TransLib: A Library to Explore Transprecision Floating-Point Arithmetic on
Multi-Core IoT End-Nodes

Citation

S. A. Mirsalari, G. Tagliavini, D. Rossi and L. Benini, "TransLib: A Library to Explore Transprecision
Floating-Point Arithmetic on Multi-Core loT End-Nodes," 2023 Design, Automation & Test in Europe
Conference & Exhibition (DATE), Antwerp, Belgium, 2023, pp. 1-2, doi:
10.23919/DATES56975.2023.10136916.

Year

2023

Version

Authors’ camera-ready version
Link to publication

https://lieeexplore.ieee.org/abstract/document/10136916

Published in

IEEE

DOI

https://doi.org/10.23919/DATE56975.2023.10136916

License

This publication is copyrighted. You may download, display and print it for Your own personal use.
Commercial use is prohibited.

Take down policy

If you believe that this document breaches copyright, please contact the authors, and we will investigate
your claim.

BibTex entry

@INPROCEEDINGS{10136916, author={Mirsalari, Seyed Ahmad and Tagliavini, Giuseppe and
Rossi, Davide and Benini, Luca}, booktitle={2023 Design, Automation & Test in Europe Conference &
Exhibition (DATE)}, title={TransLib: A Library to Explore Transprecision Floating-Point Arithmetic on
Multi-Core 10T End-Nodes}, year={2023}, volume={}, number={}, pages={1-2},
doi={10.23919/DATE56975.2023.10136916}}

https://ieeexplore.ieee.org/abstract/document/10136916
https://doi.org/10.23919/DATE56975.2023.10136916

TransLib: A Library to Explore
Transprecision Floating-Point Arithmetic on
Multi-Core IoT End-Nodes

Seyed Ahmad Mirsalari*, Giuseppe Tagliavini*, Davide Rossi*, Luca Benini*'
*University of Bologna, Bologna, Italy, tETH, Zurich, Switzerland

Abstract—Reduced-precision floating-point (FP) arithmetic is
being widely adopted to reduce memory footprint and execution
time on battery-powered Internet of Things (IoT) end-nodes.
However, reduced precision computations must meet end-do-end
precision constraints to be acceptable at the application level.
This work introduces TransLib', an open-source kernel library
based on transprecision computing principles, which provides
knobs to exploit different FP data types (i.e., float, float16, and
bfloat16), also considering the trade-off between homogeneous
and mixed-precision solutions. We demonstrate the capabilities
of the proposed library on PULP, a 32-bit microcontroller (MCU)
coupled with a parallel, programmable accelerator. On average,
TransLib kernels achieve an IPC of 0.94 and a speed-up of 1.64 x
using 16-bit vectorization. The parallel variants achieve a speed-up
of 1.97x, 3.91x, and 7.59x on 2, 4, and 8 cores, respectively. The
memory footprint reduction is between 25% and 50%. Finally, we
show that mixed-precision variants increase the accuracy by 30x
at the cost of 2.09x execution time and 1.35x memory footprint
compared to floatl6 vectorized.

Index Terms—transprecision computing, IoT end-nodes, paral-
lel programming, SIMD vectorization

I. INTRODUCTION

The support for less-than-32-bits floating-point (FP) formats
(a.k.a. SmallFloats) is becoming an essential prerequisite in
modern computing systems with strict requirements for accu-
racy and dynamic range [1]. The main benefits of adopting
SmallFloats on Internet of Things (IoT) end-nodes come from
two main aspects: (i) the reduction of the memory footprint
for data and parameters: and (ii) the reduction of execution
time by exploiting Single Instruction Multiple Data (SIMD)
vectorization. These factors also positively impact the energy
consumption of algorithms running on IoT end-nodes. A sub-
stantial advantage of reduced-precision FP data types is the
ability to simultaneously perform a SIMD operation on multiple
sub-word elements, resulting in a theoretical speed-up of 2x
for 16-bit data compared to the 32-bit baseline. At the same
time, vectorization of 16-bit data reduces the memory footprint.

Due to their flexibility, low power, and low cost, embedded
microcontrollerss (MCUs) have become the most popular IoT
computing platforms. However, the power budget and memory
storage of MCUs are insufficient for deploying state-of-the-art
machine learning (ML) models. In recent years, transprecision
computing has emerged as an evolution of approximate comput-
ing. This paradigm allows fine-grained control over precision

Uhttps://github.com/ahmad-mirsalari/TransLib

to enhance energy efficiency without compromising the overall
quality of results [2] [3].

Since IoT applications require high performance and extreme
energy efficiency in a power envelope of a few mW, near-
threshold parallel computing platforms for IoT end-nodes have
emerged. PULP [4] is a heterogeneous open-source system-
on-chip (SoC) platform that includes an MCU and a pro-
grammable multi-core cluster. The PULP SoC equips an on-
chip SRAM memory (L2), hosting resident code and applica-
tion data, while the cluster cores share a low-latency Tightly
Coupled Data Memory (TCDM). Both MCU and cluster cores
support Xpulpv2, an ISA extension for energy-efficient near-
sensor computing. On the software side, the PULP SDK [5]
provides a complete software environment, which includes a
compiler toolchain supporting SmallFloat types [6], a virtual
platform [7], and the PULP-OS environment providing a low-
level runtime library.

In this scenario, a transprecision library targeting a modern
platform for IoT computing has several requirements, including
an accuracy model for multiple FP types, support for vectoriza-
tion, and support for parallel execution. We propose TransLib,
an open-source library including kernels from two application
domains widely represented on IoT end-node devices: signal
processing and ML. The main contributions of our work are:

o The library includes Python golden models and C pro-
grams optimized for IoT end-nodes.

e The golden models support fixed and mixed-precision
variants.

o Users can employ various error metrics, possibly adding
custom ones.

o We provide a sequential version of the C code, various
parallel versions (i.e., 2, 4, and 8 cores), and all their
vectorized variants.

II. TRANSLIB DESIGN

In the first version, we included a set of kernels commonly
employed in IoT for filtering, feature extraction, classification,
and basic linear algebra such as CONV, MATMUL, FIR,
DWT, KMEANS, SVM (LINEAR, and RBF), and FFT. Each
kernel design includes a Python model and a C program. The
Python model generates the input dataset, computes the kernel
output as a golden reference, and assesses the accuracy using a
customizable error metric. These golden models are built on top
of PyTorch type system. TransLib supports homogeneous float,

https://github.com/ahmad-mirsalari/TransLib
https://github.com/ahmad-mirsalari/TransLib

TABLE I: Evaluating Transprecision. FP32 and FP16 stand for float and float16, respectively.

MSE Total Cycles Memory Footprint
Fixed-precision Transprecision Fixed-precision Transprecision Fixed-precision Transprecision

Kernel FP32 FP16 FP16,FP32,FP32 FP32 FP16 FP16,FP32,FP32 | FP32 FP16 | FP16,FP32,FP32 | FP16,FP32,FP16

CONV 0 1.35E-04 5.55E-06 312008 | 183056 414406 37420 | 19932 28172 19980
MATMUL 0 5.36E-05 2.38E-06 504873 | 259217 570874 34212 | 18332 30212 24932

FIR 0 3.77E-04 8.65E-06 508454 | 296683 673254 10688 | 6596 8644 6796
16 =
14 | =

Speed-up (Tqp,i2/T,)
oo

Matmul Conv DWT SVM-lin

k-Means

SVM-rbf FIR FFT

2 cores (worst) =2 cores (best) 02 cores (ideal)

8 cores (best) 18 cores (ideal) 1 core vec (worst)

02 cores vec (ideal) B4 cores vec (worst) 4 cores vec (best)

B 4 cores (worst)
1 core vec(best)

4 cores vec (ideal)

=4 cores (best) 04 cores (ideal) m 8 cores (worst)

@1 core vec (ideal) 2 cores vec (worst) 2 cores vec (best)

= 8 cores vec (worst) =8 cores vec (best) 18 cores vec (ideal)

Fig. 1: Speed-up of parallel (2, 4, 8 cores) and vectorized (float16/bfloat16) kernel versions w.r.t. the float32 baseline.

float16, and bfloat16 types and also includes an extension to
support mixed-precision computations. We introduced a set of
flags to simulate different instructions typically available in the
ISA extensions for IoT end-nodes (e.g., fused multiply-and-
add rounding and custom casting behavior). The C program
provides several code variants (sequential version with DSP op-
timizations, parallel version with low synchronization overhead,
packed-SIMD vectorization of 16 bits FP types) to guarantee
efficient execution on diverse end-node configurations. Overall,
the code includes a set of optimizations portable among MCU-
class targets and supporting both homogeneous and mixed-
precision configurations. TransLib supports vectorization for
half-precision FP types (e.g., floatl6 and bfloatl6), and all
kernels can execute in scalar or vectorial mode on a parametric
number of cores. TransLib allows the user to check the output
with multiple verbosity levels by employing several flags.
Finally, a set of hardware per-core performance counters (e.g.,
total cycles/instructions, active cycles, shared memory con-
tentions, FPU stalls, load stalls, branch stalls, and instruction
cache misses) can be activated through a dedicated flag.

III. A CASE STUDY: TRANSLIB ON PULP

Fig. 1 illustrates the speed-ups achieved executing on two,
four, and eight cores, combining the benefits deriving from
parallelism and vectorization. The suffix vec indicates the
execution of the vector variant. The bars show the worst,
best, and ideal speed-up values executed on all architectural
configurations compared with a single-core scalar baseline. On
average, we achieved 1.97x, 3.9%, and 7.6 x speed-ups on 2, 4,
and 8 cores with no vectorization. Furthermore, vectorization
improves the speed-up — between 1.16x and 2Xx, while the
accuracy in terms of mean squared error is roughly 1.35%107%
(for floatl6), very close to the roundoff error of this format.

Reduced-precision FP types also result in a 25% to 50%
reduction in memory footprint.

TransLib supports mixed-precision variants for SVM, Conv,
MATMUL, and FIR in the current version. Table I shows that
transprecision variants lead to 2.09x longer execution times
due to additional cast operations and 1.35x greater memory
requirements than float16 vectorized, although they gain more
accuracy by around 30x. As a key outcome of this exploration,
designers can adopt this methodology to evaluate the best solu-
tion considering accuracy, throughput, and memory constraints
for the target application. More information is available on
TransLib’s GitHub page.

ACKNOWLEDGEMENT

This work was supported by the APROPOS project (g.a.
no. 956090), founded by the European Union’s Horizon 2020
research and innovation program.

REFERENCES

[1] A. Sabbagh Molahosseini et al., “Low-Precision Floating-Point Formats:
From General-Purpose to Application-Specific,” Approximate Computing,
pp- 77-98, 2022.

[2] A. C. 1. Malossi et al., “The transprecision computing paradigm: Concept,
design, and applications,” in 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2018, pp. 1105-1110.

[3] G. Tagliavini et al., “A transprecision floating-point platform for ultra-
low power computing,” in 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2018, pp. 1051-1056.

[4] M. Gautschi et al., “Near-threshold RISC-V core with DSP extensions
for scalable IoT endpoint devices,” IEEE Trans. on Very Large Scale
Integration (VLSI) Systems, pp. 2700-2713, 2017.

[5] PULP Software Development Kit. Website:
pulp-platform/pulp-sdk. Accessed: 2022-09-05.

[6] F. Montagna et al., “A Low-Power Transprecision Floating-Point Cluster
for Efficient Near-Sensor Data Analytics,” IEEE Transactions on Parallel
and Distributed Systems, vol. 33, no. 5, pp. 1038-1053, 2021.

[7]1 N. Bruschi et al., “GVSoC: A Highly Configurable, Fast and Accurate
Full-Platform Simulator for RISC-V based IoT Processors,” in IEEE 39th
Int. Conference on Computer Design (ICCD), 2021, pp. 409-416.

https://github.com/

https://github.com/ahmad-mirsalari/TransLib
https://www.apropos-itn.eu
https://github.com/pulp-platform/pulp-sdk
https://github.com/pulp-platform/pulp-sdk

	Introduction
	TransLib Design
	A Case Study: TransLib on PULP
	References

