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Derivation of the Starmapper geometry in field coordinates

by L Lindegren

1. INTRODUCTION

For the main processing of HIPPARCOS data as well as for TYCHO astrometry,
it is assumed that the position of the Starmapper (SM) slits is known
with respect to the telescope system Z. More precisely, we need the
functions w;g(z) of the group centre lines (or fiducial Iines) in the
field coordinates (w, z). [f = %1 for preceding/following field, g = 1, 2
for the vertical, chevron slit group.] Such information can be derived

from four different sources, viz.:
(a) laboratory measurements on the grid

(b) great-circle (set) solutions during commissioning or in the

main processing
(¢} theoretical payload models

(d) residuals of SM tramsits in the attitude reconstitution or

TYCHO astrometry processing.

Within NDAC, only method (d) has been addressed thus far (NDAC/LO/040,
043) and certain steps have been taken (?) towards including SM distortion

parameters in the attitude reconstitution.

In this report I shall outline the kind of information provided by (a) -

(c) and how these sources might be combined in order to derive w;y(z).

2. LABORATORY MEASUREMENTS

Let (G*, H*) be physical coordinates (e.g. in mm) in the tangent plane of
the grid. The projection is normal to this plane, and the origin is
assumed to coincide with the tangential point, but not necessarily with
the optical centre on the grid, I assume furthermore that the measuring
axes are orthogonal and identical in scale. [These latter conditions can

be ensured by averaging two sets of measurements, with the grid rotated
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90° in between.] However, the axes need not be exactly aligned with the

slits.

Among these measurements, the SM fiducial lines can be identified as the

functions
c* = Gg(H*), g=1, 2 (1

derived in tabular form by averaging the G¥*-coordinates of the four slits

at a certain H*,

Introducing the optical grid coordinate G (being an integer at the centre
of each slit in the primary field, similar to the G used in the NDAC pro-
cessing), the geometry of the primary grid is similarly expressed in

physical coordinates by means of the tramsformation

G = G(G¥%, H*) + d(6*, H*) (2}
Here, G is a smoothed grid coordinate represented by a low-order poly-
nomial, while d is a small-scale correction in tabular form (e.g. accord-
ing to scanfield). G and d must be orthogonal. For simlicity, let us

assume a second-order expression for G,

GG, HY) = Gop + GroG* + GorB* + G20G*° + G G*H* + Goo ™ (3)

We assume that G;(H*) and G(G*, H*) are thus known, and that d is accounted

for in the IDT preprocessing and therefore does not appear any further.

3. GREAT-CIRCLE SOLUTIONS

The set solutions will determine the large—scale distortion of the primary
hmn’ I kmn (NDAC/LO/051). For

the sake of clarity, assume the following simplified expression for the

field in the form of coefficients T ?
smoothed grid coordinate:
G = G(f, w, ) = fhoo + GroW + gou 8 + garow? + grawz + Gooz’ ' (4)

in which chromatic terms and f-dependent linear and quadratic terms have

been omitted. (Note that ggo = 0 by definition.)
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4, THEORETICAL INSTRUMENT MODEL

Given a large set of parameters representing the position, orientation
and deformation of each optical component, one can in principle establish
a one~to-one relationship between the physical grid coordinates (G%, H*)
and the field coordinates (f, w, 2)}. Comparison between the physical
grid geometry, represented here by egqn (3), and its appearance in the
field [eqn (4)], might then yield a certain information about the instru-
ment parameters which in turn could be used in mapping the physical SM
grid onto the field coordinates. At first sight, this procedure would
seem totally unrealistic due to the very large number of instrument
parameters involved and their probable indeterminacy. Fortunately,
however, it appears that optical distortions arise almost entirely from
mechanical displacement and tilt of the grid as a whole with respect to
the reference position and direction defined by the beam combiner and
spherical mirror. Polishing errors and mirror deformations produce other
kinds of aberration, such as chromaticity, which are largely constant
within each field, but contribute very little to the large scale distor-
tion. (Cf. MAT.HIP.7697, issue 2; where the derived LSC polynomials in
load cases 2.15-2.17 directly allow to recompute the defocus and rotation
angles; load case 2.14 on the other hand is considerably discrepant.)

4
In a previous note (1983 May 6) I derived the theoretical relations
between field coordinates and physical grid coordinates for an idealized
Schmidt telescope with displaced and tilted grid, With some adjustment

of notations the resulting polynomials are

-f: —
G¥ = RU1+406%)w + ROy +90)z (-) IR 9 w? - R%wz (+) 4R 6 22 (5a)
H: = - Ryw + R(1+50%)z + R dw? + ROwz - RO =° (5b)

o I 5K

in which R is the effective focal length (depending on defocus} and

¢, 0, U the rotational displacements of the grid around X, Y, Z axes (as
defined by MATRA). When deriving (5), the origin of the physical grid
coordinates was placed at the optical centre (w, 2z} = (0, 0}; hence Gg
and Hg must be further transformed to the arbityary origin of the labora-

tory measurements. I have found that this latter transformation is

* _1s2yaR Jr 3 9 pk2 %2
G* ‘= - Ro+ (1-40°)G; - fotdg + 5T (G0 + HZY) (6a)
B¥ = -RT - §0TGE + (1-4t)HE + —2% (@2 + 15 (6b)
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if the origin of the laboratory measurements is at (Gg, H:) = (Rg, RT).
Combining (5) and (6) we get the following general model for the field-

—to-grid coordinate transformation:

G% = =~ Ro + R[1-4(0%-02)]w + R(Y+4¢8 - joT)z +
+ JR(0-0)w? - Rowz + $R(c+6)z* - IfRe (7a)
H* = -« Rt = R(Y +4om)w + RI1 - b (12-9®)]z +

+ JR(1 + pIw? + ROwz + 3R(T - $)&° (7b)

In (7a) the last term has been added to include the correction € to the
value of the basic angle used in relating the field coordinates to the

telescope system.

5. SYNTHESIS

Inserting (7) into (3) and identifying the terms with (4) we get the

following expressions for the observable distortion coefficients:

0 = Goo - B(G100 +Go1T) + R2(G200% +G110T + G 1?) - (8a)
hoo = — $GyoRe (8b)
gro = = GauRY + GroBl1-4(0*-0%)] - 2650R%0 - GuiR*1 (8c)
gor = GorR + GroR(P +¢8 ~ do1) ~ G11R%0 = 2GeaR%T (8d)
gao = 4G1oR(0~0) + GaoR* - Gu1R*Y (8e)
gi1 = - GroRd + 2G20R*Y + G11R* - 2G42 R%Y (81)
Goz = $G1R(0+8) + G RY + GopR® (8g)

Two more equations are obtained from the laboratory coordinates of the
SM apex (G¥, Hi), at which point we have by definition z = 0, while

w = wAr+§fe (say). Thus,
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*
Gy =-Fo+ R{1 ~£(02—82)]wA + %R(o-—ﬂ)w; (8h)
H: = - Bt - R(w-+£or)wA + &R(T-ke)wz (81)

We have then nine equations for the eight unknown instrument parameters

R, g, 0, T, ¢, 6, ¢, W, Remembering that Gip is by far the dominating
coefficient in (3), we readily see that eqns (8a) - (8i) principally

depend respectively on g, £, R, ¥, 6, ¢, 9, Wy and T, and that the
parameters are thus determinable with a slight redundancy. Inserting

the parameter values into (7) and inverting the transformation [expressing
(w, 2) in terms of (G*, #*)] it is then a simple matter to map the fiducial

lines onto field coordinates and thus determine w;g(z). With

G¥/R + 0 + bfe (9a)

=)
n

HAR + 1 (9b)

233
1

denoting a first-order approximation of the field coordinates, the inverse

transformation becomes

£
[l

[1+5(0%~82)18 - (W+¢8-30T)E - $(o-0)% + ¢ ~ i(o+0)F? (9¢)

]
1t

[1+5(T2-02)18 + (P + 40108 - (T +PID? - OOF - 4(1 - $)E? (9d)

It is questionable whether the laboratory measurements will be able to
determine the second-order terms [Gzp, G11, Ggz in (3)] to any useful
accuracy. Satisfyingly, the procedure described above is fully applicable
also to a first—order model, Inspection of (8) shows that the only con-
sequence is the inability to determine the tilt parameters ¢ and 0. But
since these angles only appear as ¢*, ¢8, and 67 in the linear terms of
(9), it should be clear that the solution does not depend critically on

the determination of quadratic distortion terms.




