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Abstract: The data-based design of multi-model linear inferential (soft) sensors (MIS) is
studied. These promise increased prediction accuracy yet simplicity of the model structure and
training. The state-of-the-art approach to the MIS design consists of three steps: 1) data labeling
(establishing training subsets for individual models), 2) data classification (creating a switching
logic for the models), and 3) training of individual models. There are two main issues with this
concept as steps 2)& 3) are separate: (i) discontinuities can occur when switching between the
models; (ii) data labeling disregards the quality of the resulting model. Our contribution aims at
both the mentioned problems, where, for the problem (i), we introduce a novel support vector
method (SVM)-based model training coupled with switching logic identification and, for the
problem (ii), we propose a direct optimization of data labeling. The proposed methodology and
its benefits are illustrated on an example from the chemical engineering domain.

Keywords: Machine learning and data analytics in process control, Monitoring and
performance assessment, Monitoring of product quality and control performance

1. INTRODUCTION

The use potential of advanced inference solutions is rising
in many industrial fields. Frequent and accurate estimation
of key variables already plays a major role in monitoring
and control in various real-world use cases (Li et al.,
2021; Qi et al., 2021). One way of dealing with the key-
variables estimation is represented by inferential (soft) sen-
sors (ISs) (Joseph and Brosilow, 1978). The principle is to
infer the hard-to-measure variables from easy-to-measure
variables (e.g., temperatures, pressures), e.g., see (Qin
et al., 1997; Zhu et al., 2020). The designed inferential
sensor thus usually yields less expensive yet more frequent
estimation of the key variable than a physical sensor.

The main IS-design trade-off is that the higher accuracy
is provided at the cost of the higher complexity of the
model structure and model training. Industrial processes
are usually nonlinear, which often prohibits a use of sim-
ple (linear) inferential sensors due to their inaccuracy
(i.e., poor extrapolation performance). This aspect can
be easily compensated by the design of more complex
ISs, e.g., nonlinear IS (Park and Han, 2000) or dynamic
IS (Wang et al., 2019). However, the design of complex
ISs usually involves much greater effort (model selection,
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data treatment, model validation, etc.) and there are even
situations when only a linear IS can be implemented along
the actual plant automation solution. In such situations, it
is possible to approximate the nonlinear behavior of pro-
cess by designing a so-called multi-model inferential sensor
(MIS) (Khatibisepehr et al., 2012). The MISs found their
use, e.g., in the petrochemical industry (Khatibisepehr
et al., 2012), in manufacturing (Zhongda et al., 2016), and
in the process industry (Hou et al., 2020).

The state-of-the-art approach for the MIS design usually
involves three consecutive steps (on the training dataset):
a priori labeling, classification, and training of individual
models. There are several approaches to a priori label-
ing (Lü and Yang, 2014), but the most frequent method in
use is k-means clustering (Forgy, 1965). Shuang and Gu
(2016) claim the support vector machines (Boser et al.,
1992) to be suitable to perform classification and to split
the whole space into the desired number of model validity
regions (classes). The training of individual MIS models
can be executed by an appropriate regression method (Mo-
jto et al., 2021). The MIS design is also related to the
recent study (Bemporad, 2022) on piece-wise affine (PWA)
identification that considers Voronoi partitioning and aims
to provide a set of linear models accurately fitting the
nonlinear model. The state-of-the-art MIS can be further
improved by addressing two drawbacks: 1) continuity of
models at MIS switching points, and 2) data labeling
unaware of its impact on MIS accuracy.

This contribution aims to overcome the aforementioned
drawbacks of the MIS design. We develop a new approach
that effectively combines the training of the individual
models with SVM. This approach ensures the continuity



of the designed models. We also extend the MIS design
with optimal data labeling, thus avoiding the need for pre-
labeling of the data. A preliminary version with two-model
MIS was investigated in Mojto et al. (2022). We analyze
the effectiveness of the studied methods by comparing
IS prediction performance and training CPU time on an
example from the chemical engineering domain.

Notation: 1 denotes a vector of ones, bp is an off-set (bias)
of the inferential sensor, bw stands for an off-set (bias)
of the separation hyperplane, ew represents a vector of
SVM slack variables, γ signifies a weighting parameter of
SVM, i denotes a measurement index, I is an index set
of training data points with cardinality n, Icl stands for
an index set of the classes (models) with cardinality ncl,
Isp represents an index set of the separation hyperplanes
with cardinality nsp, w signifies a normal vector to the
separation hyperplane, and Z denotes a labeling matrix.

2. PROBLEM STATEMENT

The aim is to design a multi-model inferential sensor (MIS)
in the piece-wise linear form (Su et al., 2011):

ŷ =


pᵀ1x+ bp,1, if x ∈ R1,

pᵀ2x+ bp,2, if x ∈ R2,

. . .

pᵀncl
x+ bp,ncl , if x ∈ Rncl ,

(1)

where ŷ stands for the inferred value of the desired
variable, x ∈ Rnp is a vector of the input data, pr ∈ Rnp

represents a vector of the sensor parameters in region Rr,
bp,r is a constant sensor off-set, and ncl is the number
of classes/models. The value of ncl is assumed to be
fixed throughout this paper. The number of models is a
designer’s choice. The presented methodology is applicable
for the cases with any ncl. Regions of individual model
validity denoted as Rr represent convex polyhedra such
thatRr

⋂
Rs = ∅,∀r, s ∈ Icl := {1, 2, . . . , ncl}, r 6= s. Each

region considers the same input variables (np is constant).

The MIS design is enabled by n measurements of the
output variable y being available. The state-of-the-art MIS
design (MIS-SotA) consists of three main steps: a priori
data labeling, classification, and individual sensor training.

2.1 A priori labeling for data classification

The initial (prior) knowledge about the classes of measure-
ments within a dataset is typically required for designing a
classifier. This prior labeling can be obtained directly from
the available dataset. Among methods providing accu-
rate and reliable data labeling, k-means clustering (Forgy,
1965) is a simple and intuitive method, which minimizes
the average distance between points within the clusters.

2.2 Data classification for switching-logic design

To design a switching logic between the MIS models, i.e.,
to determine Rr,∀r ∈ Icl, data classification is performed.
The commonly used method of linear classifier design is
SVM shown in Figure 1. According to the number of the
desired classes, it is possible to distinguish a binary (Fig. 1,
top plot) or multi-class (Fig. 1, bottom plot) classification.
The multi-class SVM-based classification relies on the

Fig. 1. Binary (top) & multi-class (bottom) classification.

use of one-vs-rest or one-vs-one approach (Bishop, 2006),
which transforms the multi-class classification into several
binary classifications.

We use one-vs-one method as it yields a more precise
classification. The method results in founding nsp =
ncl(ncl − 1)/2 separation hyperplanes (classifiers). The
binary classification (Kecman, 2005) is resolved as follows:

min
w,bw,e≥0

‖w‖22 + γ‖e‖1 (2)

s.t. zi,1 (wᵀxi + bw + ei − 1) ≥ 0, ∀i ∈ I, (3)
− zi,2 (wᵀxi + bw − ei + 1) ≥ 0, ∀i ∈ I, (4)

where w and bw are the normal vector and the off-set of
the separation hyperplane, respectively, γ is a weighting
parameter, and e is a vector of slack variables. The
binary parameters zi,j constitute a labeling matrix Z ∈
{0, 1}n×ncl that follows from the a priori labeling as:

zi,j =

{
1, if xi ∈ Rj ,

0, if xi /∈ Rj .
(5)

We define the index set Isp := {1, 2, . . . , nsp}. To ensure
the uniqueness of each data point, matrix Z satisfies:∑ncl

j=1 zi,j = 1, ∀i ∈ I. (6)
The result of binary classification establishes the switching
logic with the regions defined as R1 := {x ∈ Rnp |wᵀxi +
bw ≥ 0} and R2 := {x ∈ Rnp |wᵀxi + bw < 0}.
The one-vs-one multi-class classification can be solved by:

min
{wk,bw,k,ek}k∈Isp

∑nsp
k=1 ‖wk‖22 + γ‖ek‖1 (7a)

s.t. ∀i ∈ I, ∀k ∈ Isp, for (r, s) = C(ncl, k) : ek ≥ 0, (7b)
zi,r (w

ᵀ
kxi + bw,k + ek,i − 1) ≥ 0, (7c)

− zi,s (wᵀ
kxi + bw,k − ek,i + 1) ≥ 0, (7d)

where C(ncl, k) represents kth (unique) combination of
two positive integers (r, s) such that r < s ≤ ncl. The
parameters {wk, bw,k}k∈Isp define the switching logic.

2.3 Training of the individual models

Once the switching logic is designed, one can train the
individual models within the structure of MIS. We use the
standard least-squares regression here, for simplicity.

The MIS model structure holds several advantages over
fully nonlinear ISs. Firstly, the MIS structure provides



high transparency and an intuitive understanding of the
model parameters. Secondly, the low complexity of the
MIS model structure usually leads to lower computational
costs compared to nonlinear ISs. While nonlinear ISs might
offer higher flexibility, they are prone to overfitting.

3. PROPOSED DESIGN METHODS FOR MIS

There are two main drawbacks of MIS-SotA. Firstly, the
inferential sensor discontinuity can appear at the switching
boundaries of the individual models. This can significantly
reduce the controlled system efficiency if such a sensor
is used in the process monitoring or control. The second
issue is that the data labeling is unaware of the prediction
accuracy of the resulting sensor and thus construction of
optimal model-validity regions is not guaranteed.

3.1 Design of MIS with Continuous Switching

A novel approach (MIS-con) combines the SVM-based cla-
ssification with the model training. The design optimizes:

min
{wk,bw,k,ek}k∈Isp
{pj ,bp,j}j∈Icl

ncl∑
j=1

n∑
i=1

zi,j
(
yi − pᵀj xi − bp,j

)2
+

nsp∑
k=1

γ‖ek‖1

(8a)
s.t. ∀i ∈ I, ∀k ∈ Isp, for (r, s) = C(ncl, k) : ek ≥ 0, (8b)
Eqs. (7c)–(7d), (8c)
pr − ps = wk, bp,r − bp,s = bw,k. (8d)

The constraints in (8d) ensure continuity at the switch of
any two models. This matches the intersection of any two
model surfaces with the switching hyperplane.

3.2 Design of MIS with Optimized Data Labeling

Performance of the MIS is affected by the initial data la-
beling of the training dataset. The aim of the labeling is to
distinguish measurements within the training dataset. The
ability to do so is related to the presence of measurement
noise and to the nonlinearity of the output variable. The
industrial ISs are usually designed according to data with a
significant level of noise and certain variation of operating
regimes. We propose the following approach (MIS-con-lab)
to reduce the inaccuracies within the a priori labeling.

The approach searches directly for the optimal data label-
ing by adding Z among the optimized variables as:

min
{wk,bw,k,ek}k∈Isp
Z,{pj ,bp,j}j∈Icl

ncl∑
j=1

n∑
i=1

zi,j
∣∣yi − pᵀj xi − bp,j∣∣+ nsp∑

k=1

γ‖ek‖1

(9a)
s.t. ∀i ∈ I, ∀k ∈ Isp, for (r, s) = C(ncl, k) : ek ≥ 0, (9b)
Eqs. (6), (7c)–(7d), (9c)
pr − ps = wk, bp,r − bp,s = bw,k. (9d)

To reduce the problem complexity, we adopt the sum of
absolute errors (SAE) criterion in the cost function of (9a),
as this can be transformed into a mixed-integer linear
program (MILP). The transformation uses the epigraph
form (Milano, 2012) of the absolute value to arrive at
a mixed-integer quadratically constrained quadratic pro-
gram. The arising bilinear terms are then transformed to

linear ones via the big-M method (Griva et al., 2008). As
the variables in Z are binary, the big-M form does not
introduce any new integer variables. To ensure that each
point belongs to one class only, (6) is involved in (9c).

If the sum of squared errors (SSE) is used, the optimiza-
tion problem turns into mixed-integer nonlinear program
that might be challenging, especially when the number of
available training points n is high. SSE can be affected by
the outliers. Therefore, the optimization problem benefits
from the SAE criterion when significant noise is present
within the training dataset. Note that the problem (9)
serves primarily to decide about training data labels and,
subsequently, about the model validity regions. After fix-
ing Z, the final training can be done via solving (8) so that
the resulting models are optimal w.r.t. the SSE criterion.

The MIS-con-lab approach is designed for applications
with uncertain prior labeling. Unlike other approaches, it
can provide optimal data labeling, albeit at the cost of an
increased computational burden. MIS-con-lab should be
used when the dataset involves indistinguishable classes
and n is reasonably large (i.e., in the order of hundreds).
Otherwise, it is advisable to use MIS-con or to select data
based on some efficient sampling technique.

4. CASE STUDY

The proposed approach for the MIS design is developed for
industrial needs. The industrial practice confirms that the
input variables can be effectively combined in appropriate
nonlinear structures to provide the maximum estimation
accuracy. One of these nonlinear structures is a pressure
compensated temperature PCT . This phenomenological
variable is very often used in the petrochemical industry,
especially in the case of low-pressure distillation columns.
It is stated as (King, 2011):

PCT = 1/ (R/Hv ln (P/Pref) + 1/T ) , (10)
where R is the universal gas constant, Hv is the heat
of vaporization, Pref is the reference pressure, P is the
absolute pressure and T is the absolute temperature.

We design the ISs for PCT with the assumption of no
knowledge about the model structure. The only infor-
mation available is given by 90 measurements of PCT
at different temperatures and pressures. The ground-
truth values of parameters of the PCT model are R =
8.314 J/mol/K, Hv = 55, 9401 J/mol, Pref = 145, 325Pa.
The data is generated within the following intervals:
0.2Pa ≤ 10−4 P ≤ 2Pa, 523.2K ≤ T ≤ 573.2K. (11)

We assume that the training samples are corrupted with
a random noise with the standard normal distribution. To
remove the discrepancies in the variables magnitudes (P ,
T , PCT ), we performed a normalization. Therefore, the
normalized variables (Pnorm, Tnorm, PCTnorm) used in the
further experiments lie within the interval [0, 1].

We study two scenarios regarding the distribution of the
available data: (i) with three (linearly) separable data
clusters and (ii) with no apparent clusters (data scattered
over the domain). In both, we seek a three-model MIS.

The set of inferential sensors studied in this work com-
prises single-model inferential sensors (SIS), MIS-SotA,
MIS-con, and MIS-con-lab. We distinguish three different



Fig. 2. The PCT model with clustered data.

Fig. 3. The approximated PCT model on the clustered
training dataset by using MIS-con-lab (gur).

approaches for solving MIS-con-lab: (1) MIS-con-lab (bar)
which uses BARON (Sahinidis, 2017) to solve (9) with SSE
(MINLP), (2) MIS-con-lab (bar,ht) which is the previous
approach with solver’s heuristic termination, and (3) MIS-
con-lab (gur) which uses Gurobi (Gurobi Optimization,
2021) to solve (9) (MILP). We selected the solvers as the
best state-of-the-art solvers available for the problem class.

All solvers are run with their default options (unless men-
tioned otherwise), with their run times limited to one
hour. The time limitation is significant for the MIS-con-lab
approach only, whose CPU time increases exponentially
with the number of measurements. MIS-con-lab can cope
only with approximately 100 measurements in our design
settings. This limit can vary according to the number of
desired models or the noise variance. While this feature
might appear restrictive, it is not rare in industrial appli-
cations, where laboratory samples are scarce. To provide
an insight into the studied inferential sensors, several tests
(clustered and random scenarios) are conducted.

The performance analysis of the studied inferential sensor
(SIS and MISs) includes measuring sensor prediction accu-
racy using the root mean square error (RMSE), separately
for the training and testing datasets. Additionally, the
complexity of the designed inferential sensors is evaluated
based on the training CPU time. As the MIS design is
based on classification, it is important to assess the reli-
ability of the classification using appropriate performance
metrics such as accuracy, recall, or various misclassification
rates (Onel et al., 2019). An inaccurate classification could
result in imprecise model regions, leading to suboptimal
MISs. Due to low complexity of the studied PCT model
and the low noise levels, we did not directly evaluate these
metrics but instead relied on visual inspection.

Table 1. The accuracy (RMSE) and CPU time
of the studied methods on the clustered data.

Approach RMSE×102

(training)
RMSE×102

(testing)
CPU

time [s]

SIS 4.1 3.5 0.1
MIS-SotA 0.9 1.0 4.3
MIS-con 0.9 1.1 4.1
MIS-con-lab (bar) 0.5 1.6 3,600.0
MIS-con-lab (bar,ht) 0.5 1.6 325.9
MIS-con-lab (gur) 0.4 0.5 2,284.0

4.1 Clustered Dataset

The design of MIS over a clustered dataset mimics the
sensor training when industrial data is well treated and
distinct operating points are evident. Fig. 2 reveals that
the data points are concentrated into three clusters with
30 data points each. We randomly assign 50 % of the data
to the training set (magenta points) and the remaining
data to the testing set (blue stars).

The performance of MIS-con-lab (gur) can be observed
in Figure 3, where the designed classes and models are
presented (class 1: diamonds, purple model surface; class 2:
squares, blue model surface; class 3: triangles, yellow model
surface). Models that were trained with non-optimized
labeling faced difficulty in establishing model validity
regions based on the visible clusters (a priori). This is
reflected in the highest accuracy achieved by MIS-con-lab
(gur) on the training dataset, as shown in Table 1.

The resulting values of RMSE and CPU time for each
studied approach are presented in Tab.1. The accuracy
analysis confirms the necessity of the MIS design, which
significantly outperforms the SIS design. The comparison
of MISs indicates that MIS-con-lab (gur) provides the best
performance. This approach is approximately 50% more
accurate than MIS-SotA. The most significant discrepancy
between these approaches arises from the section with the
highest values of PCTnorm, located in the region of the
most pronounced nonlinearity of the PCT model (see in
Fig. 2). The reason for this discrepancy is that MIS-con-
lab (gur) effectively fits the nonlinear section of PCT with
two models (as seen in Fig. 3), whereas the MIS-SotA
approach considers only one model. The MIS-con-lab (bar)
approach is constrained by the time limit (3,600 seconds),
and MIS-con-lab (bar,ht) is heuristically terminated due
to slow convergence, resulting in poorer accuracy on the
testing dataset than other MIS approaches.

The results presented in Table 1 indicate that the MIS
design is less efficient in terms of CPU time compared to
the SIS design. Among the MIS approaches, the proposed
MIS-con method has comparable CPU time with the MIS-
SotA approach, despite the higher complexity of the opti-
mization problem. It appears that heuristic termination of
the BARON solver has the potential to reduce the time
burden while maintaining the accuracy of the MIS, as
evidenced by the comparison between MIS-con-lab (bar)
and MIS-con-lab (bar,ht). The results also suggest that
the superior accuracy of MIS-con-lab (gur) comes at the
cost of increased CPU time.



Fig. 4. The PCT model with uniformly distributed data.

Fig. 5. The PCT model with the uniformly distributed
testing dataset approximated by MIS-con-lab (gur).

4.2 Uniformly Distributed Dataset

In this simulated experiment, the data points are not con-
centrated into clusters but uniformly distributed within
the operation interval (see Fig. 4). Unlike the previous
case, this situation resembles datasets seen more often in
industrial practice. We randomly assign 50% of the data
to the training set (magenta points) and the remaining
data to the testing set (blue stars). Due to the stochastic
character of this scenario, we perform 100 simulations with
different uniformly distributed datasets.

At first, we look at the results from one representative
run of the 100 simulations. The approximation of the
ground-truth model by MIS-con-lab (gur) approach is
shown in Fig. 5. We illustrate this approach because of its
superior performance on the training dataset compared to
other approaches. The results in Fig. 5 show the designed
models, where the same color and symbol code is used as
in the case of the clustered dataset. Due to the minimal
discrepancy between the designed MIS and the ground-
truth model in Fig. 5, we can conclude that the proposed
MIS-con-lab (gur) approach can accurately approximate
the PCT model within the concerned training dataset.

According to Fig. 6, which shows the accuracy comparison
of the chosen designed MISs, we can see that MIS-SotA is
less accurate on the testing dataset than the MIS-con ap-
proach and the MIS-con-lab (gur) approach. The accuracy
of the MIS-con and MIS-con-lab (gur) approaches seems to
be similar. However, there are testing points (3, 8, 11, 28,
31, and 39) in Fig. 6 which confirm the highest accuracy
of the MIS-con-lab (gur) approach. Due to the location
of these measurements, we conclude again that MIS-con-
lab (gur) is capable of better approximating the nonlinear
section of the PCT model compared to other approaches.
This is due to optimal distribution of the training points
with respect to the learning outcome of the MIS.

Fig. 6. The prediction performance of the designed ISs on
the uniformly distributed testing set.

Fig. 7. The statistics of accuracy (RMSE) of the designed
ISs on the training (top) and testing (middle) datasets
and CPU times of each method (bottom) from 100
simulation runs with uniformly distributed datasets.

We further statistically analyze the results evaluated on
100 runs with different uniformly distributed datasets. The
results are shown in Fig. 7, where the blue box represents
25th and 75th percentiles (indicating variance), the red
line inside the blue box is a median, and red crosses
outside of the blue box are outliers. We can conclude
(see in Fig. 7, top and middle plots) that SIS is far
less accurate than the designed MISs. We can directly
conclude that the MIS-con-lab (gur) approach is the most
accurate one on both training and testing datasets. This
approach outperforms MIS-SotA by about 50% on the
testing dataset. The comparison of the variances (see blue
boxes in Fig. 7, top and middle plots) confirms the best
performance of the MIS-con-lab (gur) approach. The large
variance and the amount of the present outliers within
the results from the testing dataset show that the MIS-
con-lab approach solved with BARON exhibits problems
in identifying global optima (there is a tendency of over-
fitting), which significantly affects the prediction accuracy
evaluated on the testing dataset. The improvement of this
approach can be achieved by the data treatment analysis
or filtering of the dataset available for the MIS design.



Regarding the CPU time (see Fig. 7, bottom plot), we
can conclude that the MIS-SotA and MIS-con approaches
require lower CPU time than the rest of the methods.
Furthermore, we can see that the CPU time of MIS-
con-lab (bar,ht) is expectedly reduced compared to MIS-
con-lab (bar). Nevertheless, the accuracy of the designed
sensors is comparable, as we could see in the previous
scenario. Moreover, the results from the bottom plot in
Fig. 7 indicate improved CPU time of MIS-con-lab (gur)
compared to the previous scenario. This approach seems to
be more suited for well distributed measurements over the
operational space than the clustered data. The distributed
data provide only a tight space for the variation of the
MIS-con-lab (gur) results (less local over-fitting).

5. CONCLUSION

We presented novel approaches for multi-model linear
inferential sensor (MIS) design to ensure continuity at
switching between the individual sensor models and to
provide optimized data labeling. The performance of the
studied approaches was evaluated in two scenarios: clus-
tered and uniformly distributed datasets. The results in-
dicate the best accuracy of MIS-con-lab (gur). The price
to pay is a higher computational burden compared to
MIS-SotA, yet the achieved 50% accuracy improvement
is worthy of consideration. Our future work will involve
the introduction of advanced training methods (LASSO
or subset selection) to the MIS design, effectively allowing
for different structures in the individual MIS models.
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