
   
 

1 
 

Goldbach's Conjecture — Towards the Inconsistency of Arithmetic 
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Abstract. This paper proves an inconsistency in Peano arithmetic (PA). We express a 
strengthened form of the strong Goldbach conjecture and its negation by using a specific 
set that varies according to whether the conjecture or the negation is assumed. We show 
that, on the other hand, this set remains unchanged under these assumptions. This causes 
a contradiction. 
 
 
 
Notations. Let  denote the natural numbers starting from 1, let n denote the natural 
numbers starting from n > 1 and let 3 denote the prime numbers starting from 3. 

Strengthened strong Goldbach conjecture (SSGB): Every even number greater than 6 is 
the sum of two different odd primes. 

 
 
Theorem.  PA is contradictory, i.e. the statement FALSE can be derived. 
 
 
Proof.  We define the set  Sg := { (pk, mk, qk) | k, m  ; p, q  3, p < q; m = (p + q) / 2 }. 
 
SSGB is equivalent to saying that every integer n ≥ 4 is the arithmetic mean of two different 
odd primes and so it is equivalent to saying that all integers n ≥ 4 appear as m in a middle 
component mk of Sg. So, by the definition of Sg we have 
 
  SSGB  <=>   n  4   Ǝ (pk, mk, qk)  Sg     n = m 

SSGB  <=>  Ǝ n  4    (pk, mk, qk)  Sg     n ≠ m. 
 
 
 
 
The set Sg has the following two properties. 
 
First, the whole range of 3 can be expressed by the triple components of Sg (”covering”), 
because every integer x ≥ 3 can be written as some pk with k = 1 when x is prime, as some 
pk with k ≠ 1 when x is composite and not a power of 2, or as  (3 + 5)k / 2  when x is a 
power of 2; p  3, k  .  So we have  
 
(C)   x  3   Ǝ (pk, mk, qk)  Sg     x = pk      x = mk. 
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A few examples of the covering:   
 
 
x =       19:  (19∙1, 21∙1, 23∙1), (19∙1, 60∙1, 101∙1) 
 
x =       27:  (3∙9, 7∙9, 11∙9) 
 
x =       42:  (3∙14, 5∙14, 7∙14), (7∙6, 9∙6, 11∙6) 
 
x =   4096:  (3∙1024, 4∙1024, 5∙1024) 
 
x = 10000:  (5∙2000, 6∙2000, 7∙2000). 
 
 
 
 
Second, all pairs (p, q) of distinct odd primes are used in the definition of the set Sg 
(“maximality”).  So we have 
 
(M)   p, q  3, p < q     k        (pk, mk, qk)  Sg, where m = (p + q) / 2. 
 
 
 
 

(C) would immediately imply SSGB since an n ≥ 4 that is different from all Sg triple 
components  pk  and  mk  is in particular different from all m in Sg. So the property (C) 
excludes this possibility. 
 
The property (M) excludes the possibility that if there is an n ≥ 4 different from all m in Sg, 
then n is the arithmetic mean of a pair of distinct odd primes not used in Sg. So (M) rules 
out the possibility that the question of whether SSGB holds or not depends on whether (M) 
holds or not. (The proof would no longer be possible if we left out any pair of distinct odd 
primes in the formulation of SSGB and Sg.)  
 
Therefore, in both cases SSGB and SSGB, neither (C) nor (M) applies. 
 
 
 
 
The basic idea is now the following. 
 
There are two possibilities for Sg, exactly one of which must occur: Either there is an           
n  4  in addition to all the numbers m defined in Sg or there is not. The latter is equivalent 
to SSGB and the former is equivalent to SSGB. 
 
Since, due to (M), an n ≥ 4 different from all m cannot be the arithmetic mean of a pair of 
primes not used in Sg  and since, due to (C), this n equals a component of some Sg triple 
that exists by definition, the covering of  3  by the Sg triples in the case n exists ( SSGB) 
is equal to that in the case n does not exist (SSGB). This causes a contradiction because in 
the case SSGB the numbers m defined in Sg take all integer values x ≥ 4 whereas in the 
case SSGB they don’t. 
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The following steps are independent of the choice of n if, in the case of SSGB, there is 
more than one that is different from all m. For example, the minimal such n works. 

 

We split Sg into two complementary subsets in the following way. For any y  3, we write 

Sg = Sg+(y) ∪ Sg-(y), with 

Sg+(y) := { (pk, mk, qk)  Sg | Ǝ k'     pk = yk'    mk = yk'    qk = yk' } 

Sg-(y)  := { (pk, mk, qk)  Sg |  k'     pk ≠ yk'    mk ≠ yk'    qk ≠ yk' }. 

 
 
 
 
We define 

S1 := { (pk, mk, qk)  Sg |   SSGB    ( (C)  (M) ) } 

S2 := { (pk, mk, qk)  Sg | SSGB    ( (C)  (M) ) }. 
 
 
 
 
 
Under the assumption SSGB there is an  n  4  as described above and under the 
assumption SSGB there is no such n. Then, 
 
 
         ( (  y  3       SSGB  =>  S1 = Sg+(y) ∪ Sg-(y) ) 

          
           (                    SSGB  =>  S2 = Sg+(n) ∪ Sg-(n) ) ) 
 
(1)     
 
         ( (C)    (M) ). 
 
 
 
 
 
Since (C) and (M) are both ruled out  and  since  Sg+(n) ∪ Sg-(n)  is independent of n, we 
get 
 
 
(1.1)   y  3         SSGB  =>  S1 = Sg+(y) ∪ Sg-(y) 
 

 
 
(1.2)   y  3       SSGB  =>  S2 = Sg+(y) ∪ Sg-(y). 
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Now, we will make use of the following principle. 

If two sets of (possibly infinitely many) x-tuples are equal, then the sets of their 
corresponding i-th components are equal; 1 ≤ i ≤ x. 

 

To this end, for each k   we define 

M1(k) := { mk | (pk, mk, qk)  S1 } 

M2(k) := { mk | (pk, mk, qk)  S2 }. 
 
 
 
 
 
Then, applying the principle above to the middle component of the triples (pk, mk, qk),         
( (1.1)  (1.2) ) implies 
 
 
(2.1)   k      y  3        SSGB  =>  M1(k) = { mk | (pk, mk, qk)   Sg+(y) ∪ Sg-(y) } 

 

(2.2)   k      y  3      SSGB  =>  M2(k) = { mk | (pk, mk, qk)   Sg+(y) ∪ Sg-(y) }. 

 
 
 
 
 
Setting  M1 := M1(1)  and  M2 := M2(1), we get 
 
 
(2.1')   y  3         SSGB  =>  M1 = { m | (p, m, q)   Sg+(y) ∪ Sg-(y) } 
 

 
 
(2.2')   y  3       SSGB  =>  M2 = { m | (p, m, q)   Sg+(y) ∪ Sg-(y) }. 
 
 
 
 
 
Since for every y  3  Sg+(y) ∪ Sg-(y) equals Sg by definition, for every y  3                    
{ m | (p, m, q)   Sg+(y) ∪ Sg-(y) }  equals the set X := { m | (p, m, q)  Sg }.  So, from            
( (2.1')  (2.2') )  we obtain 
 
 
(3)  ( SSGB  =>  M1 = X )        ( SSGB  =>  M2 = X ). 
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The set X is a free variable in (3) that is either equal to 4 or to some non-empty proper 
subset Y of  4. 
 
 
 
 
 
 
Now, we make use of the following rule. 
 
Let P = P(A) be a proposition that depends on a set A. Then, for any set B, 
 
( we have a proof of P(A)      we have a proof of  A = B )   =>   we have a proof of P(B). 
 
 
In the special case that A is a free variable that is replaced by the value B, the above 
conjunct  (we have a proof of  A = B)  is trivially true. 
 
 
 
 
 
 
Since the set X is a free variable in (3) and since we have a proof of (3), we can apply the 
above rule with P = (3). If X = 4  we use the rule with A = X and B = 4, and if X = Y we 
use it with A = X and B = Y. Then, since either  X = 4  or  X = Y, from (3) we obtain  
 
 
(3.1)  we have a proof of  ( SSGB  =>  M1 = 4                SSGB  =>  M2 = 4 ) 
 

 
 
(3.2)  we have a proof of  ( SSGB  =>  M1 = Y ≠ 4          SSGB  =>  M2 = Y ≠ 4 ). 
 
 
 
 
 
 
This implies 
 
 
(3.1')  ( we have a proof of  (   SSGB  =>  M1 = 4 ) 

            
            we have a proof of  ( SSGB  =>  M2 = 4 ) ) 
 

 
 
(3.2')  ( we have a proof of  (   SSGB  =>  M1 = Y ≠ 4 ) 

            
            we have a proof of  ( SSGB  =>  M2 = Y ≠ 4 ) ). 
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Now, we will establish a contradiction to  ( (3.1')  (3.2') ). 
 
 
Under the assumption SSGB the set X = { m | (p, m, q)  Sg }  is equal to 4  and under     

SSGB  it is equal to Y ≠ 4.  Therefore, 
 
 
(4.1)  we have a proof of  (   SSGB  =>  M1 = 4 ) 
 

 
 
(4.2)  we have a proof of  ( SSGB  =>  M2 = Y ≠ 4 ). 
 
 
 
 
 
 
Then, ( (3.1')  (3.2') )  together with  ( (4.1)  (4.2) )  implies 
 
 
(5.1)  we have a proof of  ( SSGB  =>  M2 = 4 ) 
 

 
 
(5.2)  we have a proof of  (    SSGB  =>  M1 = Y ≠ 4 ). 
 
 
 
 
 
 
Because of ( (4.1)  (4.2) ) and because  
 
 
SSGB  =>  M2 = { } ≠ 4 
 
and 
 

SSGB  =>  M1 = { } ≠ Y, 
 
 
we have a proof that  (M2 = 4)  is false and we have a proof that  (M1 = Y ≠ 4)  is false. 
 
 
 
 
 
 
So, ( (5.1)  (5.2) )  yields 
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(6.1)  we have a proof of    SSGB 
 

 
 
(6.2)  we have a proof of  SSGB.  
 
 
 
 
 
Since we have neither a proof of SSGB nor of SSGB, both (6.1) and (6.2) are false. 
 
Therefore, we obtain  (FALSE    FALSE)  and thus FALSE. 
 

                                                                                                                          □ 

 
 
 
 
 
Remark. The term Sg isn't a standard part of Peano arithmetic, but it can easily be defined 
within Peano arithmetic. Consequently, this also applies to all other sets used in the proof. 


