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Figure 1. Final Visualization Poster for Information Visualization Massive Open Online Course 2017 GloBI Client Project (High 

resolution at https://doi.org/10.5281/zenodo.814922) 

 

Abstract— Global Biotic Interactions (GloBI) provides an infrastructure and data service that aggregates and archives known biotic 

interaction databases to provide easy access to species interaction data. This project explores the coverage of GloBI data against 

known taxonomic catalogs in order to identify ‘gaps’ in knowledge of species interactions. We examine the richness of GloBI’s datasets 

using itself as a frame of reference for comparison, and explore interaction networks according to geographic regions over time. The 

resulting analysis and visualizations intend to provide insights that may help to enhance GloBI as a resource for research and 

education (Figure 1). 

Index Terms— GloBI, GBIF, Taxonomy, Interactions, Visualization, Sunburst, Bubble chart, Bipartite network, Geospatial, 

Temporal, Neo4j, Graph database, Chordate, Eltonian Shortfall

 

1. INTRODUCTION 
1.1 OVERVIEW 

The web of relations among biological organisms in the 
natural world represents a complex system of interactions. 
Efforts to catalog the rich nature of species interactions reveals 
fundamental gaps in biological diversity (biodiversity) 
knowledge. Global Biotic Interactions (GloBI) is an ambitious 
project undertaken by Poelen, Simons, and Mungall [1] to 

consolidate observations and research data of this rich 
phenomenon. GloBI provides an interactive infrastructure for 
aggregating databases and archiving species interaction 
datasets for research and education. An interactive browser 
allows GloBI users to query its database according to species 
taxa, scientific name, region, and visualize species interactions 
in tree graphs and interaction networks. Direct applications of 
GloBI’s data services are found in the Encyclopedia of Life 
(EOL) [2], and the Gulf of Mexico Species Interaction Database 
(GoMexSI) [3]. The scope of interaction data in GloBI’s 
databases is vast, ranging from field observations of specimen 
stomach contents to digitally archived data. According to Poelen 
and his colleagues, the sampling density between aggregated 
databases is highly variable across taxonomic rank, region, and 
time [1]. 
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The main goal of the present project is to examine the extent 
of data coverage in GloBI and identify potential gaps in 
biodiversity data. We constructed several visualizations to show 
(a) the extent of the hierarchical taxonomy in GloBI compared 
to larger, more complete taxonomies, (b) the completeness, or 
data-richness, of GloBI within its own datasets as a frame of 
reference, and (c) the network structure of species-level 
interactions in GloBI according to geospatial and temporal 
information. These three levels of analysis each serve to identify 
gaps in GloBI’s data structure and point to areas of 
improvement or expansion. The resulting visualizations seek to 
enable users to understand potential strengths and 
shortcomings of GloBI’s datasets. Overall, our efforts are 
intended to offer suggestions for helping to make GloBI a more 
effective tool for research and encourage the development of 
GloBI as a data resource.  
 
1.2 BACKGROUND and RELATED WORK 
1.2.1 Taxonomy of Biological Classifications 

Taxonomy is the practice and science of organizing 
components of a system into a hierarchical structure based on 
a variety of shared traits between the components. Humans 
have spent centuries trying to develop a mutually exhaustive 
taxonomy that could hierarchically organize all of the known and 
unknown organisms in the world. 

Carl Linnaeus, who is considered the “father of taxonomy”, 
published the first edition of Systema Naturae in 1735 which 
offered an organization system for the inhabitants and contents 
of Earth into three kingdoms: Animalia (animals), Vegetabilia 
(plants), and Mineralia (minerals). Each kingdom was further 
organized, with increasing specificity, by class, order, genus, 
and species [4]. In 1768, the 10th edition Systema Naturae 
introduced the zoological organization of living organisms 
where each kingdom was biologically and morphologically 
organized [5). With the species discoveries and scientific 
advances since Systema Naturae, the Linnaean taxonomic 
system has been organized into the following taxonomic levels 
(i.e. taxa) of biological classification (in increasing specificity): 
kingdom, phylum, class, order, family, genus, and species. The 
information and concepts informing how living things should be 
grouped and categorized has changed over time. The 
contemporary adaptation of the Linnaeus taxonomy consists of 
seven kingdoms: Animalia, Archaea, Bacteria, Chromista, 
Fungi, Plantae, and Protozoa [6].  

In this traditional taxonomy the application of a name to a 
taxon is based on both a type and a rank. There is also a 
phylogenetic approach to taxonomy that ties names to a clade, 
which is a group consisting of its ancestor and all its 
descendants. The sorting of clades are presently under 
constant development, but this approach already results in the 
use of nested taxa nomenclature coexisting with the traditional 
one. 

The taxonomic hierarchical organization of the biological 
world has enabled scientists to better understand the similarities 
and differences between species in addition to aiding the study 
of biodiversity. 
 
1.2.2 Biodiversity and Interactions 
Incompleteness of Biodiversity Data 

Aggregated data infrastructures bring together dispersed 
sources into a common framework and facilitate the 
capitalization of the available knowledge. In the case of 
biodiversity databases, the available knowledge is clearly 
incomplete. Indeed, available biodiversity data is known to be 
full of biases and gaps. This situation is due to the complex and 
extensive nature of biodiversity as well as its recording, making 
it overall impossible to achieve complete knowledge. The data 

shortfalls are of many types, with seven being identified and 
their consequences and remedies analyzed (Table 1) [7]. 

 

Table 1. The Seven Main Shortfalls of Biodiversity 

Knowledge [7] 

Linnean shortfall – Most of the species on Earth have not 
been described and cataloged 

Wallacean shortfall – The knowledge on the geographic 
distribution of most species is incomplete, being most 
times inadequate at all scales 

Prestonian shortfall – Lack of data on species 
abundances and their dynamics in space and time are 
often scarce 

Darwinian shortfall – Lack of knowledge about the tree of 
life and evolution of species and their traits 

Raunkiæran shortfall – Lack of knowledge on species’ 
traits and their ecological functions 

Hutchinsonian shortfall – Lack of knowledge about the 
responses and tolerances of species to abiotic conditions 

Eltonian shortfall – Lack of enough knowledge on species’ 
interactions and their effects on individual survival and 
fitness 

 

Biotic interactions are practically impossible to be 
completely described, due to the complexity of the phenomena. 
Biotic interactions could actually be inferred from proxies rather 
than direct observations [8]. Still, accurate records are needed 
to validate such models. Also, the more local the scale of study 
the more actual observations are useful and are needed. Table 
2 details the consequences of lack of biotic interaction data and 
the strategies proposed to tackle with it. 

Identifying gaps and biases in our knowledge, existing 
databases, and datasets serves several purposes. First, it helps 
identify areas underrepresented and guide prioritization efforts 
[9]. It also provides indispensable information to interpret the 
available data. This information comes under many formats, for 
example: data quality, quality flags, uncertainty estimates, or 
so-called maps of ignorance. To furnish biodiversity related 
datasets with such information is a work in development [10]. 
 
1.2.3 Identifying Gaps in GloBI’s Datasets  

A major challenge for identifying gaps in data coverage is to 
get a handle on the large volume of data in GloBI’s aggregated 
databases. In order to grasp what is missing, first we must 
explore what data there are, and identify sources the data were 
obtained from.  As Poelen and his colleagues describe, “spatial, 
temporal, and taxonomic coverage of the combined datasets 
shows that the aggregation of the described data sources 
covers about 50,000 taxa (or 8% of total number of ITIS taxa) 
in a period from 1897 until the present”[1]. As described above, 
taxonomic coverage varies considerably between datasets, 
with the majority of coverage contributed by three principle 
sources [11] [12] [13], with the largest coverage provided by 
data mining to extract species interactions from text objects in 
EOL [11]. 
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Table 2. Eltonian Shortfall of Biotic Interactions: Consequences and Strategies  [7] 

Eltonian shortfall : 
Consequences 

Short-term strategies to 
account for uncertainty 

Long-term strategies for filling in the shortfall 

 Lack of ability to predict 
species’ responses to global 
change 

 Lack of knowledge about 
assembly rules 

 Inability to predict processes 
in non-analog communities 

 Difficulty of restoration 
processes 

 Inability to predict diseases 

 Inability to characterize 
community structure 

 Concentrate efforts on the 
best-studied interactions 
and well-resolved taxa 

 Produce careful meta-
analyses of the best 
datasets 

 Prioritize studies on 
interaction networks at sites 
which hold basic data from 
other studies (e.g. 
permanent forest plots) 

 Set clear and widely applicable definitions 
of interaction types 

 Develop standards for field procedures to 
ensure minimum comparability, either 
longitudinal, across sites or across systems 

 Allocate resources for large-scale field 
work, prioritizing interactions that are clearly 
linked to key ecosystem processes and 
services (e.g. pollination) 

 Invest in applying new technologies to 
interaction surveys (e.g. fingerprinting or 
molecular profiling of gut contents) 

 
In addition, most of the spatiotemporal interaction data were 

provided by stomach sampling in International Council for the 
Exploration of the Sea datasets [14, 15]. Geographically, the 
spatiotemporal interaction data are concentrated in Europe, 
North America, the Southern Ocean, New Zealand, with highest 
densities of observations obtained from the Gulf of Mexico, 
North Sea, and Weddell Sea [16] [1]. Furthermore, variability in 
the consistency of measurements obtained from field 
observations versus archived interaction databases may 
constrain visualization of species interactions overall.    
 
1.2.4 Past IVMOOC GloBI Projects 

Species interactions can be visualized using a variety of 
approaches. Previous teams of Information Visualization 
Massive Open Online Course (IVMOOC) students mapped 
GloBI’s data resources using interactive platforms to query 
taxonomic information, static representations of network 
associations, or a combination of both. Baron et al. [17] created 
an interactive Ecosystem Explorer designed for educational use 
with high school students using the GloBI web API. The GloBI 
Explorer tool allowed users to explore interactions among 
species and food webs with information cards that displayed a 
photograph, scientific name, common name, and interactions 
for each organism. Relations between organisms were 
represented as bipartite networks in “drill-down” columns, which 
helped reduce millions of possible interactions down to those of 
particular interest by region and taxa. 

In 2014 Slyusarev et al. [18] created a GloBI food web map 
as a static network graph with a geospatial choropleth map 
insert. This graph represented a food web of predator-prey 
relationships instantiated at species level. A second network 
graph with weighted edges was generated to identify 
community structure. In the network of predator-prey 
interactions, node size corresponded to number of species, 
edge width to number of original connections. Color was also 
used to identify marine and terrestrial ecoregions. Integration of 
geospatial information with the network graph helped to relate 
specific interactions to world regions.  A third team created a 
spatial food web map illustrating key predator-prey interactions 
at different depths and locations in the Gulf of Mexico based on 
data from GoMexSI [3]. None of the past IVMOOC projects 
delineated gaps in GloBI’s data coverage, which is the goal of 
the present project.  
 

 
1.3. OBJECTIVES of Visualizations 
 

1.3.1 Compare GloBI with External Reference GBIF 

In order to visualize what GloBI “knows” and “doesn’t know”, 
we proposed the development of a comparative visualization of 
the species represented in the GloBI dataset versus all the 
species known and identified within an external reference 
system. Ideally, this visualization would help inform researchers 
and potential contributors to the GloBI dataset about where their 
data could supplement the expansion of the dataset. 

The Global Biodiversity Information Facility (GBIF) [19], 
which catalogs taxonomic rank-based hierarchy of all 1,643,948 
species known to exist or have existed (accessed March to April 
2017), is used as the reference system on which the extent of 
GloBI species data is visually encoded. Figure 2 shows a 
simplified mock-up that depicts the difference between GloBI 
and GBIF taxon coverage.   
 

 
Figure 2. Simplified mockup of taxon coverage of GloBI 

compared with GBIF data. 
 
1.3.2 Analysis of GloBI Data-richness  

GloBI catalogs interaction data at various taxonomic levels 
(e.g. kingdom, species), and if available, the location and date 
of the field observation of the interaction. The more specific the 
data, the more detailed analysis of an interaction can be 
performed. We analyzed the completeness of the data in terms 
of presence or absence of records at the species level, 
availability of information on geolocation, and interaction 
observation date. For this purpose, interaction observations 
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containing these three attributes are categorized as “golden 
data”. As part of this analysis we present an overview of the 
counts for different data-rich sets and, as well as geospatial 
maps of interactions observations over time. 
 
1.3.3 Interaction Networks 

Another way to identify gaps in knowledge is based on the 
idea that as our queries into GloBI’s data resources become 
more focused, some of the richness of species interactions is 
reduced as data are filtered by species, location, or time. For 
example, researchers using GloBI as a source of data will 
extract information relevant to specific research questions, 
according to their perspective and needs. Such queries may 
return different cross sections of interaction data, by specific 
species, in particular regions, over a certain period of time, 
returning smaller portions of the entire dataset. Given practical 
considerations, it may prove difficult to visualize interactions at 
the Kingdom level. Therefore, we explore interaction data for 
the Chordata phylum, creating various subsets at the species 
level to represent source-target interactions as bipartite 
networks. 

The concept of a “golden dataset” is used to represent the 
datasets that include interactions with geospatial location and 
temporal information. In addition to getting a sense of where the 
majority of interaction occurrences are observed, we will also 
gain some understanding of where observation are lacking. In 
addition to location, time slices of interactions will show when 
observations were obtained, and how they may have changed 
over time. Overall, several types of visualizations were 
produced to address different aspects of our gap analysis in an 
attempt to understand the extent of data gaps in GloBI,  
 
2. METHODS 
 

2.1 THE DATA 
 

2.1.1 Extraction of Datasets from GloBI  

The GloBI dataset was accessed via a neo4j database, an 
implementation of a graph database [1]. It contains information 
from different studies during which researchers studied 
interactions amongst different organisms, called specimens in 
this dataset. There are various types of interactions and at 
different taxonomic levels. 

The major data entities in GloBI are depicted in Figure 3. 
The GloBI database has 115,358 unique specimens (across 
various taxa levels) for 36 types of interactions as verified from 
the Tab Separated Values (TSV) extract. Currently (as of April 
2017) there is a total of 2,263,653 specimen observations 
across all taxa.  GloBI data are made available in different 
formats – graph database (as a Neo4j database), Tab 
Separated Values (TSV), Resource Description Framework 
(RDF), and Darwin Core [21]. We selected both the Neo4j 
database the TSV file for our project. The TSV file is a listing of 
all interactions, with each row representing one type of 
interaction between two specimens. The general format of a row 
of data is: 

 
[sourceSpecimen] [interacts with] [targetSpecimen] [optional 
observation date of interaction record] [optional location of 
interaction record] [reference citation of study that recorded 
interaction] 
 

In addition to the name of the specimen, there are additional 
characteristics such as the taxon level, the full taxon path, and 
identification numbers to taxonomic catalogs. This TSV file was 
imported into a table named INTERACTIONS. We added a 

number of indexes to this table as we examined the data from 

various perspectives. The columns upon which we added 
indexes were:  

 
sourceTaxonName, sourceRank, sourceTaxonID, 
targetTaxonName, targetRank, targetTaxonID, interaction, 
locality, and eventDateUnixEpoch. 

 
 

 
Figure 3. GloBI Database Architecture (from Poelen et al. [1]) 

The INTERACTIONS table was by far the largest table in 
the SQL Server database, about 4 GB. To aid querying, we 
added a table, GloBI_TAXON_PATH that contained a parsed 
list of the taxon ranks for each specimen. A third table, 
TAXON_MAPPING, was created to assist the process of 

normalizing the various taxon ranks to a small but widely used 
subset. For example, GloBI has 17 variations for the class 
taxon, such as cl., Cohort, klase, onderklasse etc. 

The SQL Server database is available here: 
https://doi.org/10.5281/zenodo.804103 

 
2.1.2 Extraction from GBIF Reference System 
 

Choice of reference system. The project originally planned on 

comparing GloBI with the Catalogue of Life (CoL) taxonomy 
[22]. However, CoL identification number are not consistent 
across CoL releases and these IDs are not in the GloBI dataset. 
Matches would have to be found via specimen names and that 
would have resulted in false negative matches due to various 
naming schemes. The client suggested that we use GBIF as the 

https://doi.org/10.5281/zenodo.804103
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reference system since the GBIF IDs are already available in 
GloBI. Also, GBIF contains information from CoL and other 
taxonomies, making GBIF a superset of taxonomic data. In 
GBIF, a number of datasets have been brought together. The 
GBIF database has 31,886 datasets from 1,186 institutions, and 
1,643,948 species (it does however note that 1,174,586 species 
(71%) are still under review).  
 

Extraction of data from GLoBI and GBIF. By merging GloBI 

and GBIF datasets into a common data store, we could 
compare the GloBI records with GBIF IDs to all of the GBIF 
records. We chose to use SQL Server as the common data 
platform. Associated with each GloBI specimen, is its GBIF ID. 
However, this GBIF ID is embedded within a long delimited field 
that contains the ID for all taxon levels for this specimen. In 
addition to GBIF, it contains IDs for CoL, EOL, World Registry 
of Marine Species, Integrated Taxonomic Information System 
and others [19]. We pre-processed the specimen data from 
GloBI to only extract the corresponding taxon level GBIF ID. For 
instance, if the specimen was at the species taxon, we located 
the GBIF ID for the corresponding species. If the specimen was 
at the genus taxon, we chose the ID for the genus taxon. GBIF 
IDs were extracted and stored in a separate table, 
EXTERNAL_IDS, linked to the TaxonID that is unique to GloBI. 
The table EXTERNAL_IDS also contains a source identifier, 
allowing it to be used, without change, against other taxonomic 
catalogs. 

GBIF contains taxonomic information and all occurrences 
known to them. Our initial investigation into GBIF led us to 
downloads that contained all occurrence data for a species, 
resulting in large dataset for even the smallest of kingdoms. For 
example, the kingdom Archaea has 523 known species, but the 
dataset had 18,888 records. The phylum Chordata with 120,428 
species turned out to contain 455,403,193 occurrence records 
and was about 700 GB in size. Lacking the computing power to 
extract and process this volume of data, we chose to visualize 
GloBI’s coverage of the Archaea and Protozoa kingdoms 
However, close to the end of this project, we discovered as a 
proof of concept. Taxon store within GBIF, available at 
http://doi.org/10.15468/39omei. This dataset was much smaller 
than the occurrence set.  
 
2.1.3 Extracting GloBI Data-Richness and Interaction 
Network Visualizations 
 

Unique species-level, geolocation, and time observations. 

The overview bar graphs were built with data extracted April 4, 
2017 from GloBI using Neo4j. It contained a total of 556,496 
unique species-level records with the following attributes: 
source taxon ID, source taxon rank, source taxon path name, 
decimal latitude, decimal longitude, and event date Unix Epoch. 
 

Geolocation/temporal interactions. Interaction observations 

that contained geolocation and or time information were 
extracted across all seven domains. The geolocation and time 
interaction dataset was extracted April 17, 2017 from GloBI 
using Neo4j and contained 1,064,757 records (rows) with 20 
attributes (columns): source taxon ID, source taxon rank, 
source taxon path names, source taxon path ids, source taxon 
path rank names, interaction type, interaction type id, target 
taxon ID, target  taxon rank, target taxon path names, target  
taxon path ids, target  taxon path rank names, decimal latitude, 
decimal longitude, locality, event date Unix Epoch, reference 
citation, and references. 
 

Chordata species-level interactions. The Animalia kingdom 

was a very large dataset, and therefore it was more practical to 
extract species level interactions for the Chordata phylum. The 

Chordata interaction dataset was extracted on March 30, 2017 
from GloBI using Neo4j, and contained 940,941 records with 
the same 20 attributes listed above. 
 
2.2  DATA PREPARATION 
 

2.2.1 Data Cleaning 

The data cleaning described below was performed on 
geolocation/time interactions and Chordata interactions 
datasets the using the statistical computing software R [23]. 
Raw and clean datasets are available here: 
https://doi.org/10.5281/zenodo.814912 
 

Unix Epoch. The calendar date of field observations was 

recorded in the Unix Epoch time unit, which is the signed 
number of seconds or milliseconds since January 1, 1970, thus 
the value must be converted into its respective calendar year in 
order to be used in our visualizations. Conventionally, 10 digit 
values are dates recorded in seconds, 13 digit values are 
recorded in milliseconds, and negative values represent dates 
prior to 1970. Preliminary temporal analysis showed that there 
were seven to 14 digit negative and positive values. With the 
various number of digits the 10 and 13 digit, conversion rules 
no longer held true. We contacted the client who was unaware 
of the varying number of digits in the Unix Epoch attribute. 
Within a day or so, the client was able to confirm that all of the 
values, regardless of the number of digits were measured in 
milliseconds.  

The POSIXct function in R was used to convert the Unix 
Epoch milliseconds to calendar years. After importing the 
interactions datafile (data) into R, the numeric attribute of Unix 

Epoch milliseconds (eventDateUnixEpoch) was converted to 

seconds (seconds), and then converted into calendar dates 

(dates) using the as.POSIXct function. The as.POSIXct 

function requires the input of Unix Epoch seconds (seconds) 

and the origin date (origin = '1970-01-01') corresponding 

to the Unix Epoch seconds. The year of the field observations 
(year) was extracted from the calendar date by using the 

format function to return of the year in YYYY format (%Y). Below 

is an example of the R code used (with comments) to determine 
the year field observations. 

 

> data$eventDateUnixEpoch <- 

as.numeric(as.character(data$eventDateUnixEpoc

h)) ## convert character string to numeric 

> data$seconds <- data$eventDateUnixEpoch/1000 

## creates new variable named "seconds" i.e. 

converts the UnixEpoch from milliseconds to 

seconds 

> data$date <- as.POSIXct(data$seconds, origin 

= '1970-01-01') ## creates a new variable 

named "date" using the as.POSIXct function 

> data$year <- format(data$date, format="%Y") 

## creates a new variable named "year" by 

pulling out the YYYY from the "date" column 
 

The resulting year column was then used to perform 

temporal analysis on a yearly basis. 
 

0° latitude, 0° longitude. Several interaction observations 

were cataloged as occurring at 0° latitude, 0° longitude in the 
Gulf of Guinea. This seemed erroneous because the reference 
citations for these interaction observations referenced locations 
other than the Gulf of Guinea. This issue was brought to the 
client’s attention and they confirmed that the interaction 
observation of interest did not have an associated location, 
meaning the zeros were an artifact of the data extraction 
process. The 0° latitude, 0° longitude attribute value was 

http://doi.org/10.15468/39omei
https://doi.org/10.5281/zenodo.814912
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replaced with the null value in R, NA. Below is an example of 

the R code used (with comments) to replace 0° latitude, 0° 
longitude with NA, NA. 
 

> data[which(data$decimalLatitude == 0 & 

data$decimalLongitude == 0), 

c("decimalLatitude", "decimalLongitude")] <- NA 

## replaces 0,0 location with null value 

 
2.2.1  Data Aggregation 

One way to facilitate the computation and interpretation of 
GloBI dataset is via aggregation into meaningful groups. 
Aggregation does not decrease the number of records, but 
arranges them in fewer categories and simplifies and unifies 
analysis. The nature of the information in the database is highly 
hierarchical, thus it was possible to organize data into higher 
order groups. The below detailed data aggregation for taxa 
groups and interaction types was performed on the unique 
species-level dataset in Excel and on the geolocation/temporal 
dataset using the statistical computing software R [23] due to 
record limits in Excel. 

 

Taxa groups. In GloBI, the taxonomic level at which specimens 

are described vary. That means that specimens are not always 
described at the taxon level. The Rank Paths (kingdom, phylum, 
etc)  are restricted to the main 7 rank (i.e. taxa), nor the same 
structure for all the records. To aggregate the data, taxa labels 
were grouped to the immediate higher rank, the ranks of 
reference Kingdom, Phylum, Class, Order, Family, Genus and 
Species, as shown in Table 3. Below is an example of the R 
code used to aggregate the taxa groups. 
 

> data[,"sourceTaxonGroup"] <- NA ## create 

new column  

> data$sourceTaxonGroup <- ifelse( 

+     data$sourceTaxonRank == "subfamily" | 

+         data$sourceTaxonRank ==      

"infrafamily" | 

+         data$sourceTaxonRank == "tribe" | 

+         data$sourceTaxonRank == "subtribe" | 

+         data$sourceTaxonRank == 

+"infratribe", 

+     "Family", 

+     data$sourceTaxonGroup) ## if the 

sourceTaxonRank is any of the listed values, 

replace the value of sourceTaxonGroup with 

“Family” 
 

The above code was repeated for each taxon aggregation 
detailed in Table 3. 

 

 

 

 

 

Table 3. Taxonomic levels. Taxa labels existing in the GloBI 

dataset used by this project and how it was homogenized and 
aggregated.

 

Interaction types. The description of the type of interaction is 

provided at different levels of details depending on the original 
aim of the collection study. Presently there are 36 types of 
interactions in GloBI. GloBI aims to make all terminology 
machine-readable and therefore attempts to match terms with 
existing ontologies, also in case of the interaction types. We 
consulted Ontobee [24] to track the position of each interaction 
type within the existing ontologies and grouped them as shown 
in Table 4. Based in ecological principles there would be several 
hierarchies possible, this one is consistent with the present 
terminology used in GloBI. No attempts were made at collecting 
all the existing interaction terminology, just the current 
terminology in GloBI in order to establish aggregation criteria. 
Below is an example of the R code used to aggregate the 
interaction types into interaction groups. 

> data[,"interactionGroup"] <- NA ## create 

new column  

> data$InteractionGroup <- ifelse( 

+     data$interactionTypeName == 

"pollinatedBy" | 

+     data$interactionTypeName == 

"pollinates", 

+     "mutualistic", 

+     data$InteractionGroup) ## if the 

interactionTypeName is any of the listed 

values, replace the NA value of 

interactionGroup with “mutualistic” 

The above code was repeated for each interaction type 
aggregation detailed in Table 4. 

 

Source Kingdom and Target Kingdom. GloBI provides the 

source and target taxon paths (e.g.  Kingdom | Phylum | Class 
| Order | Family | Genus | Species) at varying levels of 
specificity. GloBI also provides the source and target taxon path 
names (e.g. Animalia | Chordata | Elasmobranchii | Rajiformes 
| Arhynchobatidae | Bathyraja | Bathyraja parmifera). In order to 
facilitate the visualization of interaction observations, two 
additional attributes were created: Source Kingdom and Target 
Kingdom. Below is an example of the R code used to extract 
the source and target kingdom for each interaction observation. 
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Table 4. Interaction level. “Hierarchy “of ecological interaction types, here details only for the biotic-biotic interactions that are 

currently reflected in GloBI. The list of the 36 types of interactions present in GloBI in the rightmost column. (Terms added for 
completeness during aggregation: consumer /provider, destroys/is destroyed, uses as habitat). Aggregation groups are 
differentiated by colors. http://www.ontobee.org/ used for interaction aggregation. 

 

> data[,"SourceKingdom"] <- NA ## create new 

column  

> data$SourceKingdom <- 

ifelse(grepl("Animalia", 

data$sourceTaxonPathRankNames), "Animalia", 

data$SourceKingdom) ## if the 

sourceTaxonPathRankNames contains the string 

“Animalia”, replace the NA valued of 

SourceKingdom with “Animalia” 

> data[,"TargetKingdom"] <- NA ## create new 

column  

> data$TargetKingdom <- 

ifelse(grepl("Animalia", 

data$sourceTaxonPathRankNames), "Animalia", 

data$TargetKingdom) ## if the 

targetTaxonPathRankNames contains the string 

“Animalia”, replace the NA valued of 

TargetKingdom with “Animalia” 

 

The above code was repeated for each kingdom. Raw and 
clean datasets are available here: 
https://doi.org/10.5281/zenodo.814912 
 

 

2.2.3 Data Partitioning, Subsets, Construction of Golden 
Dataset 
 

Golden Dataset for all Kingdoms. A summary of the cleaned 

and aggregated geospatial/temporal dataset for all kingdoms is 
detailed below in Table 5. The table breakdowns the percent of 
interactions per source kingdom that qualifies as golden data 
(i.e. species-species interaction with geospatial and temporal 
data). It should be noted that these numbers only reflect the 
interactions that were captured in the April 17, 2017 data extract 
that resulted in 1,064,757 interaction records and not GloBI in 
its entirety (n = 2,263,653 interactions). Computational 
limitations prevented the Animalia and Plantae kingdom from 
being queried and extracted in their entirety. Of the interactions 
extract (n = 1,064,757 interaction) only 7.50% of data extract 
would be considered golden data. Of the 7.50%, the Animalia 
extract accounts for the 97% of the golden dataset at 7.29% 
golden data. The Plantae extract account for 2% of the golden 
dataset at 0.15% golden data. The Bacteria, Chromista, Fungi, 
and Protozoa kingdoms collectively account for the remaining 
1% of the golden dataset at 0.06% golden data. 
  

source "takes" target "gives"

Genetically  

Molecularly

Biotically 

consumer provider

preys on preyed upon by

eats is eaten by

farms farme by

acquires nutrients from provides nutrients for

Host of (The term host is usually 

used for the larger (macro) of the 

two members of a symbiosis) = 

guest of

Symbiont of (The term symbiont is 

used for the smaller (macro) of the 

two  members of a symbiosis) = 

has host

Commensually (one benefits and 

the other is unaffected)
is vector of has vector

Mutualistically (benefit for both) pollinates pollinated by

parasite of (also known as guest) parasitized by (also known as host)

hyperparasitized by hyperparasite of

pathogen of has pathogen

hyperparasitoid of has hyperparasitoid

endoparasite has endoparasite

ectoparasite of has ectoparasite

kleptoparasite has kleptoparasite

parasitoid of has parasitoid

uses as habitat is habitat of = creates habitat for

perching on perches on by

inhabits inhavited by

lives inside of lives inside of by

lives on lived on by

lives near lives near by

lives under lives under by

lives with lives with

co occurs with co occurs with

adjacent to adjacent to 

visits flowers of has flowers visited by 

lays eggs in has eggs laid in  by

guest of has guest of

lays eggs on has eggs laid on 

visits visited by

Direct harm destroys is detroyed

(benefits not specified) damaged by damaged

kills is killed by

Parasitically* (association 

disadvantaged or destructive to one of 

the organisms)

*While parasites partake in symbiotic and 

trophic interactions, we chose to 

organize them under symbiotic.

Symbiotically
(in the broad sense, ecompassing long-term relationships)

Spatially/structurally 

(related but consequences or degree of dependence not specified)

Interacts with

Abiotic-biotic

Biotic-biotic

Trophically

http://www.ontobee.org/
https://doi.org/10.5281/zenodo.814912
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Table 5. GLOBI Geospatial & Temporal Interaction Observations for Kingdom Extracts 

Source Kingdom Animaliaa Archaea Bacteria Chromista Fungi Plantaea Protozoa NA Total 

Extracted Interactions 804,520 134 99,508 6,996 52,077 93,032 5,157 3,333 1,064,757 

Geospatial AND 
  OR Temporal 
Interactions (all taxa) 

567,336 0 32 1,522 1,855 38,104 370 2,042 611,261 

Subset 1: Geospatial 530,012 0 32 1,522 1,830 37,981 370 1895 573,642 

Subset 2: Temporal 262,136 0 1 34 1,561 2,158 3 170 266,063 

Subset 3: Geospatial 
AND Temporal 

224812 0 1 34 1,536 2,035 3 23 228,444 

Percent Geospatial 
AND Temporal 

36.78 0 1.6E-4 5.6E-3 0.25 0.33 4.9E-4 3.8E-3 37.37 

Species-Species Interactions   

Subset 1: Geospatial 231,309 0 1 432 817 14,752 86 805 248,202 

Subset 2: Temporal 91,234 0 1 19 620 1,575 2 0 93,451 

Subset 3:  Geospatial 
AND Temporal 77,613 0 1 19 615 1,573 2 0 79,823 

Percent Golden Dataa 
within Geospatial & 
Temporal Interaction 
Extract 

12.70 0 0.00016 0.0031 0.10 0.26 0.00033 0 13.06 

Percent GloBI Extract 
Golden Datab  
(n = 1,064,757) 

7.29 0 9E-5 2E-3 0.06 0.25 2E-4 0 7.50 

a Computational limitations prevented the Animalia and Plantae kingdom from being queried and extracted in their entirety. 
b A golden data interaction observation is species-species interaction with geospatial and temporal data. 

Interaction Subsets for Chordata Phylum. To represent 

species-level interactions as source to target bipartite graphs, 
the Chordata phylum interaction dataset was partitioned into 
subsets. The source and target taxon rank was filtered to select 
records with species-level or species-associated taxon ranks 
(e.g., “super species”, “sub species”, “infra species”). Target 
taxon rank was filtered to select records at the species-level, 
species-associated ranks, and miscellaneous ranks, (e.g., 
“variety”). In terms of the interaction types, almost 95% were 
trophic (“eats”, 92%; “preys upon”, 2.7%). More ambiguous 
interactions “interacts with” (3.7%), “visits flowers of” (1%), and 
miscellaneous (0.5%) were filtered out. 

The resulting subset of species-species trophic interactions 
consisted of 378,272 records. Additional analysis examined the 
number of records with complete information for (a) geospatial 
location: latitude, longitude (b) temporal period: year, or (c) with 
both geospatial and temporal data: 'golden dataset'.  The 
frequency and proportion of counts for each step in partitioning 
the Chordata species-level trophic interactions dataset are 
shown in Table 6.   

As described above, a large portion of records (23%) 
indicated 0 latitude, 0 longitude; whereas the citation references 
indicated a different locations. For example, many observations 
were from Fish stomach records in the North Sea [25, 26] or 
taxonomic information extracted from EOL [11], Records 

missing location information or with 0, 0 were filtered from the 
Geospatial subset. Similarly, species-species records with no 
timestamp data (51.8%) were filtered from the temporal subset.  
 

Following this process of partitioning, an all-inclusive 'golden 
dataset’ of species-species source-target trophic interactions 
with geospatial and temporal data for the Chordata Phylum 
consisted of 127,916 records. Of these, an additional 186 had 
unidentified target taxon name and were removed, resulting in 
a final golden dataset of 127,030 records. Examination of 
latitude locations for the golden dataset revealed that the 
majority of records (91%) were obtained from above latitude 30 
North, between the time period of 1980 to 2017. The second 
largest portion of records (5%) came from the region South of 
the equator between 1961 to 2017. The smallest portion (3%) 
was from the region between the equator and latitude 29 North. 
between 1998 to 2017 (See Table 6 for subset counts). 
 
2.3 CONSTRUCTION of VISUALIZATIONS 
2.3.1  Comparison GloBI with External Reference GBIF: 
Construction of Sunburst 

The sunburst diagram was created to provide a snapshot of 
how GloBI’s database compares to GBIF. The sunburst 
diagram was created using java’s Data-Driven Documents (D3), 
a javascript framework.  
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Table 6: GloBI Species-Level Trophic Interactions: Data Subsets of Phylum Chordata 

  
  
  

Records Included Records Excluded 

Total 
Count Proportion Count Proportion 

Chordata Interactions 940941 1.000 0 0.000 940941 

Species-Species Interactions  376272 0.400 564669 0.600 940941 

Subset 1: Geospatial 289555 0.770 86717 0.230 376272 

Subset 2: Temporal 181370 0.482 194902 0.518 376272 

Subset 3: Geospatial AND Temporal 127916 0.340 248356 0.660 376272 

 

Golden Data Subsets 127030 0.99 886 0.01 127916 

Subset 4: Latitude > 30N 116021 0.91 11009 0.09 127030 

Subset 5: Latitude >0 <30N 4182 0.03 122848 0.97 127030 

Subset 6: Latitude < 0 6827 0.05 120203 0.95 127030 

Data were initially provided in .csv format. In order to make 
it compatible with D3, the data were converted to a json 
hierarchy. Sample below:  
 

{"children":[{"name":"Archaea","class":"Kingdo

m","children":[{"name":"Crenarchaeota","class"

:"Phylum","children":[{"name":"Thermoprotei","

class":"Class","children":[{"name":"Acidilobal

es","class":"ORDER","children":[{"name":"Acidi

lobus","class":"Genus" 
 

Scripts from bl.ocks were referenced to create features of 
visualization (See Appendix C). Final formatting of the 
sunbursts was performed with Adobe Illustrator.  
 

2.3.2 Analysis of GloBI Data-richness 
 

Stacked Bars and Bubble Diagram. Stacked bars were used 

to provide an overview of GloBI data coverage. The comparison 
with GBIF was done based on total unique species number. 
Amount of known species by kingdom were read from the GBIF 
webpage and the amount for GloBI calculated from the sum of 
unique species in the working database. The bars were also 
used to compare different sets of GloBI between themselves, 
namely: description at species level, the previous plus presence 
of location and/or time stamp. The only care required while 
constructing these graphics was to avoid duplicated instances. 
Processing was done via de-duplication and pivot tables in 
Excel. 

A bubble diagram was used to provide an overview of the 
granularity of the GloBI dataset, based on the extracted data 
aggregated according to Table 3. Using Excel pivot tables, we 
obtained the counts of records at each taxon level per phylum 
and per kingdom. This was done for both the amount of unique 

specimens as well as the actual total observations, which were 
used to size and shade of the circles, respectively.  

Data were written in .html tree, read by Sci2 and visualized 
through GUESS [27]. Final formatting of the graphs was 
performed with Adobe Illustrator.  
 

Geospatial and Temporal Distribution. In order to understand 

the geospatial and temporal coverage of interaction observation 
records in the GloBI database, we constructed 
geospatial/temporal maps and time series graphs by importing 
the geolocation/temporal interactions dataset into Tableau 
Desktop [28]. Three sets of interaction observation maps and 
graphs were constructed: interaction groups, source kingdoms, 
and target kingdom. Figures 4 and 5 show the construction of 
the interaction group map and times series (respectively) within 
the Tableau GUI. 

The color of the solid dot (map) and hollow circle (time 
series) visually encodes the interaction group (e.g. 
commensalistic, harm, host, interacts, mutualistic, parasitic, 
spatial/structural, and trophic) of the geolocation (map) or year 
(time series) for the interactions visualizations and the 
source/target kingdoms (Animalia, Archaea, Bacteria, 
Chromista, Fungi, Plantae, and Protozoa).The maps progress 
from year to year using the “Year” slider. Geospatial interaction 
observations without an observation time were grouped into one 
group at the end of the “Year” slider named “No Year”. The 
maps progress cumulative by selecting the “Show History” 
option on the “Year” slider. Single year views are achieved by 
deselecting the “Show History” option. The map was formatted 
in order to filter on a variety of attributes: year, interaction group, 
source and target taxon rank (e.g. kingdom, species), and 
source and target kingdom (e.g. Animalia, Plantae). 

https://bl.ocks.org/denjn5/e1cdbbe586ac31747b4a304f8f86efa5
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Figure 4. Tableau GUI used to construct geospatial and temporal distribution map of GloBI interaction group observations. 

 

 
Figure 5. Tableau GUI used to construct time series graph of GloBI interaction group observations. 

The “Tooltip” feature of Tableau highlights geolocation and 
year specific information in order to aid the geospatial and 
temporal exploration of GloBI. When the mouse hovers over a 
geolocation on the map the tooltip produces a callout that 
contains the following information: latitude, longitude, 
observation year, interaction group, source kingdom, source 
taxon name, interaction type name, target kingdom, target taxon 
name, and reference citation. When the mouse hovers over a 

data point on the graph the tooltip callout contains year, 
interaction group, and the count of that interaction group for the 
year. Three Tableau dashboards were constructed, one for 
each set of visualization (Figure 6). The dashboard allows the 
map (top of dashboard) and the time series graph (bottom of 
dashboard) to be simultaneously displayed and synchronously 
filtered. 
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Figure 6. Tableau GUI used to construct dashboard containing geospatial and temporal distribution map and time series graph of 

GloBI interaction group observations.  

2.3.3 Interactions Networks: Time Slicing and Bipartite 
Graphs by Region.  

This section describes network extraction and visualization 
of bipartite graphs by time periods for major geographical 
regions in the Chordata phylum subset of species-level trophic 
interactions. Procedures for network extraction and time slicing 
are described in the Visual Insights Textbook [20], using Sci2 
[27], and demonstrated by Ted Polley in IVMOOC Hands-On 
Exercises [29]. After preparing the chordata interaction subsets 
(Table 6), separate files were created for three geographical 
regions (e.g., North of Latitude 30 N., Latitude 0 to 29 North, 
South of Latitude 0). Time slices were created for each 
geographical region for the corresponding years of interaction 
occurrences (e.g., 1990-1999, 2000-2009, 2010- 2017, for the 
region North of Latitude 0 to 29 North).  

After opening Sci2, the following steps were taken to slice 
the datasets by year: (1) Load the file: Chordata_ 

golden_lat>0<30.csv; (2) Preprocessing > Temporal > 

Slice a Table by Time: Create three 10-year slices:  Date/Time 
Column: Year; Slice into: Years: 10; From Time: beginning of 
1990 / beginning of 2000 / beginning of 2010, To Time: end of 
1999 / end of 2009 / end of 2017. After creating the time slices, 
bipartite networks were extracted for each time period: (3) Data 
Preparation > Extract Bipartite Network. Set parameters: 
Source Target. Extracted Network on Column Source. Then, 
the analysis toolkit was used to return descriptive information 
about each network: (4) Analysis > Networks > Network 
Analysis Toolkit (5) Visualization > Networks > Bipartite 
Network Graph: Subtitle: Bipartite Graph Chordata Latitude >0 
<30 1990-99. Left side node type: Source No node weight, no 
edge weight Left column label: Source Species Right column 
label: Target Species Select Simplified Layout. Three bipartite 
graphs were constructed for each time period in the specified 
geographical region.  

 
3. RESULTS  
 

The following sections present the resulting visualizations 
for each of the objectives listed in section 1.3. 
 

3.1 COMPARISON of GLOBI with GBIF VISUALIZATIONS 
 

Due to computational capacity limitations, the GloBI vs GBIF 
comparative sunbursts were only constructed for species within 
the Archaea and Protozoa kingdoms. The Archaea and 
Protozoa kingdoms were selected as our “proof of concepts” 
since our computational power could only analyze these 
relatively smaller kingdoms.  

Archaea Sunburst. In the Archaea sunburst analysis, the vast 

majority of known Archaea species are missing (i.e. greyed out 
in Figure 7). GloBI has interaction data for only 10 of the known 
337 Archaea species in GBIF. Currently, GloBI only covers 3% 
of the Protozoa kingdom. The visualization also shows that 
GloBI does not have the complete taxon path for each of the 10 
Archaea species, hence the grey layers from phylum to genus. 

Protozoa Sunburst. In the Protozoa sunburst analysis, the 

majority of known Protozoa species are missing (i.e. greyed out 
in Figure 8). GloBI has interaction data for only 183 of the known 
12,145 Protozoa species. Currently, GloBI only covers 6.5% of 
the Protozoa kingdom.  The visualization also shows that GloBI 
does not have the complete taxon path for all of the 183 
Protozoa species, hence the grey layers from phylum to genus. 
Only 14 Protozoa species have complete taxon paths and are 
colored teal from phylum to species (teal sunrays in at the 12 
o’clock position in Figure 8). 
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Figure 7. Archaea Sunburst Hierarchy. The grey portions of the sunburst represent taxa known to exist (as cataloged by GBIF) 

and are currently not cataloged in GloBI. The teal portions of the sunburst represent the taxa currently cataloged in GloBI. Each 
layer of the sunburst represents a taxon. The taxa are as follows from inner to outer circle: kingdom, phylum, class, order, family, 
genus, and species. (High resolution at https://doi.org/10.5281/zenodo.814922)  

https://doi.org/10.5281/zenodo.814922
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Figure 8. Protozoa Sunburst Hierarchy. The grey portions of the sunburst represent taxa known to exist (as cataloged by GBIF) 

and are currently not cataloged in GloBI. The teal portions of the sunburst represent the taxa currently cataloged in GloBI. Each 
layer of the sunburst represents a taxon. The taxa are as follows from inner to outer circle: kingdom, phylum, class, order, family, 
genus, and species. (High resolution at https://doi.org/10.5281/zenodo.814922) 
  

https://doi.org/10.5281/zenodo.814922
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3.2 GLOBI DATA-RICHNESS VISUALIZATIONS 
3.2.1 Stacked bars 

An overview of data contents is displayed in Table 7 and 
Figure 9.  The comparison of species between GBIF and GloBI 
is provided for a sense on the scale of coverage, and it shows 
that GloBI coverage is one order of magnitude smaller than the 
amount of known species, that is, only about 10% of species in 
GBFI are recorded in GloBI. Further, we show the breakdown 
of GloBI dataset in different subsets and the loss of data records 
as the data gets more information-rich. The narrowest set would 
corresponds to golden dataset criteria. 

Figure 9. Upper: Comparison of total counts of different 

species between the database from GBFI (including all known 
and identified species) and data in GloBI. Lower: breakdown of 

GloBI dataset in different subsets according to the amount of 
information attached to the record: whether observation is at the 
species level, and  whether it contains or not location and time 
stamps. Taxa data color-coded by kingdoms. All values are 
counts of different species (except data at other levels or 
unranked are counts of non-duplicated specimen types).  

 

 
 

Table 7. Unique species in GloBI with geospatial and temporal data compared to known species in GBIF. 

Unique Species Animalia Archaea Bacteria Chromista Fungi Plantae Protozoa Total 

Species in GloBI 45,034 15 2,288 469 3,859 10,962 323 62,950 

Geospatial 14,196 0 56 148 1,017 4,296 60 19,773 

Temporal 8,016 0 3 44 337 4,172 7 12,573 

Geospatial AND Temporal 6,436 0 2 22 335 2,211 5 9,011 

Species in GBIF 1,125,250 377 9,982 19,785 132,848 349,812 2,708 1,640,762 

% GloBI Golden Data Coverage 
to Total GBIF Species 

0.39 0 1.2E-4 0.0013 0.020 0.13 3E-4 0.55 

3.2.2 Hierarchical Bubble Graph 

An overview of the data granularity in GloBI is further shown 
as a circular hierarchy (Figure 10). By granularity we refer to the 
fact that the information in the records is not homogeneous but 
there is a different amount of detail depending on the interaction 
source study. The diagram shows the amount of records that 
are detailed at different taxa levels, and how the distribution 
differs between kingdoms. All except Archaea have records 
described at some lower taxon. 

 
Figure 10. Breakdown of GloBI dataset according to the rank at 

which description is provided. Values are counts of different 
specimens in each taxon as represented by circle size. Internal 
shading of circles denote the total amount of observations. 
Edge is color-coded for kingdoms.  

Also conspicuous is the amount of data that is not properly 
ranked. These are records that are not containing information 
on the kingdom in their Rank Paths immediately after download. 
To complete information on such records, additional data 
cleaning steps would be needed. Figure 10, therefore, provides 
a snapshot of the data granularity encountered by database 
users. 
 

3.2.3 Geospatial and Temporal Distribution 

The geospatial and temporal distribution of interaction 
observations by interaction group from 1813-2017 is shown in 
Figure 11 below. Figure 11 shows that the majority of GloBI 
interaction observations occur in the North America. The 
“interacts” and “trophic” interaction groups represent the 
majority of the interactions cataloged by GloBI. 

The geospatial and temporal distribution of interaction 
observations by source kingdom from 1813-2017 is shown in 
Figure 12 below. Figure 12 shows that of GloBI interaction 
observations occur in the North America. The vast majority of 
interactions cataloged by GloBI have Animalia as the source 
kingdom. 

The geospatial and temporal distribution of interaction 
observations by target kingdom from 1813-2017 is shown in 
Figure 13 below. Figure 13 shows that the majority of GloBI 
interaction observations occur in the North America. The vast 
majority of interactions cataloged by GloBI have Plantae 
kingdom as the target kingdom. 
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Figure 11. Geospatial and Temporal Distribution of GloBI Interaction Observations by Interaction Group: 1831-2017. Each point 

on the map represents an interaction observation with geospatial and temporal data. The time series tracks the observation 
years for each interaction observation. The colors of the solid dots (map) and hollow circles (time series) correspond to the 
interaction group of the data points. 
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Figure 12. Geospatial and Temporal Distribution of GloBI Interaction Observations by Source Kingdom: 1831-2017. Each point 

on the map represents an interaction observation with geospatial and temporal data. The time series tracks the observation years 
for each interaction observation. The colors of the solid dots (map) and hollow circles (time series) correspond to the source 
kingdom of the data points. 
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Figure 13. Geospatial and Temporal Distribution of GloBI Interaction Observations by Target Kingdom: 1831-2017. Each point on 

the map represents an interaction observation with geospatial and temporal data. The time series tracks the observation years for 
each interaction observation. The colors of the solid dots (map) and hollow circles (time series) correspond to the target kingdom 
of the data points. 

A publically available interactive version of all three 
geospatial and temporal visualizations can be found at Tableau 
Public via: 

 https://public.tableau.com/profile/publish/IVMOOC2017-
GloBISpatialDistributionofInteractions/InteractionsMapTimeSer
ies#!/publish-confirm 

The respective data are available here: 
https://doi.org/10.5281/zenodo.814912 

Data preparation details can be found in section 2.2 of this 
paper. 

Figure 14 is a screenshot of the interactive dashboard 
powered by Tableau Public. Users can filter the interaction 
group, source kingdom, and target kingdom visualizations for 
different combinations the following attributes: observation 
year, interaction group (e.g. mutualistic, trophic), source and 
target kingdoms (e.g. Animalia, Protozoa), and source and 
target taxon rank (e.g. kingdom, species). 

 

 

 

https://public.tableau.com/profile/publish/IVMOOC2017-GloBISpatialDistributionofInteractions/InteractionsMapTimeSeries#!/publish-confirm
https://public.tableau.com/profile/publish/IVMOOC2017-GloBISpatialDistributionofInteractions/InteractionsMapTimeSeries#!/publish-confirm
https://public.tableau.com/profile/publish/IVMOOC2017-GloBISpatialDistributionofInteractions/InteractionsMapTimeSeries#!/publish-confirm
https://doi.org/10.5281/zenodo.814912
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Figure 14. Tableau Public dashboard (with active tooltips) for interaction group, source kingdom, and target kingdom visualizations 
where users can filter on the following attributes: observation year, interaction group (e.g. mutualistic, trophic), source and target 
kingdoms (e.g. Animalia, Protozoa), and source and target taxon rank (e.g. kingdom, species). 

 
3.3 INTERACTION NETWORKS VISUALIZATION 

Species-level interactions for the Chordata phylum were 
visualized as bipartite networks.  Figure 15 shows three bipartite 
graphs of source-target trophic Interactions for the region 
between Latitude 0 to 29 North (approximately corresponding 
to the Gulf of Mexico), from 1990 to 2017. These graphs show 
the food web of associations (“eats”, “preys on”) between 
specimens identified by scientific names. Table 8 shows the 
network characteristics for all three regions according to time 
periods for the species level occurrence records available for 
the Chordata golden data subset. Given that the number of 
edges in the bipartite networks for the larger geographical 
regions ranged from 406 to 2173, the source-target interaction 
graphs were increasingly dense and it was difficult to identify 
the source and target specimens by name in the graph.  

 

 

Therefore, the bipartite network visualizations were included 
only for the smallest geographical region as shown in Figure 15. 

4. DISCUSSION 
 

4.1 OBJECTIVES of VISUALIZATION and INSIGHTS 

This project maps out gaps in biodiversity knowledge and 
visualizes some of the ‘unknowns’ in GloBI’s datasets. The 
results provide different levels of analysis and visualizations that 
help to map the nature of the gaps and potential shortcomings 
of aggregated data from very different sources. We identify 
some areas of completeness and incompleteness in GloBI. In 
the following sections, we summarize some of the insights 
gained in the course of this project and describe some 
challenges that could be addressed in future work. 
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Figure 15. Bipartite Graphs of Species-Species Trophic 

Interactions for Chordata Phylum for the Region Between 
Latitude 0 to 29 North, between 1990 to 2017. (High resolution 
at https://doi.org/10.5281/zenodo.814922)  

4.1.1 Compare GloBI with External Reference GBIF 
 

As the sunburst visualizations show, GloBI’s data coverage 
for Protozoa is far from complete, and captures only a small 
portion of the larger known taxonomy represented in GBIF. 
Coverage for Archaea is even smaller. Unfortunately, owing to 
constraints of time and processing capacity, we were not able 
to map out Kingdoms where GloBI’s coverage is more intact. 
However, it is possible that, with greater processing capacity 
and additional time, a more complete mapping of GloBI’s data 
coverage could have been achieved.  

4.1.2 Analyze GloBI Data-richness 
 

Stacked Bar Graphs. Table 7, which was used to construct the 

bar graph in Figure 9, shows that only 0.55% of the 1,638,054 
unique species in GBIF have geospatial and temporal data 
associated with interaction observations in GloBI. So only 
0.55% of known species have golden data in GloBI. This means 
if a researcher, or for that matter a curious person, wanted to 
know when and where an interaction occurred, GloBI can only 
answer that question for 0.55% of the species on the planet. 
The Animalia kingdom accounts for 71% of the golden data 
(0.39% of known species) and the Plantae kingdom accounts 
for 24% of the golden data (0.13% of the known species).  
 
Geospatial and Temporal Distribution. The geospatial and 

temporal maps of interaction observations show that the 
majority of data in GloBI come from studies conducted in North 
America, specifically the United States (Figure 11, 12, 13). 
Studies observing interactions in Northern Europe and New 
Zealand are also well documented. South America, Africa, Asia, 
Australia, and Antarctica are sparingly peppered with 
interactions as compared to the United States, Northern 
Europe, and New Zealand. The maps illustrate the need for 
contribution from researchers who have and or are conducting 
biological interaction research in South America, Africa, Asia, 
Australia, and Antarctica. 

The interaction group map (Figure 11) shows that the 
“interacts” and “trophic” interaction groups represent the 
majority of observed interactions in the GloBI database. The 
source kingdom map shows that the vast majority of interactions 
in GloBI have Animalia as the kingdom source. Alternatively, 
the target kingdom shows Plantae as the major target kingdom 
in the continental United States and New Zealand, while 
Animalia is the major target kingdom in Alaska. The 
juxtaposition of the source and kingdom maps provide the 
inside that herbivores dominate the GloBI interaction 
observations from the continental United States and New 
Zealand, while carnivores dominate the GloBI interaction 
observations in Alaska. 

Anyone curious about the geospatial and temporal 
distribution of the GloBI interaction observations can explore the 
relationships between interaction groups, source and target 
kingdoms, and source and target taxon rank by visiting 
https://public.tableau.com/profile/publish/IVMOOC2017-
GloBISpatialDistributionofInteractions/InteractionsMapTimeSer
ies#!/publish-confirm 
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Table 8. Bipartite Graphs for Geographical Region and Time Period: 
 GloBI Chordata Phylum Trophic Interactions 

 Network Characteristics 

Region 1: Above Latitude 30 N Nodes Edges Avg. Degree Density 

        2010 - 2017 443 433 1.96 0.002 

        2000 - 2009 166 406 4.89 0.015 

        1990 - 1999 465 1172 5.04 0.005 

        1980 - 1989 279 680 4.88 0.009 

Region 2: Latitude 0 to 29 N   

        2010 - 2017 88 53 1.21 0.001 

        2000 - 2009 102 127 2.49 0.01 

        1990 - 1999 62 148 4.77 0.04 

Region 3: Below Latitude 0  

        2010 - 2017 401 727 3.63 0.005 

        1980 - 1999 445 2173 9.77 0.01 

        1960 - 1979 97 165 3.40 0.02 

 

4.1.3 Interaction Networks 

The bipartite graphs of species interactions for the Chordata 
Phylum show that network visualizations were interpretable for 
a only small geographical region, and included a very small 
portion of the interactions overall. As the size of the region and 
the numbers of source-target interactions increased, the 
network visualization became denser and the nature of the 
connections between species become more difficult to interpret. 
In partitioning the Chordata phylum to construct a golden 
dataset with complete geospatial and temporal information, a 
substantial portion of interactions were filtered from the dataset. 
This reveals a gap in our knowledge of species interactions, in 
the Eltonian sense. 

Overall, there was a tradeoff in terms of the volume of 
interaction data available in the GloBI datasets and our ability 
to represent those interactions in visualizations that are 
interpretable on a human level. In terms of constructing bipartite 
networks, finding a balance between grain size and data 
inclusivity was a major challenge. A more effective way to 
visualize networks of species interaction, using a more 
complete section of the data, is perhaps to represent interaction 
associations as directed networks. 
 

4.4 LIMITATIONS and CHALLENGES: 
   

4.4.1 Conceptual Complexity  

Conceptually, understanding the scope of data gaps with 
the GloBI database is feasible, however the execution for whole 
database requires both time and computational resources 
beyond our capabilities. 

The ideal visualization would have consisted of a grey-
colored tree diagram representing the GBIF reference system. 
Each level of the tree diagram, with increasing tree depth and 
organizational specificity, would represent the taxa: kingdom, 
phylum, class, order, family, genus, with the leaves of the tree 
representing the species taxon. The tree branch would be 
highlighted and colored if GloBI contained interaction 
information for that taxon. 

GloBI has a large volume of data, over 2 million recorded 
interactions between 110,000 taxons. Our plan was to compare 
these taxons against the known complete set of taxons found in 
GBIF. GBIF has cataloged over 2 million taxons. The volume of 
data is very large for conventional analysis and visualization 
methods. To illustrate the GloBI data gaps within our time and 
skill constraints, we chose to compare two of the smaller 
kingdoms, Archaea and Protozoa, against GBIF Archaea and 
Protozoa kingdoms. The sizes of each kingdom were 

reasonable enough to perform the analysis and visualization 
with the time and computational resource readily available to 
us. 

The GloBI vs GBIF comparison for Archaea and Protozoa 
will serves as a visualization methodology proof of concept. The 
sunburst methodology described in this paper can be applied to 
the larger kingdoms provided the availability and accessibility of 
time and computational resources. 
 
4.4.2 Data Preprocessing  

We expected the data analysis would require data 
preprocessing, but the amount of necessary data preprocessing 
was unexpected and set back our project schedule. Fortunately 
we were able to “course correct” for the needed amount of data 
preprocessing and are confident we have produced our desired 
end products, albeit modified from what we originally 
brainstormed. Below we detail some of the challenges faced 
with data preprocessing. 
 

Inconsistent labeling. Some of the taxon labels were in 

languages other than English, which further emphasizes the 
need to have unique identifiers consistent across the reference 
system and the analyzed dataset. 
 

Inconsistent information structure. In some cases, species 

data are accompanied with kingdom, phylum, class and order 
information. In other cases, species data were provided without 
details on its associated taxa. This inconsistency had to be 
addressed in preprocessing before the visualizations could be 
made.  
 

Location. Some interactions provided “0,0” for the latitude and 

longitude of the geospatial locations while the citation source 
claims that interaction to have been observed at a different 
location. For example, “0,0” is recorded as the latitude and 
longitude for a study that was conducted in the North Sea, which 
is actually centered around a latitude and longitude of “56, 3”. 
Our first thought is that the “0,0” was entered to represent 
missing data or non-reported data. The problem is that “0,0” 
actually means something in latitude and longitude. Visualizing 
the geospatial data on a map will help highlight such issues. 
 

Pragmatic Solutions. Performing a user experience (UX) 

assessment of all processes involved in data entry/submission 
may reduce inconsistent data entry. Inputting reminders and 
limiting the type of data that can be entered into submission 
fields can reduce chance of error and streamline the data 
analysis and aggregation processes. 
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4.4.3 Technical Challenges 
 

Capacity Constraint. Both GloBI and GBIF have large 

datasets. The Neo4j database is about 780 MB in size and 
holds the information in approximately 9.8 million nodes and 
associations. The authors of this database have used Lucene 
indexes to speed up queries. These text indexes are over 
species name, the taxonomic rank, studies and locations. Large 
queries that explore interactions amongst specimens, along 
with the studies from which this data were extracted, can 
consume 3GB or more of memory. This is especially true when 
exploring reasonably sized kingdoms such as Fungi or Bacteria. 
We were unable to query the larger kingdoms such as Plantae 
or Animalia in their entirety. In addition to the memory 
requirements, queries against Neo4j would run for a very long 
time, sometimes over an hour to return interaction information.  

We pre-processed the data in order to ease the process of 
comparison. Figure 16 below shows the process, the sources 
of information, and the various database tables involved. GloBI 
data imported into SQL Server was much easier to work with 
than the Neo4j database. Though it contained over 2 million 
interactions, with the addition of multiple indexes, the database 
would return information in just a few minutes. With the added 
indexes, the database was about 7 GB in size. As a high 
watermark, it would consume about 2 GB of memory. 

When we were ready to compare GloBI with GBIF data, we 
attempted to import taxon information from GBIF. GBIF 

occurrence data is very large. The entire dataset is about 770 
million records.  As mentioned in a previous section, the 
Chordata phylum alone was 700 GB in size. Our personal 
computing space did not permit this data to be imported into the 
SQL Server database and then processed. This analysis only 
used the GBIF Backbone Taxonomy and not all of the 
occurrence data. It is recommended that future teams exploring 
the data in its entirety plan to store their data on a server with 
approximately 2TB of hard drive space and about 12-16 GB of 
memory. 
 
4.4.4. Validation and Redesign 
 

Rank-based Taxonomy vs Evolution-based Phylogeny 
Reference System. To understand the coverage GloBI has 

across the known taxons, we planned to compare it against a 
dataset that is considered complete. The original idea was to 
compare GloBI against the phylogenic Tree of Life.  Initially we 
envisioned a tree (in a tree-of-life manner) with all living 
components where the ones existing in GloBI dataset would be 
highlighted. We ultimately decided to use a rank-based 
taxonomy (e,g. GBIF) to allow increase the potential for cross-
reference. If should be noted that GloBI links to the Open Tree 
of Life, so the presented visualization methods could be 
performed for the phylogenic coverage of GloBI. 
 

 
 
 

 

Figure 16. Data Extraction from GloBI and GBIF Databases 
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QGIS vs Tableau Public. Initially the geospatial and temporal 

maps were constructed using QGIS, an open-source 
geographic information system. The number of geospatial and 
temporal data points was too large to properly represent with 
the static image QGIS produced. The maps appeared clutter 
and it was difficult to distinguish the visual encoding. A proper 
visualization would allow the user to zoom into an area with the 
ability to distinguish between data points. Due to its interactive 
nature, Tableau was chosen as to construct the final geospatial 
and temporal maps. In addition to users being able to zoom in 
on data points with increased geographic resolution, the 
Tableau dashboards allow for the filtering of numerous 
attributes. 

The original QGIS maps only visualized three static 
attributes: interaction group, location, year, and interaction 
group. The interactive Tableau dashboards visualize the 
following attributes: location, year, interaction group, interaction 
type, source and target kingdom, source and target taxon name, 
and study reference citation. Tableau allows the user to have 
an immersive experience exploring the geospatial and temporal 
coverage of GloBI. 
 

Missing Taxon Paths in Sunbursts. In the original data 

format, data with missing taxon paths are NA values -- as a 
result the sunbursts initially appeared fragmented and disjoint. 
Rather than a smooth circle, the outer edge had a stair-step 
appearance. To address this, the missing taxon paths were 
replaced with the value ‘Missing Rank’. For example, if the data 
only had kingdom and species info, the path would look like the 
following on the sunburst: “kingdom→ missing value → missing 
value → missing value→ missing value → missing value→ 
species”.  

5. CONCLUSION 

The web of life on earth is a complex system of interactions. 
In order to understand what we do not know, inevitably, we must 
begin by describing what we do know. In a sense, the goal of 
this project was to describe the sparseness of human 
knowledge in relations to the vastness of life itself. The analysis 
and visualizations presented here demonstrate the problem of 
grain size or granularity of data contained in GloBI. This relates 
to the Eltonian 'gap in knowledge', which speaks to the lack of 
data or knowledge about species interactions. One realization 
described above is that, as our queries become more focused 
and refined, we lose the large scale nature of species 
interactions. GloBI is an ambitious project that seeks to address 
this gap by providing an interactive infrastructure for the 
extraction and collation of archived databases with the hope to 
motivate researchers to publish their datasets [1]. 

In conclusion, there are two specific areas where we think 
GloBI could enhance its data services and broaden its appeal 
as a resource for research data: First, to persuade researchers 
to view GloBI as a data source for research, which could save 
considerable time collecting data in the field. A second 
challenge is to convince researchers collecting data in the field 
as to the benefits of data sharing. To a considerable degree, 
research is a competitive undertaking with limited resources; 
however, if more scholars and researchers came to recognize 
the value of sharing data in the spirit of collaboration, perhaps 
more researchers would be inclined to contribute their data to 
GloBI and help flesh out some of its gaps.  
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APPENDICES 
 
APPENDIX A: Upgrading the Neo4j database 
The Neo4j database available from the GloBI website has been configured to work with Neo4j version 1.9.9. 
However, the latest version of the database is 3.1.2 (as of March 2017) and there are significant differences in the 
architecture between the two versions. 
1   Navigate to the database and click Open 
2   Select Options… 
3   Click the Edit button for Database Configuration 
4   Search for the configuration entry dbms.allow_format_migration and set it to true 
5   Save and close the configuration file 
6   Close the configuration window 
7   Start the database 
On occasion, the allow_format_migration option may not be sufficient. If the database fails to start, follow these 
steps 
1              Download Neo4j 2.3.10 from the Other Releases page and install it in a different location than version 3.1.3 
2              Start Neo4j v 2.3.10 
3              Follow steps identified above to open the GloBI database 
4              Start the database 
5              When the database starts successfully, stop the database. This will migrate the database to a newer 
architecture 
6              Shut down Neo4j v 2.3.10 
7              Now open the GloBI database in Neo4j v 3.1.3 
These steps are required just one time. Once the migration process is complete, you can open the database with 
Neo4j v 3.1.3 or higher. 

APPENDIX B: Database scripts 
Function Wordparser 
The function takes a string and a delimiter as input and returns a table of parsed words 
CREATE FUNCTION [dbo].[Wordparser] 

( 

  @multiwordstring VARCHAR(MAX), 

  @delimiter      CHAR(1) = ',' 

) 

returns @parsedwords TABLE 

      ( 

         line NUMERIC IDENTITY(1, 1), 

         word VARCHAR(MAX) 

      ) 

AS 

  BEGIN 

      DECLARE @remainingstring VARCHAR(MAX) 

      DECLARE @numberofwords NUMERIC 

      DECLARE @word VARCHAR(MAX) 

 

      SET @remainingstring=@multiwordstring 

 

      SET @numberofwords=(LEN(@remainingstring) - LEN(REPLACE(@remainingstring, @delimiter, '')) + 1) 

 

 

      WHILE @numberofwords > 1 

        BEGIN 

            SET @word=LEFT(@remainingstring, CHARINDEX(@delimiter, @remainingstring) - 1) 

    

            IF(LEN(@word)>0) 

   BEGIN 

    INSERT INTO @parsedwords(word) 

    SELECT @word 

   END 

 

   SET @remainingstring = RIGHT(@remainingstring, LEN(@remainingString)-LEN(@word)-1) 

 

            SET @numberofwords=(LEN(@remainingstring) - LEN(REPLACE(@remainingstring, @delimiter, '')) +1) 

 

            IF @numberofwords = 1 

              BREAK 

 

            ELSE 

https://neo4j.com/download/other-releases/
https://neo4j.com/download/other-releases/
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              CONTINUE 

        END 

 

      IF @numberofwords = 1 

        SELECT @word = @remainingstring 

      INSERT INTO @parsedwords(word) 

      SELECT @word 

 

      RETURN 

  END 

 
Extract Taxon path from GloBI 
INSERT INTO GloBI_TAXON_PATH (GloBI_ID, TAXON_RANK, TAXON_NAME, SEQ) 

SELECT t.TaxonID AS GloBI_ID, LTRIM(RTRIM(resultPRN.word)) AS TAXON_RANK, LTRIM(RTRIM(resultPN.word)) AS 

TAXON_NAME, resultPRN.line AS SEQ 

FROM dbo.TAXONS as t 

CROSS APPLY dbo.Wordparser(t.TaxonPathName, '|') as resultPN 

CROSS APPLY dbo.Wordparser(t.TaxonPathRankName, '|') as resultPRN 

WHERE ISNULL(resultPN.word, '') <> '' 

AND ISNULL(resultPRN.word, '') <> '' 

AND resultPN.line = resultPRN.line; 

 
Extract ExternalIDs from GloBI 
DECLARE @tbl TABLE 

( 

 GloBI_ID  VARCHAR(256), 

 line   BIGINT, 

 WORD   VARCHAR(256) 

); 

 

DECLARE @tbl2 TABLE 

( 

 GloBI_ID    VARCHAR(256), 

 [EXTERNAL_SYSTEM]  VARCHAR(64), 

 WORD     VARCHAR(256), 

 External_ID    VARCHAR(64) 

); 

 

INSERT INTO @tbl 

SELECT stuff.externalId as GloBI_ID, Results.line, RTRIM(LTRIM(Results.word)) as [ExternalID] 

FROM [Import].[GLOBI_MULTI_VALUE_FIELDS] as Stuff 

CROSS APPLY dbo.WordParser(Stuff.externalIDs, '|') as Results 

WHERE ISNULL(Results.word, '') <> '' 

ORDER BY 1; 

 

INSERT INTO @tbl2 

SELECT t.GloBI_ID, 'GBIF' AS [EXTERNAL_SYSTEM], word, RIGHT(ltrim(rtrim(word)), LEN(ltrim(rtrim(word)))-5) 

as External_ID 

from 

( 

 SELECT GloBI_ID, MAX(line) AS MAX_LINE 

 FROM @tbl 

 WHERE word like '%GBIF:%' 

 GROUP BY GloBI_ID 

) as ln 

 ,@tbl as t 

WHERE ln.GloBI_ID = t.GloBI_ID AND ln.MAX_LINE = t.line; 

 

INSERT INTO dbo.EXTERNAL_IDS (GloBI_ID, [EXTERNAL_SYSTEM], External_ID) 

SELECT LTRIM(RTRIM(GloBI_ID)), [EXTERNAL_SYSTEM], LTRIM(RTRIM(External_ID)) 

FROM @tbl2; 

 
Extracting interactions from SQL Server 
SELECT DISTINCT sourceTaxonName, sourceTaxonRank, sourceTaxonPathNames, 

sourceTaxonPathRankNames 

 , interactionTypeName 

 , targetTaxonName, targetTaxonRank, targetTaxonPathNames, targetTaxonPathRankNames 

 , decimalLongitude as Longitude, decimalLatitude as Latitude 

 , eventDateUnixEpoch 

FROM dbo.interactions 

WHERE sourceTaxonPathNames LIKE '%Plantae%' 

ORDER BY sourceTaxonPathNames, sourceTaxonName, targetTaxonPathNames, targetTaxonName; 

 
Extracting interactions from Neo4j 
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Use this script if you know the specific species, as it uses the index node:taxons to speed up the query 
START sourceTaxon = node:taxons(name="Picea pungens") 

MATCH (sourceTaxon)<-[x:CLASSIFIED_AS]-(sourceSpecimen)-

[r:INTERACTS_WITH|:ATE|:ECTOPARASITE_OF|:ECTOPARASITOID_OF|:ENDOPARASITE_OF|:ENDOPARASITOID_OF|:EPIPHITE_O

F|:FARMED_BY|:FARMS|:HAS_ECTOPARASITE|:HAS_ECTOPARASITOID|:HAS_ENDOPARASITE|:HAS_ENDOPARASITOID|:HAS_EPIPH

ITE|:HAS_HOST|:HAS_HYPERPARASITE|:HAS_HYPERPARASITOID|:HAS_KLEPTOPARASITE|:HAS_PARASITE|:HAS_PARASITOID|:H

AS_PATHOGEN|:HAS_VECTOR|:HOST_OF|:HYPERPARASITE_OF|:HYPERPARASITOID_OF|:KLEPTOPARASITE_OF|:PARASITE_OF|:PA

RASITOID_OF|:PATHOGEN_OF|:POLLINATED_BY|:POLLINATES|:PREYS_UPON|:SYMBIONT_OF|:VECTOR_OF]-

>(targetSpecimen)-[:CLASSIFIED_AS]->(targetTaxon) 

OPTIONAL MATCH (sourceSpecimen)-[:COLLECTED_AT]->(location) 

OPTIONAL MATCH ()-[ti:COLLECTED]-(sourceSpecimen) 

WHERE EXISTS(targetTaxon.externalId) 

AND EXISTS(sourceTaxon.externalId) 

RETURN DISTINCT sourceTaxon.externalId as sourceTaxonId 

           , sourceTaxon.name as sourceTaxonName 

           , sourceTaxon.rank as sourceTaxonRank 

           , sourceTaxon.path as sourceTaxonPathNames 

           , sourceTaxon.pathNames as sourceTaxonPathRankNames 

           , sourceTaxon.pathIds as sourceTaxonPathIds 

                    , type(r) as interactionTypeName 

                    , id(r) as interactionTypeId 

           , targetTaxon.externalId as targetTaxonId 

           , targetTaxon.name as targetTaxonName 

           , targetTaxon.rank as targetTaxonRank 

           , targetTaxon.path as targetTaxonPathNames 

           , targetTaxon.pathNames as targetTaxonPathRankNames 

           , targetTaxon.pathIds as targetTaxonPathIds 

                    , location.latitude as decimalLatitude, location.longitude as decimalLongitude, 

location.locality as locality 

                    , ti.dateInUnixEpoch as eventDateUnixEpoch 

                    , sourceTaxon.citation as referenceCitation 

ORDER BY targetTaxon.name 

 
Use this query, if you want all species within a Kingdom or a high level taxonomic rank. It uses the node:taxonPaths Lucene 
index. 
START sourceTaxon = node:taxonPaths('path:Animalia') 

MATCH (sourceTaxon)<-[x:CLASSIFIED_AS]-(sourceSpecimen)-

[r:INTERACTS_WITH|:ATE|:ECTOPARASITE_OF|:ECTOPARASITOID_OF|:ENDOPARASITE_OF|:ENDOPARASITOID_OF|:EPIPHITE_O

F|:FARMED_BY|:FARMS|:HAS_ECTOPARASITE|:HAS_ECTOPARASITOID|:HAS_ENDOPARASITE|:HAS_ENDOPARASITOID|:HAS_EPIPH

ITE|:HAS_HOST|:HAS_HYPERPARASITE|:HAS_HYPERPARASITOID|:HAS_KLEPTOPARASITE|:HAS_PARASITE|:HAS_PARASITOID|:H

AS_PATHOGEN|:HAS_VECTOR|:HOST_OF|:HYPERPARASITE_OF|:HYPERPARASITOID_OF|:KLEPTOPARASITE_OF|:PARASITE_OF|:PA

RASITOID_OF|:PATHOGEN_OF|:POLLINATED_BY|:POLLINATES|:PREYS_UPON|:SYMBIONT_OF|:VECTOR_OF]-

>(targetSpecimen)-[:CLASSIFIED_AS]->(targetTaxon) 

OPTIONAL MATCH (sourceSpecimen)-[:COLLECTED_AT]->(location) 

OPTIONAL MATCH ()-[ti:COLLECTED]-(sourceSpecimen) 

WHERE EXISTS(targetTaxon.externalId) 

AND EXISTS(sourceTaxon.externalId) 

RETURN DISTINCT sourceTaxon.externalId as sourceTaxonId 

           , sourceTaxon.name as sourceTaxonName 

           , sourceTaxon.rank as sourceTaxonRank 

           , sourceTaxon.path as sourceTaxonPathNames 

           , sourceTaxon.pathNames as sourceTaxonPathRankNames 

           , sourceTaxon.pathIds as sourceTaxonPathIds 

           , type(r) as interactionTypeName 

              , id(r) as interactionTypeId 

           , targetTaxon.externalId as targetTaxonId 

           , targetTaxon.name as targetTaxonName 

           , targetTaxon.rank as targetTaxonRank 

           , targetTaxon.path as targetTaxonPathNames 

           , targetTaxon.pathNames as targetTaxonPathRankNames 

           , targetTaxon.pathIds as targetTaxonPathIds 

, location.latitude as decimalLatitude 

, location.longitude as decimalLongitude 

, location.locality as locality 

, ti.dateInUnixEpoch as eventDateUnixEpoch 

, sourceTaxon.citation as referenceCitation 

ORDER BY targetTaxon.name 

 
Extract Golden Data Master from Neo4j 
START sourceTaxon = node:taxonPaths('path:Archaea') 

MATCH (sourceTaxon)<-[x:CLASSIFIED_AS]-(sourceSpecimen)<-[:COLLECTED]-(study) 

OPTIONAL MATCH (sourceSpecimen)-[:COLLECTED_AT]->(location) 

OPTIONAL MATCH ()-[ti:COLLECTED]-(sourceSpecimen) 

WHERE EXISTS(sourceTaxon.externalId) 

RETURN distinct sourceTaxon.externalId 
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, sourceTaxon.rank 

, sourceTaxon.path 

, sourceTaxon.pathNames 

, sourceTaxon.name 

,location.type as location 

, ti.dateInUnixEpoch 

, study.citation 

 
Joining GBIF and GloBI datasets 
SELECT GBIF.*, GloBI.* 

FROM 

( 

 SELECT DISTINCT species, taxonkey 

 FROM [dbo].[GBIF_TAXON] 

 WHERE species is NOT NULL 

) as GBIF 

LEFT JOIN 

( 

 SELECT t.TaxonID as GloBI_ID 

, t.TaxonName as GloBI_NAME 

, ei.ExternalID as ExternalStringID 

, SUBSTRING(ei.ExternalID, 6, LEN(ei.ExternalID)-5) AS ExternalID 

 FROM dbo.[EXTERNAL_IDS] ei 

  ,dbo.[TAXONS] t 

 WHERE t.TaxonID = ei.GloBI_ID 

 AND ei.ExternalID LIKE 'GBIF%' 

) AS GloBI ON GBIF.TaxonKey = GloBI.ExternalID 

WHERE GloBI.GloBI_NAME IS NOT NULL; 

 
 
APPENDIX C: D3 Referenced Scripts (bl.ocks) 

<!DOCTYPE html> 

<head> 

    <script src="https://d3js.org/d3.v4.min.js"></script> 

</head> 

<body> 

    <svg></svg> 

</body> 

 

<script> 

    // JSON data 

    var nodeData = (Full JSON data for Protozoa and Archaea available in project 

folder) 

   // Variables 

    var width = 500; 

    var height = 500; 

    var radius = Math.min(width, height) / 2; 

    var color = d3.scaleOrdinal(d3.schemeCategory20b); 

 

    // Create primary <g> element 

    var g = d3.select('svg') 

        .attr('width', width) 

        .attr('height', height) 

        .append('g') 

        .attr('transform', 'translate(' + width / 2 + ',' + height / 2 + ')'); 

 

    // Data strucure 

    var partition = d3.partition() 

        .size([2 * Math.PI, radius]); 

 

https://bl.ocks.org/denjn5/e1cdbbe586ac31747b4a304f8f86efa5
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    // Find data root 

    var root = d3.hierarchy(nodeData) 

        .sum(function (d) { return d.size}); 

 

    // Size arcs 

    partition(root); 

    var arc = d3.arc() 

        .startAngle(function (d) { return d.x0 }) 

        .endAngle(function (d) { return d.x1 }) 

        .innerRadius(function (d) { return d.y0 }) 

        .outerRadius(function (d) { return d.y1 }); 

 

    // Put it all together 

    g.selectAll('path') 

        .data(root.descendants()) 

        .enter().append('path') 

        .attr("display", function (d) { return d.depth ? null : "none"; }) 

        .attr("d", arc) 

        .style('stroke', '#fff') 

        .style("fill", function (d) { return color((d.children ? d : 

d.parent).data.name); }); 

</script>

 


