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Abstract

This paper proposes an original framework to use size functions in the 3D context.
Size functions are a mathematical tool, that have already shown its effectiveness
for image retrieval and classification. They are here introduced for the first time to
discriminate among 3D objects represented by triangle meshes, through the proposal
of a method for defining size graphs independently of the underlying triangulation.
We first derive a skeletal signature, which guarantees the topological coding and
the geometric description of an object surface, then this signature is used as a size
graph to compute discrete size functions. The attractive feature of size functions is
that readily give a similarity measure between shapes. The result is the introduction
of a new technique for 3D model retrieval, devised to capture both local and global
properties of a shape. Finally, we demonstrate the potential of our approach in a
set of experiments, and discuss the results with respect to existing techniques.

Key words: Skeletal graph, size graph, size function, matching distance, shape
comparison, 3D shape retrieval

1 Introduction

Shape comparison plays a fundamental role in the Computer Vision and Com-
puter Graphics fields. In the last decade, the advances in modelling, digitizing
and visualizing 3D shapes have led to an explosion in the number of available
3D models, both on the Internet and in domain-specific databases. Examples
are digital repositories recording cultural heritage [1] or archives of structural
data of biological macromolecules [2]. Whilst it has become relatively easy
to generate 3D information and interact with the geometry of shapes, it is
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harder to structure, filter, organize and retrieve it. How to find and interpret
3D content has become the key issue, leading to the development of the first
experimental search engines for 3D shapes, such as the 3D model search engine
at Princeton University [3] or the 3D retrieval engine at Utrecht University
[4].

From a high-level perspective, the main components of a retrieval system for
3D or 2D visual media are similar: a feature extraction module and an index-
ing system, that usually works off-line, and a matching module, that extracts
online the most relevant items out of a collection, according to some met-
rics defined on the feature space. Human perception has been widely studied
and supported a significant amount of work in Computer Vision related to
the analysis and recognition of images [5,6]. The main differences between 2D
pixel-based and 3D vector-based contexts arise in the feature extraction step
and, unfortunately, most of the methods developed for images do not gener-
alize directly to 3D shapes. This is mainly due to the different nature of the
content: descriptors used for 2D images are concerned with color, textures,
and properties that capture geometric details of the shapes segmented in the
image. Most notably, feature extraction for image retrieval is intrinsically af-
fected by the possible presence of information, which is only accidental in the
image or due to occlusion and/or perspective distortion. On the other hand,
the boundary of 3D models is represented in vector form and therefore does
not need to be segmented from a background. Possessing the complete geom-
etry of 3D models allows for more effective and reliable search tools, although
the intrinsic complexity of 3D shapes still makes the understanding of their
content an arduous problem.

In this context, we are working for the development of a 3D search platform,
that provides a rich and flexible set of descriptors within the same framework.
Shape properties and their relevance to the search are obviously dependent
on the user and context, meaning that we are able to index an object with
different features according to the context in which we are asked to describe
it. We aim to provide a modular system for shape comparison and retrieval,
which allows users to fit a descriptor to the shape idea they have in mind.
Size theory offers the theoretical support for the development of such type
of framework. In particular, in this paper we introduce a new technique for
3D shape retrieval, which builds on size functions, a mathematical descriptor,
which can readily and efficiently be used to establish a similarity measure
between shapes.

The theory of size functions has been developed since the beginning of the
1990s in order to get a new geometric-topological approach to shape discrim-
ination [7,8]. The idea is to analyze a given shape by exploring the growth
of a topological space S associated to the shape, according to the increas-
ing values of a real function ϕ defined on it. Intuitively, size functions code
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the topological evolution of S counting the number of connected components
which remain disconnected passing from a lower level set of S to another.
Since the growth of S is driven by the real function ϕ, size functions encode
the geometrical properties of S captured by ϕ in the topological evolution of
S. An introductory presentation can be found in [9,10]. In more recent years,
a similar approach has been applied in a homological setting, independently
leading to the introduction of persistent homology [11] and the definition of
the Morse homology descriptor [12].

The most interesting aspect of size theory is that we can obtain a rich set of
descriptors by simply changing the real function ϕ, while keeping the same
matching framework. Another interesting aspect is the possibility to apply the
theory not only to the shape itself, but also to an auxiliary space, associated to
the shape, and enhancing its relevant characteristics [13]. This idea is exploited
in the present paper.

Size functions have been extensively applied to content-based image retrieval
and classification (see for example [8,14,15]), proving their effectiveness for
describing and comparing objects. However, despite the general validity of
the mathematical theory of size functions in spaces of any dimension, their
application to 3D objects has never been performed before, and is not straight-
forward, as discussed in Section 3. The aim of this paper is to start exploiting
and enhancing the potential of size functions for 3D shape comparison. The
result is the definition of an effective technique for 3D shape description and
retrieval, taking into account structure, topology and geometry. This paper is
an evolution of the short paper presented in June 2006 at the Eurographics
Symposium on Geometry Processing [16].

1.1 Paper contribution

The major contribution of the paper is the introduction of a method to apply
size functions to the 3D shape matching context. The key idea is to associate
a topological space S to a 3D shape M , where S is simpler than M in terms
of dimensionality, while still preserves the main geometrical, structural and
topological properties of the shape. This lower dimensional space S, or com-
pact representation of M , is the input for the computation of size functions
and the successive comparison process. We show the results obtained by using
a 1D topological structure, called the skeletal graph, as an auxiliary space to
study a 3D shape M .

The basic steps of the proposed method are:

• the definition of a suitable skeletal graph to describe 3D shapes, based on
the construction of a centerline skeleton;
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• the definition of a set of measuring functions on the skeletal graphs, which
capture quantitative attributes of the shape;

• the computation of the size functions of the attributed skeletal graphs;
• the evaluation of the similarity between two models, through a suitable

distance between their size functions.

Since the computation of size functions on 1D structures is very efficient, it is
possible to use a varied set of attributed skeletal graphs – called size graphs –
each reflecting the description of M with respect to some criteria.

For the construction of the skeletal graph, we adopt a schema grounded in
Morse theory, based on the computation of the level sets of different real-valued
functions (referred to in what follows as mapping functions) computed on the
shape. The level sets drive the construction of the 1D centerline skeleton of the
shape M , and also support the computation of several geometric attributes
(referred to as measuring functions). The possibility of computing level sets of
different mapping functions and the analysis of different geometric attributes
allow us to build a set of descriptors, that capture a variety of shape properties,
making our retrieval method a general and flexible framework. In other words,
the system modularity allows the user to fit a descriptor to the specific nature
of the object to be found, through the choice of the real functions (namely,
mapping and measuring functions).

Moreover, since our size graphs are a skeletal representation of the shape,
another interesting contribution of the paper is the introduction of a distance
function for graph representations of 3D models. In this case, the distance
between structural representations does not rely on the computation of exact
or approximate (sub-)graph isomorphisms. Indeed, we replace the problem
of graph matching (NP -hard in the classical formulation) with the simpler
algebraic comparison of the size functions associated with the graphs.

The remainder of the paper is organized as follows. In Section 2 we briefly
overview existing techniques for 3D object retrieval. After introducing size
functions and discussing their use for 3D shapes in Section 3, we detail our
approach to obtain informative size functions from 3D models in Section 4.
The shape comparison process is outlined in Section 5. Relationships with
related approaches in the literature are discussed in Section 6. Section 7 is
devoted to discuss experimental results, and comparative remarks with other
methods are also provided. Conclusions and suggestions on future work end
the paper.
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2 Related work

The majority of the methods proposed in the literature for 3D shape retrieval
mainly focus on geometric descriptions, in the sense of considering the spatial
distribution or extent of a shape in the 3D space [17–21]. For example, in
[21] a rotation invariant descriptor is proposed, based on spherical harmonic
decompositions. Models are beforehand voxelized and scaled so that the center
of mass is placed at the origin of a volumetric grid. Then objects are sampled
and represented through the vectors of coefficients of their spherical harmonics.

Other popular techniques use image-based descriptors [22,23]. For instance,
the approach in [22] is based on the idea that objects are similar when they
look similar from different viewing angles. A so-called lightfield descriptor is
extracted from a set of silhouettes, which are obtained by projecting data
using an array of surrounding cameras.

In all previous cases, 3D data are indexed using numerical descriptors referred
to as feature vectors. Once these vectors are extracted, the similarity between
two models can be inferred from the distance between their numerical descrip-
tions in some metric space, usually the Euclidean one. From a practical point
of view, the main advantage of these methods is that they are computationally
efficient and do not make specific assumptions on the topology of the shape
models, which might be even triangle soups.

Nevertheless, as shapes are mentally coded in terms of relevant parts and
their spatial configuration, or structure, there is a growing consensus towards
high-level descriptors, which merge a global topological analysis with local
geometric attributes. This approach is followed for example in [24,25], where
the notion of barcodes is introduced in the framework of persistent homology.
The authors examine a complex X by first constructing a space strictly related
to X, namely the tangent complex (that is, the closure of the space of all
tangents to all points in X). This complex is filtered by the increasing values of
a real function, defined as the curvature at a point along the tangent direction.
The placement of topological events occurring during the filtration is coded by
a set of intervals, representing the life-time of topological attributes. A suitable
pseudo-metric between barcodes allows for a measure of the similarity between
shapes. Examples are shown for curve point cloud data [24], geometric surfaces
and surfaces of revolution [25].

The method presented in [26] addresses 3D shape similarity by using the
Reeb graph in a multi-resolution fashion, and it makes use of graph-matching
techniques for the retrieval. Another approach to shape retrieval has been
proposed in [27]. In this work, a so-called Extended Reeb Graph representation
is coupled with a geometric description of the shape subparts related to the
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graph nodes. Different weights are associated to different shape aspects, either
geometric or structural. The framework described is also suitable to identify
partial correspondences of 3D shapes [28].

Similarly, the importance of structural descriptions for shape matching has
been pointed out in [29–32]. The relevance of the skeletal edges incident in a
node (e.g. edge length, diameters and average circumference of the skeleton
loops) is coded in a vector [33,34] or in a geometric descriptor able to support
either global [31] or partial [32] correspondence.

In all cases, the structural descriptors are coupled with different methods
to compute or approximate subgraph isomorphisms [35], node correspodence
[26,31], maximal cliques [36], or to evaluate graph spectra [37]. On the con-
trary, in our proposal the structural descriptors are compared in a completely
different approach, that takes advantage of size theory.

Exhaustive surveys on 3D shape searching techniques can be found for example
in [17,38,39].

3 Size functions

The main idea in size theory is to compare shape properties that are described
by real functions, defined on topological spaces associated to the “objects”
to be studied [7,9,40]. This leads to considering pairs (S, ϕ), where S is a
topological space and ϕ : S → R is a continuous function. Every pair is called
a size pair, while each function ϕ is called a measuring function and its purpose
is to encode quantitative properties of the shape S.

Given a size pair (S, ϕ), the size function

�(S,ϕ) : {(x, y) ∈ R
2 : x < y} → N

can be easily defined by setting �(S,ϕ)(x, y) equal to the number of connected
components of the lower level set Sy = {P ∈ S : ϕ(P ) ≤ y}, containing at
least one point of Sx.

An example of size function is shown in Figure 1. In this example we consider
the size pair (S, ϕ), where S is the curve represented by a continuous line in
Figure 1 (a), and ϕ is the function “distance from the point P”. The size
function associated with (S, ϕ) is shown in Figure 1 (b). Here the domain of
the size function is divided by solid lines, representing the discontinuity points
of the size function. These discontinuity points divide the set {(x, y) ∈ R

2 :
x < y} into regions where the size function is constant. The value displayed
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in each region is the value taken by the size function in that region. For
instance, for α ≤ x < β, the set Sx has two connected components which
are contained in different connected components of Sy when x < y < β.
Therefore �(S,ϕ)(x, y) = 2 for α ≤ x < β and x < y < β. When α ≤ x < β
and y ≥ β, all the connected components of Sx are contained in the same
connected component of Sy. Therefore �(S,ϕ)(x, y) = 1 for α ≤ x < β and
y ≥ β. Similarly, we find �(S,ϕ)(x, y) = 3 for β ≤ x < γ and x < y < γ and
�(S,ϕ)(x, y) = 1 when β ≤ x < γ and y ≥ γ.
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Fig. 1. (a) A size pair (S,ϕ), where S is the curve represented by a continuous line
and ϕ is the function “distance from the point P”. (b) The size function of (S,ϕ).

An important property of size functions is that they can always be seen as lin-
ear combinations of characteristic functions of triangles (possibly unbounded
triangles with vertices at infinity), with a side lying on the diagonal {x = y}
and the other sides parallel to the coordinate axes [41]. For instance, the size
function of Figure 1 is the sum of the characteristic functions of the triangles
with right angles at vertices a and b, plus the characteristic function of the in-
finite triangle on the right of the line r. This suggests that the size function is
completely determined by a, b, r. In fact, the property that size functions can
be represented as collections of vertices (called cornerpoints) and lines (called
cornerlines) always holds [42]. This provides a simple and concise representa-
tion for size functions in terms of points and lines in R

2, drastically reducing
the required descriptive dimensionality. This representation also allows for the
comparison of size functions using distances between sets of points and lines,
as discussed in Section 5.

Another nice property useful for applications is that size functions inherit the
invariance properties, if any, of the underlying measuring functions.

It is worth noticing that size functions actually coincide with the 0-th per-
sistent Betti numbers introduced in [11], and, in the case of 0-th degree ho-
mology, the formal series of cornerpoints and cornerlines describing size func-
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tions [41,42] substantially coincide with the persistence diagrams introduced
in [43]. Analogously, the formal series representation of size functions satisfies
a property of stability under perturbations of the data [44,45], and the same
properties remains true for persistence diagrams [43].

The discrete counterpart of a size pair is given by a size graph (G, ϕ), where
G = (V (G), E(G)) is a finite graph, with V (G) and E(G) the set of vertices
and edges respectively, and ϕ : V (G) → R is a measuring function labeling
the nodes of the graph [46,47].

3.1 Defining informative size functions for 3D shapes

In the context of shape modelling, 3D models are often represented as surfaces,
defined by triangle meshes. In principle, the size graph might be made of
the vertices and the edges of the triangle mesh. Beside the large size of the
graph that would affect the computational cost, there is the problem of finding
measuring functions on the mesh, which capture significant features of the 3D
object.

The latter question is really non-trivial: while in principle the space dimension
can be arbitrarily large, in practice the performance of size functions may
be weaker if they are directly applied to the given space. As an example,
let us consider the two different representations of the cactus shape shown
in Figure 2 (a): a planar 1D contour sketching the profile (left) and a 2D
surface (right). If we describe the 1D contour by means of the height function,
we obtain a size function which is sufficiently informative about the shape
(see Figure 2 (b-left)). The same description for the 2D surface produces a
trivial size function (see Figure 2 (b-right)), since the number of connected
components for the lower level set {P : ϕ(P ) ≤ y} is always 1, for any value
of y, y ≥ minP ϕ(P ). The solution comes from the identification of the “right”
set of shape properties, i.e. the “right” size pairs, that are suitable for the
problem at hand.

4 3D size graphs

To overcome the limits of a straightforward application of size functions to 3D
shapes, our idea is to associate with a 3D object a size graph (Gf , ϕ), where
Gf is a skeletal graph representing the 3D object, f is a real function driving
the skeleton extraction and called the mapping function, and ϕ is a measuring
function labelling each node of the graph with local geometrical properties of
the original model. The replacement of a 3D shape with this auxiliary space
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Fig. 2. (a) Two different representations of a cactus shape and (b) their correspond-
ing size functions.

(Gf , ϕ), which couples the structural information computed by the function f
with the different information provided by the measuring function ϕ, produces
non-trivial size functions. The use of (Gf , ϕ) reduces the dimensionality of the
problem, meanwhile storing a rich set of information about the original object.

In the following, we describe in details the three ingredients that contribute
to the definition of size graphs (Gf , ϕ): the procedure for building the skeletal
graph Gf starting from the level sets of a given function f ; the choice of an
appropriate mapping function f ; the definition of a set of measuring functions
ϕ to associate the most appropriate and effective geometric descriptors with
the skeletal graph.

4.1 Constructing the skeletal graph

The construction of the centerline defining the skeletal graph Gf is based on
the computation of the barycenters of the connected components of the level
sets of a real-valued mapping function f defined on the shape under study.
The idea is that the evolution of the level sets follows the shape, and their
barycenters trace ideal skeletal lines that represent features captured by the
level sets, that is, by f . In particular, the variability of the choice of f (see
discussion in Section 4.2) differentiates our skeletal graph from the Level Set
Diagram proposed in [48].

Differential topology results for surfaces [49] guarantee that this construction
is well-defined, and most importantly, that the skeletal graphs Gf are topologi-
cally valid representations of the original shape, meaning that the connectivity
of the shape in preserved by Gf . More precisely, this property derives from the
fact that the construction of the skeletal graphs relies on the discretization of
the Reeb graph theory defined in [50] and [51].

The example in Figure 3 illustrates the pipeline of the skeleton extraction.
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Given a shape represented by a regular, closed triangle mesh M , we first scale
M in the unit sphere centered in the origin of the Cartesian coordinates. Let
f : M → R be a real continuous mapping function, and let [fmin, fmax] be
the co-domain of f (Figure 3 (a)). We can choose nv non-critical values fi,
fi ∈ [fmin, fmax], i = 1, . . . , nv, such that fmin < f1 < . . . < fnv < fmax. Let
C(M) = {Ci(M)}i, i = 1, . . . , nv, be the set of the resulting level sets of the
surface M , where Ci(M) = f−1(fi(M)). Since the fi values are regular values,
each contour (i.e., each connected component of the level sets) is a simple,
closed line and C(M) fully decomposes M into a set of regions (Figure 3 (b)).
Let T be the partition of the interval [fmin, fmax]:

T = {(fi, fi+1), i = 0, . . . , nv} ∪ {fmin = f0, f1, . . . , fnv, fnv+1 = fmax}

induced by the fi values. In other words, T is made of a set of contiguous open
intervals together with the set of their extrema.

Two points P, Q ∈ M are identified when the following two conditions hold:

(1) f(P ) and f(Q) belong to the same element t of the partition T ;
(2) P and Q are in the same connected component of f−1(t), t ∈ T .

(a) (b) (c) (d)

Fig. 3. Pipeline of the skeletal graph extraction. (a) Evaluation of the mapping
function (the distance from the barycenter in this example) on the hand model in
[52]. Red and blue colors respectively represent maximum and minimum values.
(b) The shape segments after the insertion of the level sets. (c-d) The centerline
skeleton, superimposed to the model in (c).

Therefore, all points belonging to either a region or a connected component
of the level sets are equivalent and are identified as the same point of the
quotient space obtained from this relation. Then, the quotient space can be
represented as a traditional graph Gf = (N, A) where the set of nodes and
arcs are defined by

N = {classes of equivalence of regions}

A = {classes of equivalence of connected components of level sets}.
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Denoting p and q the nodes that correspond to the regions R and R′, respec-
tively, an arc connects p and q if the boundaries of R and R′ share at least
one connected component. The node p is adjacent to as many nodes as the
number of connected components of the boundary of R and, conversely, an
arc is defined for each connected component of the border of R.

The graph Gf can be embedded in R
3 by associating with each node the

position of the barycenter of the corresponding region, and visualized as a
centerline skeleton of M (Figure 3 (c-d)).

Gf can also be extracted in a multi-resolution fashion, by iteratively refining
the interval [fmin, fmax], and extracting a sequence of graph structures. The
power of this approach is clear: the surface shape can be processed at different
levels of detail, and the estimation of its features is automatically provided.
An analogous approach has been proposed in [26], where the intervals are
iteratively halved; see Section 6 for comparative remarks.

If a closed manifold is considered, Morse theory guarantees that the number of
non-homologous loops in the manifold corresponds to the number of cycles in
the skeletal graph. From an implementation point of view, when dealing with
a mesh M , we ensure to keep this topological consistency by using the Euler
formula in each region, in order to check that the region does not contain any
through hole. This control ensures that we accept only skeletal structures that
have as many cycles as the number of tunnels of the model.

From the computational point of view, the graph construction begins with the
computation and insertion of the set of level sets C(M) into the triangle mesh.
This step requires O(max(m, n log(n))) operations, where m is the number of
vertices added inserting C(M) and n is the number of vertices of the original
triangulation. A node is created for each region, and an arc is associated to each
boundary component. Then the inserted isocontours are used as constraints
during the graph extraction process. The latter is based on a region growing
strategy, that visits all triangles. Hence, the cost for the region detection and
arc completion step is O(m+n). Therefore, the complexity of the whole process
is given by the maximum of the costs of the two algorithm phases, that is
O(max(m + n, n log(n))).

4.2 Choosing the mapping functions

In order to make the skeletal graph Gf valid and effective for shape description,
the mapping function f should be independent of object rotation, translation
and uniform scaling. Given these general constraints, the choice of the mapping
functions is arbitrary and should be driven by the suitability of the mapping
function to describe the shape, according to the geometric properties that we
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would like to enhance. For example, functions based on the Euclidean distance
from a point P naturally highlights the distribution of the object with respect
to P , while those based on the geodesic distance 1 are independent of the
spatial embedding. Indeed, the resulting skeletal graphs follow the protrusions
until they reach their tips, corresponding to the maxima of the functions.

In our experiments, we have used four different mapping functions, namely the
distance from the barycenter, the distance from the center of the bounding
sphere, the integral geodesic distance [26] and the topological distance from
curvature extrema [53]. The geometric characterization of these mapping func-
tions is discussed after their definition below.

Let v be a vertex of the mesh; the following two distance functions f 1, f 2 are
considered:

• f 1(v) =| v − PB |E, see Figure 4 (a);
• f 2(v) =| v − PS |E, see Figure 4 (b);

here |· |E is the Euclidean length, and PB and PS are the barycenter of the
object and the center of its bounding sphere, respectively. These two points
are suitable choices as reference points, because they are easy to calculate and
independent of the embedding of the shape in the space. The level sets, which
induce the surface decomposition into regions, correspond to the intersection
of the mesh with a collection of spheres centered in the barycenter and in the
center of the bounding sphere, respectively, and with varying radius. Since
the barycenter or the center of the bounding sphere and the sphere/mesh
intersection are independent of translation, rotation and uniform scaling of the
object, the same properties are reflected in the resulting graph configurations.

The next mapping function considered is the normalized integral geodesic
distance, as discretized in [26]:

• f 3(v) =
∑

i g(v, bi) · area(bi), see Figure 4 (c);

here {bi} = {b0, . . . , bk} is an almost uniform sampling of the vertices of M ,
g(v, pi) is the geodesic distance of point v from point bi, and area(bi) is the
area of the neighborhood of bi. In practical cases, when the triangle mesh is
not uniform, the use of Dijkstra’s algorithm [54] may alter the approximation
of the geodesic distance and the choice of the basis points.

The fourth mapping function is based on the geodesic distance from curvature
extrema, and is similar to the discrete topological distance originally proposed
in [53]:

1 Here, the geodesic distance between two given surface points p and q is the min-
imal length of all surface curves joining p and q.
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• f 4(v) = −mini=1,...,n{g(v, pi)}, see Figure 4 (d);

here {p1, . . . , pn} is a set of vertices that represent mesh regions having high
curvature values, and g denotes the geodesic distance. In the evaluation of f 4,
the geodesic distance is approximated through Dijkstra’s algorithm.

Fig. 4. (Top) From left to right, the evaluation of the mapping functions f1, f2, f3

and f4 on the same model from [52]. (Bottom) The corresponding skeletal graphs,
obtained by inserting fifteen level sets in the meshes.

Since the geodesic distance relies neither on a local coordinate system nor on
surface embedding, in both cases of f 3 and f 4 the graph configuration derived
is invariant to translation, rotation and uniform scaling of the model.

As anticipated, important aspects to evaluate are the kind of features that the
description should highlight, and the type of matching wished. In our example,
f 1 and f 2 naturally emphasize the distribution of the object with respect to
a point. Therefore these functions are rotation invariant, but sensitive to pose
variations, where by pose variation we mean a different spatial arrangement,
or embedding, of the articulations of a model. On the contrary, functions f 3

and f 4 are pose invariant, because they depend on the shape distribution with
respect to the geodesic center of the surface (f 3) or the high curvature points
(f 4). In all cases, the shape is described as a configuration of protrusions and
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hollows, but the geodesic distances do not discriminate between objects in
different poses, while Euclidean distances do. Therefore, geodesic distances
are best suited for retrieving articulated objects disregarding the pose, while
Euclidean ones allow us to distinguish among articulated models in different
poses.

4.3 Measuring functions

Measuring functions in size theory have the role of capturing relevant geomet-
ric properties of the shape, to be used as distinctive properties to discriminate
among shapes. Once the skeletal graph Gf has been extracted, the size graph
(Gf , ϕ) is obtained by defining the measuring function ϕ : V (Gf) → R on the
set V (Gf) of nodes of Gf .

For each node vR ∈ V (Gf) corresponding to a region R, the value of ϕ(vR) is
defined as a property characterizing the region R or its boundary, as depicted
in Figure 5. Hence, we analyze features of the original 3D object, storing them
in our compact representation. Moreover, besides geometric attributes of the
model, we also consider features describing the spatial embedding of the shape
in the 3D space. The set of proposed measuring functions is detailed in the
following.

Fig. 5. Some segments associated to the size graph nodes (graph obtained by seg-
menting the mesh with the insertion of seven level sets).

For each node vR ∈ Gf associated to a region R, a first measuring function
ϕ(vR) can be defined as:
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• the area of the region R,

that is to say the sum of the areas of the faces in the triangulation which
belong to R.
Three other measuring functions are given by:

• the minimum (rmin), the maximum (rmax) and the average (rav) radius of
R, i.e., the minimum, maximum and average distance of the barycenter C
of the triangles in R from the vertices of the region, see Figure 6 (a).

Since the boundary BM(R) of a region R is made of closed contours, the
interior of R is well defined and it is possible to associate to each boundary
component a so-called outgoing direction. An outgoing direction is classified
as ascending or descending, according to the behavior of the mapping function
f across the corresponding boundary component: the direction is ascending
(resp. descending) if the value of f increases (resp. decreases) walking from the
inside to the outside of the region. Let us now denote B+

M (R) (resp. B−
M(R))

the set of connected components of BM(R) such that the outgoing directions
for the mapping function f are ascending (resp. descending), see Figure 6 (c).
For each node vR corresponding to a region R, two measuring functions can
now be defined as:

• the length of B+
M(R) (resp.B−

M (R)).

If B+
M(R) (resp. B−

M(R)) is made up of multiple components {B+
i } (resp.

{B−
i }), then ϕ(vR) is the sum of the length of each of the B+

i s (resp. B−
i s).

If all outgoing directions of f for BM(R) are ascending (resp. descending), we
label the region R as a minimum (resp. maximum) for the function f and
assume the length of the border B+

M(R) (resp. B−
M(R)) to be zero, that is

ϕ(vR) = 0.

The next measuring functions evaluate the lateral area of the pseudo-cone
whose basis is the boundary component B+

i (resp. B−
i ) and whose vertex is

the barycenter of B+
i (resp. B−

i ). Two measuring functions are indeed defined
as

• the sum of the pseudo-cone areas computed for each B+
i in B+

M(R), (resp.
B−

i in B−
M(R)), see Figure 6 (b).

When all outgoing directions of f for BM(R) are ascending (resp. descending)
we set ϕ(vR) = 0.

A further description of the object can be given by considering its location
in space. As previously discussed, each node vR is located in the barycenter
(xR, yR, zR) of the corresponding region R. In addition, for each model, we
compute the minimal bounding box following the algorithm in [55], which

15



(a) (b) (c)

Fig. 6. Details about the geometric meaning of some measuring functions. (a) Min-
imum, maximum and average radius of a region. (b) A1 and A2 represent two
pseudo-conic areas. (c) Lenght of upper and lower (with respect to a chosen f)
boundary components.

provides a bounding box oriented towards the principal direction of the object
(as shown in Figure 7). The faces Fi, i = 1, . . . , 6, of the bounding box are
ordered according to their increasing areas, thus obtaining the ordered set
of pairs {(F1, F2), (F3, F4), (F5, F6)}, where each pair corresponds to a pair of
opposite faces, having the same area. Then, the center Pi is evaluated for each
face Fi, i = 1, . . . , 6, see Figure 7 (b), and a set of measuring functions {ϕPi

}
can be constructed by computing the Euclidean distance ϕPi

(vR) =| vR−Pi |E .
The invariance with respect to axial simmetry is obtained replacing the set
{ϕPi

} by:

• the set of measuring functions {ϕPi,Pi+1
}, with i = 1, 3, 5, and such that

ϕPi,Pi+1(vR) = min{| vR − Pi |E, | vR − Pi+1 |E},

where the minimum distance is considered between the node vR and the centers
of two opposite faces.

5 3D model comparison

After a size graph (Gf , ϕ) has been obtained, with Gf the skeletal graph and
ϕ the measuring function labeling its nodes, the definition of the size function
of the size graph follows the classical one. Denoting by Gf

y the subgraph of Gf

obtained by erasing all vertices of Gf at which the measuring function ϕ takes
a value strictly greater than y, and all edges that connect those vertices to
other vertices, the size function of the size graph (Gf , ϕ) is defined by setting
�(Gf ,ϕ)(x, y) equal to the number of connected components of Gf

y , containing
at least a vertex of Gf

x.

In order to compute size functions, we follow the algorithm introduced in [47].
The algorithm is based on a technique, called Δ∗-reduction, that permits a
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(a) (b)

Fig. 7. (a,b) Minimal bounding boxes of two models.

simplification of the size graph, without changing the corresponding size func-
tion. This procedure is defined by recursively applying three different graph
editing moves, see [47] for details. The process works in a finite number of op-
erations, and its output is a graph that has the simple structure of a tree. The
value of Δ∗-reduction relies not only on reducing the number of vertices and
edges in the graph, but also on permitting faster computation of size functions
[47]. In fact, Δ∗-reduction permits direct computation of the cornerpoints and
cornerlines, that completely describe the size functions (see Section 3). To
achieve this, one has to orient the reduced graph obtained through the pro-
cess of Δ∗-reduction by orienting each edge from the vertex with higher value
to the other one. The resulting configuration is an arborescence, i.e. an ori-
ented tree in which no two edges are directed to the same vertex. Finally, the
cornerpoints and cornerlines are computed from this arborescence by applying
the following recursive procedure: (i) choose the highest leaf v and erase it to-
gether with the corresponding edge wv; (ii) put a cornerpoint at (ϕ(v), ϕ(w));
(iii) if just one vertex u is left, then draw the cornerline x = ϕ(u) and stop,
otherwise repeat from (i).

A possible implementation for this algorithm is based on the union-find struc-
ture [56], so that the computational complexity for the whole procedure is
O(n log n + m · α(2m + n, n)), where n and m are the number of vertices and
edges in the size graph, respectively, and α is the inverse of the Ackermann
function [57].

Two size functions represented by formal series of cornerpoints and cornerlines
can be compared by using different metrics [58], as for example the Hausdorff
metric. In this way, the complex issue of shape matching is translated into the
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simpler (algebraic) problem of comparing formal series.

In this paper, we use the matching distance between size functions, which
is detailed in [40]. Informally speaking, the matching distance between two
reduced size functions l1 and l2, respectively represented by the sequences (ai)
and (bi) of cornerpoints and cornerlines, can be defined as:

dmatch(l1, l2) := min
σ

max
i

d(ai, bσ(i))

where i varies in the set N of natural numbers, σ varies among all the bijections
from N to N, and the pseudo-metric 2 d between two points p and p′ takes the
smaller between the cost of moving p to p′ and the cost of moving p and p′

onto the diagonal {x = y}, with costs induced by the max-norm [40]. Notice
that dmatch is actually a metric. An example is shown in Figure 8 (right),
where an optimal matching between cornerpoints and cornerlines of two size
functions is shown. Here the matching distance is given by the cost of moving
the cornerpoint denoted by b onto the diagonal.

3
3

2

2

3 2
0 0 11

r rr’ r’

x x

y y y

x

a a
a’ a’

b b

cc
c’ c’

r+a+b+c r’+a’+c’

Fig. 8. Two size functions described by formal series of cornerpoints and cornerlines
and compared by means of the matching distance.

The stability of the matching distance and its suitability for shape comparison
have been discussed from the theoretical point of view in [44,45,40]. In partic-
ular, it has been proven that the matching distance between size functions is
continuous with respect to the measuring functions, guaranteeing a property
of robustness to perturbations of the data, that is useful in practical applica-
tions. Moreover, in [45]it has been shown that the matching distance between
size functions produces a sharp lower bound for the natural pseudo-distance
between size pairs [59], thus guaranteeing a link between the comparison of
size functions and the comparison of shapes.

Since only a finite number of cornerpoints may occur in the discrete case,
computing the matching distance between discrete size functions corresponds
to solving an optimal matching problem between finite point sets. The com-

2 A pseudo-metric fulfills the properties of a metric of being non-negative, being
symmetric and satisfying the triangle inequality, but allows the distance between
two different points to be zero.
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putational cost is O(k2.5), where k is the number of cornerpoints considered
for each size function.

To summarize, Figure 9 shows an example of the pipeline of our comparison
technique, from the graph extraction to the evaluation of the distance be-
tween the models. Figure 9 (a) shows two models from [52], representing two
instances of a dancer. The first step is the extraction of the skeletal graph,
as in Figure 9 (b), where the integral geodesic distance is used to drive the
extraction. Next, we evaluate the geometric attributes of the nodes, the av-
erage radius of surface regions in this example. Hence, once the size graphs
have been constructed, we compute their size functions, as in Figure 9 (c), and
evaluate their matching distance. Notice how the similarity between the two
models is reflected in a similar structure for the corresponding size functions,
and results in a small value for the matching distance.

6 Comparison with existing techniques

In this section we compare our technique with existing approaches. We take
into account both phases of shape description and similarity evaluation.

From a general perspective, a shape descriptor closely related to ours is given
by the barcodes in [24,25], see also Section 2. In particular, beside the mathe-
matical relationship between persistent homology theory and size theory [60],
it is interesting to note that both approaches study a shape by constructing a
new space strictly related to the original shape: the centerline skeleton in our
approach, the tangent complex for the barcodes.

As for the graph-based representation we propose, our algorithm for centerline
extraction provides a shape segmentation, that enables us to easily couple
the regions of the surface with a set of geometric attributes, as detailed in
Section 4.3. Thus, our size graph may be seen as a centerline combining both
topological information and geometric attributes. It is worth observing that
also another skeletal centerline that roughly approximates the medial line of
a shape (like those proposed in [33,30]) could in principle be chosen as the
basis for the size graph. However, in our framework we have tried to keep
each module of the system as flexible as possible, as discussed in Section 7.3.
For the same reason, our technique also differs from the structural descriptors
based on the medial centerline of the shape, such as [31], that provides a more
rigid coding based on the distance transform.

With respect to similar approaches based on Reeb graphs [61,27], the nodes
of the Reeb graph correspond only to critical points, while we take into ac-
count not only the configuration of critical level sets, but also the intermediate
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Fig. 9. (a) Two models from [52]. (b) The skeletal graphs with respect to the integral
geodesic distance (fifteen level sets inserted). (c) The corresponding size functions,
when the measuring function is the average region radius. Notice the two points far
from the diagonal, which are very close one to the other in the size function on the
left and correspond to a similar structure in the size function depicted on the right.

non-critical level sets. Our centerline also differs from the Multiresolution Reeb
Graph, described in [26] and extended in [62], both in the way the skeleton is
extracted – our graph is not necessarily multi-resolution, and is also topologi-
cally consistent, being the number of loops in the graph equal to the number
of tunnels – and in the way the geometric attributes are chosen, see discussion
in Section 4.3. In particular, our measurements mainly describe the geometry
of the surface slices obtained during the contouring phase, and extend the
attributes proposed in [26], where the ratio of the area and the length of the
model sub-part with respect to the whole model are considered. Moreover, our
measuring functions estimate the properties of the surface slices, unlike the
attributes proposed in [62], that are mainly devoted to a volumetric descrip-
tion of the slices. In this way, it is possible to avoid the ambiguity that arises
when dealing with volumetric slices with non-planar bases.
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Finally, with regard to the similarity evaluation framework, previous works
on graph-based representations usually rely on graph matching strategies or
graph spectra evaluations. Graphs are compared involving error tolerant graph
or subgraph isomorphisms, that take into account editing operations, and are
often well suited for partial shape matching [26,27]. On the contrary, in our
approach the comparison strategy is based on the computation of the matching
distance between the size functions associated to the graph representations,
which in turn corresponds to the comparison of finite point sets.

7 Experimental results

This section aims to provide a qualitative analysis of the shape comparison
approach proposed, and a quantitative evaluation of the performance of our
method in the retrieval context.

We first introduce in Section 7.1 the set of models which constitute our
database. In Section 7.2 the robustness of our algorithm for shape descrip-
tion and comparison is discussed with the support of some examples. Section
7.3 investigates the crucial step of the choice of mapping and measuring func-
tions, discussing their role in the retrieval context. Finally, we use our dataset
to empirically compare the proposed method with four popular shape descrip-
tors; retrieval results are reported in Section 7.4.

7.1 The database

The type and classification of the models in a database are crucial when test-
ing a retrieval method, and it is difficult to separate the influence of the data
set from the performance [63]. One of the most popular performance indica-
tors is the precision-recall diagram [64,65], where recall indicates the ratio of
the models in a given class returned within the top matches, and precision
indicates the ratio of the top matches which are members of the correct class.
Since the precision-recall representation is sensitive to the dimension of the
classes [66], it is reasonable to require the number of elements of each class
to be uniform when a retrieval method is compared with others. In addition,
a detailed analysis of the pros and cons of a method may be done only if
the classes of the database are well defined and the shape characteristics of
the models belonging to the same class are distinguishable from the others.
A further important requirement should be a uniform quality of the models.
As observed in [63], when a large data set is composed of several smaller data
sets to get a higher size, the main difficulty relies in the internal coherence of
the large data set with respect to the coherence of its constituents.
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Following these observations, we have constructed a database of regular tri-
angle meshes with five classes of twenty elements, plus twenty unclassified
manufactured models, see Figure 10. Many of the models represent articu-
lated objects, reflecting a variety of complex poses. Moreover, shape classes
show internal variations sufficient to make the retrieval task complex. This
level of classification corresponds to the notion of a basic level or entry level
categorization [5].

Fig. 10. Our testing models.

The original models of our database were collected from several web reposito-
ries. Most of the CAD models come from the National Design Repository at
Drexel University [67]. Other models belong to the AIM@SHAPE repository
[52] and the Princeton Shape Benchmark [3], while several human models in
different poses come from the CAESAR Data Samples [68]. Since our graph
extraction technique requires topologically correct meshes, when possible, we
pre-processed and repaired models having many connected components by glu-
ing them. Moreover, we also considered the database at the McGill 3D Shape
Benchmark [69] that offers about 420 volume models, classified in 19 classes.
Since the original models were voxelized and the resulting isosurfaces were too
rough, we smoothed them using a Laplacian smoothing filter and selected 60
models from the “cups”, “teddy” and “glasses” classes, that present a uniform
quality. In order to make results independent of scale operations, we uniformly
scaled every model in a unit sphere, centered in the origin of the Cartesian
coordinates.

The experiments reported in this section are performed through a uniform
subdivision of the mapping function image [fmin, fmax]. In particular, the size
graphs are obtained by inserting fifteen contour levels in correspondence of
fifteen function values.

The normalization of the models in the same unit sphere and the level sets
insertion with the same frequency implies that features are compared in a
scale-independent manner, and according to their relative relevance in the
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models under evaluation. Moreover, the rougher the slicing, the more the size
graph recovers the main structure of the object. On the contrary, in case of
a dense slicing, the size graph becomes more detailed and also small features
may be recognized. The choice of a rough or a dense slicing depends on the
application target, if the structure or the feature details must be recognized.
However, when considering a dense slicing, small undesired features and arcs
could appear in the graph: in these cases, a pruning strategy like that proposed
in [50] allows us to discard irrelevant details.

7.2 Robustness

In this section we empirically show that our retrieval method is robust to noise
and presence of small detail features.

Figure 11 (a) shows a model and its simplified version (having 10% of the
vertices of the original model). The difference in the models neither signifi-
cantly alters the attribute centerline skeleton (Figure 11 (b)) nor affect the
corresponding size function (Figure 11 (c)), and the resulting matching dis-
tance is consistent. In practice, the method reveals to be robust from different
perspectives:

(1) size graphs: the attributed skeletal graph representation is stable under
small variations of the mapping function f (Figure 11 (b)). In fact, it
is possible to adopt a refinement of the slicing strategy, that guarantees
that all features having size (in terms of the variation of the mapping
function f) greater than a given threshold are detected, discarding the
features whose size is smaller, see discussions in [51];

(2) size functions : small changes of the size graph do not significantly alter
the size functions (that can almost be superimposed in Figure 11 (c));

(3) matching : the stability of matching distance between size functions under
small perturbations of the data is confirmed by the example shown, where
the matching distance between the size functions computed for the two
models is very small.

The results of a second check for robustness are shown in Table 1, where the
distances between six different objects in our database (four humans and two
manufactured models) are reported. In particular, two of the human models
are simplified versions of the other two ones, while the manufactured models
differ for some small features. As expected, the comparison framework satisfies
the identity property, guaranteeing that a model has a null distance from itself.
In addition, the distance between a model and its slightly modified version is
smaller than the distance between two different objects in the same class (see
for example the woman and the man models) and significantly smaller than
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Fig. 11. Changes due to a simplification of a model do not significantly alter the
centerline skeleton and its size function. (a) A model and its simplified version;
(b) their size graphs with some attributes highlighted, using the integral geodesic
distance f3 and the measuring function area; (c) the corresponding size functions,
which show very small variations.

the distance between objects belonging to different classes (e.g. a human and
a manufactured model). We remark here that these distances are used to rank
the results of database queries and aggregate the models that share analogous
properties, although they cannot be interpreted as “absolute” values, due to
their dependence on the values of the measuring function.

7.3 Modularity: the role of mapping and measuring functions

One of the attractive features of our approach is its flexibility, due to its
geometric-topological nature and its capability to produce results which re-
flect human perception, by choosing the shape descriptors in a suitable way.
In fact, the core idea of our method is the analysis of properties of real func-
tions describing the shape under study. Real functions are involved for both
the extraction of the skeletal graphs and the definition of the set of measuring
functions, which serve for the computation of size functions. The role of the
real functions is to take into account only the shape properties of the object
which are relevant to the problem at hand, while disregarding the irrelevant
ones, as well as to impose the desired invariance properties. Indeed, imposing
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Table 1
Values for the matching distances between six different models in our database.
The size graphs have been obtained using the integral geodesic distance f3 and the
region area.

invariance with respect to a transformation group simply means requiring the
mapping and measuring functions to be invariant with respect to that group.
Therefore, the added value of this approach to shape analysis relies on the pos-
sibility of adopting different functions as shape descriptors, according to the
properties and invariants that one wishes to capture. When changing the func-
tions, the resulting configurations can give insights on the shape from different
perspectives. As a first example, if we aim to distinguish different positions
in space, we should use mapping and measuring functions which emphasize
the spatial distribution of the object shape, for example the distance from
the barycenter, and the distances from the points on the bounding boxes. In
Figure 12 (a) we see that, when searching for a standing-up human among the
human models, their use produces a query response consisting of standing-up
humans sharing a similar pose. Otherwise, if our idea is to put more emphasis,
for example, on the “fatness” of the model rather than on its spatial pose, we
can run the system selecting the region area as the measuring function. The
results can be seen in Figure 12 (b), where the same query as before, a fat man,
returns a fat man as the closer model, followed by a series of males. On the
contrary, if we are interested in retrieving models showing a variety of poses,
the integral geodesic distance reveals to be the best choice for the mapping
function, since the centerline representation based on the integral geodesic
distance does not distinguish, e.g., straight legs from legs with bent knees (see
Figure 12 (c) where the measuring function is rav). Finally, in Figure 12 (d)
the search for a pig in the class of animals with respect to the topological
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distance from curvature extrema and rmax produces a response that reflects
both topological and geometric properties, according to perceptual similarity
among the animals.

Query 1st match 2nd match 3rd match 4th match 5th match

(a)

(b)

(c)

(d)

Fig. 12. Query results according to different choices of the mapping and the mea-
suring functions. (a) Emphasis on the spatial position, using f1 and ϕP5,P6; (b)
emphasis on the fatness, with f1 and the area of the regions; (c) humans in dif-
ferent poses are recognized, using f3 and rav; (d) results on the class of four-limbs
reflecting perceptual similarity, obtained by f4 and rmax.

These results suggest that our approach could also be used as either a finer
tool, after a rough filter has been used, or an instrument to refine queries in a
retrieval pipeline, according to the user needs. The idea is that the interaction
between the user and the system would allow tailoring the system response
to the precise shape domain a user has in mind. This may be particularly
true when considering our approach. While, in general, it may be difficult for
the user to select the best combination of features to reach his goal, using our
technique allows him to readily indicate the shape idea he has in mind, through
the selection of a set of a features (i.e., mapping and measuring functions),
which have a clear and intuitive geometric (and perceptual) significance.
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7.4 Performance evaluation: a comparative study

In this section we use our database to compare the retrieval performance of the
approach proposed, with respect to three popular shape descriptors, namely
the spherical harmonic descriptor 3 [21], the view-based approach 4 [22] and
the Multiresolution Reeb graph [26].

The results about size functions reported in this section are obtained select-
ing, during a training phase, the most performing combination of features
(mapping functions f and measuring functions ϕ) to compute the size graph
(Gf , ϕ). The training phase has been performed using a smaller (20 items)
database, containing a fraction of the models currently used as well as some
additional models. The performance of different combinations has been eval-
uated in terms of the area of the region below the precision–recall curve,
considering that larger areas indicate better results. In particular, the most
performing pair (Gf , ϕ) is obtained when f is the integral geodesic distance,
and ϕ the minimum radius rmin (see Section 4.2 and 4.3). Some compara-
tive results are summarized in Figure 13. An intuitive explanation for these
results is that the integral geodesic distance is suitable to deal with articu-
lated objects, while the minimum radius of the surface regions provides an
informative description of the local object shape, which is also stable to small
perturbations. The reader is referred to Section 4.2, 4.3 and 7.3 for a more
detailed analysis of the behavior of different descriptors, and to Section 8.2
for future research directions on how to automatically choice and combine the
descriptors.
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Fig. 13. Precision-recall diagrams on the training dataset, involving different skeletal
representations and attributes. (a) The mapping function to extract the centerline is
the normalized integral geodesic distance [26]; the measuring function varies in a set
of four attributes. (b) The mapping functions varies, while the measuring function
is always the minimum radius of a region.

3 http://www.cs.jhu.edu/ misha/
4 http://3d.csie.ntu.edu.tw/ dynamic/3DRetrieval/index.html
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In what follows, we show some results on both the whole database and the
single classes.

As a first performance parameter, we consider percentage recall. For a given
number N , this parameter corresponds to the percentage of models in the
same class of the query retrieved within the first N items. In particular, the
recall histogram in Figure 14 are obtained computing percentage recall for
the rank thresholds N = 10, 20, . . . , 120. Results are averaged over the whole
database, and indicate that almost 80% of relevant items are retrieved within
top 25% of the database (that is, within the first 30 models; remember that
each class contains 20 elements). Moreover, in many cases the values obtained
using size functions appears shifted up in the histogram, in comparison with
respect to competitors, meaning a better performance.

Fig. 14. Comparison with existing retrieval methods. Recall histograms: the values
are averaged on the whole database.

Figure 15 (a) compares the average rank for the whole database obtained
using size functions with the values obtained by the other techniques. The
average rank is obtained by running each model of the database as a query
and computing the retrieval rank of all members in the class of the query.
The value obtained with size functions is the lowest one; notice that for this
indicator lower values indicate better performance.

Another measure we use to assess the retrieval performance is the last place
ranking, defined in [70] as

Ln = 1 − Rankl − n

N − n
,

where Rankl indicates the rank at which the last relevant object is found,
n is the number of relevant items and N is the size of the whole collection.
The values computed are reported in Figure 15 (b). This measure gives an
estimate of the number of items retrieved a user has to search in order to
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have a reasonable expectation of finding all relevant items. The higher this
measure within the interval [0, 1], the lower the number of items to check,
meaning better results.

(a) (b)

Fig. 15. Comparison with existing retrieval methods. (a) average rank and (c) last
place ranking.

Finally, Figure 16 shows the standard precision–recall diagrams computed over
the 5 classes in the database. The curves with different colors correspond to
the different techniques we have tested. Remember that curves shifted up-
wards and to the right indicate a superior retrieval performance. For example,
it is worth noticing the good performance realized by size functions for the
classes of humans and glasses. These articulated models are well suited to
enhance the features of our method, since the object in these classes share a
common structure both for connectivity (e.g. a head, two arms and two legs
for humans) and attributes (large sections near the barycenter, smaller ones
for protrusions). The worst performance is realized when dealing with the
class of animals with four limbs. The reason is that the models in this class
are very heterogeneous. Our method takes into account, besides the structural
properties – having four limbs – also the geometrical properties of the shape,
which show too strong variations. In this particular case, better results could
be obtained by considering a finer level of classification, rather than a basic
one.

8 Concluding remarks

We have proposed an original framework to extend the use of size functions in
the 3D context. More precisely, we have derived a signature to be extracted
from 3D models, which guarantees the topological coding and the geometrical
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Fig. 16. Precision–recall diagrams for the different classes in our database.

description, and which is computationally efficient. This representation has
been used as a size graph for computing size functions, making the use of
size functions in the 3D domain efficient and effective, as shown in a series of
experiments.

8.1 Properties

The proposed shape descriptor presents many desirable properties:

(1) quick to compute: the computation of 120 size functions for the 120 mod-
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els in the database requires 1.53 second on a 1.73GHz laptop PC-M; the
off-line step of computing the size graphs requires 1 minute and 12 sec-
onds;

(2) concise to store: less than 1k storage per model (see details in Table 2);
(3) easy and quick to compare: evaluating 120× 120 matching distances be-

tween size functions requires 8.55 seconds;
(4) invariant under similarity transformations: imposing the desired invari-

ance simply means requiring the same invariance for the mapping and
measuring functions, without any change in the mathematical and com-
putational framework;

(5) robust against noise and small extra features, as shown in Figure 11 and
Table 1;

(6) able to discriminate among shapes at many scales, conveying information
about global and local properties of the shape, as shown by the experi-
mental results.

Models #vertices #faces Size #N #CP SF

vase [52] 896,338 1,792,672 73MB 45 9 < 1k

Happy Buddha [71] 543,652 1,087,716 45MB 27 12 < 1k

armadillo [52] 165,951 331,898 15MB 41 12 < 1k

hand [52] 136,663 273,060 13MB 56 13 < 1k

Bunny [71] 32,872 65,740 3.1MB 18 4 < 1k

dancer [52] 24,998 49,996 2.2MB 22 6 < 1k

dancer2 [52] 26,358 52,716 2.6MB 20 6 < 1k

Table 2
Statistics for some models, relating the dimension of the original model with the
number of nodes (#N) of the size graph Gf , the number of cornerpoints (#CP) of
the corresponding size function and the storage size of the final descriptor (SF).

The added value of our approach relies on the fact that we provide a modular
framework, based on the idea of describing shapes by geometrical-topological
properties of real functions. A suite of descriptors is thus available, which can
be fit to the problem at hand, and helps the user to tune the retrieval system
to be on his/her wavelength.

As for the limitations of our approach, currently the method to derive the size
graph can process only manifold meshes; therefore, in the current version, the
method cannot be applied to polygon soups and point cloud models. How-
ever, the possibility of performing not only a geometric comparison but also
a structural analysis largely compensates for this limitation.
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In this sense, our framework exploits an abstract shape description, which
complements existing geometry-oriented methods.

8.2 Directions of future research

We are currently researching into the development of new measuring functions,
in order to analyze different kind of shape features of three-dimensional mod-
els. We believe that capturing a larger amount of information would increase
the retrieval performance, allowing for a better discrimination of objects, and
the rejection of some of the false matchings which can be observed. Moreover,
we are also investigating how the choice of the mapping functions for the graph
extraction determines the characteristics of the resulting graph configuration.
The experimental results have shown that this approach is promising, and
goes in the direction of developing tools to automatically annotate the shape
semantic, and to encapsulate it in a digital shape representation.

A next step in our research project is the investigation into a method to
automatically select the most performing descriptors, and to combine their
information into a single dissimilarity score. A statistical framework has been
recently proposed in [72], where a number of false alarms is computed to merge
the contributions of different families of measuring functions, with applications
to image retrieval.

The use of multi-variate measuring functions is also a current research theme
[73].
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