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ABSTRACT
The dynamic forces that transit back and forth traditional bound-
aries of system development have led to the emergence of digital
ecosystems. Within these, business gains are achieved through the
development of intelligent control that requires a continuous design
and runtime co-engineering process endangered by malicious at-
tacks. The possibility of inserting specially crafted faults capable to
exploit the nature of unknown evolving intelligent behavior raises
the necessity of malicious behavior detection at runtime.

Adjusting to the needs and opportunities of fast AI develop-
ment within digital ecosystems, in this paper, we envision a novel
method and framework for runtime predictive evaluation of intel-
ligent robots’ behavior for assuring a cooperative safe adjustment.

KEYWORDS
VirtualEvaluation,RuntimePrediction,BuildingTrust, Safety-Critical
Systems, Robots
ACMReference Format:
Emilia Cioroaica, Barbora Buhnova, and Emrah Tomur. 2022. A Paradigm for
Safe Adaptation of Collaborating Robots. In 17th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS ’22),
May 18–23, 2022, PITTSBURGH, PA, USA.ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3524844.3528061

1 INTRODUCTION
Supported by ultra reliable and low-latency communication of 5G
and emergent 6G technology, independently cooperating networked
robots greatly benefit from off-board fast computation and cloud-
based knowledge sharing paradigms in disaster management sce-
narios [13]. Parallel development in the domain of teleoperation
envisions the robots’ capability to coordinate with a high degree of
precision [1]. The emerging development in the domain of digital
ecosystems [7] will further enable creation of autonomous robotic
structures enhancedwithAI (Artificial Intelligence) control received
through runtime updates. It is expected that these robots will be
required to form coalitions similar to living organisms, and will be
characterized by mandatory hard real-time constraints on their safe
coordination. For example, robots of different nature deployed in
safety-critical scenarios, with different computational speeds, will
be required to perform high-precision collaborative tasks, by relying
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not only on commonly shared information, but on safe physical syn-
chronization as well. An illustrative example is the scenario of two
robots of different nature that carry together a loadwhile an obstacle
is approaching and theyneed to synchronize on commonmaneuvers.
In situations when the operational context of cooperative intelligent
robots changes dynamically and unpredictably at runtime, safe ad-
justments alsoneed tobeplannedduring runtimeand, inouropinion,
need to account for evidence of robots’ safe intended actions.

Further on, when AI control becomes embedded within software
smart agents that control a robot, a major challenge in detecting
possiblemalicious behavior arises from the non deterministic nature
of the AI component. This happens because under the control of an
AI, an ongoing adaptation of an intelligent robot can either indicate a
behaviour enhancement or a malicious deviation. Concretely speak-
ing, at the operational level, it is expected from an intelligent control
that for the same set of inputs processed at different moments in
time, different outputs might be provided. For intelligent behavior
developed within digital ecosystems [7], it is very likely that sooner
or later, intended faults will be injected into a system together with
an update. While there is currently much focus on preventing the
injection of malicious behavior within an ecosystem, less emphasis
lies on detection and mitigation of its negative effects.

In our work we address the latter, as it requires a security and
safety co-mitigation strategies. In this paper, in particular, we are
regarding the collaboration between two self-adaptiveAI-controlled
robots as an emergent single distributed self-adaptive system that ex-
poses an emergent and unknown behavior. To address the challenge
of safe collaborative synchronization between them, we introduce a
method and a framework that supports the safe adaptation under the
control of distributed software agents that can potentially contain
malicious behavior.

In what follows, Section 2 provides a summary of the state of the
art that emphasizes research and development trends which are cur-
rently emerging. Section 3 introduces our method for collaborative
synchronization between heterogeneous robots by underlying our
vision together with future research challenges. Section 4 presents
the conceptual architecture of the framework that supports the im-
plementation of the method together with the concept of a Domain
Specific Language (DSL) that guides the definition of software be-
havior in a way that enables capturing of runtime artifacts used in
the runtime decision making process.

2 EMERGINGTRENDS
2.1 The need for speed
Digital ecosystems’ facilitation for fast deployment of products and
services capable to promptly meet users’ requests and expectations
brings tremendous business value [7]. Initially delivered with a qual-
ity right above the minimum required threshold, systems upgrades
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are thenprovided during operation. This philosophy, successfully ap-
plied for the development and maintenance of information systems
that execute in stable environments, has recently emerged in the
domain of safety-critical systems [30] through runtime deployments
of AI components. However, such process implemented in the con-
text of safety-critical systems operating in dynamic environments
is currently raising considerable safety concerns [29].

It is envisioned that traditional systematic development of sys-
tems’ safe reconfiguration will increasingly be replaced by an agile
design-time & runtime co-engineering approach which will fur-
ther develop into faster adaptation cycles under the control of AI
components [11, 12].

2.2 Unknown Behavior under Uncertainties
In the quest of enabling a highly trusted behavior of systems oper-
ating in safety-critical scenarios, approaches for devising runtime
assurance cases have been proposed [31]. Runtime monitoring in
particular [21], can indicatewhether a system internal self reconfigu-
ration is appropriate in a given technical setting or the activation of a
fail-over behavior is needed [31]. Current approaches focus on assur-
ing a known behavior in an uncertain environment [18] while in the
future, it is expected that intelligent systems will not only operate
in uncertain context, but will be controlled by intelligent software
that evolves over time as well [9]. Such behavior is considered to be
unknownat everymoment in timebecausewhen facedwith a similar
situation, it is expected todisplayan improvedbehavior. Yet, a correct
learning and knowledge-building process is still not guaranteed [18].

While the current efforts are directed towards designing a trusted
safe and secure runtimeoperation, a systematic insertion of intended
faults, such as logic bombs [3] can remain dormant and get activated
at the "right moment" to support a planned attack that can lead to
a wide range of a malicious behaviors.

2.3 Safe Reaction to Security Intrusions
Self-adaptive systems are known to adapt to internal dynamics with
an autonomous structure that enables behavior reconfiguration at
runtime [23, 32]. The internal dynamics of the system can be influ-
enced by the runtime changing of goals or by detected internal faults
handled in a variety of dynamic risk management schemes [22, 25].
However, as discussed previously, under intelligent control, a devia-
tion is not necessarily an evidence of faulty behavior, it can aswell be
an evidence of adaptation of the intelligent control [9]. This aspect
is receiving an increased attention within the safety-critical domain,
leading to a current recognition of the risks of unknown behavior
in uncertain context [20]. Tremendous effort has then been shifted
towards understanding the intelligent control [2, 20]. However,with-
outa real envisionedsolutionyet. Inpart, this isdue to the fact that the
process of assuring safety is driven by standards developments. And
within standards, guidelines for the AI component integration are
are still not givenprimaryattention.Theprocess of standarddevelop-
ment is amuch slower than theprocess of technological development
that pushes innovation. Therefore, faster solutions for safeguarding
the cooperative behavior of robots operating in safety-critical envi-
ronments has to build on emerging engineering and research trends.

Looking back in the history of automatic computing, the engi-
neering of single autonomic systems have provided the possibil-
ity of deploying self-management capabilities according to MAPE
(Model, Analyze, Plan, Execute) [21] control architecture. Typically,
the knowledge that accompanies the control loop deals with the
dynamics of available resources and internal faults. Further research
has then enabled the possibility to perform a collaborative learn-
ing and adjustment mechanism through coordination of multiple
MAPE loops with specific patterns [33] followed by the provision of
guarantees for the common adaptation decisions [10]. However, no
engineering solution that can make the distinction between trusted
sporadic adaptation of collaborative robots and sporadic software
failure caused by intended malicious faults exists yet.

In our previous work we have proposed an approach for building
trust in the unknown emergent behavior through runtime execution
of Digital Twins (DTs) [16]. In this paper we elevate the concept of
runtime predictionwith a framework that supports the collaborative
behavior of self-adaptive robots that need to execute synchronous
maneuvers in uncertain environments. For this, we propose a new
schematic of collaboration that enables evidence-based behavioral
prediction within a runtime simulation environment. Traditional
approaches based onmonitoring techniqueswould require a detailed
design of the system [8, 21] followed by detailed model deployment
within a runtime virtual evaluation. In the context of predictive
simulation, these approaches eliminate the possibility of fast behav-
ioral execution which is a mandatory prerequisite in the process of
runtime predictive simulation.

3 THE TRUST BUILDINGMETHOD
In this sectionwedetailourvision forbuilding trust incloud-supported
AI-controlledcollaboratingrobotsbyregarding thecollaborationasa
distributed self-adaptive systemwith emergent and unknownbehav-
ior. In this context we propose the prediction of the computational
controlwithina simulationenvironment that enablesdetectionofun-
wanted effects. To this endwepropose a runtimeexecutionof special-
ized simulationmodels orchestrated in two directions of abstraction.

3.1 SystemCoordination under Uncertainties
Our proposed framework for assuring safe coordination between
heterogeneous intelligent robots consists of nine steps grouped into
three phases distributed on the system and in the cloud. Figure1 de-
picts the process of collaborative synchronization based on runtime
execution of specialized simulation models. The derivation of those
specialized simulation models is a design-time activity that will be
detailed in subsection 3.2.

The Paradigm for Collaborative Safe Adjustment. On a robot, a
virtual and abstract representation of interacting system compo-
nents, including the intelligent control (AI), is created by feeding
specialized abstract models with real-time data gathered within the
Sensing step part of the Learning phase. In the Learning phase, the
specialized models are not executed yet, but information is gathered
for the creation of a concrete technical situation that requires behav-
ioral synchronization. Concretely, the Framing step creates the focus
of the evaluation by selecting the set of models specifically designed
for evaluating the major characteristic of a behavior such as timing
synchronization, functional interaction or communication between
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components.When fedwith real-time data, these specializedmodels
will become Specialized Digital Twins (SDTs) as will be detailed next.
Within the Learn phase, the Sense step supports knowledge forma-
tion for a single system, whereas the Sharing of concern-oriented
real-time data, and runtime specializedmodel forms the prerequisite
for creating digital twins that depict a collaboration in the next phase.

In the cloud, during the next Prediction phase, the previously se-
lected abstract models of behavior that describe a concrete technical
situation are executed within the Execution step performed in a sim-
ulated environment and is followed by the Capture step. Within the
Execution step, the specialized simulation models of single systems
are evaluated in relation with simulation models of interacting sys-
tems and system components. Knowledge of the overall cooperative
behavior is then derived within a virtual simulation environment.
Because the prediction requires execution of simulation models at
a much faster rate than the wall clock, in this step, different types
of behavioral abstractions are used specifically designed for the
scope of the evaluation. After a runtime execution, the Capture step
leads to the creation of runtime images that describe the intended
reaction within a collaboration. Then, by feeding virtual images
that represent the intended actions of collaborative systems to a
Safety Evaluator, an evidence-based dynamic safety argumentation
is performed. The safety evaluation is performed by comparing the
runtime specialized images against a collection of safety claims and
system safety goals. Only after executing an internal validation pro-
cess, the Safety Evaluator passes the images to the next phase. In this
way, the Safety Evaluator provides confidence of validated predictive
claims thatwill lead to immediate commands triggeredwithinAdjust
step part of the Collaborative Reaction phase on the system itself.
The Sharing step within the Collaborative Reaction phase permits
sharing of information to the collaborating physical robots enabling
the synchronous safe reaction.

The collaborative safe adaptation patterns that have been learned,
virtually evaluated and then shared between the robots can be trig-
gered immediately on the system as a response to a new situation.
The immediate reaction is depicted in Figure 1 by the arrow between
the Sense and Adjust step. Future synchronous reactions rely on a
ConformityMonitoring that evaluates the similaritybetweenanewly
encountered situation and a previously learned and virtually and
virtually validated situations. The conformity monitoring process
digital artefacts defined according to a specialized domain specific
language, part of the frameworkaswill bedescribed inSubsection4.2.

The Engineering Approach for Assuring Safety. Traditionally, the
adaptation enginewhich is the controller of the self-adaptive system
implements the goal-oriented adaptation logic within a feedback
loop that adapts the managed system [21]. The feedback loop can
reactively respond to a violation of the adaptation goals [5], or, by
tracking the behavior of the managed system, can adapt its own
behavior in response to the anticipation of possible violations [26].
In our approach, the predictive simulation builds on the proactive
policy of a self-adaptive system feedback loop in an evidence-based
dynamic safety argumentation that evolves over time. If no internal
configuration can be matched to the fulfillment of the adaptation
goals, then the controller triggers the fail-safe operating mode.

For assuring the safety of a planned collaborative reaction, in our
approach the internal behavioral landscape of a system is reflected

into multiple virtual images built and maintained over time. An im-
age is a snapshot of a system’s internal reactions to external factors
evaluated as being trustworthy. This means that the implementa-
tion of a collaborative safe reaction relies on a system’s access to
an image formed by runtime abstract models that upon execution
provide computed evidence of trust that feeds in a complex runtime
safe argumentation process encoded within the Safety Evaluator.
This component provides an assurance of the safe reaction. By feed-
ing the abstract specialized simulation models with real-time data,
the dynamic safety argumentation extends the considerations of a
system’s internal capabilities and includes environmental factors
that influence its operation. For a single robot, the safety runtime
dynamic argumentation maps the internal and external events from
concrete technical situations to abstract functions and their relations
in a runtime image within the internal behavioral landscape.

The runtime image must deal with a system’s safe reaction by
executing functions at an appropriate level of abstraction. Because
the safe reaction has a direct impact in the physical world, the level
of abstraction of used functions shall be carefully selected by con-
sidering a) the availability of resource computation on the system
and b) the closest to real behavior representation. Generally, the
level of runtime dynamic conception is correlated with the set of
system’s functional representation. Because the holistic evaluation
of functional interaction is performed within the simulated environ-
ment, the set of real-world systems and software functions need to
be delivered together with their abstract representations.

Figure 1: The Paradigm for Collaborative Safe Adjustment

3.2 Simplifying Concerns
Assuring a trustworthy prediction of the intelligent control in in-
teraction with systems and system components within a simulated
environment is crucial. The intelligent software should not detect it
is under evaluation, otherwise it can hide its malicious behavior. In
particular, because prediction of the behavior requires execution at
a much higher speed than the wall clock, a malicious behavior can
easily detect it is under evaluation if, for example, it can observe that
it was in a given state more frequently than a real-world execution
would permit. Typically, well designed safeguards, such as sand box-
ing [4, 19], are implemented in order to hinder the possibility of a
software component to monitor the passing of time while executing
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a complex behavior. But, under the requirements of fast execution,
such safeguards put a considerable heavy load on computation.

In our opinion, a better solution based on simplified concerns
has the potential of preventing an intelligent software component
to detect it is under evaluation. Initially designed for achieving a
clear understanding of either functional or timing behavior of real-
time control systems [6], we see great potential of this approach
in enabling a concern-directed prediction of the trustworthiness of
intelligent software behavior. By focusing the scope of the evalua-
tion to either scheduling, function interaction or communication
protocol between the intelligent software and interacting entities
(such as software, hardware or subsystem)within a robot, specialized
and faster evidence of trust can be achieved. As depicted in Figure2
runtime evidence of trust can be provided through execution of hor-
izontal abstractions of a software component or systems behavior,
which are directed towards a specific scope of the evaluation and can
be executed at every level of vertical abstraction. From top to bottom,
vertical abstractions can be defined with a range of details varying
from a very high level where they take the shape of input/output
tables or state charts towards very concrete levelswhen they are fully
implemented.At every level of a robot’s behaviorvertical abstraction,
the horizontal abstraction of the intelligent software behavior can
be executed for providing the specialized evidence of trust. Further
on, vertical abstractions can propagate evidence of trust between
different horizontal levels for assuring the satisfaction of specific
system-level goals and on-going coalitions [17].

3.3 Derivation of Specialized Digital Twins
In the literature, digital twins are defined as a combination of real-
world data and simulation models [27, 28]. In our work, we elevate
the traditional concept of digital twin by performing a concern-
driven abstraction process that leads to the creation of specialized
abstract models which become specialized digital twins when they
are fed with real-time data.

The current approaches for designing self-adaptive systems are
based on simplified concerns that make the distinction between han-
dling of domain concerns and adaptation concerns. In the case of
heterogeneous autonomous collaborating robots, the domain con-
cerns of one robot relate to the goals of the collaborating partner
robot, whereas the adaptation concerns relate to the ego robot. In
our approach we are leveraging the principle of concern simpli-
fication to the design of software functions, for creating simpler
behavioral structures capable to avoid uncontrolled feature inter-
action. Concretely, we redirect the process of simplifying concerns
to the definition of concern-oriented abstract models. For this, the
simplified runtime models need to be a result of complex design
process and a deep technological perspective needs to be employed
in order to capture the core aspects to be evaluated in concrete tech-
nical situations within the virtual execution environment. In the
process of deriving abstract models, it is important to identify the
main concerns and to leave apart the ones that are subordinated to
them. Desirably, the subordinated and auxiliary concerns are left
apart with the support of a rigorous process designed to guarantee
the conceptual integrity of the evolving simplifiedmodel. Themodel
derivation process that fits into the methodology introduced in this
paper needs to adhere to the following aspects:

(1) Firstly, the creation of simplified models needs to rely on an
engineering process that is based on the description of ser-
vices that the respective component provides at the interface
withanother component.Because thebehaviorof thephysical
system imposes timing constraints that must be handled by
the intelligent control, corresponding timing specifications
need to be assigned at the communication interface between
components as well. In this way, besides guaranteeing the
mere functional requirements, the abstraction of the intelli-
gent control can guarantee the specified temporal constraints
and proper handling of various environmental effects.

(2) Secondly, the realization of a simplified runtime model for a
system needs to be given by an abstract conceptualization of
the internal operation of the robot. The abstract conceptual-
ization encompasses an engineering understating and relies
on the technical description captured while designing system
models.

(3) Third, the abstract conceptualization needs to be an engi-
neering process that builds on human understanding of the
system and its component’s behavior in an explainable and
predictable manner. The incorporation of the engineering
knowledge andhumanprediction in the derivation of abstract
models forms the basis for the runtime behavioral prediction.
This is further on enhanced by the runtime execution of ab-
stract models within the Execute step of the Prediction phase.

Shortly, the design process of abstract specialized models cap-
tures characteristics of a system’s and its components behavior at
a specific level of abstraction. This process varies in complexity in
accordance with the nature of the system to be abstracted.

Figure 2: Envisioned execution of parallel abstractions

3.4 Off-board / On-board Distribution
Relying on cloud support, in the edge, a virtual framework performs
behavioral predictions through execution of simplified behavioral
models of each robot’s intelligent control in interaction with desig-
nated abstractions of the interacting platform, hardware resources
or other software components. When fed with real-time data, these
models become specialized digital twins that are executed at a faster
rate than the wall clock and provide evidence of trustworthy behav-
ior for specific concerns.
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Figure 3: Distribution of the paradigm in an On-board and
Off-board computation system

In Figure3, the square brackets depicted with interrupted line rep-
resentpredicted trustedrangeofpossiblepaths that feed intoplanned
synchronousmaneuvers. By accounting of each robot’s safe reaction,
a synchronization algorithm outputs the virtually trusted coopera-
tive behavior, which is depicted with square brackets in dotted lines.
Thesepredictionsare thensent to thereal systems.Becauseoneactua-
tionplanmaybe subject tomore severeor less severe risks depending
on the immediate operational circumstances, it is on the real systems
where the ultimate safe operational decision is taken. For assuring
safety, each value range that has been predicted as trustworthy in the
cloudhas associated aminimumset of events that canbe triggeredon
the real system in case of sudden obstacles approaching. The range of
safe values is depictedwith thick square brackets on the physical sys-
temandonthecloud.Themappingbetweenrangeofpredictedvalues
and the safe events is depictedwith triangles on the physical systems.

Overall, our method for assuring a cloud-based safe synchroniza-
tion of safety critical systems requires multiple challenges to be
addressed including (a) specification and design of appropriate lev-
els of vertical abstractions, (b) specification and design of vertical
abstractionmodels at different levels, (c) definition of corresponding
horizontal behavioral abstraction for every layer of the vertical ab-
straction, (d) instrumentation of dedicated abstractions for framing
trust evidence in holistic evaluation scenarios, (e) definition of safe
events that can be mapped to runtime predictions, (f) derivation of
minimal cut set for the tuple (adjusted behavior, safe behavior), and
(g) aggregation and perpetuation of specialized evidence of trust
at every level of vertical abstraction. In the following section we
propose the conceptualization of a frameworkwhich aims to address
challenge (d) related to the instrumentation of different vertical and
horizontal abstractions.

4 THE INSTRUMENTATION FRAMEWORK
In this section, we present the components of the framework de-
signed for enabling the execution of the paradigm for the safe col-
laborative adjustment between heterogeneous robots.

4.1 Architectural View
As depicted in Figure 4 the framework accounts for real-world and
virtual-world elements. Within the Virtual World, a Virtual Platform
which can be a co-simulation framework such as the one presented
in [24] can couple and execute different Specialized Digital Twins,
whicharea combinationofAbstract SpecializedModels andReal-Time
Data. The Virtual Platform contains theDynamic Safety Evaluator
that evaluated and validates the virtual Images resulted from the
execution of different digital twins.

The Specialized Digital Twins are digital representations of real-
world systems depicted in the figure by Collaborating Robot. The
Real-time Data that supports the derivation of the Specialized Dig-
ital Twins is gathered from the Collaborating Robot via aGateway.
Typically, a real-world robot is composed of multiple subsystems
or Platforms which can further be composed ofHardware Resources,
SoftwareComponents and/orotherPlatforms. Forhardware resources
and for platforms that are the atomic combination of hardware re-
sources and software components, Vertical Abstraction Models are
defined. As discussed before, the execution of vertical abstraction
models enables fast behavior evaluation in simulated environments
and provide specialized evidence of trust through the execution of
associated Horizontal Abstract Models. For enabling trust evaluation
at software levels, the simple Software Components as well as the
Software Smart Agents characterized by the integration ofAI Compo-
nents, are represented by a set of threeHorizontal Abstract Models in
the form of (a) a Temporal Model that provides the timing representa-
tion of the software behavior used for runtime scheduling evaluation,
(b) a Functional Model which is a representation of the functional
behavior of a software used for evaluating functional interactions
between different interacting entities, including platforms, hard-
ware resources or software components, and (c) a Communication
Protocol Model executed for the evaluation ofmessages sent between
interacting components (hardware, software, platform).

4.2 ConformityMonitoring
Whentheyaredeliveredasblackboxes, the internal statesof software
components, including AI components, will not be known during
execution. However, for the detection of malicious deviations, an
approach that enables the monitoring of effects produced by state
changes can support the trust building process. These effects can
be observed and analyzed by recording the order, type and name of
the events triggered at the communication interface. Implicitly, for
enabling the observation of behavioral execution, the execution of
specialized digital twins need to provide these events. For this, in our
approach we propose the design of a domain-specific language for
guiding the specification of the digital twins temporal and functional
behavior bymaking a distinction between normal events and decision
events. While normal events describe the receiving of input values,
sending output values or interaction with other components, the
decision events are these events that cross the architectural bound-
aries of a component. For example, the sending of a command from
one component to another one for increasing speed is a decision
event that crosses the architectural boundaries of the initial software
component.

For enabling provision of artefacts to the interconnected compo-
nents of the runtime framework, the domain specific language need
to guide the explicit declaration of events that are triggered during
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Figure 4: Metamodel of the Framework

an execution along with their types. In this way, the execution of the
digital twins will provide a precisely formulated sequence of events
that enables the runtime prediction to output artefacts that can be
monitored on the system. By instrumenting the definition of the
software behavior of themanaged system in away that it exposes ob-
servable artefacts, trusted behavior signatures can be derived. Then
the monitoring component can check the conformity between the
real-world execution of the software component and the virtually
trusted valid synchronous behavior and detect deviations. These
deviations are indications of a change in the internal and/or the
external environmental conditions. In case of unwanted deviations,
a reactive feedback loop can be triggered on a single system.

4.3 State of theWork and Preliminary Results
Our framework is based on FERAL co-simulation platform [24] and
comes as an extension of the framework introduced in [16]. The plat-
form already supports testing of collaborative control algorithms

directed towards avoiding static obstacles [15] in a design-time &
runtime co-engineering framework [14]. The method and platform
presented in this paper enhance the level of trust during execution
in uncertain environments through runtime prediction based on
synchronous execution of specialized simulation models.

5 DISCUSSIONANDCONCLUSION
By bringing the possibilities of hosting heavy computations in the
cloud, the fast development of communication technology is pushing
forward the overall business landscape and the opening of safety-
critical systems’ interface to accommodate software applications
developed by third parties. The incentive for immediate business
gains leads to another parallel technological progress in AI develop-
ment that overpasses standardization procedures typically reviewed
only in case of already occurred major accidents.

Keeping up with the demands of fast technological progress and
emergent trends of accommodating AI components in the control
of safety critical systems, in this paper we have proposed a method
and a framework for enabling a trusted safe adaptation of intelligent
robots collaborating in safety-critical scenarios, by using the concept
of runtime predictive execution of behavioral models defined on
various levels of horizontal abstraction.

We propose the design of collaborating heterogeneous systems
that can be regarded as a complex decentralized system for which
a prediction of global behavior can be performed at runtime with
the scope of avoiding unwanted emergent behavior that can have
severe safety implications. In this way we pave the way towards
safe collaborative adaptation which can be based on contractual
agreements that are provided to the ecosystem orchestrator. With
the support of 5G and 6G development, the orchestrator can perform
the prediction in the cloud.

The scope of the entire concept encompasses many challenging
research questions for further investigation, some of which we have
already outlined at the end of Section 3. The predictive simulation ap-
proachdeployed in thecontextof self-adaptive collaborating systems
requires an infrastructure that manages the messages exchanged
during the adaptation phase. The message protocol needs to handle
the "before" and "after" states of adaptation for ensuring consistency.
Besides these, we are currently working on the implementation of
the framework and on early validation of the method. Because the
application of our proposed method relies on delivery of real-world
functions with corresponding abstractions for a set of safety-critical
functions, our immediate strategy for validation implements a qual-
itative study regarding of its feasibility and will be followed by a
planned quantitative study.
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