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Abstract 

Topology aware mapping has started to attain interest again by the development of supercomputers whose topologies consist of 
thousands of processors with large diameters. In such parallel architectures, it is possible to obtain performance improvements 
for the executed parallel programs via careful mapping of tasks to processors by considering properties of the underlying 
topology and the communication pattern of the mapped program. One of the most widely used metric for capturing a parallel 
program’s communication overhead is the hop-bytes metric which takes the processor topology into account which is in contrast 
to the assumptions made by the wormhole routing. In this work, we propose a KL-based iterative improvement heuristic for 
mapping tasks of a given program to the processors of the parallel architecture where the objective is the reduction of the 
communication volume that is modeled with the hop-bytes metric. We assume that the communication pattern of the program is 
known beforehand and the processor topology information is available. The algorithm basically tries to improve a given initial 
mapping with a number of successive task swaps defined within a given processor neighborhood. We test our algorithm for 
different number of tasks and processors and demonstrate its results by comparing it to random mapping, which is widely used in 
recent supercomputers. 
 

 

1. Introduction 

With the advent of the supercomputers built with thousands of cores in the last decade, the topology aware mapping has began 
to attain a certain research interest from parallel, scientific, and high performance computing communities. In such architectures, 
where many users submit parallel applications that heavily rely on scalability, the performance implications are of primary 
concern. Some of these parallel applications follow a predefined communication pattern. For such an application, it is possible 
obtain performance improvements by taking advantage of the communication pattern of the application and mapping tasks of 
that application to processors in such a way that the interaction between tasks is reduced. The mapping schemes must surely take 
the underlying topology of the parallel system into account in the mapping process so that the interacting tasks are assigned to 
processors that are close to each other. Hence, careful mappings that use the processor topology and the interaction information 
between tasks can benefit the performance of the target parallel applications greatly. 

The topology aware mapping has become important again for two basic reasons: 
 
 The wormhole routing assumes that the message latencies are independent of the distance between processors in the 

absence of blocking where no contention occurs in the network. This assumption is no more valid for the recent 
supercomputers where the diameter of the supercomputer can be quite high. Especially for small-to-medium sized 
messages, message latencies cannot be considered independent of the number of links (hops) between processors. 

 More importantly, in the presence of blocking which is the realistic setting in most of the used interconnection networks 
for recent supercomputers, the situation becomes more complex. The bandwidth is now shared by multiple processors and 
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generally, it is not possible to utilize the available bandwidth to its full extent. Since networks resources are shared, 
contention occurs, the bandwidth available per link decreases, and consequently, message latencies increase. 
 

Hence, it can be said that in the absence of contention, message latencies are not independent of the number of hops between 
processors. In the presence of contention, the importance of hop count between interacting tasks becomes more important, 
especially for large messages [1]. 

The current literature on topology aware mapping is generally centered on specific type of applications that have certain 
properties in their communication patterns and they are often designed for specific type of parallel architectures. The very early 
approaches for the mapping problem are not directly applicable to today's supercomputers since they focus on different type of 
parallel architectures. The recent approaches, on the contrary, although designed for the recent parallel architectures, lack breadth 
and are far from elegancy. 

Our contribution in this work is to propose and implement an algorithm for mapping a given set of tasks to a given set of 
processors so that the communication volume is reduced. Our algorithm is based on a well-known iterative improvement 
heuristic, KL [2], that tries to improve the mapping by task swaps. We define proper neighborhood definitions that suit well for 
the addressed parallel architectures, mainly meshes and torus. Starting from a random task to processor assignment, the algorithm 
improves the quality of the initial mapping by a number of successive task swaps. We test our algorithm on realistic task 
interaction and processor organization graphs and demonstrate results for different number of tasks and processors. 

2. Problem Definition 

For the applications that are designed to execute on parallel systems, the interaction between tasks can be static and such 
interactions can easily be modeled by a graph. Vertices of this graph correspond to tasks and the edges correspond to interactions 
between tasks. If there is apriori information about the computational complexities of the tasks, weights can be assigned to the 
vertices to denote the computational loads of associated tasks. There are two basic schemes for modeling static interaction 
between tasks: Task Precedence Graph (TPG) and Task Interaction Graph (TIG). In TIG model, tasks can be executed 
independent of each other and there are no dependencies among tasks. For this reason, the interactions between tasks ݅ and ݆ are 
captured by the undirected edge ݁௜௝. A TIG is denoted by ்ܩ ൌ ሺܸ, |ܸ| ሻ and hasܧ ൌ ܰ vertices. Vertices of ்ܩ represent the 
tasks of the modeled parallel program and the weightݓ௜ denotes the computational cost associated with task݅. The edge ݁௜௝ 
denotes the interaction between tasks ݅ and ݆ and its cost corresponds to the amount of communication between these tasks. 

The parallel architecture or the processor topology can also be modeled by a graph. The Processor Organization Graph (POG) 
is a graphical representation of the interconnection topology where the nodes represent the processors and the edges represent the 
communication links between them. Communication between non-adjacent pairs of processors can be associated with relative 
unit communication costs. That is generally happened to be the shortest path between any two processors (or it can be configured 
using the routing scheme the software/hardware uses). Therefore, we can obtain a complete undirected graph, called the 
Processor Communication Graph (PCG), whose nodes represent the processors and edge weights represent the unit 
communication costs between pairs of processors. A PCG is denoted by ܩ௉ ൌ ሺܲ, |ܲ| ሻ is a complete graph withܦ ൌ  .nodes ܭ
Vertices of ܩ௉ denote the processors of the parallel system. There is an edge between every pair of vertices and the cost of the 
edge ݀௣௤  denotes the unit communication cost between processors ݌ and ݍ. 

Thus, the mapping problem is to map a given TIG ்ܩ to a given PCG ܩ௉ so that the inter-processor communication is 
minimized while computational load is maintained. Formally, we are to find a mapping function ெ݂: ܸ ՜ ܲ that maps tasks to 
processors so that the inter-processor communication 
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is minimized while the computational load 
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of each processor is maintained. Here, ெ݂ሺ݅ሻ denotes the processor that the task ݅ is mapped to. The inter-processor 
communication between any two tasks ݅ and ݆ depends on the communication volume (generally denoted by number of words 
and modeled by the edge ݁௜௝) occurring between these two tasks and the number of hops between the processors which these 
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tasks are assigned to (denoted by ெ݂ሺ݅ሻ and  ெ݂ሺ݆ሻ, and the number of hops being ݀௙ಾሺ௜ሻ௙ಾሺ௝ሻ). The computational load of a task 
roughly corresponds to the amount of computation performed by that task throughout the execution and it is denotes by ݓ௜. 

3. KL-based Iterative Improvement Heuristic for Topology Aware Mapping 

The KL algorithm is originally proposed for partitioning graphs. It basically performs a number of vertex pair swaps between 
two partitions, which consist of a set of vertices. At each iteration, the swap operation that has the largest gain is selected, 
performed and locked for the rest of the pass to prevent these vertices to be selected for other swap operations throughout the 
same pass. The gain of a swap operation is basically defined as the improvement in the objective function if the swap of vertices 
involved in this swap operation were actually performed. After swapping a pair of vertices, the gains of other unlocked swap 
operations might need to be updated. Generally, a pass continues till there is no improvement in the objective for a predetermined 
number of swap operations or there remains no more swap operations to be performed. Multiple passes are generally performed 
and at the end of each pass, a rollback operation is performed to the point where the best cost is obtained. 

Our proposed algorithm is based on this basic KL heuristic. It assumes that the number of tasks is equal to the number of 
processors. The basic properties of our heuristic are as follows: 

 
 Swap Operation: Swap operation is defined on a pair of tasks. Assume that tasks ݅ and ݆ are assigned to processors ݌ and 

 from ݍ respectively. Then, the swap operation on these tasks swaps these tasks by assigning task ݅ to processor ,ݍ
processor ݌ and assigning task ݆ to processor ݌ from processor ݍ. We limit our search space by selecting the pair of 
vertices to be swapped in a clever manner, which is described next. 
 

 Neighborhood Definition: We limit the number of swap operations (ሺܰଶ െ ܰሻ/2 at most) by defining a selection metric 
based on the distances between processors. We call this parameter threshold t. Assume that tasks ݅ and ݆ are assigned to 
processors ݌ and ݍ, respectively. Then the swap of these tasks is considered if distance between processors ݌ and ݍ are 
smaller than or equal to ݐ, i.e., ݀௣௤ ൑  This limits the search space greatly, which makes the expensive KL-based .ݐ
heuristic cheaper without giving much off the quality of the obtained mappings. 

 
 Gain Definition: As mentioned, our objective is the communication volume obtained via hop-bytes metric. The gain of a 

swap operation is defined as the reduction in the total communication volume if the tasks involved in this operation were 
to be swapped. The gain of a swap operation can be negative, which we allow to happen. 

 
 Gain Update: The complexity of a KL-based algorithm is mainly determined by its gain update complexity. After 

swapping a pair of tasks ݅ and ݆, the gain values of the swap operations, which involve the unlocked neighbors of tasks ݅ 
and ݆ need to updated. A single such gain update can be performed in constant time. Thus after swapping a pair of tasks, 
the total gain update can take ܱሺܰሻ at worst-case where the swapped tasks are connected to all other vertices in the task 
interaction graph. 

 
The proposed algorithm starts from a random initial mapping and improves it by a number of successive task swaps whose 

basics are outlined above. We perform all swap operations in a single pass till there remain no more swaps and rollback to the 
point where the best cost is seen. Traditionally, in graph partitioning, a small number KL passes are enough. However, that is not 
the case for our algorithm, which is basically because we need to take the processor distances into account while swapping tasks. 
Thus, we let the algorithm to perform as many passes as it needs till improvement drops below a certain threshold. 
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4. Results Obtained 

We tested the proposed KL-based heuristic for different number of tasks and number of processors. The modeled parallel 
application is the sparse matrix vector multiplication. This application is modeled with hypergraph as mentioned in [3]. There are 
two basic models in this representation, row-net (RN) and column-net (CN). The tested number of tasks/processors varies from 
64 to 2048 for the values with power of two. Table 1 gives information about the maximum task degrees for the tested matrices 
for both row-net and column-net models. 

 
 Matrices 

 2cubes_sphere fullb G3_circuit Language stokes128 ted_A tmt_sym 

ntasks 
nprocs 

RN CN RN CN RN CN RN CN RN CN RN CN RN CN 

64 12.34 12.281 7.34 7.22 5.06 5.25 63.00 62.78 4.97 5.09 4.63 4.38 5.31 5.16 

128 13.45 13.28 7.92 7.66 5.25 5.19 123.42 122.19 5.55 5.45 6.20 5.95 5.48 5.41 

256 13.84 13.84 8.30 8.14 5.66 5.62 201.68 197.70 5.67 5.71 8.59 9.72 5.65 5.67 

512 14.17 13.98 9.25 9.29 5.94 5.95 224.73 221.64 6.02 6.03 12.08 13.45 5.77 5.72 

1024 14.42 14.63 9.70 9.60 6.62 6.60 176.57 184.23 6.24 6.29 15.94 18.93 5.84 5.88 

2048 14.53 14.59 9.65 9.64 6.62 7.66 115.32 124.29 6.61 6.62 20.99 28.62 5.91 5.88 

Table 1: Average task degrees for the task interaction graphs (RN = row-net, CN = column-net) 
 
Table 2 represents the diameter values of the tested topologies. 
 

Number of processors Maximum hops 

64 9 

128 13 

256 17 

512 12 

1024 16 

2048 24 

Table 2: Maximum hops for each topology 
 
 
As noted, the threshold value (ݐ) can be set to different values.Table 3,4 and 5 demonstrate the percentage improvement 

values of the KL-based heuristic with respect to initial random partitioning for ݐ ൌ 1,2 and 4, respectively. 
 

 Matrices 

 2cubes_sphere fullb G3_circuit language stokes128 ted_A tmt_sym 

ntasks 
nprocs 

RN CN RN CN RN CN RN CN RN CN RN CN RN CN 

64 37.5 38.7 48.4 48.7 45.4 41.4 14.0 16.2 55.9 46.3 51.3 53.2 47.8 40.2 

128 48.1 43.2 52.4 50.0 48.3 51.7 17.6 18.9 57.2 53.8 55.9 58.6 51.8 57.4 

256 51.6 52.9 51.3 54.2 53.2 56.9 19.3 23.0 57.2 55.1 57.4 55.8 56.0 56.9 

512 51.8 51.8 54.0 54.4 59.5 58.2 18.7 20.2 56.0 56.7 55.7 55.8 57.7 56.7 

1024 55.3 53.5 59.8 59.5 62.1 62.0 20.2 23.8 61.5 61.6 58.6 58.3 60.2 60.3 

2048 59.1 57.2 59.8 58.7 61.5 62.5 21.9 25.6 63.0 63.1 58.1 57.2 62.5 62.9 

Table 3: Percentage improvement (%) for tested matrices for ݐ ൌ 1 
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 Matrices 

 2cubes_sphere fullb G3_circuit language stokes128 ted_A tmt_sym 

ntasks 
nprocs 

RN CN RN CN RN CN RN CN RN CN RN CN RN CN 

64 48.9 44.8 45.0 46.3 51.7 56.9 17.6 20.5 54.3 50.6 61.3 59.1 56.7 56.7 

128 52.0 49.5 57.1 61.8 61.5 66.5 16.5 23.6 61.0 62.3 65.8 65.2 63.6 59.3 

256 59.4 58.6 61.0 62.6 67.1 66.7 23.9 26.0 65.3 60.6 66.6 66.2 65.9 63.0 

512 54.6 57.1 59.9 61.3 65.2 64.3 20.8 23.3 65.0 64.8 63.2 62.0 64.8 62.8 

1024 62.5 60.9 65.4 65.1 67.6 69.2 22.6 25.6 69.0 67.5 65.3 65.1 67.5 67.6 

2048 66.2 64.9 68.4 69.2 69.6 71.2 28.1 28.3 70.6 71.9 68.8 67.2 71.3 71.7 

Table 4: Percentage improvement (%) for tested matrices for ݐ ൌ 2 
 

 Matrices 

 2cubes_sphere fullb G3_circuit language stokes128 ted_A tmt_sym 

ntasks 
nprocs 

RN CN RN CN RN CN RN CN RN CN RN CN RN CN 

64 46.4 46.4 54.8 50.4 56.1 55.4 17.2 21.5 55.7 58.0 60.4 61.5 54.3 57.6 

128 52.5 55.3 62.3 60.1 65.2 66.7 20.8 24.0 63.2 63.6 65.3 67.7 64.2 64.0 

256 58.9 58.2 63.2 62.0 64.9 67.3 25.1 30.0 67.8 67.3 68.5 68.5 65.9 67.0 

512 57.5 58.8 62.1 61.9 65.9 66.0 21.0 24.1 66.5 64.4 64.2 64.1 65.7 64.9 

1024 64.2 63.4 66.8 66.2 70.9 70.9 25.0 27.4 69.6 70.0 67.2 67.5 69.7 69.7 

2048 69.0 67.7 70.4 71.1 73.4 73.8 30.2 31.7 74.2 73.9 72.5 69.2 74.6 75.0 

 Table 5: Percentage improvement (%) for tested matrices for ݐ ൌ 4 
 
It is seen from these tables that as the threshold increases, the obtained improvement also increases. This is because we extend 

the search space by increasing the threshold.  On the other hand, the complexity of the algorithm increases as we increase the 
threshold since we need to consider more swap operations and in turn more gain updated. 

5. Conclusion 

We have developed an iterative improvement based algorithm for topology aware mapping. The algorithm proceeds by 
successive task swaps with the objective of reducing communication volume defined by the hop bytes metric, which has proved 
its importance in recent supercomputers. The algorithm is tested for different matrices with different number of tasks and 
processors. We tested the algorithm for different threshold values by comparing it to the random mapping. The results show how 
important performance gains can be obtained by careful mapping. 
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