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ABSTRACT
In domains with high stakes, like healthcare and medicine, trust-
worthy and robust decision-making is crucial due to the potential
risks associated with misclassification. However, many traditional
machine learning classifiers lack calibrated predictions, and reliable
uncertainty estimates for new unseen data. This paper addresses
the challenge of uncertainty quantification in text classification in
healthcare and proposes a three-fold approach to support robust and
trustworthy decision-making by medical practitioners. To evaluate
our solution, we implement it on a multi-label medical transcrip-
tion dataset from Kaggle. Our study demonstrates three significant
results: the ability of our model to reject uncertain predictions by
providing a null set, the provision of set predictions with guaran-
teed coverage for further investigation, and the prioritization of
decision-making based on confidence levels of predictions with the
same label. Additionally, we tackle the issue of imbalanced datasets
in the medical domain by employing the Mondrian Conformal Pre-
dictor with a Naïve Bayes classifier. Our findings are expected to
enhance the risk-aware decision-making process in the medical
field.
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1 INTRODUCTION
Machine learning has emerged as a powerful tool in the medical
domain, providing healthcare professionals with a means to make
more informed decisions and improve patient outcomes [1]. Medical
transcript analysis, in particular, holds the potential to assist in
diagnostics [2], treatment planning [3], and patient monitoring [4].
However, traditional natural language processing techniques have
limitations that can result in inaccuracies in classification [5, 6].

Natural Language Processing (NLP) techniques, specifically text
classification, can be leveraged in various industry applications to
overcome these limitations. Several methods have been proposed to
achieve this goal. [3, 7] However, they are often under-utilized due
to the criticality of the decisions involved and a lack of confidence
in individual decisions. Currently, with text classification, we don’t
have a mechanism to ‘tell’ the model to be more strict or lenient
while making a decision. Hence, the accuracy of the model solely
depends on the classifier.
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1.1 Related Work
Text classification has been widely explored in the field of NLP,
and it has found applications in various domains such as finance
[8], military [9], and medical [10, 11], among others. Most of the
research in this field has focused on developing algorithms that can
improve accuracy while keeping the computational cost low [12]. A
few works [13] have used aleatory and epistemic uncertainty. Still,
they do not quantify the prediction of each new prediction, while
[14] focuses on the profound learning aspect of text classification.
However, we still see a gap in the practical realization and the
applicability of the metrics for confident decision-making for a text
classification system.

2 NOVEL CONTRIBUTIONS
The novelty of this work is that the proposed mechanism not only
gives classification out, but two measures, i.e., confidence and cred-
ibility, to tune those decisions based on the criticality and control
the algorithmic decision-making. The main contributions of this
paper are as follows:

• Uncertainty quantification for each prediction for improved
and robust decision-making for the medical domain with
imbalanced data.

• An algorithm-agnostic framework with an option to reject
predictions made by the model and the reduction of false
positive rate when the model says for a particular prediction
for which it is unsure.

• Disease severity ratingmechanism helps the decisionmakers
prioritize individualized treatment.

3 PROPOSED SOLUTION
We use the dataset from Kaggle Medical transcription data scraped
from mtsamples.com, which has used only 8 Medical specialties for
the classification task. The experimental results, source code, and
the dataset is hosted on GitHub 1. We used Mondrian conformal
predictor as an uncertainty quantifier as a wrapper on top of the
Naïve Bayes classifier; however, any other classification algorithm
can also be used. Designing an efficient non-conformity score is of
prime importance and shall be taken care of by the designer. The
solution provides the three contributions as discussed in the results
section.

1https://github.com/rahvis/CECS590
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Figure 1: Conformalized text classification for implementing
a reliable decision making

4 RESULTS
4.1 Conformal Inference
Conformal prediction is a framework for constructing prediction
intervals for machine learning models. The main goal of conformal
prediction is to provide a measure of confidence for the predictions
made by a model. Traditional performance metrics like precision
and recall are insufficient in conformal prediction because they do
not capture the uncertainty in the predictions.

Figure 2: Conformal inference and associated p-values for
each label for 7 test samples

The p-value is ametric formeasuring the confidence of amachine
learning model’s predictions. It is calculated by comparing the
model’s prediction for a new piece of data with its predictions
for the data on which it was trained through hypothesis testing.
Suppose the new data differs significantly from the data seen during
training. In that case, the p-value will be low, indicating that the
model’s prediction for the new data may not be as reliable.

4.2 Reject - I don’t know
When a model does not get any of the p-values greater than the
alpha value, it outputs a NULL set as shown in the Figure 3.

4.3 Disease severity rating
We use the confidence metrics to rank the predicted labels, which
are defined as:

Confidence(𝑥) = sup{1 − 𝜖 : |Γ𝜖 (𝑥) | ≤ 1}.

Figure 3: Model says I don’t know based on the NULL set.

Here, data point 7 is of high priority compared to data point 6
because of the confidence metrics.

Confidence Credibility y_pred
1 0.962 0.831 5
6 0.863 0.358 2
7 0.999 0.997 0

Table 1: Adoption of confidence for risk-aware ranking

5 CONCLUSION
The medical field poses a challenge when it comes to trusting indi-
vidual predictions because of its complexity and uncertainty. This
research paper introduces a framework not tied to any specific algo-
rithm and aims to quantify the uncertainty associated with new and
unseen data points in the medical domain. The proposed approach
is tested on a dataset of medical transcriptions and demonstrates
promising yet modest results, offering a valuable contribution from
a methodological standpoint. Furthermore, we demonstrate how
ranking labels based on their associated risks can assist in priori-
tizing treatment in large-scale scenarios. In future work, we plan
to evaluate various customized conformal prediction techniques
such as Mondrian conformal predictors, risk-aware prediction sets
(RAPS), and top-k methods.
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