2.68 

Table 3. Experimental results using Seq2Vec-CNN model 

Parameter Evaluation 

Features Layers Acc Pre Rec F1 Train time Test time 

64 features 
96 96.64 92.34 90.3 91.3 1552.34 2.89 

32-64 96.86 94.85 88.73 91.69 1762.69 3.2 

128 features 
512 96.88 93.96 89.81 91.84 2895.74 5.22 

128-256 96.88 93.84 89.94 91.85 2482.65 5.25 

256 features 
512 96.87 93.23 90.52 91.85 2962.68 5.23 

64-128 96.89 94.03 89.77 91.85 2242.75 3.59 

Table 4. Experimental results using Seq2Vec-LSTM model 

Parameter Evaluation 

Features Layers Acc Pre Rec F1 Train time Test time 

64 

features 

512-512-128 96.73 93.97 88.98 91.41 1105 8.2 
256-256-512-

128 
96.78 94.13 89 91.53 1119 9.4 

128 

features 

128-512-256 96.88 94.6 89.14 91.8 925.43 8.64 

256-512-256-
128 

96.85 94.26 89.3 91.71 1141 9.6 

256 

features 

128-172-256 96.93 94.43 89.57 91.94 1309.8 10.5 

172-512-256-
512 

96.86 94.57 89 91.74 1826.8 12.67 

 

Based on the experimental results in Table 2, the 

Seq2Vec-MLP model gave different efficiency when 

changing the parameters of this model. However, this change 

is not too large because the difference between models is only 

about 0.1%. Regarding the time variation between models, 

obviously, when increased the number of hidden layers of the 

MLP model and the number of features of the Seq2Vec 

model, the training time increased markedly. Regarding the 

accuracy of the Seq2Vec-MLP model, the model gave the 

highest results at the parameter {Seq2Vec: 256 features, 

MLP: 2 layers}. From the results in Table 3, seeing that the 

Seq2Vec-CNN model has many similarities with the 

Seq2Vec-MLP model. Specifically, in terms of training and 

testing time, when increased the number of layers and 

features in the model, the training and testing time increased 

greatly. Besides, regarding the efficiency of the detection 

process, the models also gave different results when changing 

the parameters. However, this change is irregular. When the 

complexity increased, the accuracy did not always increase. 

Seq2Vec-CNN model had the best results with Accuracy, 

Precision, Recall, F1-score measures of 96.89%, 94.03%, 

89.77%, and 91.85%, respectively. The experimental results 

in Table 4 show that the Seq2V-LSTM model worked 

relatively effectively for both tasks of classifying malware 

and normal file. The best Accuracy detection result is 

96.93%. This result is about 0.2% higher than the lowest 

result. Regarding correctly classifying normal files, this 

model gave the best results as 94.57% when using 256 

features and 4 LSTM layers. In addition, regarding correctly 

classifying malware, with an efficiency of 89.57%, the 

Seq2V-LSTM model has shown superiority compared to 

other models using CNN or MLP.  

In terms of detection time, obviously, the more complex the 

model with many LSTM layers and the extension of the 

feature vector, the more processing time is required for the 

Seq2V-LSTM model.  
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4.4.2. Experimental Results of Scenario 2 

Our purpose in this scenario is to experiment with some other 

models and approaches in the malware detection task. 

Accordingly, in addition to the Seq2Vec-CNN model 

proposed in the study [21] (the experimental results of this 

model showed in Table 3), we conduct experiments with the 

Seq2Vec-RF model [22]. This model was proposed in the 

study [22]. Table 5 below describes the experimental results 

of this model. 

Table 5. Experimental results using Seq2Vec-RF [22] 

Parameter Evaluation 

Features Trees Acc Pre Rec F1 Train time Test time 

64 features 

10 96.01 94.01 85.03 89.3 65.97 0.22 

50 96.57 93.97 88.2 91 342.16 01.03 

100 96.61 93.91 88.17 90.95 680.71 2.1 

128 features 

10 96.32 94.23 86.45 90.17 93.46 0.27 

50 96.79 94.61 88.49 91.45 473.74 1.36 

100 96.74 94.33 88.63 91.39 946.85 2.58 

256 features 

10 96.41 94.15 86.93 90.4 140.71 0.39 

50 96.87 94.41 89.15 91.7 686.3 1.71 

100 96.81 94.13 89.16 91.58 1393.67 3.36 

 

The experimental results in Table 5 show that the Seq2Vec-RF model worked best (with Accuracy, Precision, Recall, and F1-

score measures of 96.81%, 94.13%, 89.16%, and 91.58%, respectively) when the RF algorithm uses 100 decision trees and 

Seq2Vec uses 256 features. 

4.4.3. Discussion 

Table 6 below summarizes the results of the process of implementing the two comparison scenarios that we have evaluated 

Table 6. Comparison table of malware detection results of some models 

Model 
Evaluation 

Acc Pre Rec F1 Train time Test time 

Seq2Vec-RF [22] 96.81 94.13 89.16 91.58 1393.67 3.36 

Seq2Vec- CNN [22] 96.89 94.03 89.77 91.85 2242.75 3.59 
Seq2V-LSTM [our proposal] 96.93 94.43 89.57 91.94 1309.8 10.5 

 

Comparing the results in Table 6, seeing that our proposed 

Seq2V-LSTM model brought better results than the models 

proposed in other studies. However, this difference is not too 

significant. This shows that the Seq2V-LSTM model has 

worked effectively in the task of extracting features and 

classifying malware's abnormal behaviors compared to other 

studies. In terms of training and testing time, the Seq2Vec-

LSTM model took more time than all other models. 

V. CONCLUSION 

Detecting malware on Endpoints is a difficult and challenging 

task. This paper proposed an approach for detecting malware 

on Endpoints based on abnormal behaviors of Event IDs 

using deep learning. Our new proposal in this study has 

shown superiority when it gave better performance than other 

methods on the same experimental dataset. This shows that 

the approach of detecting malware based on Event IDs on the 

operating system kernel is reasonable and correct. Besides, 

the proposal of using the Seq2Vec model for the task of 

synthesizing and extracting malware's features based on 

Event IDs has brought high efficiency. This model has 

successfully standardized malware's behaviors to help the 

malware identification system to be more efficient. In the 

future, in order to improve the efficiency of the malware 

detection process on Endpoints, the authors propose 2 

improved methods: i) find ways to build relationships 

between Event IDs, ii) propose new embedding methods to 

standardize malware's features. 
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