
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075 (Online), Volume-12 Issue-8, July 2023

 21

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijitee.H96510712823

DOI: 10.35940/ijitee.H9651.0712823

Journal Website: www.ijitee.org

Proposing A New Approach for Detecting Malware

Based on the Event Analysis Technique

Nguyen Duc Viet, Dang Dinh Quan

Abstract: The attack technique by the malware distribution form

is a dangerous, difficult to detect and prevent attack method.

Current malware detection studies and proposals are often based

on two main methods: using sign sets and analyzing abnormal

behaviors using machine learning or deep learning techniques.

This paper will propose a method to detect malware on Endpoints

based on Event IDs using deep learning. Event IDs are behaviors

of malware tracked and collected on Endpoints' operating system

kernel. The malware detection proposal based on Event IDs is a

new research approach that has not been studied and proposed

much. To achieve this purpose, this paper proposes to combine

different data mining methods and deep learning algorithms. The

data mining process is presented in detail in section 2 of the paper.

Keywords: Malware detection; Endpoint; Event analysis

technique; deep learning; Doc2Vec

I. INTRODUCTION

Two currently commonly used methods for malware

detection include the sign-based detection method and the

abnormal behavior-based detection method [1, 2, 3, 4, 5].

Detection methods based on anomalous behavior have been

highly effective due to their ability to detect new malware

types. Behavior-based detection approaches often seek ways

to extract anomalous behaviors of malware and then use

methods and algorithms to classify malware. However, it can

be seen that the common characteristic of these methods is

the use of methods to extract signs and behaviors of malware

based on sample datasets. These datasets are built based on

virtualization tools or static analysis and network monitoring

tools. Regarding virtualization tools, studies often use the

Sandbox tool [6] to execute and extract malicious's behaviors.

The disadvantage of Sandbox tools is only recording

behaviors in a certain time, so it will not be possible to fully

statistics malware's behavior. Regarding datasets collected

during the static analysis process, using them only detects

anomalies when malware has spread and connected to steal

data. Therefore, these traditional approaches are always

bypassed by malware. To solve these problems, this paper

proposes a new approach based on analyzing abnormal

behaviors of Event IDs. The characteristic of our approach is

that instead of using virtualization tools to collect and extract

malware's abnormal behaviors, this approach relies on Event

IDs generated by the malware as a basis for detecting

abnormal signs and behaviors of malware.

Manuscript received on 12 June 2023 | Revised Manuscript

received on 23 June 2023 | Manuscript Accepted on 15 July 2023

| Manuscript published on 30 July 2023.
*Correspondence Author(s)

Nguyen Duc Viet*, Posts and Telecommunications Institute of

Technology; E-mail: vietnd@ptit.edu.vn, ORCID ID: 0009-0009-5609-2905

Dang Dinh Quan, Faculty of Information Technology, Hanoi University.
E-mail: quandd@hanu.edu.vn, ORCID ID: 0009-0009-0531-5523

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC-

BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

These Event IDs are then analyzed by using different data

mining methods to seek and aggregate malware's abnormal

behaviors. Next, the Seq2Vec algorithm is proposed to be

used to synthesize and normalize features of Event IDs.

Finally, to conclude about the existence of malware in the

system, we use deep learning algorithms such as Multilayer

Perceptron (MLP), Convolutional Neural Network (CNN),

Long short term memory (LSTM). The novelty and scientific

quality of our research are as follows:

• Proposing a malware detection method based on Event

IDs. This is a new approach for detecting malware on

Endpoints. This approach has not been published yet by

any publications.

• Proposing a method to analyze malware's abnormal

behaviors based on Event IDs using the Seq2Vec

technique. Although the use of the Seq2Vec model to

normalize text data is a common problem, when applying

this model to normalizing malware data, it is a new

problem and has not been studied and applied by many

works. Especially, the application of this model to the

process of normalizing Event IDs has not been proposed

by any research.

II. RELATED WORKS

Studies [1, 2, 3] presented some malware detection methods.

In the research [7], Zhong et al. proposed a method of using

multiple deep-learning layers for malware detection.

Specifically, in their proposed model, the authors proposed a

detection method based on 5 phases: Phase 1: Choosing

prominent static and dynamic features; Phase 2: Using the

parallel improved K-means algorithm to partition the dataset

into multiple one-level clusters; Phase 3: Generating multiple

sub-clusters in parallel; Phase 4: Building the deep learning

model for each sub-cluster in parallel; Phase 5: Classifying

samples as malware or benign based on decision values of

deep learning models. In the study [8], Fei Xiao et al.

proposed a malware detection method using the Stacked Auto

Encoders (SAEs) deep learning network. In the experimental

section, the authors compared and evaluated the SAEs model

with other machine learning and deep learning algorithms.

Experimental results showed that the SAEs model brought

better results than other models. Studies [9, 10] proposed a

method to detect malware based on some machine learning

algorithms such as Decision Tree (DT), K-Nearest Neighbor

(KNN), Naïve Bayes (NB), and Support Vector Machine

(SVM). In studies [11, 12] the authors proposed some

malware detection methods based on Window API calls using

machine learning and deep learning algorithms.

https://www.openaccess.nl/en/open-publications
http://doi.org/10.35940/ijitee.H9651.0712823
http://www.ijitee.org/
mailto:vietnd@ptit.edu.vn
https://orcid.org/0009-0009-5609-2905
mailto:quandd@hanu.edu.vn
https://orcid.org/0009-0009-0531-5523
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijitee.H9651.0712823&domain=www.ijitee.org

Proposing A New Approach for Detecting Malware Based on the Event Analysis Technique

 22

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijitee.H96510712823

DOI: 10.35940/ijitee.H9651.0712823

Journal Website: www.ijitee.org

In addition, the report [13] listed some technology solutions for detecting malware on Endpoints (Endpoint Detection &

Response) based on rule sets and behaviors. Accordingly, technology solutions include Trend Micro EDR Apex One, Palo

Alto Networks Traps, Wild Fire, Kaspersky EDR, Carbon Black EDR, and Falcon.

III. THE PROPOSED MODEL ARCHITECTURE

3.1. The Proposed Model Architecture

Figure 1 The architecture of the proposed APT malware detection model

From Figure 1, seeing the operation process of the system as

follows:

Step 1: Collect and process Event IDs on Endpoints. To

perform the task of collecting and extracting these processes,

we install and configure the main tool, Sysmon [14]. These

tools have the function of collecting the processes recorded

by the operating system and transferring these processes to

the processing and monitoring center. The processes in

Sysmon are described in detail in Table I of Section 2.2.

Step 2: Extract abnormal behaviors of Event IDs. At this

step, abnormal features and behaviors are extracted from the

Event IDs collected from the client-side. These features and

behaviors are the basis for malware detection. Details of

abnormal behaviors of Event IDs are presented in Section 2.3.

Step 3: Extract abnormal behaviors of malware. As is

known, in step 2, the research has extracted anomalous

behaviors in Event IDs. Here each file has different

characteristics and different number of Event IDs. Therefore,

need a method to normalize and process these files. To

accomplish this task, we propose to use the Seq2Vec model.

Accordingly, each Event ID is considered as a “word” and a

file is a collection of words. Finally, the file consisting of

words is normalized to a homogenous vector using the

Seq2Vec model. Details of this process are described in

Section 2.4.

Step 4: Detect malware. At this step, the malware's

behaviors, which are normalized and built in step 3, are

classified by a deep learning algorithm to conclude about

malware in the system. This process is presented in detail in

section 2.5 of the paper

3.2. The Method to Extract Processes of Malware

In this paper, to collect malware's behaviors on the operating

system kernel, we propose to use the Sysmon tool [14]. The

Sysmon tool is one of the powerful tools developed by

Microsoft to support the task of collecting and analyzing

anomalous behavior on Endpoints using the Windows

operating system. Accordingly, the main 22 behaviors

collected by the Sysmon tool on the Endpoints' operating

system kernel are presented in the report [14] including

Process creation, Network connection, Sysmon service state

changed, Process terminated, Driver loaded, Create Remote

Thread, etc

3.3. The Method to Extract Abnormal Features of

Malware Based on The Processes

Thus, based on 22 Event IDs collected in the operating system

kernel by the Sysmon tool, this paper will analyze these Event

IDs to collect anomalous behaviors in each Event ID. Table 1

below lists abnormal behaviors found in Event IDs. These

behaviors are the new anomalous behaviors proposed by ours

Table 1 List of abnormal behaviors collected on the operating system kernel

No. Type Feature name Description

1
KEYSTROKES

Loggers

Get Async Key State Poll the state of each keys on the keyboard using the function.

2 Get Key State Retrieves the status of the specified virtual key

3 Set Windows Hook Installs an application-defined hook procedure into a hook chain

4

Network traffic

monitor

WSA Socket Create a raw socket

5 socket Create a raw socket

6 bind Bind socket to an interface

7 WS AIoctl Put interface (NIC) in to Promiscuous mode

8 ioctlsocket Put interface (NIC) in to Promiscuous mode

9 Downloader URL Download To File Download file and save to disk

10

Execution

Win Exec Execute file

11 Load Module
Loads and executes an application or creates a new instance of an existing

application.

12 Load Packaged Library Loads the specified packaged module

Endpoint

Extract behaviors of

Event ID
Collect process

on kernel

Event ID

Malware

Embedding vector

Extract malware

features using Sequence

Classify behavior

profiles
Norma

l

http://doi.org/10.35940/ijitee.H9651.0712823
http://www.ijitee.org/

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075 (Online), Volume-12 Issue-8, July 2023

 23

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijitee.H96510712823

DOI: 10.35940/ijitee.H9651.0712823

Journal Website: www.ijitee.org

13 Create Process Create new process

14 Shell Execute Execute file

15

HTTP CNC

Traffic

Internet Open Initializes an application's use of the Win I Net functions

16 Internet Connect Url Input

17 Http Open Request Build HTTP request

18 Http Add Request Headers Build HTTP request

19 HTTP Send Request Send HTTP Request

20 Internet Read File Read Response

21

Droppers

Find Resource Find Resource

22 Load Resource
Retrieves a handle that can be used to obtain a pointer to the first byte of

the specified resource in memory.

23 Size Of Resource Retrieves the size of resource

24 Lock Resource Retrieves a pointer to the specified resource in memory.

25

DLL Injection

Set Windows Hook
Install the filter function in the hook chain of the remote process Works

only for GUI application

26 Load Library Load the malicious DLL into attacking process’s address space.

27 Get Proc Address Retrieve the address of the filter function on the remote process.

28
Get Windows Thread
ProcessId

Get ID of Target thread.

29 Broadcast System Message
This is used to send message by attacking process to victim process

(internally).

30 Virtual Alloc
Standard windows api call that allows one process to allocate memory

space inside another process

31 Write Process Memory Writes data to an area of memory in a specified process

32 Get Module Handle
Allows the process to determine how to access some dll that might be
loaded into the memory space

33 Get Proc Address
Retrieves the address of an exported function or variable from the

specified dynamic-link library

34 Create Remote Thread Create a remote thread inside a remote process

35

Hooking

Get Proc Address Locate address of a function to hook

36 Virtual Protect Set memory protection to read/write

37 Read Process Memory Save first few bytes of victim

38 Virtual Protect Restore memory permission to original value

39

Process
hollowing

Create Process Create a process in suspended state.

40 Nt Unmap View of Section Unmap contents of the original process from memory

41 Virtual Alloc Allocate new memory address in to the hollow process

42 Write Process Memory
Brand new code is injected to the hollow process Resume Thread ->
Resume the process

43

Anti

Debugger/VM
detection

Get Tick Count Identify the time to detect a debugger is present

44 Count Clipboard Formats API call to determine whether victim’s clipboard was empty

45 Get Fore Ground Window
API call to check if the color of the foreground window was changing,

assuming automated sandbox tools doesn’t switch active windows around

46 Isdebuggerpresent Detect debugger

47 Shell Code Get EIP
Methods SHELLCODE often uses to determine where in memory it is
loaded.

48

File and

Directory

Create File Creates or opens a file or I/O device

49 Open File Open a file

50 Find First File
Searches a directory for a file or subdirectory with a name that matches a

specific name

51 Find Next File Continues a file search

52 Get Windows Directory Retrieves the path of the Windows directory.

53 remove Deletes the file specified by path

54 Get Temp Path Returns the path of the current user's temporary folder

55 Delete File Deletes the file specified by path

56

Registry Keys

Reg Open Key Opens the specified registry key

57 Reg Create Key Creates the specified registry key

58 Reg Set Value Sets the data for the default or unnamed value of a specified registry key

59
PowerShell

System executes an internal operating system command

60 Win Exec Runs the specified application

61

Service

Create Service
Creates a service object and adds it to the specified service control

manager database.

62 Control Service Sends a control code to a service

63 Start Service Ctrl Dispatcher
Connects the main thread of a service process to the service control

manager

64
Process

Create Process Create new process

65 Get Process Id Retrieves the process identifier of the specified process

https://www.openaccess.nl/en/open-publications
http://doi.org/10.35940/ijitee.H9651.0712823
http://www.ijitee.org/

Proposing A New Approach for Detecting Malware Based on the Event Analysis Technique

 24

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijitee.H96510712823

DOI: 10.35940/ijitee.H9651.0712823

Journal Website: www.ijitee.org

66 Process32First
Retrieves information about the first process encountered in a system
snapshot

67 Process32Next
Retrieves information about the next process recorded in a system

snapshot

68 Open Process Opens an existing local process object

3.4. The Method to Build Malware Behavior using

Sequence

As is known, each malware has the different number of Event

IDs, so it is a difficult task to uniform the length of each file.

In this paper, each executable file is considered as a document

and each Event as a "word" in the document. The next task is

how to normalize a document into a uniform vector. To

perform this task, this study proposes to use the Seq2Vec

model. The Seq2Vec method was proposed by Dhananjay et

al. in 2016 [15]. The characteristic of this method is to

vectorize files by using the Doc2Vec algorithm. In which,

Doc2Vec, which was introduced by Quoc Le and Mikolov

[16], includes 2 main models: Distributed Memory Model of

Paragraph Vectors (PV-DM) and Distributed Bag of Words

version of Paragraph Vector (PV-DBOW). In this paper, we

use the PV-DBOW model. This is a similar model as the

Skip-gram model for word2vec. The difference is that the

input of Skip-gram is a word, while the input of PV-DBOW

is a document ID (in this study, it is an executable file ID). In

this model, only softmax weights need to be stored instead of

both softmax weights and word vectors as PV-DM model. As

a result, the Doc2Vec model represents processes into

corresponding vectors. Figure 2 below illustrates how to

vectorize an executable file using the PV-DBOW model.

Figure 2 How the PV-DBOW model works for

vectorizing an executable file

The process of applying the Seq2Vec model to the task of

standardizing malware data has the following steps:

Step 1: Sorting the processes in the order of appearance.

Representing a file as a sequence: a file has many processes,

consider a file as a record and a process as a word.

Step 2: Vectorizing the file by using the Doc2vec algorithm

using the Skip-gram model. This paper configures the

Seq2Vec model with output parameters of 64, 128, and 256

features, respectively.

3.5. Classification Method

After malware's processes are collected, and features are

extracted and normalized, we obtain a unique vector

representing features of the malware. Next, based on this

feature vector, this study evaluates to conclude which are

normal files and which are malicious files. This paper uses

some deep learning and machine learning algorithms to

classify files as normal or malware. Specifically, we propose

to use some deep learning algorithms and models: Multilayer

Perceptron (MLP), Convolutional Neural Network (CNN),

Long short term memory (LSTM), Random forest (RF).

Regarding the MLP network, the study [17] presented the

MLP network architecture in detail. It is built by simulating

how neurons work in the human brain. MLP networks usually

have 3 or more layers: 1 input layer, 1 output layer, and more

than 1 hidden layer. Besides, the efficiency of the MLP

network depends on the activation function. This paper will

tune-fine the activation function parameter to evaluate the

effectiveness and suitability of activation functions for the

malware detection task. The CNN network is a basic layer set

consisting of convolution layer + nonlinear layer, fully

connected layer. The structure and the terms (stride, padding,

Max Pooling) of CNN were presented in detail in the research

[18]. In this paper, choose to use the Re LU activation

function for CNN. Regarding the LSTM network, it was

introduced in the study [19] with the ability to remember

information for a long time. This is expressed in the structure

of the ports in each memory cell. A memory cell consists of

three main components: input gate, forget gate, and output

gate. Firstly, the forget gate decides what information should

be discarded in the cell state. Next, the input gate decides

what information is updated into the cell state. Finally, the

output gate calculates the desired output. During this process,

the cell state is propagated through and updated as it passes

through all nodes

IV. EXPERIMENTS AND EVALUATION

4.1. Experimental Dataset

In this paper, we use normal and malware data from the

source [20]. Specifically, we collected 52,135 malware files

including Agentesla, Azorult, Emotet, Formbook, Gandcrab,

Hawkeye, Lokibot, Njrat, Pony, Qbot, Quasar, Remcos,

Trickbot, Ursnif, Vidar, etc. Regarding normal data, the

research seeks ways to collect files including PE EXE, PE

DLLs, JAVA HTML, Documents, Adobe Flash, Microsoft

Office, etc. The total number of malware files is 25,437.

4.2. Experimental Scenario

This study divides the experimental dataset into different

components and then conducts experiments and evaluates the

accuracy of the proposed models based on these experimental

sub-datasets. The whole process of dividing the experimental

dataset for the scenarios is chosen at random in which 80% of

the dataset is used for training, the remaining 20% is used for

testing. To evaluate the effectiveness of the proposal in the

study, we conduct 2 evaluation scenarios as follows:

Scenario 1: Compare and evaluate the effectiveness of deep

learning methods. For this scenario, we conduct the

evaluation with the following algorithms: MLP, CNN,

LSTM. During the experiment, we tune-fine the parameters

to see the effectiveness of the deep learning models.

Executable

File ID

Event i

Event
i+1

Event
i+2

Event
i+3

Input Layer Output Layer Hidden Layer

http://doi.org/10.35940/ijitee.H9651.0712823
http://www.ijitee.org/

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075 (Online), Volume-12 Issue-8, July 2023

 25

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijitee.H96510712823

DOI: 10.35940/ijitee.H9651.0712823

Journal Website: www.ijitee.org

Thus, in this scenario, the paper evaluates 3 models including

Seq2Vec-MLP, Seq2Vec-CNN, and Seq2V-LSTM.

Scenario 2: Compare and evaluate the deep learning models

with some other approaches on the same dataset.

4.3. Classification Measures

This paper uses 4 following measures to evaluate the

accuracy of models:

1. Accuracy: The ratio between the number of samples

classified correctly and total number of samples.

2. Precision: The ratio between the true positive value and

total number of samples classified as positive. The higher

value of precision, the more accurate in malicious sample

detection.

3. Recall: The ratio between the true positive value and the

total real malicious samples. The higher value of recall,

the lower rate of missing positive samples.

F1-score: The harmonic mean of precision and recall

4.4. Experimental Results

4.4.1. Experimental Results of Scenario 1

Our purpose in scenario 1 is to compare and evaluate the

classification ability of the deep learning model in the

malware detection problem based on the different measures

presented in the previous sub-section. The experimental

results of scenario 1 are presented in tables 2, 3, 4 below

Table 2. Experimental results using Seq2Vec-MLP model

Parameter Evaluation

Features Layers Acc Pre Rec F1 Train time Test time

64 features
2 96.86 94.47 89.15 91.43 1144.02 2.69

4 96.9 94.65 89.14 91.82 1282.52 2.65

128 features
2 96.88 93.87 89.89 90.11 1222.44 2.24

4 97.07 95.2 89.53 92.28 1282.52 2.65

256 features
2 96.96 94.86 89.27 91.98 1185.45 2.21
4 96.05 94.53 89.06 92.18 1282.63 2.68

Table 3. Experimental results using Seq2Vec-CNN model

Parameter Evaluation

Features Layers Acc Pre Rec F1 Train time Test time

64 features
96 96.64 92.34 90.3 91.3 1552.34 2.89

32-64 96.86 94.85 88.73 91.69 1762.69 3.2

128 features
512 96.88 93.96 89.81 91.84 2895.74 5.22

128-256 96.88 93.84 89.94 91.85 2482.65 5.25

256 features
512 96.87 93.23 90.52 91.85 2962.68 5.23

64-128 96.89 94.03 89.77 91.85 2242.75 3.59

Table 4. Experimental results using Seq2Vec-LSTM model

Parameter Evaluation

Features Layers Acc Pre Rec F1 Train time Test time

64

features

512-512-128 96.73 93.97 88.98 91.41 1105 8.2
256-256-512-

128
96.78 94.13 89 91.53 1119 9.4

128

features

128-512-256 96.88 94.6 89.14 91.8 925.43 8.64

256-512-256-
128

96.85 94.26 89.3 91.71 1141 9.6

256

features

128-172-256 96.93 94.43 89.57 91.94 1309.8 10.5

172-512-256-
512

96.86 94.57 89 91.74 1826.8 12.67

Based on the experimental results in Table 2, the

Seq2Vec-MLP model gave different efficiency when

changing the parameters of this model. However, this change

is not too large because the difference between models is only

about 0.1%. Regarding the time variation between models,

obviously, when increased the number of hidden layers of the

MLP model and the number of features of the Seq2Vec

model, the training time increased markedly. Regarding the

accuracy of the Seq2Vec-MLP model, the model gave the

highest results at the parameter {Seq2Vec: 256 features,

MLP: 2 layers}. From the results in Table 3, seeing that the

Seq2Vec-CNN model has many similarities with the

Seq2Vec-MLP model. Specifically, in terms of training and

testing time, when increased the number of layers and

features in the model, the training and testing time increased

greatly. Besides, regarding the efficiency of the detection

process, the models also gave different results when changing

the parameters. However, this change is irregular. When the

complexity increased, the accuracy did not always increase.

Seq2Vec-CNN model had the best results with Accuracy,

Precision, Recall, F1-score measures of 96.89%, 94.03%,

89.77%, and 91.85%, respectively. The experimental results

in Table 4 show that the Seq2V-LSTM model worked

relatively effectively for both tasks of classifying malware

and normal file. The best Accuracy detection result is

96.93%. This result is about 0.2% higher than the lowest

result. Regarding correctly classifying normal files, this

model gave the best results as 94.57% when using 256

features and 4 LSTM layers. In addition, regarding correctly

classifying malware, with an efficiency of 89.57%, the

Seq2V-LSTM model has shown superiority compared to

other models using CNN or MLP.

In terms of detection time, obviously, the more complex the

model with many LSTM layers and the extension of the

feature vector, the more processing time is required for the

Seq2V-LSTM model.

https://www.openaccess.nl/en/open-publications
http://doi.org/10.35940/ijitee.H9651.0712823
http://www.ijitee.org/

Proposing A New Approach for Detecting Malware Based on the Event Analysis Technique

 26

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijitee.H96510712823

DOI: 10.35940/ijitee.H9651.0712823

Journal Website: www.ijitee.org

4.4.2. Experimental Results of Scenario 2

Our purpose in this scenario is to experiment with some other

models and approaches in the malware detection task.

Accordingly, in addition to the Seq2Vec-CNN model

proposed in the study [21] (the experimental results of this

model showed in Table 3), we conduct experiments with the

Seq2Vec-RF model [22]. This model was proposed in the

study [22]. Table 5 below describes the experimental results

of this model.

Table 5. Experimental results using Seq2Vec-RF [22]

Parameter Evaluation

Features Trees Acc Pre Rec F1 Train time Test time

64 features

10 96.01 94.01 85.03 89.3 65.97 0.22

50 96.57 93.97 88.2 91 342.16 01.03

100 96.61 93.91 88.17 90.95 680.71 2.1

128 features

10 96.32 94.23 86.45 90.17 93.46 0.27

50 96.79 94.61 88.49 91.45 473.74 1.36

100 96.74 94.33 88.63 91.39 946.85 2.58

256 features

10 96.41 94.15 86.93 90.4 140.71 0.39

50 96.87 94.41 89.15 91.7 686.3 1.71

100 96.81 94.13 89.16 91.58 1393.67 3.36

The experimental results in Table 5 show that the Seq2Vec-RF model worked best (with Accuracy, Precision, Recall, and F1-

score measures of 96.81%, 94.13%, 89.16%, and 91.58%, respectively) when the RF algorithm uses 100 decision trees and

Seq2Vec uses 256 features.

4.4.3. Discussion

Table 6 below summarizes the results of the process of implementing the two comparison scenarios that we have evaluated

Table 6. Comparison table of malware detection results of some models

Model
Evaluation

Acc Pre Rec F1 Train time Test time

Seq2Vec-RF [22] 96.81 94.13 89.16 91.58 1393.67 3.36

Seq2Vec- CNN [22] 96.89 94.03 89.77 91.85 2242.75 3.59
Seq2V-LSTM [our proposal] 96.93 94.43 89.57 91.94 1309.8 10.5

Comparing the results in Table 6, seeing that our proposed

Seq2V-LSTM model brought better results than the models

proposed in other studies. However, this difference is not too

significant. This shows that the Seq2V-LSTM model has

worked effectively in the task of extracting features and

classifying malware's abnormal behaviors compared to other

studies. In terms of training and testing time, the Seq2Vec-

LSTM model took more time than all other models.

V. CONCLUSION

Detecting malware on Endpoints is a difficult and challenging

task. This paper proposed an approach for detecting malware

on Endpoints based on abnormal behaviors of Event IDs

using deep learning. Our new proposal in this study has

shown superiority when it gave better performance than other

methods on the same experimental dataset. This shows that

the approach of detecting malware based on Event IDs on the

operating system kernel is reasonable and correct. Besides,

the proposal of using the Seq2Vec model for the task of

synthesizing and extracting malware's features based on

Event IDs has brought high efficiency. This model has

successfully standardized malware's behaviors to help the

malware identification system to be more efficient. In the

future, in order to improve the efficiency of the malware

detection process on Endpoints, the authors propose 2

improved methods: i) find ways to build relationships

between Event IDs, ii) propose new embedding methods to

standardize malware's features.

DECLARATION

Funding/ Grants/

Financial Support
No, we did not receive.

Conflicts of Interest/

Competing Interests

No conflicts of interest to the

best of our knowledge.

Ethical Approval and

Consent to Participate

No, the article does not require

ethical approval and consent

to participate with evidence.

Availability of Data and

Material/ Data Access

Statement

Not relevant.

Authors Contributions
All authors have equal

participation in this article.

REFERENCES

1. Yanfang Ye, Tao Li, Donald Adjeroh, S. Sitharama Iyengar, A survey
on malware detection using data mining techniques, ACM Comput.

Surv, 50, 2017. [CrossRef]

2. Daniel Gibert, Carles Mateu, Jordi Planes, The rise of machine learning
for detection and classification of malware: Research developments,

trends and challenges, Journal of Network and Computer Applications,

153, pp. 1-22, 2020. [CrossRef]
3. Ucci, Daniele & Aniello, Leonardo, Survey on the Usage of Machine

Learning Techniques for Malware Analysis, Computers & Security, 81,

2017. [CrossRef]
4. Sanjay Sharma, C. Rama Krishna, Sanjay K. Sahay, Detection of

Advanced Malware by Machine Learning Techniques, 2019.

arXiv:1903.02966. [CrossRef]

5. Alireza Souri, Rahil Hosseini, A state‑of‑the‑art survey of malware

detection approaches using data mining techniques, 8, no. 3, pp 1-22,

2018. [CrossRef]

http://doi.org/10.35940/ijitee.H9651.0712823
http://www.ijitee.org/
https://doi.org/10.1145/3073559.
https://doi.org/10.1016/j.jnca.2019.102526
https://doi.org/10.1016/j.cose.2018.11.001.
https://doi.org/10.1007/978-981-13-0589-4_31
https://doi.org/10.1186/s13673-018-0125-x.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075 (Online), Volume-12 Issue-8, July 2023

 27

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijitee.H96510712823

DOI: 10.35940/ijitee.H9651.0712823

Journal Website: www.ijitee.org

6. Important Information Regarding Sandboxie Versions.
https://www.sandboxie.com/. (Accessed on 26 August 2020)

7. Zhong Wei, Gu Feng, A Multi-Level Deep Learning System for Malware

Detection, Expert Systems with Applications, 133, 2019. [CrossRef]
8. Fei Xiao, Zhaowen Lin, Yi Sun, Yan Ma, Malware Detection Based on

Deep Learning of Behavior Graphs, Mathematical Problems in

Engineering. [CrossRef]
9. M. Fan, J. Liu, X. Luo et al., Android malware familial classification

and representative sample selection via frequent subgraph analysis,

IEEE Transactions on Information Forensics and Security, 13, no. 8, pp.
1890–1905, 2018. [CrossRef]

10. Z. Lin, X. Fei, S. Yi, Y. Ma, C.-C. Xing, J. Huang, A secure encryption-

based malware detection system, KSII Transactions on Internet and
Information Systems, 12, no. 4, pp. 1799–1818, 2018. [CrossRef]

11. B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, Deep learning for

classification of malware system call sequences, in proceedings of the
Australasian Joint Conference on Artificial Intelligence, Lecture Notes

in Comput. Sci., pp. 137–149, 2016. [CrossRef]

12. B. S. Abhishek and B. A. Prakash, Graphs for malware detection: the

next frontier, in proceedings of the 13th International Workshop on

Mining and Learning with Graphs (MLG), 2017.

13. Endpoint Detection and Response Solutions Market-
https://www.gartner.com/reviews/market/endpoint-detection-and-

response-solutions. (Accessed on 26 August 2020).

14. Sysmon v10.42. https://docs.microsoft.com/en-
us/sysinternals/downloads/sysmon (Accessed on 26 August 2021).

15. Dhananjay Kimothi, Akshay Soni, Pravesh Biyani, James M. Hogan,
Distributed Representations for Biological Sequence Analysis.

arXiv:1608.05949v2.

16. Quoc V. Le, Tomas Mikolov, Distributed Representations of Sentences
and Documents. arXiv:1405.4053.

17. Daniel Svozil, Vladimir Kvasnicka, Jiří Pospíchal, Introduction to multi-

layer feed-forward neural networks, Chemometrics and Intelligent
Laboratory Systems, 39, no. 1, pp. 43-62, 1997 [CrossRef]

18. Keiron O’Shea, Ryan Nash, An Introduction to Convolutional Neural

Networks. arXiv, arXiv:1511.08458.

19. Sepp Hochreiter, Jürgen Schmidhuber, Long Short-Term Memory,

Neural Computation, 9, no. 8, pp. 1735 - 1780, 1997. [CrossRef]

20. Malware hunting with live access to the heart of an incident.
https://app.any.run/ (Accessed on 26 August 2021).

21. S. Tobiyama, Y. Yamaguchi, H. Shimada, T. Ikuse, T. Yagi, Malware

Detection with Deep Neural Network Using Process Behavior, in
proceedings of 2016 IEEE 40th Annual Computer Software and

Applications Conference (COMPSAC), pp. 577-582, 2016. [CrossRef]

22. Mehadi Hassen, Mehadi Hassen, Scalable Function Call Graph-based
Malware Classification, in proceedings of the Seventh ACM on

Conference on Data and Application Security and Privacy, pp. 239–248,

2017. [CrossRef]

AUTHOR PROFILE

Nguyen Duc Viet Received a PhD in 2016. Currently

working at the Institute of Post and Telecommunications

Technology. Research area: Radio positioning,

Multilateration monitoring system

Quan Dang-Dinh is a lecturer at Faculty of Information

Technology, Hanoi University. His research interests

include email prioritization, network security and malware
detection

Disclaimer/Publisher’s Note: The statements, opinions and

data contained in all publications are solely those of the

individual author(s) and contributor(s) and not of the Blue

Eyes Intelligence Engineering and Sciences Publication

(BEIESP)/ journal and/or the editor(s). The Blue Eyes

Intelligence Engineering and Sciences Publication (BEIESP)

and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods,

instructions or products referred to in the content.

https://www.openaccess.nl/en/open-publications
http://doi.org/10.35940/ijitee.H9651.0712823
http://www.ijitee.org/
https://doi.org/10.1016/j.eswa.2019.04.064
https://doi.org/10.1155/2019/8195395
https://doi.org/10.1109/TIFS.2018.2806891
https://doi.org/10.3837/tiis.2018.04.022
https://doi.org/10.1007/978-3-319-50127-7_11
https://doi.org/10.1016/S0169-7439(97)00061-0
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/COMPSAC.2016.151
https://doi.org/10.1145/3029806.3029824.

