

New solutions for a PV circular economy:

results from the H2020 projects CABRISS and ECOSOLAR

Recycling of silicon kerf from PV

Terje Halvorsen, Resitec

Freiberg Silicon Days, June 7-9, 2017

PyroGenesis

Recycling of silicon kerf from PV - Outline

- Cabriss project
 - ✓ Participants and scope
- Resitec as a recycler of silicon kerf from PV
 - ✓ Capacity and experience
- Silicon products recycled from kerf
 - ✓ Physical and chemical properties
- Safety issues related to large scale recycling of silicon kerf
 - ✓ Challenges and possibilities

Cabriss – Objectives

H2020-WASTE-2014

Implementation of a CirculAr economy Based on Recycled, reused and recovered Indium, Silicon and Silver materials for photovoltaic and other applications

www.spire2030.eu/cabriss

Cabriss – Objectives

List of Work Packages:

WP1: PV waste collection and dismantling, materials extraction

WP2: Purification of silicon recovered in PV wastes

WP3: Fabrication of silicon wafers using recycled materials

WP4: Fabrication of silicon solar cells using recycled materials

WP5: Transformation of recycled materials into usable products

WP6: Materials characterizations and qualifications

WP7: Life cycle assessment & life cycle cost, business models

WP8: Dissemination, exploitation and standardization

WP9: Project management

16 partners from 9 countries 6 SMEs, 5 Industries and 5 RTOs

Consortium

Acknowledgment:

This project has received funding from the European Union's Horizon 2020 research and innovation programme, under grant agreement No 641972.

- Partners in WP 2 are CEA, FerroAtlantica, Sintef, Fraunhofer THM, ECM Greentech and Resitec.
- This presentation will focus on Resitec results and capabilities
- Duration of the project: June-15 to June 18.

Resitec is a technology company specializing in recycling of silicon

and powder technology in general.

 Process Development for recycling silicon kerf from PV was started in 2011.

 Resitec has recycled silicon kerf in industrial scale since 2014. Capacity was doubled in 2016.

 Resitec is participating in the Cabriss project to further develop the process and adapt the recycled kerf for use in PV applications.

- Recycling of silicon kerf:
 - From cutting of silicon ingots, silicon blocks and silicon wafers.
 - Focus on water based systems with diamond wire cutting/ diamond wire wafering
 - Cabriss has not focussed on traditional cutting method with glycol and silicon carbide

App. 4% kerf loss from block cutting

App. 40% kerf loss from wafering

- Challenges with a recycling process:
 - Hydrogen formation explosion hazards
 - Dust explosion hazards during handling and drying
 - Dust exposure to personnel

 $Si + 2H_2O \rightarrow SiO_2 + 2H_2$ Traditional kerf has O level of >10%

- Oxidation of fine silicon particles
- Processing fine silicon powder from a diluted slurry
- Additives to cutting fluid
- Reduced PV silicon prices requires a cost efficient process
- Targeting existing or new markets with a new product
- Limited market for recycled silicon kerf (due to finness)
- Low volumes high logistics cost
 Requires tailor made process solutions

Resitec samples used in the Cabriss project:

Melting
Hot pressing
Plasma spray
Further purification

- Kerf from Fraunhofer THM and external sources outside Cabriss.
- Samples of <1kg up to > 1 tonn

- Resitec recycling process:
 - Resited develops and adapt equipment and process for collection of kerf to fit each wafer producer. Purification and recycling is done at Resited site.
 - Chemical and mechanical purification of silicon kerf to produce a silicon feedstock or silicon powder of 2-4N purity.
 - Further refining should be done by other purification steps.
 - Recycled kerf from Resitec appears as:
 - ✓ Silicon powder with 2-4N
 - ✓ Particle size distribution depends on feed with a D50 of typically 1-5µm.
 - ✓ Low B and P
 - ✓ Traces of Fe, Ni, Ca and others
 - ✓ 1-4% Oxygen depending on the product
 - Jet milling in inert atmosphere is used for size reduction and classification of silicon powder.

Particle sizes depends on cutting technology, wire type, thickness etc:

- Silicon kerf can be recycled into fine powders or agglomerated to reduce dusting and dust explosion hazards
 - Agglomerated material can be suitable for introduction to furnaces for melting

Resitec activities – kerf recycling

- Results from pilot test in Cabriss
- Recycled kerf from diamond wire wafering with water based cutting fluid

Element	Concentration
	[% wt]
С	0.56*
N	0.042
0	4.3

Analysis done by GDMS and IGA at EAG Laboratories, France

[ppm wt] Li	
Be < 0.005 Ag < 0.01 B 0.09 Cd < 0.01	
B	
C In Binder N - Sn < 0.1	
N - Sn < 0.1 O - Sb < 0.05	
F 1.1 Te < 0.01 Na 6.7 I < 0.001 Mg 8.0 Cs <1 Al 3.4 Ba 0.25 Si Matrix La 0.17 P 5.7 Ce 0.24 S 13 Pr 0.08 Cl 2.1 Nd 0.10 K 2.9 Sm <0.005 Ca 62 Eu <0.005 Sc 0.04 Gd <0.005 Ti 0.31 Tb <0.005 V 0.01 Dy <0.005 Mn 0.49 Er <0.005 Mn 0.49 Er <0.005 Mn 0.49 Er <0.005 Ni 62 Lu <0.005 Cu 2.7 Hf <0.005	
Na 6.7 I < 0.001 Mg 8.0 Cs < 1	
Mg 8.0 Cs < 1 AI 3.4 Ba 0.25 Si Matrix La 0.17 P 5.7 Ce 0.24 S 13 Pr 0.08 CI 2.1 Nd 0.10 K 2.9 Sm < 0.005	
Al 3.4 Ba 0.25 Si Matrix La 0.17 P 5.7 Ce 0.24 S 13 Pr 0.08 CI 2.1 Nd 0.10 K 2.9 Sm < 0.005	
Si Matrix La 0.17 P 5.7 Ce 0.24 S 13 Pr 0.08 CI 2.1 Nd 0.10 K 2.9 Sm < 0.005	
P 5.7 Ce 0.24 S 13 Pr 0.08 CI 2.1 Nd 0.10 K 2.9 Sm < 0.005	
S 13 Pr 0.08 CI 2.1 Nd 0.10 K 2.9 Sm < 0.005	
CI 2.1 Nd 0.10 K 2.9 Sm < 0.005	
K 2.9 Sm < 0.005 Ca 62 Eu < 0.005	
Ca 62 Eu < 0.005	
Sc 0.04 Gd < 0.005 Ti 0.31 Tb < 0.005	
Ti 0.31 Tb < 0.005 V 0.01 Dy < 0.005	
V 0.01 Dy < 0.005 Cr 0.35 Ho < 0.005	
Cr 0.35 Ho < 0.005 Mn 0.49 Er < 0.005	
Mn 0.49 Er < 0.005 Fe 7.4 Tm < 0.005	
Fe (7.4) Tm < 0.005 Co (9.6) Yb < 0.005 Ni (62) Lu < 0.005 Cu (2.7) Hf < 0.05	
Co D-05 Yb < 0.005 Ni 62 Lu < 0.005	
Ni 62 Lu < 0.005 Cu 2.7 Hf < 0.05	
Cu 2.7 Hf < 0.05	
Zn 2.7 Ta <1	
Ga 0.10 W 0.25	
Ge 1.1 Re < 0.01	
As 0.17 Os < 0.005	
Se < 0.05 Ir < 0.005)
Br < 0.01 Pt < 0.01	
Rb < 0.01 Au < 0.01	
Sr 0.24 Hg < 0.05	
Y 0.01 TI < 0.005)
Zr 0.06 Pb 0.71	
Nb 0.02 Bi < 0.005)
Mo 0.09 Th 0.01	
Ru < 0.001 U 0.007	
Rh < 0.001	

RESITEC – Safety issues

- Dust explosion issues
 - Measured P_max and minimum ignition energy was measured by Gexcon
 - Results are comparable with regular silicon powder
- Exposure to personnel
 - Fine dust down to $< 1 \mu m$ requires good process solutions to avoid exposure to personnel.
 - PPE is required
- Additives to cutting fluid (water based)
 - High TOC values in liquid as well as residues in the silicon kerf
 - Fumes and smell from additives to cutting fluid causes a challenge during drying of recycled kerf.

RESITEC – Safety issues

- Hydrogen formation/ oxidation of silicon powder
 - The oxidation of fine silicon kerf in water slurry is exothermic and forms hydrogen gas.
 - If cutting fluid is concentrated to high solid loads, there will be a temperature increase and high oxidation rates unless the silicon powder is properly passivated.
- Drying of fine silicon powder
 - The traditional method to produce dry silicon powder is by drying coarse material and dry milling into fine particle sizes
 - Challenge with drying fine powders are both dust explosion hazards and a continuous formation of hydrogen
 - Drying is either done in inert atmosphere or under continuous hydrogen monitoring

Conclusions

- Cabriss has made good progress towards use of wastes from PV industry in existing or new solar cell systems.
- Resitec has developed a cost efficient method for recycling of silicon kerf from diamond wire cutting processes.
 - The recycled material is 2-4 N in purity
 - The recycled material is a powder, 1-5μm as D-50
 - Oxidation levels are acceptably low, 1-4%
- There are a number of safety issues related to silicon kerf recycling that has to be addressed:
 - Hydrogen formation
 - Dust explosion issues
 - Dust exposure to personnel and environment
 - Drying of fine silicon powders
 - Additives behavior

www.resitec.no

Thank you for your attention.

Any questions?