
PACO 2017 Extended Abstract

Energy-aware scheduling for parallel evolutionary

algorithms in heterogeneous architectures

Julio Ortega, Juan José Escobar, Antonio Dı́az, Jesús González, Miguel Damas1

The availability of mechanisms such as dynamic voltage and frequency
scaling (DVFS) and heterogeneous architectures including processors
with different power consumption profiles allow scheduling algorithms
aware of both runtime and energy. In this paper, we propose and evalu-
ate a scheduling strategy that takes into account the relative weights of
the workloads and the frequencies and voltages of the different process-
ing cores in a given heterogeneous parallel architecture either to save
energy without increasing the running time or to reach a trade-off among
time and energy. The parallel algorithms considered to evaluate the pro-
posed scheduling procedure are master-worker evolutionary algorithms
whose fitness functions demand high computing times and distribute
the fitness evaluation of the individuals among the available cores. As
many useful bioinformatics and data mining applications present this
profile, the proposed energy-aware scheduling approach could be fre-
quently applied. The experimental results obtained by simulation show
relevant energy savings, with values depending on the characteristics of
the heterogeneous architecture and on the workload profiles.

1 Background models

Any scheduling procedure locates tasks on the available processors according to predic-
tions about their computational cost and the corresponding energy consumption. There-
fore, the procedure also needs information about the characteristics of processors in the
system where the tasks are executed. In this section, the models on energy consumption
and computing time required by the given tasks are described.
The energy model used by the proposed scheduling procedure is estimated from the

power consumption equations corresponding to CMOS circuits that include the terms
associated to capacitive, short-circuit, and leakage power. As the most part of previous
works, and assuming the capacitive term as the most significant, we will use it to estimate
the power consumption in a processor as:

P = β × f × V 2 (1)

Where parameter β is related with the product of the number of transistors switching
in the processor per clock cycle and the total capacitance load, f is the clock frequency
of the processor, and V is the supply voltage. Therefore, the energy Ei consumed by a
given task i that requires Ci clock cycles in a processor with a supply voltage Vi can be
estimated from (1) by

Ei = β × f × V 2
i ×

Ci

f
= β × V 2

i × Ci (2)

1Dept. of Computer Architecture and Technology, CITIC, University of Granada (Spain),
jortega@ugr.es, jjescobar@ugr.es, afdiaz@ugr.es, jesusgonzalez@ugr.es, mdamas@ugr.es

1

mailto:jortega@ugr.es, jjescobar@ugr.es, afdiaz@ugr.es, jesusgonzalez@ugr.es, mdamas@ugr.es


PACO 2017 Extended Abstract

a) b)

Figure 1: Task dependence graph considered (a), and evolutionary algorithm as example
of application with such graph (b)

Whenever a processor is idle, there is also a so called indirect energy consumption that
for a given processor k can be estimated by

E idle
k = β × f × V 2

idle × tk (3)

where Vidle is the supply voltage of the processor in its idle state, and tk is the amount
of time in which processor k has been in this state. The tasks have to be located on the
processors included in a heterogeneous platform with p processors, Pj(j = 1, ..., p). Each
processor Pj can operate at different voltage supply levels (VSL), Vj,l(l = 1, ..., ω(j)),
corresponding to different clock frequencies frequencies fj,l(l = 1, ..., ω(j)).

2 A bi-objective scheduling procedure

This section describes a scheduling procedure that allocates processors and frequencies
to tasks trying to minimize both runtime and energy consumption. It can be applied to
parallel programs whose tasks dependence graphs are shown in Figure 1.a. In this graph,
tasks T1, T2, ..., TN can be executed in parallel after task T0, and after synchronizing
themselves once they have finished, task T0 is executed again and generates another set
of parallel tasks T1, T2, ..., TN executed in parallel, and so on. Moreover, the runtime of
task T0, is negligible with respect to the runtime of each parallel task T1, ..., TN . Many
useful applications can be parallelized according to the dependence graph of 1.a. Indeed,
1.b schematizes an evolutionary algorithm. Each generation, the fitness of the individuals
in the population has to be evaluated according to some performance procedure that could
demand a costly computation. For example, in [1] evolutionary multi-objective optimiza-
tion is applied to solve a feature selection problem in a BCI application. The individuals
of the population correspond to different sets of features that define the components of
the patterns to be classified. These sets of features have to be evaluated by the accuracy
of the classifier once it has been adjusted by using the training patterns characterized
by the selected features. The iterations required to train the classifier usually require a
high amount of computing time.The fitness evaluation needs between 97.36% (with 30 000
individuals in the population) and 99.93% of the runtime (for 120 individuals).
To define the scheduling strategy, we take into account four parameters, tMAX , tmax,

tmin and tMIN . These parameters can be obtained from the highest and lowest clock cycles

2



PACO 2017 Extended Abstract

values, Ci, required to complete the estimated workloads of the different tasks (i = 1, ..., n)
and from the frequencies of the available processors, fj,l(j = 1, ..., p, l = 1, ..., ω(j)) as
follows:

tMAX = max(Ci(i = 1, ..., n))/min(fj,l, (j = 1, ..., p, l = 1, ..., ω(j))) (4)

tmax = max(Ci(i = 1, ..., n))/max(fj,l, (j = 1, ..., p, l = 1, ..., ω(j))) (5)

tmin = min(Ci(i = 1, ..., n))/min(fj,l, (j = 1, ..., p, l = 1, ..., ω(j))) (6)

tMIN = min(Ci(i = 1, ..., n))/max(fj,l, (j = 1, ..., p, l = 1, ..., ω(j))) (7)

The parameter tMAX is the time required by the task with the heaviest workload when
it is executed in a processor running at the lowest frequency, the parameter tmax is the
time required by the task with the highest workload in a processor running at the highest
frequency. This way tMAX and tmax respectively represent the highest and lowest running
times that the heaviest task would require in the present heterogeneous platform. In the
same way, tmin and tMIN are, respectively, the highest and lowest running times for the
lightest task.
It is also possible to define energy consumption parameters, ECMAX , ECmax, ECmin,

and ECMIN , that respectively correspond to the runtimes tMAX , tmax, tmin, and tMIN as
follows:

ECMAX = β ×max(Ci(i = 1, ..., n))× [min(Vj,l, (j = 1, ..., p, l = 1, ..., ω(j)))]2 (8)

ECmax = β ×max(Ci(i = 1, ..., n))× [max(Vj,l, (j = 1, ..., p, l = 1, ..., ω(j)))]2 (9)

ECmin = β ×min(Ci(i = 1, ..., n))× [min(Vj,l, (j = 1, ..., p, l = 1, ..., ω(j)))]2 (10)

ECMIN = β ×min(Ci(i = 1, ..., n))× [max(Vj,l, (j = 1, ..., p, l = 1, ..., ω(j)))]2 (11)

The parameters tMAX , tmax, tmin, and tMIN verify that tMIN < tmax < tMAX and
tMIN < tmin < tMAX while ECMAX , ECmax, ECmin, and ECMIN verify that ECmin <
ECMAX < ECmax and ECmin < ECMIN < ECmax. Therefore, given a task i with Ci

clock cycles, that have been allocated to a processor with supply voltage Vj and frequency
fj, it is possible to define two indexes, ∆t and ∆E, with values between 0 and 1, and
respectively related with the contribution of the task allocation to the runtime and to
energy consumption:

∆tij =

Ci

fj
− tMIN

tMAX − tMIN

(12)

∆Eij =
K × Ci × V 2

j − ECmin

ECmax − ECmin

(13)

To select a processor and the corresponding frequency for a given task, the scheduling
algorithm uses a cost function that takes into account both the energy and runtime
objectives through indexes ∆tij and ∆Eij. In our procedure we propose the cost function
∆(Ci, fj) = ∆taij × ∆Eb

ij with integers a and b greater than or equal to one. This cost
function promotes allocations with low values of ∆tij and ∆Eij, and even lower values for
one factor whenever the other factor grows. Depending on the relative values of a and b
it is possible to give more relevance either to lower runtime or lower energy consumption.
The proposed scheduling procedure is shown in Figure 2.

3



PACO 2017 Extended Abstract

C(i)(i = 1, ..., p) // Cycles of task i to be allocated to a processor
Cmax = max(C(i)(i = 1, ..., p));
Cmin = min(C(i)(i = 1, ..., p));

// Frequency i-th of processor j-th (FL frequency levels; p processors)
F (i, j)(i = 1, ..., FL; j = 1, ...p)
Fmax = max(F (i, j)(i = 1, ..., FL; j = 1, ...p));
Fmin = min(F (i, j)(i = 1, ..., FL; j = 1, ...p));
Compute tMAX , tmax, tMIN , tmin, and ECMAX , ECmax, ECMIN , ECmin

C(i)(i = 1, ..., p) is sorted verifying C(j) ≤ C(j + 1)(j = 1, ..., p− 1);
for i = 1 : p

// Select processor to locate C(i) and frequency
for j = 1 : p

if processor j has not been previously selected
for k = 1 : FL

∆(C(i), F (j, k)) = ∆ta
i(j,k) ×∆Eb

i(j,k);
end;

end;
end;
Select the frequency level of processor, s, not previously selected, for which
is obtained the minimum value of ∆(C(i), F (j, k));
Mark processor s as selected;

end;

Figure 2: Description of the energy-aware procedure for scheduling

3 Performance evaluation

In this section, we analyze the performance of the proposed scheduling procedure. Table
1 describes the three configurations of eight processors with different clock frequencies
we have used in our experiments. As can be seen, each configuration corresponds to a
different level of heterogeneity. Indeed, conf1 is homogeneous as all the processors have
the same levels of voltage and frequency. The configuration conf2 includes two different
processors while conf3 includes four. More specifically, Table 1 provides the relative
speeds with respect to the one achieved at the highest frequency, which is 1 GHz in all
the configurations.

We have also used three different profiles for the evolutionary algorithm. They are
defined by the lowest and the highest values for the computing cost of the fitness evaluation
tasks, and the lowest difference between two different computing costs. The cost weights
for the individuals in the population are randomly selected. This way, the benchmark
b30×100 includes tasks with computing costs between 100 and 3 000 cycles with cost
differences multiple of 100 cycles. The computing costs of the tasks in b300×100 go from
1 000 to 30 000 cycles being 100 cycles the lowest difference between tasks, and finally, the
tasks in b30×1 000 go from 1 000 to 30 000 cycles with lowest differences of 1 000 cycles
between tasks. Each of these files (b30×100, b300×100 and b30×1 000) includes 100
configurations of task costs with the aforementioned characteristics. These configurations
have been randomly selected by using a standard uniform distribution. This way, the
averages for the increments in runtime and energy consumption correspond to 100 different

4



PACO 2017 Extended Abstract

% P1 P2 P3 P4 P5 P6 P7 P8

100 100 100 100 100 100 100 100
conf1 80 80 80 80 80 80 80 80

50 50 50 50 50 50 50 50

80 80 80 80 100 100 100 100
conf2 64 64 64 64 80 80 80 80

40 40 40 40 50 50 50 50

60 60 80 80 90 90 100 100
conf3 48 48 64 64 72 72 80 80

30 30 40 40 45 45 50 50

Table 1: Relative speeds (in %) in the processors of the configurations used in the
experiments

(a, b)
(1, 1) (1, 3) (2, 1) (3, 1) (3, 2)

Bench. Conf. ∆t ∆E ∆t ∆E ∆t ∆E ∆t ∆E ∆t ∆E

conf1 100.00 −55.80 100.00 −55.80 0.00 0.00 0.00 0.00 100.00 −55.40
b30×100 conf2 74.68 −60.96 74.68 −60.96 6.78 −10.84 6.78 −10.78 75.19 −60.44

conf3 58.61 −64.18 58.61 −64.18 148.80 −11.74 24.41 −16.05 59.71 −63.36

conf1 100.00 −55.80 100.00 −55.80 0.00 0.00 0.00 0.00 100.00 −55.40
b300×100 conf2 75.23 −61.85 75.23 −61.85 9.37 −10.42 8.81 −10.27 76.19 −61.05

conf3 54.76 −65.06 54.76 −65.06 148.50 −11.96 24.23 −15.78 57.42 −63.60

conf1 100.00 −55.80 100.00 −55.80 0.00 0.00 0.00 0.00 100.00 −55.40
b30×1 000 conf2 73.59 −60.95 73.59 −60.95 8.34 −10.21 7.62 −9.97 73.71 −60.28

conf3 53.81 −64.18 53.81 −64.18 143.70 −11.82 21.85 −15.87 54.97 −63.02

Table 2: Averages of increments in runtime and energy consumptions. The values corre-
sponding to the lowest runtime increments are shown in bold characters

cases.

Table 2 shows the results obtained for the averages of the increments in runtimes and
energy consumptions by the proposed scheduling procedure for the different benchmarks.
These benchmarks have been executed on the three considered configurations described in
Table 1. The increments corresponds to the differences in runtime and energy consumption
with respect to a random scheduling of the tasks across the different processors. Several
couples of values for the parameters a and b in ∆(Ci, fj) = ∆taij × ∆Eb

ij have been
considered.

As can be seen, in the homogeneous configuration conf1 only it is possible to save en-
ergy for the (a, b) couples (1, 1), (1, 3), and (3, 2), that also provide high decrements in
the energy consumption in the heterogeneous configurations conf2 and conf3. Neverthe-
less, in these last two configurations, the couples (1, 1), (1, 3), and (3, 2) also determine
increments in the runtime higher than 50%. The (a, b) couples (2, 1) and (3, 1) produce
neither increments in the runtimes nor decreases in the energy consumption whenever the
homogeneous conf1 is considered.

In the heterogeneous configuration conf2, the couples (2, 1) and (3, 1) allow increments
in the runtime much lower than those obtained with (1, 1), (1, 3), and (3, 2) although
the energy savings are also lower. In the other heterogeneous configuration, conf3, this
behavior (i.e. lower increments in the runtime with decrements in the energy consumption)
is only observed with couple (3, 1). The couple (2, 1) produces high increments in the

5



PACO 2017 Extended Abstract

runtime (higher than 140%). From Table 2 it is also apparent that given a parameter
couple (a, b), the averages in the increments in runtime and energy consumption are
similar for the three different distributions of task costs considered (b30×100, b300×100
and b30×1 000).

4 Conclusions

This paper proposes a scheduling procedure for evolutionary algorithms, with fitness
functions requiring high runtimes to be evaluated, that takes into account not only runtime
but also energy consumption. The procedure is based on dynamic voltage and frequency
scaling (DVFS) and it is useful in heterogeneous architectures including processors with
different power consumption profiles. It uses an approximate estimation of the cost of the
fitness evaluation task, to build a cost function, ∆(Ci, fj) = ∆taij × ∆Eb

ij, including the
effect of energy consumption and speed through two parameters, a and b, that control the
trade-off between these two measures. The simulation experiments we have accomplished
have shown that by using the adequate combination of those two parameters it is possible
to control the strength of each component, runtime and energy consumption. This way,
the averages values for the increments of speed and energy consumption obtained across
different configurations of task costs show that our procedure is able to reach energy
savings of more than 10% with a runtime increment of about 9%. In many configurations
of tasks it has been also observed energy savings of about 10% without any increase in the
runtime. Given a configuration and a couple of parameters, a and b, similar averages of
increments in runtimes and energy consumption have been observed across the considered
distribution of task costs.
A lot of researching work still has to be completed. On the one side a more detailed

characterization of the heterogeneous configurations of processors in terms of their ca-
pabilities to make possible task allocations with the best speed and energy consumption
figures would be very useful. The performance evaluation by using profiles of task costs
corresponding to real applications should be also completed, along with measuring the
real values for energy savings and speeds in the execution of the parallel codes in the
available heterogeneous platforms. This way, the usefulness of the consumption models
we use in our scheduling procedure would be demonstrated.

Acknowledgements

This work was supported by project TIN2015-67020-P, funded by the Spanish “Ministerio
de Economı́a y Competitividad” and European Regional Development Funds (ERDF).

References

[1] J. Ortega, J. Asensio-Cubero, J. Q. Gan, and A. Ortiz, Classification of

motor imagery tasks for bci with multiresolution analysis and multiobjective feature

selection, BioMedical Engineering OnLine, 15 (2016), p. 73.

6


	Background models
	A bi-objective scheduling procedure
	Performance evaluation
	Conclusions

