
International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.4, July 2015

DOI:10.5121/ijfcst.2015.5401 1

BIN PACKING PROBLEM: TWO APPROXIMATION

ALGORITHMS

AbdolahadNoori Zehmakan

Department of Computer Science, Sharif University of Technology, Tehran, Iran

ABSTRACT

The Bin Packing Problem is one of the most important optimization problems. In recent years, due to its

NP-hard nature, several approximation algorithms have been presented. It is proved that the best

algorithm for the Bin Packing Problem has the approximation ratio 3/2 and the time orderO(n),

unlessP=NP. In this paper, first, a
�

�
-approximation algorithm is presented, then a modification to FFD

algorithm is proposed to decrease time order to linear. Finally, these suggested approximation algorithms

are compared with some other approximation algorithms. The experimental results show the suggested

algorithms perform efficiently.

In summary, the main goal of the research is presenting methods which not only enjoy the best theoretical

criteria, but also perform considerably efficient in practice.

KEYWORDS

Bin Packing Problem, approximation algorithm, approximation ratio, optimization problems, FFD (First-

Fit Decreasing)

1. INTRODUCTION

The Bin Packing Problem has several applications, including filling containers, loading trucks

with weight capacity constraints, creating file backups in removable media and technology

mapping in Field-programmable gate arraysemiconductor chip design. Unfortunately, this

problem is NP-hard therefore many approximation algorithms [1,2,3,4,5] have been suggested.

In computer science and operational research, approximation algorithms are used to find

approximate solutions to optimization problems. Approximation algorithms are often associated

with NP-hard problems. They are also increasingly used for problems where exact polynomial-

time algorithms are known but too expensive due to the input size. The quality and ability of an

approximation algorithm depend on its approximation ratio and time order. For some

approximation algorithms, it is possible to prove certain properties about the approximation of the

optimal result. A ρ-approximation algorithm A is defined to be an algorithm for which it been

proven that the value of the approximate solution A(x) to an instance x will not be more (or less,

depending on the situation) than a factor ρ times the value, OPT, of an optimum solution.

In the classical one-dimensional Bin Packing Problem, a list of items � = {��, . . . , �
}, each with a

size �
��� ∈
0,1�, is given and we are asked to pack them into minimum number of unit-

capacity bins.

Many variations of this problem is proposed, such as 2D and 3D bin packing [6,7,8,9,10], with

item fragmentation [11], fragile objects [12,13], extendable bins [14] packing by cost [3] and

variable size bin packing [15]. In this paper, the original and off-line version of the problem is

considered, due to its applications and importance.

International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.4, July 2015

2

Simchi-Levi in [16] proved that the FF (First-Fit) and BF (Best-Fit) algorithms, two of the

foremost approximation algorithms for the Bin Packing Problem, have an absolute worst-case

ratio of 7/4. He also proved that the FFD and BFD algorithms have an absolute worst-case ratio

of 3/2. Zhang and Cai in [17] provided a linear time constant space off-line approximation

algorithm with absolute approximation ratio of 3/2. Their algorithm depends on two kind of

active and extra bins and follows a simple but exact procedure. In 2003, Rudolf and Florian in

[18] presented an approximation algorithm for the BPP with a linear running time and an absolute

approximation factor of 3/2. As mentioned, it is proven that the best algorithm for the Bin

Packing Problem has the approximation ratio of 3/2 and the time order of	�
��, unless	� =

��[16].

In [20] Martel defined the asymptotic approximation ratio instead of the approximation ratio and

proved his proposed algorithm has a 4/3 asymptotic approximation ratio. Furthermore, in [20] the

method of Martel was expanded and a 5/4 asymptotic approximation algorithm was suggested.

In this paper two new approximation algorithms are presented. The first algorithm works based

on a kind of sorting and after classification items into 4 ranges tries to choose the best matching

between them. The second algorithm is a time improved version of FFD. In this algorithm, we try

to decrease FFD time order while maintaining the instructive qualities of FFD and its

performance.

Finally, the two suggested algorithms are compared with two approximation algorithms [17,18],

and FFD. Experimental results show the two suggested algorithms perform much better than the

others.

The reminder of this paper is organized as follows. In section 2, two suggested algorithms are

presented. Furthermore, it is proved that the approximation factor of the first algorithm is 3/2.

Then in sections 3 the experimental results and computational analysis are discussed. Finally, in

section 4 conclusions of the results are drawn and some methods for enhancing previous

algorithms are suggested.

2. THE PROPOSED ALGORITHMS

In this section, two proposed algorithm A1 and A2 are discussed. Algorithm A1 utilizes ranging

technique and classifies inputs into 4 ranges. It will be proved that this algorithm's approximation

ratio is 3/2. Furthermore, a new linear version of FFD algorithm is presented.

2.1. The Proposed Algorithm A1

The algorithm tries to create output bins which are at least 2/3 full. It is proved that in this

condition the approximation ratio of the algorithm is 3/2.

As mentioned, in this algorithm inputs are classified into 4 ranges (0-
�

�
), (

�

�
-
�.�

�
), (

�.�

�
-
�

�
) and (

�

�
-1)

called �, ��, �� and �, respectively.

In first step, � items are put in separate output bins, then �� and �� are sorted. We try to match

any item in �� with the biggest possible item in ��. Obviously, after that this step, some items

will be remained in ��and ��. We match �� items with each other and add
|��|

�
 to !� −

#$%�&'((The number of used bins). In next step, we try to match �� items with � items. Finally,

� items are matched with each other.

International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.4, July 2015

3

Definition1:) is the number of bins in OPT solution and)∗ is the number of bins in the

proposed algorithm.

Lemma1: If at least
�

�
 size of each output bin is full, the approximation ratio is at least

�

�
.

Proof: consider the worst condition that all output bins are completely full in OPT solution.

Suppose that W is the sum of input items. In this condition:

� ≥ ,		&	�∗ ≤
,
�

�

⇒ �∗/� ≤
3

2
∎

Theorem1: The proposed algorithm A1 is a
�

�
-approximation algorithm.

Proof: Based on the algorithm in first step, all � items are put in separated bins and obviously at

least 2/3 size of these output bins are full. After that, some �� items are matched with some ��

items. Definitely, in this step at least 2/3 size of output bins are also full since a�� item is at least

1/3 and a �� item is at least 1.5/3. Consequently, their sum is at least 2/3.

In next step, �� items are matched with each other 2 by 2 and put in separated bins. At least 2/3

size of these bins are full since an�� item is at least 1/3. After that the rest of �� items with �

items are matched. Now there are two cases:

Case1:
4567	48

|�6|
>

�

�

International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.4, July 2015

4

Case2:
4567	48

|�6|
≤

�

�

,�� : The sum of all �� items which remain in this step.

,: : The sum of all S items.

|�2| : The number of all �� items which are remain in this step.

We claim all output bins are more than
�

�
 fill in this step. According on the algorithm, at first we

match some �� items with some � items. Obviously the output bins in this step are more than
�

�
full because a� item is no more than

�

�
 and we close a bin when it does not have enough space for

a S item. After that, two configurations are possible:

C1: If there are just some �� items left we put all of them into separate bins therefore the number

of output bins is |�2|. Consequently the average of the output bins equals
4567	48

|�6|
 that is more

than
�

�
 based on case1 assumption.

C2: If there are only some � items, the output bins in this step are also more than
�

�
 full because a

� item is at most
�

�
.

In case2, the bins that have some S items like case1 are at least
�

�
 full. Therefore we only consider

the bins which have only one �� item. We claim that in the OPT solution these �� items are also

associated separate bins because:

On one hand, they cannot be matched with the � items and with the �� items because a bin does

not have enough space for an� item and an�� item or for two �� items. On the other hand, if a

�� item (primary�� item) is matched with a �� item in the OPT solution, in the suggested

algorithm it will be matched with a �� item or its complement (meaning the �� item matched

with it in the OPT solution) is matched with another �� item (second �� item). The second ��

item is bigger than the primary�� item since the �� items are sorted. Therefore, the primary ��

item can be put in every bin that the second �� has been put (in this condition the algorithm has

been performed better than OPT solution until now).

Based on the mentioned reasons and discussions, for any output bin in the proposed algorithm

which is less than
�

�
 full, there is a bin in the OPT solution that its used capacity is equal or less

than it. Furthermore, all other bins are more than
�

�
 full. In conclusion, based on the lemma1 the

approximation ratio of the suggested algorithm is
�

�
. ∎

2.2. The Proposed Algorithm A2

As mentioned, the second proposed algorithm is based on the Firs-Fit Decreasing algorithm. In

FFD, the items are packed in order of non-decreasing size, and next item is always packed into

the first bin in which it fits; that is, we first open bin1 and we only start bin k+1 when the current

item does not fit into any of the bins 1,… , <.

In the algorithm A2, we consider 10 classes of bins and 10 ranges of items and in any step we

check at most one bin in each class. The order of choosing items and checking the bins classes are

considered completely intelligently. A pseudocode of the algorithm A2is shown.

International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.4, July 2015

5

Obviously, the running time of the algorithm A2 is �
�� (n is the number of input items) since for

making decision about each item the algorithm at most spend 10 time-unit for checking 10 classes

of bins.

We also can make the algorithm more efficient and consider the Scale Parameter r that shows the

number of ranges and bins classes in the algorithm. This parameter can be chosen based on the

number of inputs. For instance, if the number of inputs is 10�= is reasonable choose (= 10�

instead of (= 10.

3. COMPUTATIONAL RESULTS

In this section, at first the computational results of two suggested algorithms and three other

algorithms are presented, and it is shown that the proposed algorithms perform considerably

much more efficient. Furthermore, we compare the algorithm A1 with the Algorithm A2 from an

application point of view and their utilization in variant fields and stipulations.

In this section, the two proposed algorithms are compared with two other approximation

algorithms [18, 19] which are the only algorithms have the best possible approximation ratio.

This comparison has been drawn based on all standard instances for BPP from OR-LIBRARY

[21]. We define Ratio as the proportion of the proposed algorithm solution to the OPT solution.

Obviously, ratiohas a direct relationship with algorithm’s approximation ratio. Consequently,

ratio is utilized as a factor for measuring approximation algorithms’ performances.

As mentioned, the standard instances in OR-LIBRARY are used for simulations. Each set of

instances contains 20 instances for the Bin Packing Problem. The two proposed algorithm have

been compared with the Guochuan's algorithm [17], and the Berghammer's algorithm [18] based

on the 8 set of instances. The results of these comparisons for bp1, bp2, bp3, bp4, bp5, bp6, bp7

and bp8 are shown in Fig1, Fig2, Fig3, Fig4, Fig5, Fig6, Fig7, Fig8, respectively.

International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.4, July 2015

Figure 1. The ratios of the algorithms for the set

Figure 2. The ratios of the algorithms for the set problems of instance bp2

Figure 3. The ratios of the algorithms for the set problems of instance bp3

International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.4, July 2015

The ratios of the algorithms for the set problems of instance bp1

The ratios of the algorithms for the set problems of instance bp2

The ratios of the algorithms for the set problems of instance bp3

International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.4, July 2015

6

International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.4, July 2015

Figure 4. The ratios of the algorithms for the set problems of

Figure 5. The ratios of the algorithms for the set problems of instance bp5

Figure 6. The ratios of the algorithms for the set problems of instance bp6

International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.4, July 2015

The ratios of the algorithms for the set problems of instance bp4

The ratios of the algorithms for the set problems of instance bp5

The ratios of the algorithms for the set problems of instance bp6

International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.4, July 2015

7

International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.4, July 2015

Figure 7. The ratios of the algorithms for the set problems of instance bp7

Figure 8. The ratios of the algorithms for the set problems of instance bp8

The diagrams show the two

algorithms. As mentioned, the

the best possible approximation factor. Furthermore, the algorithm

acceptable than the algorithm

similarity between performances of

The results are measured for 20 instances in any class, but for simplification of understanding

the points corresponding to an algorithm are joined by a line.

In Fig9, the average of the simulations results is shown for four mentioned algorithms for the

all sets of instances. This diagram shows that the proposed algorithm

performs more efficiently. After that, the suggested algorithm

performance. Therefore, two suggested algorithms are completely superior to two other ones,

in practice.

International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.4, July 2015

The ratios of the algorithms for the set problems of instance bp7

The ratios of the algorithms for the set problems of instance bp8

two suggested algorithms perform much better than

algorithms. As mentioned, the two other algorithms are only approximation algorithms with

the best possible approximation factor. Furthermore, the algorithm A1 performance is more

acceptable than the algorithm A2. Another interesting point in the experimental results is the

ween performances ofGuochuan's algorithm, and the Berghammer

The results are measured for 20 instances in any class, but for simplification of understanding

the points corresponding to an algorithm are joined by a line.

f the simulations results is shown for four mentioned algorithms for the

all sets of instances. This diagram shows that the proposed algorithm A1 in all instances

performs more efficiently. After that, the suggested algorithm A2 has much better

. Therefore, two suggested algorithms are completely superior to two other ones,

International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.4, July 2015

8

suggested algorithms perform much better than two other

other algorithms are only approximation algorithms with

performance is more

. Another interesting point in the experimental results is the

Berghammer's algorithm.

The results are measured for 20 instances in any class, but for simplification of understanding

f the simulations results is shown for four mentioned algorithms for the

in all instances

has much better

. Therefore, two suggested algorithms are completely superior to two other ones,

International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.4, July 2015

Figure 9. The average of ratios for the 4 algorithms based on the all instances

In Fig 10, the experimental results of the

based on the all sets of instances.

Figure 10. The average of ratios for two suggested algorithms and FFD based on the all instances

The results show that the two suggested algorithms perform much better than

bp5, bp6, bp7, and bp8, but the

bp3 and bp4. It seems their performances are very similar in average. We claim that the

suggested algorithms are more effective and efficient than

order are similar, but FFD is an on

algorithm) while the algorithm A1

superior to FFD because it is a linear time algorithm while the running time of

even in worst-case �
���.

We drew the conclusion that the algorithms

criteria, but also execute better than other ones

International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.4, July 2015

The average of ratios for the 4 algorithms based on the all instances

In Fig 10, the experimental results of the two suggested algorithms and FFD algorithm are shown

based on the all sets of instances.

The average of ratios for two suggested algorithms and FFD based on the all instances

suggested algorithms perform much better than FFD

bp5, bp6, bp7, and bp8, but the FFD algorithm performances are more acceptable in bp1, bp2,

bp3 and bp4. It seems their performances are very similar in average. We claim that the

suggested algorithms are more effective and efficient than FFD. The algorithm A1 and

is an on-line space algorithm (it means that it save all bins during the

algorithm) while the algorithm A1 use much less space. Furthermore, the algorithm

is a linear time algorithm while the running time of FFD

We drew the conclusion that the algorithms A1 and A2 not only enjoy the best possible theoretical

than other ones in practice, but a natural question which comes up

International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.4, July 2015

9

algorithm are shown

The average of ratios for two suggested algorithms and FFD based on the all instances

FFD algorithm in

algorithm performances are more acceptable in bp1, bp2,

bp3 and bp4. It seems their performances are very similar in average. We claim that the two

and FFD time

line space algorithm (it means that it save all bins during the

use much less space. Furthermore, the algorithm A2 is also

FFD is �
�>$?��

not only enjoy the best possible theoretical

, but a natural question which comes up

International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.4, July 2015

10

is that "Which algorithm should be used in practice, A1 or A2?". The answer is that it depends. In

the following paragraphs we try to clarify this point.

Firstly, obviously if the important factor is accuracy, AlgorithmA1 is the better one, but if the

significant criterion is speed, AlgorithmA2 will be the choice inasmuch as AlgorithmA1 shows

better performance based on the aforementioned outputs; on the other hand, AlgorithmA2 is a

linear time algorithm. Another point which can be taken into consideration is that AlgorithmA1 is

a constant-space one while the second one is not. Therefore, if space order is a noteworthy factor,

we should exploit AlgorithmA1.

Needless to say, if the input items are almost sorted, the algorithm A1 performs a lot better, but if

the number of input items is significantly high or they are distributed homogenously, the

algorithm A2 will be the option In that AlgorithmA1 needs to sort the items, and the algorithm A2

is much more flexible and is able to use Scale Factor. The aforementioned computational results

confirm this claim because the number of items in the instances increases from bp1 to bp8.

If the number of S (small) items is considerable, Algorithm A1 performs more efficiently. On the

other hand, if the number of L (large) items is high, the second one is the right choice. Moreover,

the state that nearly all items are relevant to the ranges M1 and M2 (are medium) forces the user

to utilize the algorithm A2.

For instance, in packing trucks and ships when the goods are small, we use the first one, but in the

state that they are large enough by considering the capacity unit in the ship or truck, the choice is

second one. Furthermore, in assigning tasks to machines in machine scheduling problem if the

durations of different tasks are approximately equal with each other, the second algorithm

executes better.

Consider the problem of placing computer files with specified sizes into memory blocks of fixed

size. For example, recording all of a computer's music where the length of the pieces to be

recorded are the weights and the bin capacity is the amount of time that can be sorted on an audio

(say 80 minutes). If we want to save the information for a long time, it is better to use the first

algorithm to amplify the accuracy, but if we want to rewrite the information several times, using

the second one is a rational solution. If all items are similar in size, for instance all of them are

songs, probably AlgorithmA1 works acceptably.

Table 1 tries to summarize the aforementioned discussions regarding the application of the

algorithms A1 and A2 in different situations.

Table 1. Choosing between algorithms 1 and 2 based on different factors and condition.

Factor/Condition Algorithnm1 Algorithm2

Accuracy Yes

Speed Yes

Space Yes

Sorted Items Yes

High Number of Items Yes

Homogenous Distribution of

Items
 Yes

Majority by S Items Yes

Majority by L Items Yes

Majority by M Items Yes

International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.4, July 2015

11

3. CONCLUSIONS

Two approximation algorithms A1, and A2 were proposed in this paper. It was proved that the A1

approximation ratio is
�

�
. After that we observed the results of experimental simulations and

analyzed them. Based on the results, we can claim that the two proposed algorithms in this article

are the best presented approximation algorithms for the Bin Packing Problem, in theory and in

practice until now.

In future researches, the focus on Scaling Factor r can enhance the algorithm A2 more and more.

REFERENCES

[1] B. Xia and Z. Tan, (2010) "Tighter bounds of the First Fit algorithm for the bin-packing problem",

Discrete Applied Mathematics, Vol. 158, No. 15, pp1668-1675.

[2] L. Epstein, A. Levin, (2008) "Asymptotic fully polynomial approximation schemes for variants of

open-end bin packing", Information Processing Letters, Vol. 109, pp32-37.

[3] Y. Joseph, T. Leung and Ch. Li, (2008)"An asymptotic approximation scheme for the concave cost

bin packing problem", European Journal of Operational Research, Vol. 191, pp582-586.

[4] J. Balogh, J. Békési and G. Galambos, (2012)"New lower bounds for certain classes of bin packing

algorithms", Theoretical Computer Science, Vol. 441, pp1-13.

[5] W. Bein, R. Correa and X. Han, (2008)"A fast asymptotic approximation scheme for bin packing with

rejection", Theoretical Computer Science, Vol. 393, pp14-22.

[6] W. Bein, R. Correa and X. Han, (2008)"A fast asymptotic approximation scheme for bin packing with

rejection", Theoretical Computer Science, Vol. 393, pp14-22.

[7] C. Blum, V. Schmid, (2013)"Solving the 2D Bin Packing Problem by Means of a Hybrid

Evolutionary Algorithm", Procedia Computer Science, Vol. 18, pp899-908.

[8] A. Lodi, S. Martello and D. Vigo,(1999) "Approximation algorithms for the oriented two-dimensional

bin packing problem", European Journal of Operational Research, Vol. 112, pp158-166.

[9] J. Gonçalves and M. Resende, (2013) "A biased random key genetic algorithm for 2D and 3D bin

packing problems",International Journal of Production Economics, Vol. 145, pp500-510.

[10] J. Bennell, L. Lee and C. Potts, (2013)"A genetic algorithm for two-dimensional bin packing with due

dates", International Journal of Production Economics, Vol. 145, pp547-560.

[11] M. Casazza and A. Ceselli, (2014)"Mathematical programming algorithms for bin packing problems

with item fragmentation", Computers & Operations Research,Vol. 46, pp1-11.

[12] M. Martínez, F. Clautiaux, M. Dell’Amico and M. Iori, (2013)"Exact algorithms for the bin packing

problem with fragile objects", Discrete Optimization, Vol. 10, pp210-220.

[13] F. Clautiaux, M. Dell’Amico, M. Iori and A. Khanafer, (2014)"Lower and upper bounds for the Bin

Packing Problem with Fragile Objects", Discrete Applied Mathematics, Vol. 163, pp73-86.

[14] P. Dell'Olmo, H. Kellerer, M. Speranza and Z. Tuza, (1998)"A 13/12 approximation algorithm for bin

packing with extendable bins", Information Processing Letters, Vol. 65, pp229-233.

[15] J. Bang-Jensen and R, (2012)"Larsen. Efficient algorithms for real-life instances of the variable size

bin packing problem", Computers & Operations Research, Vol. 39, pp2848-2857.

[16] D. Simchi-Levi, (1994)"New worst-case results for the bin packing problem", Naval Res. Logist.,Vol.

41, pp579-584.

[17] G. Zhang, X. Cai and C. Wong, (2000)"Linear time-approximation algorithms for bin packing",

Operations Research Letters, Vol. 26, pp217-222.

[18] R. Berghammer and F. Reuter, (2003)"A linear approximation algorithm for bin packing with

absolute approximation factor 3/2", Science of Computer Programming, Vol. 48, pp67-80.

[19] C. Martel,(1985) "A linear time bin-packing algorithm", Operations Research Letters, Vol. 4, pp189-

192.

[20] J. Békési, G. Galambos and H. Kellerer, (2000)"A 5/4 Linear Time Bin Packing Algorithm", Journal

of Computer and System Sciences, Vol. 60, pp145-160.

[21] Beasley J.E. (2013). OR-LIBRARY, Bin packing – One-dimensional,

http://people.brunel.ac.uk/_mastjjb/jeb/orlib/binpackinfo.html.

