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Abstract 1 

Background: Eggs are nutrient-rich. Strengthening evidence on the impact of egg consumption 2 

on dietary quality can inform complementary feeding guidance. 3 

Objective: To assess the effect of an egg intervention on dietary intakes among six- to 12-months-4 

olds in rural Bangladesh. 5 

Methods: We conducted a cluster-randomized controlled trial allocating clusters (n=566) to 6 

enteric pathogen control or placebo treatment, and daily provision of a protein-rich meal, isocaloric 7 

meal, egg, or control. Nutrition education was provided to all arms. Our focus here is on the egg 8 

and control arms. Infants were enrolled at three months. From six months, we visited households 9 

weekly to distribute eggs and measure compliance. A semi-structured feeding questionnaire 10 

assessed 24-hour intake at six-, nine-, and 12-months. Assessments were repeated in ~10% of 11 

subjects 2-29 days later. Using National Cancer Institute SAS macros, we estimated usual intake 12 

distributions for energy, protein, fat, and 18 micronutrients and the proportion meeting intake 13 

recommendations. We compared outcomes between arms using clustered bootstrapping. 14 

Results: Data were available from 757 infants (137 clusters) and 943 infants (141 clusters) in the 15 

egg and control arms, respectively. In the egg versus control arms, mean usual intakes were higher 16 

for energy (610 vs. 602 kcal/d, nine months; 669 vs. 658 kcal/d, 12 months), crude protein (2.2 vs. 17 

1.7 g/(kg·d), nine months; 2.4 vs. 1.9 g/(kg·d), 12 months), available protein (2.0 vs 1.6 g/(kg·d), 18 

nine months; 2.1 vs. 1.8 g/(kg·d), 12 months), and for 13 and 14 micronutrients at nine and 12 19 

months, respectively. The proportion meeting intake recommendations for most micronutrients 20 

was higher in the egg arm but remained <50% for 15 and 13 micronutrients at nine and 12 months, 21 

respectively. 22 
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Conclusions: Daily egg consumption improved dietary intakes among Bangladeshi infants, but 23 

was insufficient to meet multiple micronutrient intake recommendations, demonstrating the need 24 

to be coupled with other strategies. 25 

Keywords: infants, dietary intakes, eggs, animal source foods, South Asia  26 
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Introduction  27 

Meeting nutrient intake requirements during the complementary feeding period remains a 28 

challenge in low- and middle-income countries (LMICs). Infants and young children six to 23 29 

months of age are typically breastfed and consume relatively small amounts of non-breast milk 30 

foods that are usually cereal-based and high in phytate that inhibits mineral absorption (1). In 31 

Bangladesh, where 30.8% of children under five are stunted (length-for-age z-scores (LAZ) <-2 32 

below the WHO growth standard median), complementary foods are low in nutrient density, 33 

leading to inadequate intakes of micronutrients like B-vitamins, vitamin D, vitamin E, calcium, 34 

iron, and zinc (2-8). Deficiencies of these nutrients contribute to negative short- and long-term 35 

health outcomes (9). Identifying strategies to improve dietary quality during the complementary 36 

feeding period is therefore a public health priority.  37 

Including animal source foods (ASF) in the diets of infants and children is important as 38 

they are rich sources of essential amino acids, fatty acids, and bioavailable micronutrients (10, 11). 39 

Eggs contain all nine essential amino acids and essential fatty acids, which are critical for early 40 

brain and retina development (12). They also contain multiple micronutrients, including vitamin 41 

A, B-vitamins, choline, iron, phosphorus, and zinc, that play key roles in early growth and 42 

development (13). In Ecuador, a trial providing a daily egg for six months in the complementary 43 

feeding period found a positive treatment effect on mean LAZ, whereas a similarly designed trial 44 

in Malawi found no effect on linear growth (14, 15). In Malawi, the intervention increased total 45 

intakes of nutrients present in high levels in eggs. However, the prevalence of inadequate intake 46 

was >80% for several micronutrients, including B-vitamins, calcium, iron, and zinc (16). As diets 47 

differ by context, it is important to examine the impact of egg consumption on dietary quality 48 

across populations. 49 
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In Bangladesh, studies have shown that eggs are included early in the diet (2, 17). 50 

According to the 2018 Demographic and Health Survey, 41.0% of breastfeeding children and 51 

51.7% of non-breastfeeding children six to 23 months of age consumed eggs in the 24 hours prior 52 

to the survey (7). Eggs also hold practical benefits as they are typically more affordable than other 53 

types of ASF (13). Bangladesh has a history of small-scale poultry and egg production programs 54 

implemented for nutritional and economic benefits (18, 19). Scaling up production, coupled with 55 

efforts encouraging households to include eggs in the diet, has potential to improve access to and 56 

utilization of a nutrient-dense food during the complementary feeding period. 57 

We conducted an analysis of secondary dietary outcomes of a cluster-randomized trial that 58 

allocated clusters to an enteric pathogen control or placebo treatment of infants, and delivery of a 59 

protein-rich meal, isocaloric meal, egg, or control, with all arms receiving nutrition education. Our 60 

focus here is on the egg and control arms, irrespective of the enteric pathogen control intervention. 61 

We aimed to assess the effect of providing a daily egg for six months to infants six to 12 months 62 

on: 1) usual energy and nutrient intakes, and 2) the proportion of subjects with intakes at or above 63 

recommendations.  64 

 65 

Methods  66 

Setting and study population  67 

 The cluster-randomized controlled trial was conducted at the JiVitA Research Site in 68 

Gaibandha District, Rangpur Division in northwestern Bangladesh, where various maternal and 69 

child health studies have been implemented (20-22). The site, which has a population of ~630,000, 70 

has been divided into 566 clusters. The setting is representative of national rural infrastructure, 71 

maternal and child nutritional status, and health services (23).  72 
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 An active pregnancy surveillance system was in place across the full study area under the 73 

mCARE-II trial, which tested an mHealth intervention to improve coverage of antenatal and 74 

postnatal care (mCARE-II, clinical registration No. NCT02909179). Households were surveyed 75 

to identify all married women of reproductive age, who were approached to obtain consent for 76 

pregnancy surveillance. Women who became pregnant were recruited for the mCARE-II trial. At 77 

enrollment into mCARE-II, data were collected on household and maternal characteristics. 78 

Women were followed throughout pregnancy and pregnancy outcomes were registered. Infants 79 

born to women enrolled in the mCARE-II trial who survived to three months of age during a one-80 

year enrollment period (September 2018 – September 2019) were considered eligible for the 81 

present trial. Enrollment was stopped after nine months (July 2019) under ethical review board 82 

guidance because accrual of infants into the cohort exceeded projections by ~30%.  83 

Randomization 84 

 The trial had a 2x4 factorial, cluster-randomized controlled design. The primary aim was to 85 

test the independent and combined effects of a protein intervention and enteric pathogen control 86 

intervention on linear growth. The first randomly allocated factor, which was masked, was enteric 87 

pathogen control or placebo treatment. The second randomly allocated factor was unmasked and 88 

consisted of a protein-rich blended food, isocaloric blended food, egg, and control. We expanded 89 

these factors out to eight groups for randomization. To obtain an equal number of clusters and 90 

geographic balance across arms, we used block randomization; blocks consisted of administrative 91 

areas of ~15 clusters each. An analyst on the study team used random number seeds to run 92 

randomization sequences, one of which was randomly selected among a subset of sequences 93 

considered balanced based on anthropometric and socioeconomic measures from previous trials.  94 

Sample Size  95 
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 The trial was designed based on the primary outcome of linear growth and an initial one-year 96 

enrollment period. Data from a previous trial at the site (2012 – 2014) that evaluated the effect of 97 

complementary food supplements on growth informed the anticipated cohort yield, expected mean 98 

LAZ change from six to 12 months, and within cluster variance and between-cluster coefficient of 99 

variation (20). Under these assumptions and =0.05, a cohort of 3180 infants would enable the 100 

detection of a mean difference of 0.165 in LAZ between groups at 12 months with 80% power. 101 

However, accrual into the cohort was ~30% greater than expected due to an inaccurate assumption 102 

that fertility would decline based on pregnancy data last registered at the site (2008 – 2012). Based 103 

on actual births, enrollment at three months, and estimated 10% loss to follow up, we shortened 104 

the enrollment period from one year to nine months. This yielded an anticipated ~5400 outcome 105 

measures. 106 

Intervention 107 

 Infants received presumptive treatment of azithromycin or a placebo at ~six and nine months 108 

and one of three nutrition interventions or the control (i.e.., no nutrition intervention). The use of 109 

azithromycin was informed by evidence of high exposure to enteric pathogens among infants in 110 

Bangladesh, and consistency in biomarkers of environmental enteric dysfunction between our 111 

study site and that of a study in Mirpur, Bangladesh assessing gut function and environmental 112 

exposures (24, 25). The nutrition interventions included provision of a daily protein-rich blended 113 

food, isocaloric blended food, or egg for six months starting at ~six months of age. Nutrition 114 

education was provided to all arms.  115 

 Eggs were obtained from Kazi Farms Group, an established commercial egg producer in 116 

Bangladesh that meets European Union production standards (26). Eggs were procured at a 117 

standard weight of 60 g. Field distributors visited households weekly, delivering eight eggs at each 118 
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visit (one extra egg provided in case of breakage or spoilage). The first visit was scheduled for the 119 

week following an infant’s six-month birthday. If the family was unavailable, distributors visited 120 

up to three additional times, until the infant reached seven months. At each visit, distributors 121 

provided standard cooking and feeding instructions, which included to prepare the egg how the 122 

infant preferred; feed the whole egg in addition to regular food and breast milk; not share the eggs 123 

with family members; and, if the infant became sick, follow medical guidance on feeding. 124 

Distributors provided nutrition education once a month. This consisted of standardized age-125 

specific audio recordings and pamphlets developed from Alive and Thrive modules that covered 126 

appropriate breastfeeding, complementary feeding, and hygiene practices  (27, 28).  127 

Data collection  128 

 Household consent visits were scheduled when infants reached three months and began in 129 

September 2018. Six-month household visits and intervention delivery began in January 2019. 130 

Twelve-month household visits were scheduled through April 2020 but were suspended in March 131 

2020 due to the onset of COVID-19. Remaining cases were reached over telephone. Field 132 

interviewers administered questionnaires with primary caregivers when infants reached ~six, nine, 133 

and 12 months. At each visit, infant weight and length were measured using standard protocols 134 

(29). Breastfeeding status was assessed at each visit by asking the respondent if the infant was 135 

currently being breastfed. If yes, she was asked how many times in the last 24 hours the infant had 136 

been breastfed, with response options of 1-10, 11-20, or ≥ 21 times. Household food insecurity 137 

index (HFI) was estimated at the six-month visit using a nine-item questionnaire (30). 138 

 Intake of non-breast milk food and beverages was assessed at each visit using a semi-139 

structured infant feeding questionnaire. The questionnaire, which had been previously evaluated 140 

for validity, included a pre-specified list of individual foods and mixed dishes selected based on 141 
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the most frequently consumed foods reported in the study area (4, 31, 32). Nineteen items were 142 

included for six-month-olds and 31 items for nine- and 12-month-olds. For each item, the 143 

interviewer asked, “From yesterday morning to today morning, has the infant been fed [the item]?” 144 

If the caregiver responded yes, the interviewer asked how much was offered using a set of standard 145 

measures (i.e., spoons, bowls, glasses). The interviewer then asked how much the infant ate, 146 

recording this amount as a portion of the quantity offered (i.e., half, one quarter, three quarters, 147 

one third, two thirds, whole units). After completing the list, the interviewer asked if the infant had 148 

eaten any additional items. Up to eight additional items were recorded. Respondents were 149 

instructed to not report the eggs provided by the trial because trial egg intake was recorded when 150 

assessing intervention compliance. Caregivers of infants residing in a subset of 28 clusters, which 151 

were selected based on proximity to the field office, were approached for consent to participate in 152 

repeated dietary intake assessments conducted by substudy team members. This repeated 153 

assessment was planned for two to six days after each initial assessment in ~10% of subjects.  154 

 Compliance with the intervention was assessed weekly. At each visit, respondents were 155 

asked to recall, for each day of the previous week, the amount of egg offered to the infant, 156 

consumed, left over, or shared. Reported consumption was categorized as none, whole egg, greater 157 

than half, half, or less than half.  158 

Ethical approval 159 

 Protocols were approved by the Institutional Review Board of the Johns Hopkins Bloomberg 160 

School of Public Health (Baltimore, MD) and Research and Ethics Review Committees of the 161 

International Center for Diarrhoeal Disease Research, Bangladesh (Dhaka, Bangladesh). Written 162 

parental consent was obtained at enrollment. The trial was registered as NCT03683667 at 163 

clinicaltrials.gov. 164 
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Statistical analysis 165 

 Data on household and maternal characteristics of infants, collected when their mothers were 166 

enrolled into the mCARE-II trial, and infant anthropometry and diet assessed at ~six months of 167 

age (baseline) were summarized by arm as mean ± SD for continuous variables, and number of 168 

subjects and percentages for binary and categorical variables. To characterize socioeconomic 169 

status, we calculated a Living Standards Index using principal components analysis based on 170 

household assets and dwelling characteristics (33). We categorized household food insecurity as 171 

none (HFI = 9), mild (HFI >9 to <16), and severe (HFI ≥16) based on an examination of the 172 

distribution (30). We calculated LAZ, weight-for-length z-scores (WLZ), and weight-for-age z-173 

scores (WAZ) using WHO Child Growth Standards and classified infants as stunted (LAZ <-2), 174 

wasted (WLZ <-2), or underweight (WAZ <-2) (8). We assessed differences in baseline 175 

characteristics using linear and logistic regression models with generalized estimating equations 176 

or multinomial regression models with robust standard error estimation to adjust for clustering.  177 

 Baseline characteristics of subjects included analyses were compared with those excluded 178 

due to loss-to-follow up or missingness. Analyses were performed using Stata version 14.2 (Stata 179 

Corp LP, College Station, TX) and SAS version 9.4 (Cary, NC). Analyses were completed on an 180 

intention-to-treat basis using a complete case approach. P-values were adjusted for multiple 181 

comparisons accounting for 22 dietary components such that P < 0.05/22 = 0.002 was considered 182 

statistically significant.  183 

Observed dietary intakes and protein quality adjustment 184 

 Outcome data were primarily missing on compliance, or trial egg intake. This occurred 185 

because intervention delivery and data collection were carried out by two different cadres of staff 186 

(distributors and interviewers, respectively). It was therefore possible for the six-month 187 
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intervention period to begin before the six-month interview and to end before the 12-month 188 

interview, resulting in no available compliance data at the 12-month timepoint. After excluding 189 

subjects with missing data, we compared the age distributions between arms at 12 months. We 190 

applied the age distribution of the egg arm (12.0 ± 0.1 months) to the control arm by comparing 191 

the percentage of subjects falling into sub-groups (e.g., 11.9, 12.0, 12.1 months). For baseline diet, 192 

we excluded subjects for whom the six-month interview occurred after the first visit from the field 193 

distributor and likewise compared the age distributions between arms.  194 

After exploring variability in trial egg intake, we extracted the compliance data from the 195 

day preceding each dietary assessment and added these as an additional food item to the dataset of 196 

food and beverage intakes for that day. Although repeated dietary intake assessments were planned 197 

for two to six days after the first assessment, they occurred up to 29 days after. We explored within-198 

subject variation in intakes by number of days between the initial and repeated assessments and 199 

excluded repeated assessments conducted 21 days after the first.  200 

 We converted portion sizes into weight equivalents using a study-specific standard database, 201 

and food weights into observed energy and nutrient intakes using a food composition table 202 

previously developed for the site (4). We added data on choline and vitamin B12 to the table from 203 

the United States Department of Agriculture (USDA) Standard Reference Database, and data on 204 

amino acids from the USDA database and the Bangladesh Food Composition Table (34, 35). We 205 

adjusted amino acid values depending on the protein value of the original source (36). Energy and 206 

nutrient intakes were summed across all items for each subject to estimate observed intakes from 207 

complementary foods.  208 

 We assumed that energy intake from breast milk was inversely related to energy intake from 209 

complementary foods (6). For each subject, we estimated total energy requirements based on FAO 210 
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sex-, weight-, and age-specific guidelines (37). We subtracted energy consumed from 211 

complementary foods from energy requirements, resulting in the assumed energy from breast milk. 212 

This was divided by the energy density of breast milk in LMICs (0.63 kcal/g) to estimate the 213 

amount of breast milk consumed (38). Breast milk consumption in liters was multiplied by the 214 

amount of each nutrient in mature breast milk. The breast milk content of nutrients affected by 215 

maternal status were obtained from the literature: vitamin A (227 μg/L), thiamin (0.16 mg/L), 216 

riboflavin (0.22 mg/L), vitamin B6 (0.10 mg/L), choline (90 mg/L), and vitamin B12 (0.28 μg/L) 217 

(39-41). For amino acids, values were obtained from WHO/FAO/United Nations University, and 218 

for remaining nutrients from WHO (38, 42). Observed energy and nutrient intakes from breast 219 

milk were added to those from complementary foods to estimate total observed intakes.  220 

 We adjusted observed protein intakes using the Digestible Indispensable Amino Acid Score 221 

method to estimate available protein. Because ileal digestibility factors are not available for most 222 

foods, fecal digestibility factors were assigned to each food item, as recommended by FAO (43). 223 

We obtained fecal digestibility factors from FAO and the literature (36, 44, 45).  224 

Usual intake distributions 225 

 Using SAS macros from the National Cancer Institute (NCI), we estimated usual total intake 226 

distributions for energy, crude and available protein, fat, vitamin A, thiamin, riboflavin, niacin, 227 

vitamin B6, folate, vitamin B12, choline, vitamin C, vitamin D, vitamin E, calcium, copper, iron, 228 

magnesium, phosphorous, potassium, and zinc (46). We ran the MIXTRAN macro to transform 229 

the observed intake data to approximate a normal distribution using a Box-Cox transformation 230 

procedure. For energy and nutrients consumed daily, we fit a one-part non-linear mixed model 231 

using the NLMIXED procedure. For components consumed episodically, we fit a correlated two-232 

part non-linear mixed model.  233 
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 At baseline, we pooled subjects and included a treatment covariate due to the small sample 234 

size and observed lack of difference in food group consumption between arms (47). At nine and 235 

12 months, we ran models separately by arm to allow regression coefficients and variance terms 236 

to differ by treatment assignment. Each model included a random term for individual subjects and 237 

covariates for sex and weekend day (Friday or Saturday). Assessment sequence was specified in 238 

each model. We used the DISTRIB macro to run a Monte Carlo simulation, with weekend days 239 

assigned a weight of two out of seven days per week. To estimate percent energy from protein and 240 

fat, we used SAS macros that estimate the distribution of the ratio of two dietary components (48). 241 

We used clustered bootstrapping with n=1000 replicates to test differences in mean total usual 242 

intakes by arm at each visit.  243 

 For each nutrient, we used the usual intake distributions to estimate the proportion of infants 244 

with intakes at or above recommendations by age and arm (49). For fat, vitamin A, vitamin C, 245 

vitamin E, B-vitamins, choline, calcium, copper, magnesium, phosphorus, and potassium, we used 246 

the Adequate Intake (AI) values of the Institute of Medicine (IOM). Although it is not possible to 247 

estimate the prevalence of intake adequacy/inadequacy using the AI, groups with mean intakes at 248 

or above the AI can be assumed to have a low prevalence of inadequate intakes (50-52). For 249 

vitamin D, we used the Recommended Daily Allowance value of the IOM (53). For crude and 250 

available protein, we assessed intake adequacy relative to requirements on a per-kilogram body 251 

weight basis (1.12 g/(kg·d) for six- and nine-month-olds, 0.95 g/(kg·d) for 12-months-olds) (43). 252 

We evaluated the prevalence of zinc intake adequacy relative to the Estimated Average 253 

Requirement (4 mg/d) from the International Zinc Nutrition Consultative Group for an unrefined 254 

diet with low zinc bioavailability (54). For iron, we used the probability approach based on the 255 

distribution of usual iron intake and distribution of iron requirements. The IOM provides an iron 256 
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requirement distribution for six to 12-month-olds, which reflects the 10% iron bioavailability 257 

typical of a high phytate diet (55, 56). Differences in proportions between groups for each nutrient 258 

were estimated at each visit using clustered bootstrapping with n=1000 replicates. 259 

 260 

Results 261 

 There were 3398 eligible infants from 283 clusters (Figure 1). Among these, parental 262 

consent was obtained for 3051 infants (89.8%). Twelve-month interviews were completed for 263 

2640 infants (86.5% of those consented). After excluding subjects missing compliance data and 264 

comparing the age distributions between arms at 12 months, 757 infants (137 clusters) in the egg 265 

arm and 943 infants (141 clusters) in the control arm were retained for analyses. Baseline 266 

characteristics of those included and excluded were comparable; observed differences in maternal 267 

age and education and infant age and stunting were of small magnitude (Supplemental Table 1).  268 

 Baseline characteristics were balanced between arms, aside from wasting (Table 1). Across 269 

arms, most infants lived in food secure households (67.6%) and had mothers who had completed 270 

primary education (71.9%). Infants were a mean age of 6.3 ± 0.3 months. Prevalence of stunting, 271 

wasting, and underweight were 19.6%, 6.1%, and 16.4%, respectively. The intervention began for 272 

most subjects in the egg arm (77.1%) before the six-month interview. Subjects for whom baseline 273 

dietary intake data were assessed were younger than those excluded (Supplemental Table 2).  274 

Among those for whom baseline dietary intake were analyzed, breastfeeding status, 275 

frequency, and estimated breast milk intake did not differ between arms (Table 2). At the nine- 276 

and 12-month visits, ~98% of infants in each arm continued to be breastfed; estimated breast milk 277 

intake was lower in the egg versus control arms. At each visit, food group consumption was 278 

generally comparable between arms (Table 3). At ~12 months, dairy and liver consumption were 279 
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higher in the egg arm (p-value <0.05). Almost all caregivers in the egg arm and about one-third in 280 

the control reported infants had consumed an egg in the 24 hours prior to the nine- and 12-month 281 

interviews. Other than trial eggs, fish was the most commonly consumed ASF in each arm (~50% 282 

at 12 months). Across arms, most ~12-month-olds had consumed cereals (94.2%), tubers (63.4%), 283 

or biscuits (59.9%) in the last 24 hours; 30.0% and 10.0% had consumed fruits or vegetables rich 284 

in vitamin A and vitamin C, respectively. 285 

Estimated mean total usual intakes at the six-month visit were comparable between groups; 286 

despite significant p-values for various nutrients, the magnitude of difference in mean intakes was 287 

small (Table 4). Among nutrients for which we compared six-month intakes to the AI, estimated 288 

mean total intakes were equal to or greater than the AI for fat and copper. Estimated mean usual 289 

energy and nutrient intakes increased with age in both groups. At ~nine- and 12-months, estimated 290 

mean total usual intakes were higher for energy and most nutrients in the egg versus control arms, 291 

particularly for those present in eggs (e.g., protein, vitamin A, B-vitamins, choline, phosphorus, 292 

zinc) (Supplemental Table 3). Estimated mean total usual intakes of vitamin C and calcium were 293 

higher in the control arm at ~nine- and 12-months, and of potassium at ~12-months. 294 

No infants met intake recommendations for micronutrients at baseline, except for 295 

riboflavin, folate, choline, and copper (Table 5). At ~12-months, almost all infants in both arms 296 

had adequate protein intakes, even after adjusting for protein availability. In both arms, estimated 297 

mean total fat intake was greater than the AI and >60% of infants met the recommendation (Tables 298 

4 & 5). Estimated mean total intakes of thiamin, riboflavin, niacin, vitamin B6, choline, and 299 

phosphorus were at or above the respective AI in the egg arm, but not in the control. The proportion 300 

of infants meeting the AI for B-vitamins, choline, magnesium, and phosphorus were particularly 301 

higher in the egg versus control arms, but remained <50% for thiamin, riboflavin, vitamin B6, 302 
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folate, and magnesium in the egg arm. Estimated mean total calcium intake was greater than the 303 

AI only in the control arm and the proportion meeting the recommendation was higher in the 304 

control versus egg arms. Less than 5% of infants in each arm met recommendations for vitamin 305 

A, vitamin C, iron, potassium, and zinc, and none met those for vitamin D or vitamin E. Similar 306 

trends were found at the nine-month visit.  307 

 308 

Discussion  309 

The provision of a daily egg during the early complementary feeding period increased 310 

estimated usual intakes of energy and protein among infants at ~nine and 12 months of age. For 311 

most micronutrients, the estimated mean total usual intakes and the proportion of infants meeting 312 

intake recommendations were higher in the egg arm compared to the control. However, among 313 

those receiving the intervention, <50% met the recommended intakes at ~12 months for thiamin, 314 

riboflavin, vitamin B6, folate, calcium, and magnesium; <5% for vitamin A, vitamin C, iron, 315 

potassium, and zinc; and none for vitamins D or E.   316 

Few studies have examined the contribution of increasing ASF consumption on dietary 317 

intakes during the complementary feeding period in LMICs. Our finding of a small difference in 318 

estimated mean total usual energy intake between arms was not surprising, given the method used 319 

to estimate breast milk intake. Our assumption of an inverse relationship between energy intake 320 

from breast milk and that from complementary foods, based on a study in Bangladesh that 321 

measured breast milk intake using test weighing, has been used by other studies estimating energy 322 

intake (6, 50, 57). However, the method has limitations. It is possible that subjects’ total energy 323 

intake was greater or less than their energy requirements, and their energy and nutrient intakes 324 

from breast milk differed from our estimations. Considering the observed breastfeeding practices 325 
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and variation in energy intake from complementary foods, this method was preferable to using 326 

WHO-published average breast milk intake amounts (38, 57). 327 

The higher estimated usual intakes of crude and available protein in the egg arm were 328 

expected given the protein and amino acid content of eggs. The egg trial in Malawi, a meat and 329 

milk supplement trial in Kenya, and fortified food supplement trials in LMICs yielded similar 330 

results on protein intake (16, 58-60). After adjusting for protein quality, almost all subjects in our 331 

study had adequate protein intakes. Other studies in LMICs adjusting protein intake similarly 332 

reported adequate protein intake among infants and children (16, 36, 61). The estimated total usual 333 

intakes of fat were comparable between groups in our study due to the high fat content of breast 334 

milk (38).  335 

Although we estimated a greater mean intake of vitamin A in the egg versus control arms, 336 

almost all subjects across arms did not meet the AI. Overall, consumption of vitamin A-rich foods 337 

like liver, meat, fruits, and vegetables was low. Additionally, more than half of the total estimated 338 

energy consumed at each visit was from breast milk, the vitamin A content of which is affected by 339 

maternal status (38). This suggests that daily egg consumption would be insufficient to boost 340 

infants’ vitamin A intakes to recommended amounts without intervening on other parts of the diet, 341 

particularly when maternal intake of the vitamin is low. It is possible that we underestimated the 342 

breast milk content of vitamin A. We used a value estimated from a study in Bangladesh that 343 

assessed maternal and infant serum retinol concentrations and breast milk vitamin A concentration 344 

(41). A more recent publication from our study area reported a lower prevalence of vitamin A 345 

deficiency based on maternal serum retinol concentration (62). Further research is needed on 346 

maternal dietary intake and breast milk nutrient composition in this setting. 347 
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Our findings indicate that consuming an egg a day could significantly improve intakes of 348 

B-vitamins and choline, but the benefits of doing so would be strengthened if integrated within 349 

efforts to increase diversity in the diet. B-vitamins are found in a variety of foods, including flesh 350 

and organ meat, dairy, dark leafy vegetables, and legumes, yet these foods were consumed by 351 

<30% of subjects at ~12 months. Similar conclusions can be made regarding vitamin C, which is 352 

not found in eggs, and vitamins D and E, which are present but not in high amounts. Across arms, 353 

most subjects did not meet recommended intakes for these nutrients, reflecting low quality and 354 

diversity in the background diet. For example, only ~10% consumed vitamin C-rich foods (e.g., 355 

citrus fruits, berries, mango) at ~12 months. Like our study, the egg trial in Malawi observed higher 356 

intakes for several micronutrients in the egg arm, but that the prevalence of inadequacy was high 357 

for many micronutrients (16). Across contexts, when the typical diet is lacking in multiple 358 

micronutrients, encouraging caregivers to regularly feed infants and children eggs should be part 359 

of a comprehensive dietary strategy addressing the specific nutrient gaps of the population. Quality 360 

dietary assessments across populations are needed to identify these gaps. 361 

Although meeting nutrient needs has been challenging in LMICs, lessons have been 362 

learned from interventions promoting recommended infant and young child feeding practices (28). 363 

An assessment of programs in Bangladesh, Malawi, Peru, and Zambia concluded that 364 

complementary feeding practices, including dietary diversity, can be improved if interventions 365 

focus on the constraints to food access and use behavior change approaches that enable households 366 

to prepare and feed appropriate foods for infants and children (63). The Alive & Thrive program 367 

in Bangladesh, for example, delivered intensified interpersonal counseling, mass media, and 368 

community mobilization through an existing nationwide health program, achieving improvements 369 

in complementary feeding practices and demonstrating the beneficial impact of a large-scale 370 
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behavior change intervention on diet (28). Encouraging inclusion of different types of ASF in the 371 

diet is of particular important. Iron and zinc are found in low concentrations in breast milk, and 372 

complementary foods must be rich in these minerals for infants to meet requirements (50). Our 373 

egg intervention contributed to higher estimated mean iron and zinc intakes, but it was not enough 374 

to meet gaps, particularly as consumption of other ASF like meat was low. Cost and cultural factors 375 

may limit access to ASF. Several programs in LMICs have intervened on household animal 376 

production, successfully increasing consumption of targeted foods when designed to address the 377 

population’s specific needs and constraints (64). Evaluating the contextual factors influencing 378 

access to nutrient-dense foods like ASF can also reveal if other strategies should be considered, 379 

such as micronutrient supplementation or food fortification. 380 

There were some limitations to our study. We did not directly observe whether infants 381 

consumed trial eggs or provide messaging on not selling trial eggs. However, field workers visited 382 

households weekly to identify challenges in compliance. Our trial was partially blinded. This could 383 

have resulted in biased outcome assessments, although our interviewers were highly trained and 384 

had experience objectively assessing infant dietary intake. Our dietary intake assessment was not 385 

open-ended, which may have led to an underestimation of intakes. However, the pre-specified list 386 

was developed based on data collected in the study area and respondents had the opportunity to 387 

report additional foods. We did not directly measure breast milk intake and used previously 388 

published values of breast milk nutrient content, which can differ by setting (65). We did not 389 

analyze the nutrient profile of the eggs provided by the trial, which can vary (66, 67). A main 390 

strength of our study was collection of multiple days of intakes to estimate within-subject variance, 391 

which increased the precision of estimated usual intakes. We also used a study-specific food 392 
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composition table expanded to estimate vitamin B12 and choline intakes, and amino acid intakes 393 

to adjust for protein quality.  394 

Consumption of nutrient-dense foods like ASF, legumes, fruits, and vegetables was low in 395 

this rural area of Bangladesh, leading to relatively low intakes of numerous micronutrients. The 396 

provision of a daily egg starting at ~six months of age increased estimated usual intakes of energy 397 

and most nutrients, as well as the proportion meeting intake recommendations for nutrients 398 

important for early growth and development. Our findings indicate that promoting egg 399 

consumption should be coupled with other strategies designed to the specific needs of the 400 

population to ensure infants reach the recommended intakes for the nutrients typically lacking in 401 

their diet.  402 
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Figure 1.  Participant flow diagram of a trial providing a six-month protein intervention 

comparing the effect of the provision of a daily egg versus control on energy and nutrient 

intakes.
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Table 1. Household, maternal, and infant baseline characteristics of infants enrolled in a trial 

providing a six-month protein intervention comparing the effect of the provision of a daily egg 

versus control on energy and nutrient intakes, by intervention group1   

  Control (N = 943) Egg (N = 757) 

Characteristic n 

% or  

Mean ± SD n 

% or  

Mean ± SD 

Household         

Household size 934 4.5 ± 2.0 749 4.4 ± 1.9 

LSI quintile         

1st (lowest) 192 20.6 147 19.6 

2nd 189 20.2  143  19.1 

3rd  194 20.8  164  21.9 

4th 187 20.0  149  19.9 

5th (highest) 172 18.4  146  19.5 

HFI         

None 582 69.1 476 65.9 

Mild       243 28.9       224 31.0 

Severe        17 2.0        22 3.0 

Maternal         

Age, y 922 23.6 ± 5.5 728 23.7 ± 5.4 

Education         

No schooling 99 10.6 86 11.5 

1-9 y  679  72.8  528 70.9 

SSC passed  49  5.3  48 6.4 

≥11 y  106  11.4  83 11.1 

Infant         

Age, mo 856 6.3 ± 0.3 726 6.3 ± 0.3 

Sex, M 943 51.3 757 52.8 

Stunting, LAZ <-2 841 20.8 720 18.2 

Wasting, WLZ <-2** 832 4.7 718 7.7 

Underweight, WAZ <-2 844 17.3 722 15.4 
   1 Linear or logistic regression models with generalized estimating equations or multinomial regression models 

specified with robust standard errors were used to compare characteristics between groups (**P < 0.05). HFI, 

Household Food Insecurity estimated using a nine-item questionnaire collapsed into an index with possible scores 

ranging from nine to 36 and categorized as none (HFI=9), mild (HFI>9 to HFI<16), and severe (HFI≥16); LAZ, 

length-for-age z-score; LSI, Living Standards Index calculated based on household assets and dwelling 

characteristics using principal components analysis; SSC, Secondary School Certificate; WAZ, weight-for-age z-

score; WLZ, weight-for-length z-score (30, 33). 
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Table 2. Estimated breastmilk intake of infants enrolled in a trial providing a six-month protein intervention comparing the effect of the provision of a 

daily egg versus control on energy and nutrient intakes, by age and intervention group1 

  6 mo     9 mo     12 mo   

  

Control  

(n = 181) 

Egg 

(n = 173) 

P-

value   

Control  

(n = 867) 

Egg 

(n = 720) 

P-

value   

Control  

(n = 943) 

Egg 

(n = 757) 

P-

value 

Breastfed, %2 99.4 97.1 0.13   98.6 98.5 0.79   98.4 97.9 0.40 

Breastfeeding frequency, %2                       

1-10 times 10.6 7.7 0.77   15.1 10.9 0.03   20.3 15.8 0.07 

11-20 times 66.1 73.2     71.9 72.4     70.6 73.1   

21+ times 23.3 19.0     13.0 16.8     9.2 11.1   

Total energy needs, kcal  

   (Mean ± SD)3 544 ± 64 552 ± 75 0.20   594 ± 78 596 ± 77 0.49   641 ± 83 648 ± 84 0.13 

Estimated breast milk intake                       

Volume, L  

[Median (25th, 75th pctl)]4 

0.79  

(0.69, 0.88) 

0.79  

(0.68, 0.87) 0.66   

0.65  

(0.44, 0.80) 

0.56  

(0.37, 0.71) <0.001   

0.62 

(0.37, 0.81) 

0.48  

(0.21, 0.67) <0.001 

Percent of total energy, %  

[Median (25th, 75th pctl)] 

95  

(86, 100) 

95 

 (83, 100) 0.33   

70  

(48, 85) 

62  

(41, 75) <0.001   

62 

 (37, 79) 

49  

(21, 66) <0.001 
     1 Differences between groups tested using linear or logistic regression models with generalized estimating equations or multinomial regression models with robust standard errors 

for normally distributed data, and using clustered bootstrapping with n=1000 replicates for non-normally distributed data.  
2 In last 24 hours.                       
3 Estimated based on sex-, age-, and weight-specific energy requirements set by FAO (37).             

      4 Calculated only if assumed amount of breast milk > 0. Energy density of breast milk based on WHO (38). 
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Table 3. Consumption of food groups in the last 24 hours among infants enrolled in a trial providing a six-month protein 

intervention comparing the effect of the provision of a daily egg versus control on energy and nutrient intakes, by age 

and intervention group1 

  6 mo     9 mo     12 mo   

Food group, any % 

Control  

(n = 181) 

Egg  

(n = 173) P-value   

Control  

(n = 867) 

Egg  

(n = 720) P-value   

Control  

(n = 943) 

Egg  

(n = 757) P-value 

Cereals 40.9 43.4 0.62   92.4 92.1 0.80   93.3 95.2 0.12 

Tubers 0.6 2.9 0.12   48.6 47.8 0.65   63.1 63.7 0.93 

Legumes 3.3 4.0 0.65   26.1 26.2 0.97   26.1 26.2 0.86 

Formula 9.4 13.3 0.25   5.8 6.8 0.39   4.6 4.8 0.86 

Dairy 18.2 14.5 0.37   27.2 29.2 0.40   21.2 25.5 0.04 

Eggs2 11.6 13.3 0.59   30.2 97.6 <0.001   35.0 99.2 <0.001 

Fish 8.3 7.5 0.77   40.4 37.9 0.31   47.8 49.1 0.61 

Flesh meat 1.1 1.7 0.62   9.5 9.6 0.91   12.9 13.5 0.74 

Liver 7.7 4.6 0.24   13.1 11.9 0.50   9.7 13.2 0.02 

Vitamin A-rich F/Vs3 1.1 5.2 0.05   25.5 25.8 0.89   28.4 32.0 0.12 

Vitamin C-rich F/Vs4 1.1 3.5 0.11   5.4 5.7 0.75   9.3 10.8 0.40 

Biscuits 27.6 28.9 0.80   53.9 53.9 0.96   58.6 61.6 0.22 

Other sweet snacks 5.5 5.8 0.94   34.9 38.5 0.22   10.7 13.2 0.13 

Savory snacks 0.0 0.0 -   14.1 15.1 0.60   28.5 28.3 0.89 
     1 Logistic regression models with generalized estimating equations were used to compare groups. F/Vs, fruits and vegetables. 
     2 Includes consumption of eggs provided by the intervention at nine and 12 months. 
     3 Includes green leafy vegetables, khichuri, mango, pumpkin, papaya, carrot. 
     4 Includes mango, papaya, blackberry, orange, malta, cauliflower, pomelo, pineapple. 

 



 32 

Table 4. Estimated total usual nutrient intakes among infants enrolled in a trial providing a six-month protein intervention comparing the effect of the 

provision of a daily egg versus control on energy and nutrient intakes, by age and intervention group1 

      6 mo   9 mo   12 mo 

  

DRI 

  

Control 

(n=181) 

Egg  

(n=173) P- 

value 

  

Control  

(n=867) 

Egg  

(n=720) P- 

value 

  

Control  

(n=943) 

Egg  

(n=757) P- 

value     Mean ± SD Mean ± SD   Mean ± SD Mean ± SD   Mean ± SD Mean ± SD 

Energy, kcal/d -   545 ± 36 548 ± 36 0.26   602 ± 87 610 ± 93 <0.001   658 ± 111 669 ± 116 <0.001 

Protein, g/(kg·d) 0.95/1.12   1.5 ± 0.2 1.5 ± 0.2 0.52   1.7 ± 0.4 2.2 ± 0.4 <0.001   1.9 ± 0.5 2.4 ± 0.6 <0.001 

Available protein, g/(kg·d) 0.95/1.12   1.4 ± 0.3 1.3 ± 0.3 0.19   1.6 ± 0.4 2.0 ± 0.4 <0.001   1.8 ± 0.5 2.1 ± 0.6 <0.001 

Percent calories from protein -   7 ± 1 7 ± 0 0.26   9 ± 2 11 ± 1 <0.001   9 ± 1 11 ± 2 <0.001 

Total fat, g/d 30*   32 ± 5 32 ± 5 0.35   31 ± 6 31 ± 6 0.02   32 ± 7 32 ± 6 <0.001 

Percent calories from fat -   53 ± 6 53 ± 3 0.38   47 ± 6 46 ± 6 <0.001   45 ± 8 43 ± 7 <0.001 

Vitamin A, μg/d 500*   200 ± 5 200 ± 5 0.56   225 ± 39 246 ± 55 <0.001   228 ± 75 270 ± 95 <0.001 

Thiamin, mg/d 0.3*   0.2 ± 0.0 0.2 ± 0.0 <0.001   0.2 ± 0.0 0.2 ± 0.0 <0.001   0.2 ± 0.1 0.3 ± 0.1 <0.001 

Riboflavin, mg/d 0.4*   0.2 ± 0.1 0.2 ± 0.1 0.01   0.3 ± 0.1 0.4 ± 0.1 <0.001   0.3 ± 0.1 0.4 ± 0.1 <0.001 

Niacin, mg/d 4*   1.5 ± 0.4 1.5 ± 0.4 0.24   2.7 ± 0.8 3.6 ± 0.8 <0.001   3.5 ± 1.3 4.5 ± 1.4 <0.001 

Vitamin B-6, mg/d 0.3*   0.1 ± 0.0 0.1 ± 0.0 <0.001   0.2 ± 0.1 0.2 ± 0.1 <0.001   0.2 ± 0.1 0.3 ± 0.1 <0.001 

Folate, μg/d 80*   70 ± 11 70 ± 11 0.05   71 ± 11 76 ± 17 <0.001   74 ± 17 78 ± 19 <0.001 

Vitamin B-12, μg/d 0.5*   0.4 ± 0.0 0.3 ± 0.0 <0.001   0.6 ± 0.3 0.8 ± 0.2 <0.001   0.7 ± 0.4 1.0 ± 0.5 <0.001 

Choline, mg/d 150*   80 ± 22 78 ± 22 <0.001   95 ± 24 153 ± 24 <0.001   105 ± 34 168 ± 29 <0.001 

Vitamin C, mg/d 50*   31 ± 4 31 ± 4 0.13   30 ± 1 29 ± 11 <0.001   32 ± 9 27 ± 9 <0.001 

Vitamin D, μg/d 10   0.5 ± 0.2 0.5 ± 0.2 0.67   0.6 ± 0.2 1.0 ± 0.3 <0.001   0.6 ± 0.3 1.1 ± 0.2 <0.001 

Vitamin E, mg/d 5*   1.9 ± 0.3 1.9 ± 0.3 0.24   2.0 ± 0.2 2.0 ± 0.5 <0.001   2.1 ± 0.4 2.1 ± 0.6 0.12 

Calcium, mg/d 260*   246 ± 9 246 ± 9 0.94   254 ± 47 242 ± 55 <0.001   270 ± 76 255 ± 46 <0.001 

Copper, mg/d 0.22*   0.2 ± 0.0 0.2 ± 0.0 0.04   0.3 ± 0.1 0.4 ± 0.1 <0.001   0.4 ± 0.1 0.5 ± 0.1 <0.001 

Iron, mg/d -   0.5 ± 0.2 0.6 ± 0.2 <0.001   1.5 ± 0.7 2.0 ± 0.4 <0.001   2.0 ± 1.0 2.7 ± 0.8 <0.001 

Magnesium, mg/d 75*   32 ± 7 32 ± 7 <0.001   52 ± 16 58 ± 14 <0.001   63 ± 21 71 ± 14 <0.001 

Phosphorus, mg/d 275*   140 ± 8 142 ± 8 0.11   193 ± 52 248 ± 48 <0.001   227 ± 63 291 ± 75 <0.001 

Potassium, mg/d 860*   449 ± 60 449 ± 60 0.96   504 ± 106 505 ± 98 0.18   552 ± 124 547 ± 140 <0.001 

Zinc, mg/d 4   1.2 ± 0.3 1.1 ± 0.3 <0.001   1.7 ± 0.4 2.3 ± 0.4 <0.001   2.0 ± 0.6 2.7 ± 0.7 <0.001 
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     1 Differences in mean usual intakes estimated using clustered bootstrapping with n=1000 replicates. P-values were adjusted for multiple comparisons such that P < 0.05/22 = 0.002 

was considered statistically significant. Available protein intake was estimated using the Digestible Indispensable Amino Acid Score method (43). DRI, Dietary Reference Intake. 

DRIs listed for infants six to 12 months of age. Adequate Intake values are followed by an asterisk (*). The DRI listed for vitamin D is the Recommended Dietary Allowance value. 

All other values are Estimated Average Requirements (53). 
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Table 5. Proportion (%) meeting nutrient intake recommendations among infants enrolled in a trial providing a six-month protein intervention 

comparing the effect of the provision of a daily egg versus control on energy and nutrient intakes, by age and intervention group1 

  6 mo     9 mo     12 mo   

  

Control  

(n = 181) 

Egg  

(n = 173) P-value   

Control  

(n = 867) 

Egg  

(n = 720) P-value   

Control  

(n = 943) 

Egg  

(n = 757) P-value 

Protein, g/(kg·d) 98.9 98.8 0.97   94.8 99.9 <0.001   99.3 99.9 <0.001 

Available protein, g/(kg·d) 84.6 79.8 0.01   90.7 99.6 <0.001   98.0 99.7 <0.001 

Total fat, g/d 68.7 69.5 0.33   60.2 60.6 0.35   63.9 62.7 0.01 

Vitamin A, μg/d 0.0 0.0 -   0.0 <0.1 <0.001   0.2 2.2 <0.001 

Thiamin, mg/d 0.0 0.0 -   1.2 2.6 <0.001   9.7 22.4 <0.001 

Riboflavin, mg/d 0.5 0.7 0.13   13.8 29.6 <0.001   21.7 45.9 <0.001 

Niacin, mg/d 0.0 0.0 -   6.3 28.2 <0.001   28.2 59.6 <0.001 

Vitamin B-6, mg/d 0.0 0.0 -   2.0 2.9 <0.001   11.9 23.1 <0.001 

Folate, μg/d 17.4 16.8 0.22   22.0 36.4 <0.001   35.2 43.7 <0.001 

Vitamin B-12, μg/d 0.0 0.0 -   60.3 91.2 <0.001   62.4 83.7 <0.001 

Choline, mg/d 0.2 0.1 0.22   2.0 52.5 <0.001   10.1 71.7 <0.001 

Vitamin C, mg/d 0.0 0.0 -   0.0 4.2 <0.001   3.6 1.5 <0.001 

Vitamin D, μg/d 0.0 0.0 -   0.0 0.0 -   0.0 0.0 - 

Vitamin E, mg/d 0.0 0.0 -   0.0 0.0 -   0.0 0.0 - 

Calcium, mg/d 0.0 0.0 -   42.8 35.3 <0.001   51.1 42.6 <0.001 

Copper, mg/d 61.3 58.8 0.02   94.3 100 <0.001   98.4 99.8 <0.001 

Iron, mg/d 0.0 0.0 -   0.3 0.1 <0.001   1.3 1.9 <0.001 

Magnesium, mg/d 0.0 0.0 -   8.5 11.1 <0.001   24.5 36.2 <0.001 

Phosphorus, mg/d 0.0 0.0 -   7.0 26.2 <0.001   19.9 54.2 <0.001 

Potassium, mg/d 0.0 0.0 -   0.3 0.2 0.04   1.7 2.7 <0.001 

Zinc, mg/d 0.0 0.0 -   <0.1 0.1 <0.001   0.6 4.8 <0.001 
1 Calculated by comparing usual intake to Adequate Intake values of the Institute of Medicine (IOM), with exception for protein, iron, and zinc (53). Prevalence of adequate 

crude and available protein intake calculated by comparing usual intake to requirements on a per-kilogram weight basis, or 1.12 g/(kg·d) for six- and nine-month-olds and 0.95 

g/(kg·d) for 12-month-olds as described by FAO (44). Prevalence of adequate iron intake was assessed relative to requirement Table I-5 for six- to 12-month-olds from the 

IOM, and that of zinc relative to the Estimated Average Requirement value (4 mg/d) set by the International Zinc Nutrition Consultative Group (53, 54). Differences between 

groups tested using clustered bootstrapping with n=1000 replicates. P-values were adjusted for multiple comparisons such that P < 0.05/22 = 0.002 was considered statistically 

significant. 
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