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Abstract. The response of a system with ON–OFF intermittency to an external 
harmonic perturbation is discussed. ON–OFF intermittency is described 
by means of a sequence of random events, i.e., the transitions from the ON to 
the OFF state and vice versa. The unperturbed waiting times (WTs) between 
two events are assumed to satisfy a renewal condition, i.e., the WTs are 
statistically independent random variables.

The response of a renewal model with non-Poisson ON–OFF intermittency, 
associated with non-exponential WT distribution, is analyzed by looking at the 
changes induced in the WT statistical distribution by the harmonic perturbation. 
The scaling properties are also studied by means of diffusion entropy analysis.

It is found that, in the range of fast and relatively strong perturbation, the 
non-Poisson system displays a Poisson-like behavior in both WT distribution and 
scaling. In particular, the histogram of perturbed WTs becomes a sequence of 
equally spaced peaks, with intensity decaying exponentially in time. Further, the 
diffusion entropy detects an ordinary scaling (related to normal diffusion) instead 
of the expected unperturbed anomalous scaling related to the inverse power-law 
decay.
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Thus, an analysis based on the WT histogram and/or on scaling methods
has to be considered with some care when dealing with perturbed intermittent
systems.

Keywords: memory effects (theory), stochastic processes (theory), sequence
analysis (theory)
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1. Introduction

Systems displaying ON–OFF intermittency are ubiquitous in Nature. The analysis of
such systems is often carried out by means of a response to an external perturbation. An
example of neurophysiological interest is given in the seminal work done by Moss and co-
workers [1, 2]. These authors investigated the effect of an external harmonic perturbation
on the dynamics of a neuron firing process, finding as the main effect that of reordering of
the firings (or spikes) generated by the neuron dynamics. As a consequence, the histogram
of inter-spike time distances or waiting times (WTs) becomes a sequence of equally spaced
peaks, whose intensity decays with an exponential envelope. The time period of the
peaks is equal to the period of the harmonic perturbation. The exponential envelope has
been recently derived from the harmonic perturbation of a Poisson process [3], thereby
suggesting that the experimental results of [1] and [2] may be an indication that neurons
obey Poisson statistics. This is a quite intuitive result, as the unperturbed Poisson process
is characterized by an exponential decay in the probability density function (PDF) of the
WTs.

The exponential envelope of [1, 2] has been produced by the numerical and theoretical
work of other authors. The work of [4] devotes great attention to the reset issue involved
by the so called integrate–fire model [5]. The more recent work of [6] contains remarkably
interesting analytical expressions for the inter-spike time distances (WTs) in the presence
of harmonic perturbation.

It is interesting to note that results remarkably similar to those of the pioneering
work of Moss and co-workers [1, 2] have been found [7] using the model of Fitzhugh and
Nagumo [8]. The authors of [7] made a numerical calculation and found that the envelope
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of the peaks in the inter-spike times histogram is indistinguishable from an exponential
function.

Another model widely used to model firing neurons is the Hodgkin–Huxley neural
model [9], which has been the subject of some recent studies aiming at establishing the
response of this model to a harmonic perturbation [10]–[13]. Although there is controversy
as regards whether or not a stochastic gain is obtained, the papers of [10]–[12] seem to
recover the exponential envelope of Moss and co-workers [1, 2], which in turn is shown to
be compatible with the assumption of Poisson statistics. The authors of [13], in contrast,
reveal the emergence of an anomalous scaling.

Finally, in the work of Reibold et al [14] the authors recovered the exponential
envelope of the pioneer work of Moss and co-workers [1, 2] from a theoretical picture
adopting an intermittent map, which definitely departs from the Poisson condition.

According to some neurophysiologists, neurons follow renewal [15] and non-Poisson
processes [16], i.e., the inter-event time distances (WTs) are mutually independent random
variables with non-exponential PDF and the statistical distribution of the number of
events in a given time interval is a non-Poisson distribution.

In summary, a crucial aspect resulting from this brief review is the possibility of
observing the emergence of a Poisson-like behavior (exponential envelope in the WT
histogram) by perturbing a system displaying anomalous scaling. The Poisson condition
is not compatible with anomalous scaling, so an apparent contradiction seems to arise
from these results.

In this paper this issue is investigated, considering that the Poisson-like behavior is
surely related to the way the unperturbed non-Poisson statistics interacts with the external
perturbation. The results are limited to the assumption that the unperturbed system
generates WT sequences in agreement with a renewal non-Poisson random process [17]. In
particular, it is assumed that the WTs generated by the unperturbed renewal non-Poisson
process are distributed according to the following class of Pareto power-law PDFs:

ψ(τ) = (μ0 − 1)
T

µ0−1

0

(τ + T0)
µ0
, (1)

with

2 < μ0 <∞; T0 > 0. (2)

In this range of parameters the mean time is finite and given by

〈τ〉 =
T0

(μ0 − 2)
. (3)

The choice of equation (1) is made to yield in the asymptotic time limit the inverse power
law 1/τμ0 , while making the WT distribution ψ(τ) fulfil the normalization condition,
without introducing any short-time truncation. The timescale T0 has the important role
of defining the extension of the region of transition from the short-time condition, with
no unphysical divergence, to the long-time limit, where the inverse power law appears.
The power index μ0 signals the specificity of the cooperative properties that establish the
complex nature of the process.

Following the theoretical perspective of [18]–[21], the following sections are dedicated
to introducing a model generating sequences of WTs distributed according to the

3



PDF of equation (1) and satisfying the renewal condition. According to this picture,
the parameters μ0 and T0 afford complete information about the unperturbed system
dynamics, and it is a reasonable assumption that the effect of an external perturbing field
is that of turning either T0 or μ0, or both, into time dependent parameters T (t) and μ(t).
Here only the perturbation of the power index μ0 is considered.

The outline of the paper is as follows. In section 2 a brief introduction to renewal
non-Poisson processes with the Pareto WT PDF is given. In section 3 the effects of a
harmonic perturbation on the power index μ0 are discussed. In section 4 a concise review
of the diffusion entropy (DE) method is given and some results on the scaling generated
by a random walker associated with the perturbed WT sequences are shown. In section 5
some conclusions are drawn.

2. Renewal non-Poisson processes

A point process is described using a sequence of random times, at which some kind of
crucial event occurs: {ti}, i = 0, 1, 2, . . .. The time instant t0 = 0 is the time of the first
event occurrence. Denoting the WTs by τi+1 = ti+1 − ti, i = 0, 1, 2, . . ., the point process
is defined to be renewal if the WTs τi are mutually independent random variables [17]. In
this approach, the spikes generated by neuron firings are critical events whose occurrence
is associated with a mechanism erasing memory of the past. A renewal process is uniquely
defined by the PDF of WTs (WT PDF) ψ(τi), which does not change with the index i.
Equivalently, a renewal process is defined by the statistical distribution of the number of
events in a given time interval. The non-exponential PDF of equation (1) corresponds
to a non-Poisson distribution of the events. Another way of defining a renewal process
is the local rate of event production r(t). Roughly speaking, the local rate r(t) is the
expected number of events per time unit in a neighborhood of the time t. More rigorously,
following Cox [17] and assuming that the last event occurred at ti, the local rate r(t) is
the (conditional) probability density that an event occurs in an infinitesimal time interval
[t, t+ dt], given that no events occurred in the time interval [ti, t]:

r(t) = lim
dt→0

1

dt
Pr {t < ti+1 ≤ t+ dt | ti+1 > t} . (4)

Considering the time interval between the first two events: [0, t1], it is easy to prove that
the rate r(t) is given by [17]

r(t) =
ψ(t)

Ψ(t)
= − 1

Ψ(t)

dΨ(t)

dt
, 0 < t < t1, (5)

with

Ψ(t) =

∫ ∞

t

ψ(s) ds = 1−
∫ t

0

ψ(s) ds (6)

being the survival probability, i.e., the probability that the WT is larger than t. Clearly,
it results that ψ(t) = −dΨ(t)/dt. Once the rate function r(t) is known, the survival
probability is simply derived by solving equation (5) with respect to Ψ(t) and imposing
the initial condition Ψ(0) = 1:

Ψ(t) = exp

(
−

∫ t

r(t′) dt′
)
. (7)
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Figure 1. An example of the time evolution of (a) the renewal time function
Δtr, equation (15), and (b) the rate function r(t), equation (16). r0 = 0.01,
r1 = 0.015.

The WT PDF in a Poisson process is given by an exponential decay and the associated
event rate is constant in time: r(t) = r0 [17]. Consequently, a natural way to realize a
non-Poisson process, and the relative non-exponential distribution of WT, is based on the
assumption that the rate r(t) of event production changes in time. This is the case for
Pareto’s law, equation (1). In fact, in this case the survival probability is given by

Ψ(t) =

(
T0

t+ T0

)μ0−1

, 0 ≤ t < t1. (8)

Substituting in equation (5) and considering the time interval [0, t1], the following
expression is obtained:

r(t) =
r0

1 + r1t
, 0 ≤ t < t1, (9)

where

μ0 = 1 +
r0
r1

; T0 =
1

r1
(10)

and

r0 =
μ0 − 1

T0
; r1 =

1

T0
. (11)

The parameter r0 has the physical meaning of the rate value immediately after the
occurrence of an event, whereas T0 = 1/r1 determines the decay time of the rate function.

Note that the prescription of equation (9) applies only to the first time interval
between the first firing at time t0 = 0 and the next one at time t = t1 = τ1. To extend the
rate function to the entire time axis, it is convenient to introduce the following auxiliary
function:

f(t) =
r0

1 + r1t
. (12)

This corresponds to the rate function when no event occurs up to the absolute time t. Due
to the renewal assumption, the occurrence of an event erases the system’s memory and
the rate function jumps from the value r(t1) = f(t1) to the ‘initial’ value r0. An example
of the behavior of the rate r(t) is displayed in figure 1(b), showing that the rate restarts
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from the value r0 after each event, occurring at times t1, t2, t3, etc. Consequently, in the
time interval [t1, t2] the rate function is written in the following way:

r(t) =
r0

1 + r1(t− t1)
= f(t− t1), t1 ≤ t < t2. (13)

For a given sequence of event occurrence times {ti}, this expression is easily generalized
by applying suitable time shifts to the basic rate function f(t):

r(t) = f(t− ti) =
r0

1 + r1(t− ti)
, ti ≤ t < ti+1. (14)

Rigorously, the rate function has a formal dependence on the sequence {ti}: r(t, {ti}).
However, in contrast to the case for the absolute time t, the dependence on the sequence
{ti} is a kind of stochastic dependence, as the sequence of times is not known a priori,
but it is a particular stochastic realization of the process, which is rigorously defined by
the basic rate function f(t) given in equation (12). In the following the simple notation
r(t) will be used, as its mathematical and physical meaning is unambiguous. Further, in
order to lighten the notation when considering the external perturbation, it is appropriate
to introduce the following renewal time function:

Δtr(t, {ti}) = t− ti; ti ≤ t < ti+1. (15)

The renewal time Δtr is a kind of random time, which is set to zero when an event occurs,
and it increases linearly in the absolute time t until the next event occurs. In particular,
in the time interval [ti, ti+1], it increases from 0 to τi+1 = ti+1 − ti, which is exactly the
random WT between the events labeled by the indices i and i+1 (see figure 1(a)). Using
the renewal time function, the rate function of equation (14) is rewritten in the following
way:

r(t) =
r0

1 + r1Δtr
, (16)

where the dependence of Δtr on t and {ti} is left unindicated. From the computational
point of view, Δtr is simply the time measured from the last event.

Note that the renewal time function Δtr describes the renewal character of the
internal dynamics and its functional dependence on time t is not the sign of an external
forcing. On the contrary, the time dependence of one or both the parameters r0 and
r1 in equation (16) would be the sign of an external perturbation. Consequently, the
more general mathematical prescription for an external perturbation can be written in
the following general form:

r(t) =
r0φ0(t)

1 + r1φ1(t)Δtr
. (17)

In this formulation, the renewal character of the rate function r(t) is again included in Δtr,
which is affected by the occurrence of an event (see figure 1(a)), while the functions φ0(t)
and φ1(t), describing the effect of external forcings, are not affected by the internal critical
events (e.g., neuron firings or spikes). By analogy with the unperturbed parameters μ0

and T0 in equation (10), it is possible to write similar expressions for the perturbed power
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index μ(t) and the perturbed timescale T (t):

μ(t) = 1 +
r0φ0(t)

r1φ1(t)
= 1 + (μ0 − 1)

φ0(t)

φ1(t)
; T (t) =

1

r1φ1(t)
=

T0

φ1(t)
. (18)

The condition φ0(t) = φ1(t) has the effect of leaving the power index μ0 unchanged, while
affecting the timescale T0. Making φ0(t) time dependent while keeping φ1(t) = 1, and
thus time independent, has the effect of perturbing μ0, while leaving T0 unchanged.

A numerical algorithm, discrete in time, was used to generate the sequences of random
times {ti} corresponding to the rate r(t) of equation (17). This algorithm is based on
an iterative procedure derived by the Cox definition of the rate of event production.
In fact, considering the interval [ti, ti+1] and equation (4), the quantity p(t) = r(t) dt
is the probability of an event occurrence in the infinitesimal interval [t, t + dt], given
that no events occurred in the interval [ti, t]. In the implementation of a numerical
scheme, the time step dt cannot be infinitesimal, but it is necessarily a finite quantity.
In order to get a good approximation of the continuous-time model described by the
rate given in equation (17), the time step dt must be chosen in such a way that (a)
pn = r(n · dt+ ti) dt� 1 for any value of t = n · dt+ ti larger than ti and (b) dt is much
less than all the relevant timescales.

The resulting stochastic process, discrete in time, can be interpreted as a two-
state Markov chain with jump probabilities pn evolving in time. The quantity pn is
the probability of getting a jump at the discrete time n. The occurrence of an event
corresponds to a jump between the two states and the residence time in each state defines
the WT. Note that, if pn is not very small, the two-state random process, discrete in time,
is not a good approximation of the original model given in equation (17), even if pn < 1
(e.g., pn ∼ 0.5). This is also true when condition (a) is satisfied, but condition (b) is not.
Considering the unperturbed rate r(t) of equation (16) and choosing dt = 1, from the
conditions (a) and (b) it follows that

r0 � 1; r1 � 1, (19)

implying that the internal times 1/r0 and T0 = 1/r1 are much larger than the time step
dt. These are the only two conditions required in the unperturbed case (φ0 ≡ φ1 ≡ 1), but
they must be completed with others involving the timescales of the external perturbation,
included in the functions φ0(t) and φ1(t) of equation (17).

Note that the Poisson case is recovered by considering the unperturbed rate,
equation (16), with r1 = 0, implying r(t) = r0, which is approximated by a two-state
Markov chain with constant jump probability: pn = r0 dt = r0 (dt = 1). As is known, the
WT PDF is an exponential function with decay rate r0.

3. Perturbation of the power index µ0

In this section the perturbation of r0 is considered, which, as proved by equations (10)
and (18), is equivalent to perturbing the power index μ0, while leaving the timescale
T0 unchanged. This is the straight generalization of the way of perturbing a Poisson
process [3]. In fact, in the Poisson case r1 = 0, so both μ0 and T0 become infinite. The
constant rate r(t) = r0, being an inverse timescale, is the only basic parameter of the
unperturbed Poisson process.
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The perturbation of a Poisson process introduced in [3] is given by

rp(t) = r0 exp

[
ε cos

(
2π

Tω
t

)]
, (20)

where rp(t) denotes the perturbed Poisson rate, i.e., the perturbation of r0, and Tω

is the perturbation period. This is the same expression as is given in [2, 26] for the
rate of escape (from each stable state) of a particle moving in a symmetric double-well
potential under the effect of a white noise with intensity D and a harmonic signal with
amplitude A and period Tω. The unperturbed rate r0 is then given by the Kramer formula:
r0 = C exp(−Q/D), where C is a constant depending on the frequency of the processes of
molecular collision and Q is the potential barrier. The perturbation strength is given by
ε = Axm/D [2], where ±xm are the positions of potential minima, i.e., the stable points.
The parameter D is not known from the experiments, and a range of D was selected
by the authors of [2] in such a way as to get a good agreement between the double-well
potential model and the experimental data. The corresponding range for ε spans from
about 4 to about 15.

It is straightforward to generalize the perturbation of the Poisson rate of equation (20)
by considering it as a limit, for r1 → 0, of the non-Poisson rate given by equation (16),
with rp(t) replacing r0. This is equivalent to perturbing the parameter r0 itself:

r(t) =
rp(t)

1 + r1Δtr
=
r0 exp [ε cos((2π/Tω)t)]

1 + r1Δtr
, (21)

and, as mentioned earlier, to perturbing the power index μ0. In fact, comparing with
equation (17) it results that φ0(t) = exp[ε cos((2π/Tω)t)] and φ1(t) = 1 so, from
equation (18), it is possible to write an expression for the power index, changing in time,
associated with the rate given in equation (21):

μ(t) = 1 +
rp(t)

r1
= 1 + [μ0 − 1] exp

[
ε cos

(
2π

Tω
t

)]
, (22)

μ0 being given by equation (10).
From equation (21) it is possible to derive a linearized version of this model by simply

using a Taylor expansion:

r(t) =
r0(1 + ε cos(2πt/Tω))

1 + r1Δtr
; ε < 1, (23)

which implies for the power index

μ(t) = μ0 + (μ0 − 1) ε cos

(
2πt

Tω

)
; ε < 1. (24)

Note that, setting in equation (20) the condition ε � 1, the non-linear model of
equation (21) becomes equivalent to the linear model of equation (23). Note that the
linear and non-linear models are different. However, it is found from numerical simulations
that these two models are significantly different only in the range ε ∼ 1.

The response of the renewal non-Poisson system to the external perturbation (both
linear and non-linear) is determined by four parameters: the intensity ε and the period Tω

of the perturbation, the power index μ0 and the timescale T0 of the unperturbed system.
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Figure 2. Slow linear perturbation of μ0, equation (23). Comparison of the
perturbed histograms of the WTs, ψexp(τ), with the unperturbed ones, ψ(τ).
μ0 = 2.2, T0 = 100, ε = 0.6 (a) Tω = 5 × 103 (R = 10); (b) Tω = 5 × 106

(R = 104).

Note that a non-Poisson condition with μ0 > 2 is considered, a condition ensuring that
the mean value of τ exists (see equation (3)). Therefore, following [3], it is possible to
define the following dimensionless parameter:

R =
Tω

〈τ〉 . (25)

When R � 1, the perturbation is faster than the production of firing events, thereby
producing what it is defined as fast perturbation, linear or non-linear. The opposite limit,
R 
 1, is referred to as slow perturbation, linear or non-linear. Note that, as stated in
section 2, the conditions of equation (19) must be supplemented with the following one:
dt/Tω = 1/Tω � 1, associated with the timescale Tω of the external perturbation.

In the case of non-linear perturbation of μ0, the fast condition allows us to define the
effective power index μeff as follows:

μeff = 1 + [μ0 − 1]

〈
exp

[
ε cos

(
2π

Tω

t

)]〉
, (26)

where 〈· · ·〉 indicates an average over one perturbation period Tω. This average value is
well defined only in the range of fast perturbation (R � 1). In fact, when the condition
R � 1 applies, the perturbation makes μ(t) execute many oscillations before reaching the
time regime where ψ(τ) reveals its inverse power-law nature. It is easy to prove that the
average value μeff is independent of the perturbation period Tω, but increases rapidly with
the perturbation strength ε. As the limit μ0 = ∞ is associated with a genuine Poisson
process, it is expected that very large values of μeff could generate a Poisson-like behavior
in the perturbed system, at least in the range of validity of equation (26). Conversely, it
is also easy to see that the linear perturbation of μ0, given by equations (23) and (24),
does not affect the effective power index, i.e., μeff = μ0. In section 4 the consequences of
this behavior for the scaling properties detected by the DE analysis will be discussed in
more detail.

Figures 2 and 3 display the main results obtained from the application of the numerical
algorithm introduced in section 2 to the rate function of equations (21) and (23). Figures 2
and 3(a) refer to the linear perturbation of μ0, equation (23), with perturbation strength
ε = 0.6, and figure 3(b) is generated by the non-linear perturbation of μ0, equation (21),
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Figure 3. Fast perturbation of μ0. (a) Linear model, equation (23): comparison
of the perturbed histogram of WTs (oscillating pattern ψexp(τ)) with the
unperturbed one (T0 = 100, Tω = 50, μ0 = 2.2, R = 0.1, ε = 0.6). (b) Non-
linear model, equation (21): histogram of WTs (T0 = 105, Tω = 500 (R = 10−3),
μ0 = 2.2, ε = 7). The dashed line in panel (b) is the exponential envelope of the
maxima.

with strength ε = 7, which is a value in agreement with the range used in [2]. The
probability density of WT is only weakly affected by making perturbation very slow,
namely, R 
 1, as shown by the histograms reported in figure 2. The experimentally
observed histogram, indicated with ψexp(τ) and affected by the perturbation, is compared
with the unperturbed histogram ψ(τ). In figure 3(a) a fast perturbation with the same
strength ε as for figure 2 is shown. In this case the fast perturbation produces more
significant effects, as weak oscillations appears in the histogram. However, the weak
oscillations of figure 3(a) do not affect the inverse power-law nature of ψ(τ), insofar as
the histogram is clearly the addition of a genuinely power-law decay and of a pattern of
weak and fast oscillations, with time period Tω. In conclusion, the histogram averaged
over the time Tω results in a power-law decay with index μ0.

In figure 3(b) there is reported the WT histogram for the case of a fast and strong
(ε = 7) non-linear perturbation of μ0, determining the emergence of a Poisson-like
behavior, as is easily seen from the exponential envelope of the histogram maxima.
Moving from the weak linear perturbation of figure 3(a) (ε = 0.6) to the strong non-
linear perturbation of figure 3(b) (ε = 7), both fast, the non-exponential (power-law)
average over the fast oscillation turns into a sequence of equally spaced peaks, displaying
exponential decay of the intensities (exponential envelope). Further, the time distance
between two peaks corresponds to the perturbation period. The exponential envelope of
peak intensities is a property shared by the perturbed Poisson system of the earlier work
of [3]. As mentioned earlier, this is why, at first sight, the result of figure 3(b), and the
experimental results of [1, 2] as well, can be interpreted as the consequence of the harmonic
perturbation of a Poisson process [3].

In summary, the numerical simulations showed that, on increasing the coupling
strength ε, the power-law decay emerges at a larger and larger timescale and the
exponential envelope becomes more extended in time. On the other hand, the long WTs
are rare, and in the histograms realized with sequences of finite size, the statistical errors
of the long-time tails are so large as to make the presence of an inverse power-law behavior
virtually invisible. This explains the lack of a significant deviation from the exponential
behavior in figure 3(b) and the surprising qualitative similarity between the theoretical

10

http://dx.doi.org/10.1088/1742-5468/2009/01/P01013


distribution of figure 3(b) and the experimental distribution of figure 1(a) of [1] and
figures 5 and 8 of [2]. As far as figure 3(b) is concerned, the origin of the exponential
behavior rests on the fact, accounted for by equation (26), that the perturbation creates
an effective μeff of the order of 200.

In conclusion, the numerical results illustrated in this section show that a non-Poisson
system under the influence of a strong and fast perturbation of the power index μ0 may
produce the exponential envelope of [1, 2].

4. Diffusion entropy analysis

In this section the approach of [13] is used. The authors of [13] adopted the method of
diffusion entropy (DE) [22]–[24] to analyze the data produced by the Hodgkin–Huxley
(HH) neuron model.

The DE method rests on converting a time series into a diffusion process x(t), and in
evaluating the entropy of the resulting probability density function (PDF) p(x, t). When
the diffusion process is continuous in time and space, the diffusion entropy is defined in
the following way:

S(t) = −
∫ ∞

−∞
dx p(x, t) ln (p(x, t)) . (27)

When the PDF p(x, t) satisfies the scaling condition:

p(x, t) =
1

tδ
F

( x
tδ

)
, (28)

with exponent δ defining the scaling, it is easy to prove that the DE satisfies the following
general expression:

S(t) = A + δ ln(t), (29)

where

A = −
∫ ∞

−∞
dzF (z) ln (F (z)) . (30)

According to [22] the efficiency of this method of analysis depends on the walking rule
adopted to generate the diffusion process x(t). In the following, the sequence of WTs
is converted into a diffusion process with the asymmetric jump model (AJM) rule [22].
According to the authors of [22], the AJM walking rule is the most accurate one, and it
leads to a fast convergence to the scaling condition.

With this rule each WT τ is represented by a sequence of zeros, and then by a jump
of constant length, say 1, in a fixed (positive) direction. The coordinate of the random
walker x(t) is then defined as the sum of jumps that occurred up to time t. A general
result is known in the case of a sequence of WTs whose probability density satisfies the
asymptotic behavior: ψ(τ) ∼ 1/τμ0 , namely, the asymptotic behavior of the prescription
of equation (1). In this case, the relation between the (unperturbed) scaling δ0 of the
AJM rule and the power index μ0 is given by [22]

δ0 =

⎧⎨
⎩

1

μ0 − 1
; 2 < μ0 < 3,

0.5; μ0 ≥ 3.
(31)
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Figure 4. Slow linear perturbation of μ0, equation (23). Diffusion entropy (same
parameters as for figure 2). Unperturbed scaling δ0 � 0.83.

Figure 5. Fast perturbation of μ0, diffusion entropy (unperturbed scaling
δ0 � 0.83). (a) Linear model, equation (23): same parameters as for figure 3(a).
(b) Non-linear model, equation (21): same parameters as for figure 3(b).

Considering the unperturbed system, the transition from μ0 < 3 to μ0 > 3 corresponds
to a transition where the scaling δ0 is anomalous (δ0 > 0.5) to the ordinary scaling
δ0 = 0.5 of normal diffusion. The Poisson condition corresponds to μ0 = ∞. However,
for the Poisson scaling δ0 = 0.5 to show up it is enough to cross the border μ0 = 3.
For simplicity, the range μ0 < 3 is defined as the non-Poisson basin and μ0 > 3 as the
Poisson basin. Thus, the adopting of the DE analysis allows one to establish whether the
system is located in the Poisson or the non-Poisson basin through the measurement of δ0.
Equation (31) applies also in the perturbed case. The perturbed scaling is denoted by
δ. If δ > 0.5 the system lives in the non-Poisson basin. The transition from δ > 0.5 to
δ = 0.5 corresponds to a transition from the non-Poisson to the Poisson basin. Our guess
is that the perturbed scaling δ is related to the effective power index μeff of equation (26)
(at least in the fast perturbation case).

In figures 4 and 5 some results of DE analysis are shown. Figures 4 and 5(a)
illustrate the DE analysis applied to the case of linear perturbation of μ0, as described
by equation (23); figure 5(b) illustrates the DE analysis applied to the case of non-linear
perturbation of μ0, according to the prescription of equation (21). Figures 4 and 5(a)
correspond to the WT distributions of figures 2 and 3(a), respectively. Figure 4 shows the
DE analysis applied to two distinct sequences, simulating the effect of two slow (R > 1)
linear perturbations of μ0. By comparing panels (a) and (b) of figure 4 and figure 5(a), it
is possible to see that, in contrast to the case for the probability density, a clear oscillating
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pattern emerges in the DE curve only in the case of very slow linear perturbation, R = 104

(figure 4(b)). Figure 4(a) illustrates the case where the linear perturbation is moderately
slow, namely, in between the fast condition of figure 5(a) and the very slow perturbation
of figure 4(b).

First of all, according to the rule of equation (31), the power index μ0 = 2.2, shared
by figures 4 and 5(a), is expected to yield δ0 � 0.83.

For perturbation speeds ranging from the fast perturbation of figure 5(a) (R = 0.1) to
the intermediate perturbation of figure 4(a) (R = 10), DE does not produce any significant
sign of oscillating behavior, so in both cases a neat asymptotic scaling δ appears. In the
fast perturbation case (figure 5(a)) this scaling coincides with the unperturbed scaling
δ0 � 0.83, while in the intermediate case of figure 4(a) the scaling takes the value δ = 0.91,
significantly larger than δ0. In the case of very slow perturbation of figure 4(b) the
unperturbed scaling δ0 appears again, although as the slope of the straight line on which
the relative minima of S(t) are located.

In the case of fast linear perturbation of figure 5(a), the time dependent power index
μ(t) of equation (24) oscillates many times within the timescale 〈τ〉, so the DE analysis
perceives only its time average μeff , which, for the linear model of equation (23), is identical
to μ0, thereby yielding the unperturbed scaling δ0. In the case of very slow perturbation
of figure 4(b) we have to recall that the DE analysis rests on converting a single sequence
into many diffusion trajectories using the mobile window method. When the length of the
mobile window is equal to nTω, the influence of external perturbation is annihilated. This
is the same explanation as was used in [3] and in the references to DE analysis therein. As
a consequence, the relative minima of S(t), represented in the linear–log representation,
lie on the straight line whose slope corresponds to the unperturbed scaling δ0.

In the intermediate range R ∼ 10 (Tω ∼ 10〈τ〉), displayed in figure 4(a), the scaling
changes to the value δ = 0.91, significantly larger than the unperturbed scaling δ0 = 0.83.
This result suggests the emergence of a form of complexity which is the consequence of
the joint action of non-Poisson statistics and harmonic perturbation.

Figure 5(b) illustrates the result of DE analysis in the case of fast non-linear
perturbation of μ0, equation (21), which produces the WT distribution of figure 3(b).

An extended transition regime with the effective scaling of δ′ = 1 exists, but, after
this extended transient of the order of T0, the emergence of an ordinary scaling δ = 0.5
rather than the unperturbed scaling δ0 � 0.83 is observed. According to the prescription
of equation (31), the scaling δ = 0.5 corresponds to the condition μ0 > 3. A quite
plausible explanation is that the DE analysis is mostly affected by the extended time
intervals in which the effective power index μ(t), given in equation (22), is greater than
3. This is confirmed by the large value of the average power index μeff � 200, obtained
by considering equation (26) with the parameters of figure 5(b).

5. Concluding remarks

The research work of this paper has been motivated by the experimental results of [1, 2].
In spite of this, the results are of general interest, providing some qualitative indications on
the response of non-Poisson processes to external harmonic perturbations. In particular,
the emergence of the exponential envelope in perturbed systems with non-Poisson
statistics has been studied, limiting the investigation to the case of systems which are
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renewal ones in the unperturbed state (but not necessarily when the perturbation is
switched on). It has been shown that the phenomenon of an exponential envelope can
emerge as the response to harmonic perturbations of both Poisson [3] and non-Poisson
systems. In particular, the following results are found.

Result 1. A fast and relatively strong perturbation of μ0, equations (21) and (22),
generates the exponential envelope in the histogram of waiting times and ordinary scaling
of normal diffusion δ = 0.5, even when the unperturbed system generates anomalous
diffusion. This could be interpreted as a genuine transition from non-Poisson to Poisson
statistics, associated with a transition from μeff < 3 to μeff > 3. This is seen by
substituting μ0 with μeff in equation (31). Note, however, that μeff is well defined only
in the case of fast perturbation (see equation (26)). The case of intermediate and slow
perturbation deserves further investigation, as both equations (26) and (31) cease to be
valid.

Result 2. A relatively weak harmonic perturbation of μ0, equations (23) and (24),
either very slow or very fast, does not affect the system’s complexity (i.e., the power
index μ0), which emerges again in the long-time region. However, in the intermediate
range R ∼ 10 (Tω ∼ 10〈τ〉), a significant increase in the scaling parameter is observed
(see figure 4(a)).

Consequently, some care must be taken in applying scaling methods to time series
generated by intermittent systems perturbed with an external harmonic signal. Even
a Poisson-like behavior in the histogram of waiting times (exponential envelope) is not
necessarily the signature of the presence of Poisson statistics in the unperturbed system.

Further, it is important to underline that the condition μeff > 3 is a criterion
identifying the emergence of Poisson-like behavior, at least in the fast perturbation regime.
Unfortunately, this condition cannot be estimated explicitly from the experimental results
found in the literature [1, 2], and even the regime of fast perturbation cannot be stated
a priori. In fact, in our approach, this would require the knowledge of the internal
parameters μ0 and T0 (see equation (1)). This is also true for the models proposed
in [1, 2, 26], where some model parameters, such as Q, xm and D, are not known (see
comments after equation (20)). However, the results of this paper suggest that it should
be appropriate to explore a more extended range of control parameters, i.e., the amplitude
A and period Tω of the harmonic signal. Particular attention should be focused on the
scaling detected by the diffusion entropy. By investigating the regime of small amplitudes,
consistently with the limitations of the experimental setup, it could be possible for the
perturbed system to fall within the range of relatively weak (ε < 1) perturbation. In
this range, the Poisson-like behavior could disappear and some anomalous scaling could
emerge (see, for example, figures 2(b) and 4(b)).
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