
PYEO: FOREST ALERT SYSTEM

User Guide

Authors:
H. Balzter
I. Reading
M. Payne
University of Leicester 2023

TABLE OF
CONTENTS

INTRODUCTION .. 2

REQUIREMENTS .. 3

INSTALLATION .. 5

Python Environment Management .. 5

PyEO Software Installation .. 6

Installation Test .. 6

TUTORIALS ... 8

Jupyter notebooks ... 8

OPERATION ... 9

Customisation Recommendations ... 9

Credentials Folder Creation ... 10

Key Folder Creation ... 10

Configuration .. 11

Pipeline Parameters ... 12

PyEO Workflow & Control .. 12
Workflow Step 1: Initialisation ... 13

Workflow Step 2: Run Configuration Logging 13

Workflow Step 3: RoI and Tile Intersection 14

Workflow Step 4: Raster Processing and Report Generation for
each Sentinel-2 Tile .. 14

Workflow Step 5: Vector Analysis of Tile Raster Reports 21

Workflow Step 6: Integrate Vector Analyses to National Scope
 ... 22

Workflow Step 7: Filter National Scope Vectorised Forest Alerts
 ... 23

Workflow Step 8: Manual Filtering of National Scope Vectorised
Forest Alerts .. 24

Workflow Step 9: Distribution of Manually Filtered Forest Alerts
 ... 24

PyEO Pipeline Execution .. 25

PYEO Operational Recommendations .. 25

PYEO DATA FOLDER STRUCTURE 27

CITATION .. 29

How to cite this software .. 29

1

2

INTRODUCTION

Welcome to Python for Earth Observation Forest Alert System.

PyEO is designed to provide a set of portable, extensible, and modular
Python scripts for machine learning in earth observation and GIS,
including downloading, pre-processing, creation of base layers,
classification and change detection. It was developed by the
University of Leicester and has primarily been applied to the
generation of deforestation alerts to assist in maintaining forest cover
including in Guatemala, Brazil, and Kenya. This manual describes the
use of release 1.0 developed under the IMPRESS project in 2022-
2023 to provide forest alerts at national scale for the Kenyan Forestry
Service on the SEPAL platform of the United Nations Food and
Agriculture Organisation.

The software repository is available at:
https://github.com/clcr/pyeo

Training notebooks are available within the repository at:
https://github.com/clcr/pyeo/notebooks

Detailed documentation of functions is available at:
https://clcr.github.io/pyeo/build/html/index.html

3

REQUIREMENTS

To work with PyEO Forest Alert System you will need access to certain
software packages (which are provided on the SEPAL platform) and
also an account and access credentials to download Eurpoean Space
Agency (ESA) Sentinel-2 satellite imagery. From September 2023
this is provided by the Copernicus Data Space Ecosystem (CDSE).

To use the CDSE, you will need to open an account at:
https://dataspace.copernicus.eu

Once you have created your account, you will need to record your
email address and password as they will need to be entered into a
credentials.ini file to allow the software to automatically download
data. This is described in more detail further below.

To enable conversion of Sentinel-2 Top of Atmosphere (L1C) imagery
to Bottom Of Atmosphere (L2A) images the software requires a path
to an installation of the European Space Agency (ESA) conversion
program Sen2Cor. This is provided pre-installed on the SEPAL
platform but can also be obtained directly from
http://step.esa.int/main/third-party-plugins-2/sen2cor/ for other
platforms.

The program git is also required to obtain the PyEO software from
GitHub repository and to keep it up to date. This program is provided
by default on the SEPAL platform and its presence and version can
be verified with the command:

4

git --version

The program will respond with the software’s version number e.g.:

 git version 2.25.1

Please note that PyEO needs to make temporary use of the user’s
home directory when decompressing downloaded images and so it is
important that at least 2Gb of free storage space are available in this
folder when PyEO is downloading images. Normally the temporary
folders created for this purpose are automatically deleted but if a
PyEO run terminates unexpectedly or is aborted these temporary
folders (with names of the form ‘tmpxxxxx’) may be left in the user's
home folder – they can however be safely deleted manually.

5

INSTALLATION

PYTHON ENVIRONMENT MANAGEMENT

PyEO requires a python virtual environment containing its software
package dependencies. On the SEPAL platform this has already been
generated and is available for selection from the dropdown list of
kernels in Jupyter Notebooks to enable following the tutorials as
described below. When using notebooks please select the kernel
named:

(venv) Python for Earth Observation (PyEO)

For standalone command line execution (outside of notebooks) a local
copy of the provided virtual environment can be made into a user’s
home folder as follows:

cd /sepal-user/home

cp -R /usr/local/share/jupyter/kernels/venv-
pyeo_1/venv .

This virtual environment can then be activated to allow command line
execution of PyEO by issuing the following command from the user’s
home folder:

6

source venv/bin/activate

The command prompt will change to be prefixed with (venv) to
indicate the virtual environment has been correctly activated.

PYEO SOFTWARE INSTALLATION

Once a virtual environment has been activated a working copy of
PyEO can then be cloned from GitHub and installed into this local
virtual environment as follows:

cd ~

mkdir my_working_directory

cd my_working_directory

git clone https://github.com/clcr/pyeo.git

cd pyeo

pip install -e .

Thereafter entering the command pip list at the terminal will show
all installed packages including PyEO itself.

INSTALLATION TEST

You can test your installation by typing the following in the terminal:

python

>>> import pyeo.classification

or, by running the same import command above, after having started
a Jupyter notebook from within SEPAL (by clicking on the ‘Spanner
icon on the left and selecting Jupyter Lab). For more information on

7

the use of SEPAL, please see:
https://docs.sepal.io/en/latest/setup/index.html

8

TUTORIALS

JUPYTER NOTEBOOKS

Once installation of PyEO is complete, you can follow the tutorial
notebooks, which demonstrate the utility of the PyEO library. The
PyEO software repository you have downloaded includes the
following set of notebooks giving step by step instructions on how
to:

• Setup the PyEO environment:
https://github.com/clcr/pyeo/notebooks/PyEO_sepal_orientation.
ipynb

• Train a customised machine learning classifier:

https://github.com/clcr/pyeo/notebooks/PyEO_sepal_model_trai
ning.ipynb

• Operate the Forest Alert Pipeline to: Download Sentinel-2

Imagery, Create a Baseline Composite and Perform Automatic
Change Detection

https://github.com/clcr/pyeo/notebooks/PyEO_sepal_pipeline
_training.ipynb

9

OPERATION

CUSTOMISATION RECOMMENDATIONS

PyEO is designed to run from its built-in folder structure whilst you
become familiar with it and learn using the provided notebooks.
However, when in regular or production use it is good practice to
move (or reproduce) certain key files and folders so that they will not
be affected by any updates to the GIT-managed content of the
repository and also so that, for developers, there is no risk of
accidentally exposing credentials when publishing any code
modifications back up to GitHub. For the following we will assume
these key files and folders will be placed at the level of the installation
directory we made earlier namely ‘my_working_directory’ (although
you may place them wherever you wish if you adjust paths
accordingly).

The first step is to make a copy of the pyeo_sepal.ini file in our
working directory

cd ~/my_working_directory

cp pyeo/pyeo_sepal.ini .

The pyeo_sepal.ini file is central to PyEO’s operation. It controls
which parts of the pipeline will be executed and contains path
variables to the key other code and data folders required by PyEO.

10

We can now edit and customise it and adjust paths to folders as will
be described below.

An example of moving the credentials folder is set out below. It would
also be good practice to similarly move your data, geometry, log,
model and roi folders up to the installation level to preserve them and
ensure privacy.

CREDENTIALS FOLDER CREATION

To use the CDSE, you will need your account details obtained by
registering at https://dataspace.copernicus.eu

Once you have created your account, you need to:

1. Create a copy of the credentials folder in
my_working_directory above pyeo

cd ~/my_working_directory

cp -R pyeo/credentials .

2. Rename the contained file credentials_dummy.ini to
credentials.ini

3. Enter your email address and password into the dataspace
section of the credentials.ini file, following the pattern shown
below:

KEY FOLDER CREATION

As indicated above it would also be good practice to similarly move
your data, geometry, integrated, log, model and roi folders up to the

11

installation level to preserve them and ensure privacy. This can be
achieved by following the pattern show below for each of the above-
listed folders:

cd ~/my_working_directory

cp -R pyeo/data .

CONFIGURATION

Firstly, we need to edit our initialisation file pyeo_sepal.ini to point to
the folders we created above in the [environment] section, as follows.

[environment]
pyeo_dir needs to be an absolute path to the installed pyeo_code
pyeo_dir = /home/sepal-user/20230626_pyeo_installation/pyeo_1
tile_dir needs to be an absolute path to the output data directory
tile_dir = /home/sepal-user/20230626_pyeo_installation

Relative paths are relative to pyeo_dir\
integrated_dir = ../integrated
roi_dir = ../roi
roi_filename = kfs_roi_subset_c.shp
geometry_dir = ../geometry
s2_tiles_filename = kenya_s2_tiles.shp
log_dir = ../log
log_filename = sepal_venv.log
credentials_path = ../credentials/credentials.ini

environment_manager = venv

Path to the sen2cor preprocessor script, L2A_Process. Usually in the bin/ folder
of your sen2cor installation.
sen2cor_path = /bin/L2A_Process

We can then edit the remainder of the pyeo_sepal.ini file to configure
the pipeline parameters and enable the sections we wish to activate
when we run as described in the following sections.

A Note on .ini file encoding on Windows: Although this guide is
for SEPAL users please note that if users are running on Windows OS
then after editing (for example with the Notepad app) the file
pyeo_windows.ini will need to be saved after selecting the ANSI
encoding option from the dropdown list of options instead of the

12

default of UTF-8. Please see this page for more details:
https://stackoverflow.com/questions/13282189/missingsectionhead
ererror-file-contains-no-section-headers

PIPELINE PARAMETERS

The overall parameters for the pipeline can then be setup using the
[forest_sentinel] section in the pyeo_sepal.ini file. Here the date
range of interest for forest alert generation is specified by the
start_date and end_date and the reference time period to be used as
an historical reference (assumed pre-change of forest cover) is
specified as being between the dates assigned to composite_start and
to composite_end.

[forest_sentinel]

Acquisition dates in the form yyyymmdd
start_date=20230101
end_date=20230131

Dates to download and preprocess for the initial cloud-free composite
composite_start=20220101
composite_end=20221231

EPSG code for Kenya - north of equator and east of 36°E is EPSG:21097
See https://epsg.io/21097 and https://spatialreference.org/ref/epsg/21097/
epsg=21097

Cloud cover threshold for imagery to download
cloud_cover=25

Certainty value above which a pixel is considered a cloud from sen2cor
cloud_certainty_threshold=0

path to the trained machine learning model for land cover in Kenya
model= ./models/model_36MYE_Unoptimised_20230505_no_haze.pkl

The other required fields are described in the accompanying comment
text in the pyeo_sepal.ini file as can be seen in the excerpt above.

PYEO WORKFLOW & CONTROL

The PyEO national forest alert system works under control of the
pyeo_sepal.ini file. Based on this file it follows a workflow comprising

13

the steps described below drawing parameters from the initialisation
file. It also reads activation flags of the form ‘do_activity’ and
executes them selectively according to whether these values are set
to True or False.

The Python functions which enact the workflow steps can be found in
the entry point function automatic_change_detection_national() in
pyeo/acd_national.py . This top-level function can be called from the
command line using pyeo/run_acd_national.py passing it an absolute
path to the pyeo_sepal.ini file you wish it to make use of.

In the workflow step descriptions, which follow below, we identify:

• The input parameters and activation flags
• The key functions used to execute the pipeline stage
• The processed output files generated and the position where

these outputs are stored in the file system

Please note the overall workflow described incorporates both
automated pipeline stages as well as manual steps to be undertaken
by relevant experts of a forest management team.

Workflow Step 1: Initialisation

In this workflow step PyEO reads the pipeline configuration specified
in the pyeo_sepal.ini file into an internal python dictionary.

config_dict, acd_log = acd_initialisation(config_path)

Workflow Step 2: Run Configuration Logging

This step simply streams the configuration python dictionary in
human readable form to a log file to act as a record of the run status.
The log file storage position is specified in pyeo_sepal.ini by the
following lines:

log_dir = ./log
log_filename = sepal_venv.log

14

The work is carried out by:

acd_config_to_log(config_dict, acd_log)

Workflow Step 3: RoI and Tile Intersection

PyEO Forest Alerts accepts a single shapefile specifying the region of
interest to be monitored. The shapefile to use is set by these
parameters in pyeo_sepal.ini

roi_dir = ./roi
roi_filename = kfs_roi_subset_c.shp

This step is activated/deactivated by setting do_intersection =
True/False in the initialisation file

do_tile_intersection = True

This processing stage is carried out by:

tilelist_filepath =
acd_roi_tile_intersection(config_dict, acd_log)

The output generated is a file tilelist.csv in pyeo/roi containing a list
of all Sentinel-2 tiles that intersect with the region of interest covered
by the shapefile. This list is then used to guide the download and
processing of these required tiles on a tile-by-tile basis in later steps.

Workflow Step 4: Raster Processing and Report
Generation for each Sentinel-2 Tile

PyEO Forest Alerts now processes each tile in tilelist according to the
pipeline parameters to generate a report representing areas of
potential forest change.

[forest_sentinel]

15

Acquisition dates in the form yyyymmdd
start_date=20230101
end_date=20230131

Dates to download and preprocess for the initial cloud-free composite
composite_start=20220101
composite_end=20221231

EPSG code for Kenya - north of equator and east of 36°E is EPSG:21097
See https://epsg.io/21097 and https://spatialreference.org/ref/epsg/21097/
epsg=21097

Cloud cover threshold for imagery to download
cloud_cover=25

Certainty value above which a pixel is considered a cloud from sen2cor
cloud_certainty_threshold=0

path to the trained machine learning model for land cover in Kenya
model= ./models/model_36MYE_Unoptimised_20230505_no_haze.pkl

Specific raster processing parameters can also be set in
pyeo_sepal.ini to control this stage:

***** STEP 4 SETUP GENERAL RASTER PROCESSING PARAMETERS *****
download_source = scihub
download_source = dataspace
granules below this size in MB will not be downloaded
faulty_granule_threshold = 350
list of strings with the band name elements of the image file names in "" string
notation
the wavebands specified here must match those used to build the random forest
model specified in the Classify section below
band_names = ["B02", "B03", "B04", "B08"]
file name pattern to search for when identifying band file locations in "" string
notation
resolution_string = "10m"
spatial resolution of the output raster files in metres. Can be any resolution,
not just 10, 20 or 60 as in the default band resolutions of Sentinel-2
output_resolution = 10

The raster processing step is activated/deactivated by setting
do_raster = True/False in the initialisation file

do_raster = True
do_skip_existing = True
do_quicklooks = False

This processing stage is carried out by:

16

acd_integrated_raster(config_dict, acd_log,
tilelist_filepath…)

Several sub-steps can be identified in this process and these can be
selectively enabled and disabled on any given run. This may, for
example, be useful if only composite baselines are required or, if an
earlier processing run was interrupted, as a means to only repeat
steps that remained incomplete. The sub-steps are listed below:

Raster-Processing Sub-Steps

STEP 4a: Download Reference Images and Build a Median Composite

This step downloads historical images and combines them with a
median function into a cloud-free composite. It can be selectively
enabled with the do_build_composite flag

***** STEP 4a DOWNLOAD REFERENCE IMAGES AND BUILD A MEDIAN COMPOSITE *****
do_build_composite = True
set buffer in number of pixels for dilating the SCL cloud mask (recommend 10
pixels of 10 m) for the composite building
buffer_size_cloud_masking_composite = 10
maximum number of images to be downloaded for compositing, in order of least
cloud cover
download_limit = 10

STEP 4b: Download Change Detection Images for the Required Date
Range

This step acquires (downloads) recent images in which to detect
changes and can be selectively enabled with the do_download flag

***** STEP 4b: DOWNLOAD CHANGE DETECTION IMAGES FOR THE REQUIRED DATE RANGE *****
do_download = True
set buffer in number of pixels for dilating the SCL cloud mask (recommend 30
pixels of 10 m) for the change detection
buffer_size_cloud_masking = 20

STEP 4c: Classify the Composite and Change Detection Images

17

This step applies the random forest model to classify land use in the
composite and change images and can be selectively enabled with
the do_classify flag

***** STEP 4c: CLASSIFIY THE COMPOSITE AND CHANGE DETECTION IMAGES *****
do_build_prob_image = False
do_build_prob_image, consider removing
do_classify = True
list of strings with class labels starting from class 1. Must match the trained
model that was used.
class_labels = ["primary forest", "plantation forest", "bare soil", "crops",
"grassland", "open water", "burn scar", "cloud", "cloud shadow", "haze", "sparse
woodland", "dense woodland", "artificial"]
if sieve is 0, no sieve is applied. If >0, the classification images will be
sieved using gdal and all contiguous groups of pixels smaller than this number will
be eliminated
sieve = 0

STEP 4d: Detect Changes and Build Raster Reports

This step compares the classified images to detect unwanted changes
in forest cover. It can be selectively enabled with the do_change flag

***** STEP 4d: DETECT CHANGES AND BUILD RASTER REPORTS *****
do_change = True
find subsequent changes from any of these classes. Must match the trained model
that was used.
change_from_classes = [1, 2]
to any of these classes. Must match the trained model that was used.
change_to_classes = [3]

Raster Processing Output Layers

The output generated by the above raster processing stages is a
stacked GeoTIFF report file produced on a tile-by-tile basis which can
be found in the output/probabilities folder within PyEO’s data
directory structure (see PyEO DATA Folder Structure section). These
layers can be viewed in conjunction to understand land use changes
using GIS tools such as QGIS. For completeness all the layers are
described below as they may aid forestry analysts in determining the
time and cause of forest disturbances however please note that the
automated analysis and vectorisation described in later steps of the
PyEO pipeline condense this large volume of information into a simple
tabular output (national_geodataframe.shp) that can be viewed and

18

manipulated in QGIS and similar GIS tools as a way of rapidly
identifying areas of land use change.

Table: Time-Series Analysis: Report Layer Structure Guide

19

LAYER DESCRIPTION
1 Total Image Count: The number of images processed

per pixel - number of available images within overall
cloud percentage cover limit set in a .ini file

2 Occluded Image Count: Counts number of cloud
occluded (or out-of-orbit) images that are thus
unavailable for classification and analysis

3 Classifier Change Detection Count: Count if a from/to
change of classification was detected

4 First-Change Trigger for Combined Classifier+dNDVI
Validated Change Detection: Earliest classification
change date where (not missing data & not cloud)

5 Combined Classifier+dNDVI Validated Change
Detection Count: Count if a change was detected after
a first change has already been detected

6 Combined Classifier+dNDVI Validated No Change
Detection Count: Count if a no change was detected
after a first change has already been detected

7 Cloud Occlusion Count: Count if a cloud occlusion (or
out-of-orbit) occurred after a first change has already
been detected

8 Valid Image Count: Total number of valid (no cloud)
images for this pixel since first change was detected

9 Change Detection Repeatability: Repeatability of
change detection after first change is detected - as a
percentage of available valid images

10 Binary time-series decision: Based on
percentage_probability_threshold and
minimum_required_validated_detections_threshold

11 Binary time-series decision by first-change date: First
change date masked by Binary Decision

12 dNDVI Only Change Detection Count: Count if a
change was detected by the dNDVI test and that not
cloud occluded (or out-of-orbit)

13 Binary time-series decision: Based on dNDVI Only and
minimum_required_dNDVI_detections_threshold

14 Binary time-series decision: Based on Classifier Only
15 Combined Classifier+dNDVI Binary time-series

decision: Based on Classifier AND dNDVI opinion
16 FROM Classification Count
17 TO Classification Count
18 Binary Decision Thresholds on FROM and TO

Classification Counts

20

In the above table NDVI refers to the Normalised Difference
Vegetation Index, a well-known measure of plant cover derived from
multi-spectral image data. The term dNDVI refers to the difference in
NDVI between the baseline composite reference image and that of a
given change monitoring image. This differential dNDVI measure is
used as an additional check to the classifier’s detection of a change
in land use to provide confirmation that there has been vegetation
loss in a given region. Layer 15 Combined Classifier+dNDVI Binary
time-series decision: Based on Classifier AND dNDVI opinion contains
the output of the system based on these combined criteria and is
used for the generation of vectorised polygon output. The separated
outputs are available in other layers in case they are of use to users
of the system in investigating the causation of alerts. With this in
mind the raw processed NDVI and dNDVI images are also available
in the output/probabilities directory to allow users to view them
directly (as GeoTIFF files). To save storage space these files can be
deleted if they are not required.

Layers 16 & 17 maintain a count of the number of times a region has
registered as one of the FROM land use classes (e.g. Forest) and as
one of the TO land use classes (e.g. Bare Earth) respectively. Layer
18 holds a binarization based on the threshold criteria described
below. These outputs were generated for research purposed but may
be of interest to forest analysts as they are independent of the
composite baseline and if the system is run over a long time series
will offer an alternative view of where transitions from forested to
non-forested land use may have occurred.

Raster Processing Binarisation Criteria & Parameters

The production of the binarized decision layer 15 requires threshold
criteria to be applied to the accumulated time-series evidence for
each pixel of the image footprint. This step is used to enable forest
analysts to rapidly identify the most likely areas of change on which
to focus their investigations. It is also the basis for vectorisation of
change areas in the next processing stages which enables a national
picture to be built to produce the final national geo-dataframe

21

summarising change in regions of interest such as protected national
parks. The parameters used are described below and can be found
and changed in the code if required.

Table: Time-Series Analysis: Binarisation Criteria

Absolute number of valid detections for classifier opinion to be
accepted.
minimum_required_validated_detections_threshold = 5
Absolute number of dNDVI change detections for classifier opinion
to be accepted.
minimum_required_dNDVI_detections_threshold = 5
Absolute number of classifier-only detections for opinion to be
accepted
minimum_required_classifier_detections_threshold = 5
Minimum repeatability of detection after first detection
percentage_probability_threshold = 50
Minimum number of matches to Change_From classes
minimum_required_FROM_detections_threshold = 2
Minimum number of matches to Change_To classes
minimum_required_TO_detections_threshold = 2

Workflow Step 5: Vector Analysis of Tile Raster
Reports

In this step we now vectorise the report layers generated for each of
the Sentinel-2 tiles that have been processed by step 4 turning each
4-connected cluster of pixels into a bounding vector polygon and
measuring these polygons (in particular to extract the area and
centroid). The centroid is then computed and used to assign each
polygon to administrative areas of Kenya in the example to assist
foresters in assigning different areas for analysis to staff.

***** STEP 5: VECTOR ANALYSIS OF TILE RASTER REPORTS *****
[vector_processing_parameters]
level_1_filename = gadm41_KEN_1.json
vectorisation currently hardcoded to use level_1_filename
level_2_filename = gadm41_KEN_2.json
level_3_filename = gadm41_KEN_3.json

do_delete_existing_vector = True

22

This step is activated/deactivated by setting do_vectorise =
True/False in the initialisation file

do_vectorise = True

This processing stage is carried out by:

acd_integrated_vectorisation(

 log=acd_log,

 tilelist_filepath=tilelist_filepath,

 config_path=config_path

On completion there PyEO will output a shape file for each tile in its
/output/probabilities folder containing polygons and metrics for all
potential forest alerts.

Workflow Step 6: Integrate Vector Analyses to
National Scope

In this step PyEO builds a national picture of deforestation activity by
combining the vectorised alerts for each tile into a single output data
file called national_geodataframe.shp which is placed in the folder
specified by ‘tile_dir’. In addition, if the parameter write_kml is set to
‘True’ a kml format file will also be produced.

This step is activated/deactivated by setting do_integrate =
True/False in the initialisation file

***** STEP 6: INTEGRATE VECTOR ANALYSES TO NATIONAL SCOPE *****
do_integrate = True

This processing stage is carried out by:

acd_national_integration(

 root_dir=config_dict[“tile_dir”],

23

 log=acd_log,

 epsg=config_dict[“epsg”],

 config_dict=config_dict,

 write_kml=True

)

Upon completion of this step PyEO will have output the combined
vectorised alerts for each tile into a single output data file called
national_geodataframe.shp which is placed in the ‘tile_dir’ folder
specified in pyeo_sepal.ini .

Note: The shape file generated per tile in Step 5 contains polygons
for all alert regions covered by the tile regardless of the region of
interest whereas the nationa_geodataframe shape file filters
polygons from the tiles to only select those that fall within the
user’s specified region of interest as set by the parameter
roi_filename in pyeo_sepal.ini.

Workflow Step 7: Filter National Scope Vectorised
Forest Alerts

***** STEP 7: FILTER NATIONAL SCOPE VECTORISED FOREST ALERTS *****
do_filter = False
If there are any strings within counties_of_interest list, filtering by county
will be attempted
counties_of_interest = []
Counties_of_interest = ["Kwale", "TransNzoia"]
minimum_area_to_report_m2 = 120

This step is activated/deactivated by setting do_filter = True/False in
the initialisation file

do_filter = False

This processing stage is carried out by:

acd_national_filtering(

 log=acd_log,

24

 config_dict=config_dict

)

This step can optionally be used to further filter the
national_geodataframe.shp file by criteria such as county of interest
or the minimum disturbed area (based on each Sentinel-2 pixel
covering 10m x 10m or 100m2)

Workflow Step 8: Manual Filtering of National Scope
Vectorised Forest Alerts

This workflow step represents a manual step whereby GIS and
forestry experts select a subset of the automatically generated alerts
for on-site investigation by teams on the ground. To achieve this the
national_geodataframe.shp file (perhaps additionally filtered in Step
7) can be loaded into the QGIS tool and viewed as a table. Table
columns have been included to allow these experts to identify
themselves (‘user’), flag alerts that should be investigated
(‘follow_up’), indicate the type of event (‘eventClass’) and to add
notes on their reasoning (‘comments’).

Workflow Step 9: Distribution of Manually Filtered
Forest Alerts

Finally, forest alerts flagged for further investigation in Step 8 can be
filtered from the national_geodataframe (using the geopandas
python library) distributed to teams of rangers on the ground for
investigation and reporting on the nature of the disturbance found.
Distribution to remote teams can be effected by the use of mobile
phone applications such as WhatsApp and could in principle be
automated with additional Python code.

25

PYEO PIPELINE EXECUTION

PyEO can be run interactively in the Jupyter Notebooks provided in
the Tutorials but for production use it will typically be run as a
standalone application via the Terminal.

Once the pyeo_sepal.ini file has been configured with the parameters
and run options required we can run PyEo from the command line in
a terminal as follows:

First, move to where PyEO is installed:

cd ~/my_working_directory/pyeo

Then we can invoke python to run the script run_acd_national.py
within the folder pyeo which will start PyEO pipeline execution. For
this to work we must pass in the absolute path to the pyeo_sepal.ini
initialisation file:

python pyeo/run_acd_national.py
<insert_your_absolute_path_to>/pyeo_sepal.ini

PYEO OPERATIONAL RECOMMENDATIONS

When using PyEO to process tiles over a large geographical scope
covering more than a few tiles it will be a lengthy process when they
are first run as large volumes of data must be downloaded and
processed to generate the composite reference. It is recommended
therefore that large areas be split into multiple shape files each
covering at most 2-3 tiles and that these be run sequentially to
establish the baseline composite for such groups of tiles progressively.
This will make it easier for the user to manage and observe any errors
that may occur without impacting the processing of too many other
tiles. Once the tile folders for the full geographic range are all
established it is then practical to ask PyEO to work from a shape file

26

covering the entire geographical scope for relatively less-demanding
tasks such as generating weekly update reports.

27

PYEO DATA
FOLDER
STRUCTURE

PyEO generates a specific folder hierarchy when downloading,
processing and analysing Sentinel-2 imagery. An example of a typical
structure is illustrated in the schematic below for a pipeline run
covering two sentinel-2 tiles ‘36NXG’ and ‘36NYG’ respectively.

This data structure will be generated in and below the folder specified
as ‘tile_dir’ in the pyeo_sepal.ini file. The national_geodataframe.shp
file is created in this tile_dir alongside folder hierarchies for each
Sentinel-2 tile that has been processed. The schematic indicates the
folders that are created (in bold type) and also where particular files
generated in the PyEO pipeline can be found within these folders by
including typical example filenames and types (in italic type)

|tile_dir
| |national_geodataframe.shp
| |36NXG
| | |composite
| | | |composite_T36NXG_20221202T075301.tif
| | | |L1C
| | | |L2A
| | | |cloud_masked
| | | | |S2A_MSIL2A_20220106T075321_N0301_R135_T36NXG_20220106T090414.tif
| | |images
| | | |L1C
| | | | |S2A_MSIL1C_20230111T075301_N0509_R135_T36NXG_2023….SAFE
| | | |L2A
| | | | |S2A_MSIL2A_20230101T075331_N0509_R135_T36NXG_2023….SAFE

28

| | | |cloud_masked
| | | | |S2A_MSIL2A_20230131T075141_NA509_R135_T36NXG_20230131T131152.tif
| | |log
| | | |36NXG_log
| | |output
| | | |classified
| | | | |composite_T36NXG_20221202T075301_class.tif
| | | |
|S2A_MSIL2A_20230101T075331_NA509_R135_T36NXG_20230101T110554_class.tif
| | | |probabilities
| | | | |change_20221202T075301_36NXG_20230101T075331.tif
| | | | |NDVI_20221202T075301_36NXG_20230101T075331.tif
| | | | |dNDVI_20221202T075301_36NXG_20230101T075331.tif
| | | | |report_20221202T075301_36NXG_20230605T074619.tif
| | | | |report_20221202T075301_36NXG_20230605T074619.shp
| | | |quicklooks
| | | | |S2A_MSIL2A_20220106T075321_N0301_R135_T36NXG_20220106T090414.png
| |36NYG
| | |composite
| | | |L1C
| | | |L2A
etc …

29

CITATION

HOW TO CITE THIS SOFTWARE

Please use the following references when using PyEO:

Roberts, J.F., Mwangi, R., Mukabi, F., Njui, J., Nzioka, K., Ndambiri,
J.K., Bispo, P.C., Espirito-Santo, F.D.B., Gou, Y., Johnson, S.C.M. and
Louis, V., 2022. Pyeo: A Python package for near-real-time forest
cover change detection from Earth observation using machine
learning. Computers & Geosciences, 167, p.105192.

Roberts, J., Balzter, H., Gou, Y., Louis, V., Robb, C., 2020. Pyeo:
Automated satellite imagery processing.
https://doi.org/10.5281/zenodo.3689674

Pacheco-Pascagaza, A.M., Gou, Y., Louis, V., Roberts, J.F.,
Rodríguez-Veiga, P., da Conceição Bispo, P., Espírito-Santo, F.D.,
Robb, C., Upton, C., Galindo, G. and Cabrera, E., 2022. Near real-
time change detection system using Sentinel-2 and machine
learning: A test for Mexican and Colombian forests. Remote Sensing,
14(3), p.707.

