
Big Data technologies and extreme-scale analytics

Multimodal Extreme Scale Data Analytics for Smart Cities Environments

D2.4: Management and distribution Toolkit – final version†
Abstract: This document describes the final version of the MARVEL project’s management
and distribution toolkit. In this document, an in-depth presentation of the components
responsible for the data management and distribution in terms of novelty, design,
implementation, connection with other components, how they are used within the Pilots, and
their performance is performed. The components under the management and distribution toolkit
are ATOS’s DatAna, ITML’s DFB, INTRA’s StreamHandler, and CNR’s HDD. Moreover, the
contribution of the management and distribution tools in the Edge-to-Fog-Cloud framework
and their future directions in the final part and after the MARVEL project are presented.

Contractual Date of Delivery 30/06/2023
Actual Date of Delivery 29/06/2023
Deliverable Security Class Public
Editor Ilias Seitanidis (INTRA)
Contributors CNR, ITML, INTRA, ATOS, GRN, UNS,

FORTH
Quality Assurance Grigorios Kalogiannis (STS)

Alessio Brutti (FBK)

† The research leading to these results has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 957337.

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 2 - 30 June 2023

The MARVEL Consortium

Part.
No. Participant organisation name Participant

Short Name Role Country

1
FOUNDATION FOR

RESEARCH AND
TECHNOLOGY HELLAS

FORTH Coordinator EL

2 INFINEON TECHNOLOGIES
AG IFAG Principal Contractor DE

3 AARHUS UNIVERSITET AU Principal Contractor DK
4 ATOS SPAIN SA ATOS Principal Contractor ES

5 CONSIGLIO NAZIONALE
DELLE RICERCHE CNR Principal Contractor IT

6 INTRASOFT INTERNATIONAL
S.A. INTRA Principal Contractor LU

7 FONDAZIONE BRUNO
KESSLER FBK Principal Contractor IT

8 AUDEERING GMBH AUD Principal Contractor DE
9 TAMPERE UNIVERSITY TAU Principal Contractor FI
10 PRIVANOVA SAS PN Principal Contractor FR
12 COMUNE DI TRENTO MT Principal Contractor IT

13
UNIVERZITET U NOVOM

SADU FAKULTET TEHNICKIH
NAUKA

UNS Principal Contractor RS

14
INFORMATION

TECHNOLOGY FOR MARKET
LEADERSHIP

ITML Principal Contractor EL

15 GREENROADS LIMITED GRN Principal Contractor MT
16 ZELUS IKE ZELUS Principal Contractor EL

17
INSTYTUT CHEMII

BIOORGANICZNEJ POLSKIEJ
AKADEMII NAUK

PSNC Principal Contractor PL

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 3 - 30 June 2023

Document Revisions & Quality Assurance

Internal Reviewers
1. Grigorios Kalogiannis (STS)
2. Alessio Brutti (FBK)

Revisions
Version Date By Overview

0.1.4 29/06/2023 INTRA Final version

0.1.3 20/06/2023 INTRA Second draft version

0.1.2 13/06/2023 INTRA First draft version

0.1.1 03/05/2023 INTRA Second version of ToC

0.1.0 21/04/2023 INTRA Initial draft ToC

Disclaimer
The work described in this document has been conducted within the MARVEL project. This project has
received funding from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 957337. This document does not reflect the opinion of the European Union, and
the European Union is not responsible for any use that might be made of the information contained
therein.
This document contains information that is proprietary to the MARVEL Consortium partners. Neither
this document nor the information contained herein shall be used, duplicated or communicated by any
means to any third party, in whole or in parts, except with prior written consent of the MARVEL
Consortium.

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 4 - 30 June 2023

Table of Contents
LIST OF TABLES .. 5
LIST OF FIGURES .. 6
LIST OF ABBREVIATIONS ... 8
EXECUTIVE SUMMARY ... 10
1 INTRODUCTION ... 11

1.1 PURPOSE AND SCOPE ... 11
1.2 CONTRIBUTION TO WP2 AND PROJECT OBJECTIVES ... 11
1.3 RELATION TO OTHER WPS, DELIVERABLES, AND ACTIVITIES .. 12
1.4 STATUS UPDATES SINCE D2.2 .. 12
1.5 STRUCTURE OF THE DOCUMENT... 13

2 COMPONENTS OF THE DMP TOOLKIT ... 14
2.1 DATANA.. 14

2.1.1 Progress beyond the state-of-the-art ... 14
2.1.2 Design methodology. ... 14
2.1.3 Implementation .. 16
2.1.4 Connection to other components ... 17
2.1.5 Demonstration ... 17
2.1.6 Performance .. 20

2.2 DATA FUSION BUS (DFB) ... 20
2.2.1 Progress beyond the state-of-the-art ... 20
2.2.2 Design methodology. ... 21
2.2.3 Implementation .. 21
2.2.4 Connection to other components ... 22
2.2.5 Demonstration ... 22
2.2.6 Performance .. 27

2.3 STREAMHANDLER ... 31
2.3.1 Progress beyond the state-of-the-art ... 31
2.3.2 Design methodology. ... 31
2.3.3 Implementation .. 32
2.3.4 Connection to other components ... 34
2.3.5 Demonstration ... 34
2.3.6 Performance .. 41

2.4 HDD ... 42
2.4.1 Progress beyond the state-of-the-art ... 42
2.4.2 Design methodology. ... 42
2.4.3 Implementation .. 43
2.4.4 Connection to other components ... 44
2.4.5 Demonstration ... 44
2.4.6 Performance .. 44

3 POSITIONING WITHIN THE E2F2C CONTINUUM ... 48
3.1 THE DMP TOOLKIT ARCHITECTURAL APPROACH .. 48
3.2 AV DATA HANDLING ACTIVITIES ... 52
3.3 THE MARVDASH FACILITATOR... 54

4 FUTURE PLANS AFTER M30 OF THE PROJECT .. 57
4.1 DATANA.. 57
4.2 DFB .. 57
4.3 STREAMHANDLER ... 57
4.4 HDD ... 57

5 CONCLUSION .. 58

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 5 - 30 June 2023

List of Tables
Table 1: Project's KPIs to DMT components mapping ... 12
Table 2: StreamHandler’s use case testing results .. 41

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 6 - 30 June 2023

List of Figures
Figure 1. DatAna topologies for R2 .. 15
Figure 2. Example dataflow in NiFi for R2 ... 16
Figure 3. Sending the inference data to the Kafka of the DFB from DatAna cloud 17
Figure 4. Sample data from VCC inference results after DatAna process it as MediaEvent 18
Figure 5. Sample of data provenance inspection in NiFi of a message from a SED inference results.. 19
Figure 6: NiFi admin interface to check status of the system ... 19
Figure 7. Indicative screenshot of the DFB health monitoring UI dashboard 22
Figure 8. Kafka Cluster performance monitoring dashboard for each supported Kafka Topic over a
period of 1 month. Top-Left: Bytes In. Top-Right: Bytes Out. Mid-Left: Failed Kafka Producer requests
per second. Mid-Right: Failed Kafka Consumer requests per second. Bottom-Left: Total Producer
requests per second. Bottom-Right: Total Consumer requests per second ... 23
Figure 9. Number of messages published on each Kafka topic over a period of 1 month 23
Figure 10. Inspection of inference results from AT in the DFB Kibana tool. Top: Distribution of
produced events over a period of 2 days. Bottom: Configured tabular view of most recent events in given
time range .. 24
Figure 11. Inspection of inference results from SED in the DFB Kibana tool. Top: Distribution of
produced events over a period of 12 days. Bottom: Configured tabular view of most recent events in
given time range .. 24
Figure 12. Inspection of inference results from CATFlow in the DFB Kibana tool. Top: Distribution of
produced events over a period of 11 days. Bottom: Configured tabular view of most recent events in
given time range .. 25
Figure 13. Dashboard created using the DFB Kibana tool displaying the number of detections of vehicles
(left) and pedestrians (right) per hour by CATFlow at each of the 3 locations of the GRN pilot (Cam01,
Cam02, Cam03) for a period of two days ... 25
Figure 14. Data visualisation created using the DFB Kibana tool displaying the percentage of each type
of event detected by the AT component over a period of 20 days in the GRN pilot 26
Figure 15. Inspection of singular inference result from CATFlow in its raw JSON format within the
DFB Kibana tool ... 27
Figure 16. Monolithic vs Microservice Architectures of StreamHandler ... 32
Figure 17. StreamHandler R2 implementation .. 33
Figure 18. StreamHandler’s API documentation (part1) .. 38
Figure 19. StreamHandler’s API documentation (part 2) ... 39
Figure 20. StreamHandler’s API documentation (part 3) ... 40
Figure 21. Sample of the directories created per AV source in UNS Fog Pilot 40
Figure 22. Sample of the segmented AV files produced by StreamHandler ... 41
Figure 23. Methodology adopted for the execution of automated experiments with an Apache Kafka
cluster .. 43
Figure 24. Number of partitions and brokers selected by the BroMin/BroMax algorithms and used in the
experiments ... 44
Figure 25. Consumer throughput ... 45
Figure 26. Rebalance time ... 46
Figure 27. CPU load on the physical servers .. 46
Figure 28. Disk I/O load on the cluster server ... 47
Figure 29. The DMP in the overall system architecture for use case GRN1: Safer Roads 48
Figure 30. The DMP in the overall system architecture for use case GRN2: Road user behaviour 49
Figure 31. The DMP in the overall system architecture for use case GRN3: Traffic Conditions and
Anomalous Events ... 49
Figure 32. The DMP in the overall system architecture for use case GRN4: Junction Traffic Trajectory
Collection .. 49
Figure 33. The DMP in the overall system architecture for use case MT1: Monitoring of crowded areas
 ... 50

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 7 - 30 June 2023

Figure 34. The DMP in the overall system architecture for use case MT2: Detecting criminal/anti-social
behaviours ... 50
Figure 35. The DMP in the overall system architecture for use case MT3: Monitoring of parking places
 ... 51
Figure 36. The DMP in the overall system architecture for use case MT4: Analysis of a specific area 51
Figure 37. The DMP in the overall system architecture for use case UNS1: Drone Experiment 52
Figure 38. The DMP in the overall system architecture for use case UNS2: Localising audio events in
crowds ... 52

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 8 - 30 June 2023

List of Abbreviations

ACL Access Control List

AI Artificial Intelligence
API Application Programming Interface

AT Audio Tagging
AV Audio Visual

AVAD Audio Visual Anomaly Detection

AVCC Audio Visual Crowd Counting

CCTV Closed-circuit television
DFB Data Fusion Bus

DMP Data Management Platform

DMT Data Management Toolkit
DNS Domain Name System
E2F2C Edge to Fog to Cloud

EC European Commission

ELK Elasticsearch-Logstash-Kibana

ES Elasticsearch

GUI Graphical User Interface

HDD Hierarchical Data Distribution

HDFS Hadoop distributed file system

HTTPS Hypertext Transfer Protocol Secure

IEC International Electrotechnical Commission

IoT Internet of Things

ISO International Organisation for Standardisation

JDBC Java Database Connectivity

JMX Java Management eXtensions
JSON JavaScript Object Notation

KPI Key Performance Indicator

ML Machine Learning

MQTT MQ Telemetry Transport

MVP Minimum Viable Product

NAT Network Address Translation
R1 Release 1 of the MARVEL framework
R2 Release 2 of the MARVEL framework

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 9 - 30 June 2023

RDBMS Relational Database Management System

REST Representational State Transfer

RTSP Real-Time Streaming Protocol
S2S Site-to-Site

SASL Simple Authentication and Security Layer

SED Sound Event Detection
SSL Secure Sockets Layer

TLS Transport Layer Security
UI User Interface

URL Uniform Resource Locator

VAD Voice Activity Detection
VCC Visual Crowd Counting

ViAD Visual Anomaly Detection
VPN Virtual Private Network
WP Work Package

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 10 - 30 June 2023

Executive Summary

The present document serves as a follow-up to D2.2 and focuses on the development and
enhancements of the Management and Distribution Toolkit. This toolkit aims to address the
problem of AV data handling within the MARVEL project. The purpose of this deliverable is
to report the second and last version of the management and distribution toolkit encompassing
all the updates from M18 till M30 of the project, in addition to the initial implementation that
was reported in D2.2 (M18). The work presented here is the outcome of Task 2.2 -
“Management and distribution toolkit -initial version”. The content of this document focuses
on the updates carried out in several sectors with design, implementation, and performance
being some of the main points of interest. The tools’ description presented here regards the R2
(Release 2 of the MARVEL framework) deployment phase which constitutes the final version
of the MARVEL platform.

Deliverable D2.4 represents a significant milestone in the development and evolution of the
MARVEL Data Management Toolkit. The enhancements made through this follow-up build
upon the foundation laid in D2.2, providing a powerful and comprehensive solution for
effective AV data management. Notable achievements include optimisation tweaks in DatAna
and Data Fusion Bus (DFB) components, performing extensive research and more concrete
results for the evaluation experiments of the Hierarchical Data Distribution (HDD) component,
and the restructure of the StreamHandler component. Another key milestone presented in this
document is the increase in the number of deployments performed through the MARVEL
project, reaching a total of ten in the period between M18 and M30 of the project.

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 11 - 30 June 2023

1 Introduction

1.1 Purpose and scope
Deliverable D2.4 entitled “Management and Distribution toolkit – final version”, reports on the
progress made through the relative activities carried out within the T2.2 framework for the
period from M19 (July 2022) till M30 (June 2023). The three key areas that MARVEL’s Data
Management Toolkit (DMT) focuses on are a) data management, b) data storage, and c) data
distribution. In D2.21 a primitive analysis of these tools was reported while in D2.4 the final
version of the DMT components with optimisations in performance and/or efficiency is
described. These optimisations lead to the fulfilment of the MARVEL’s objectives, such as
Objective 1: innovative technologies for data acquisition, management, and distribution to
develop a privacy-aware engineering solution for revealing valuable and hidden societal
knowledge in a smart city environment.

1.2 Contribution to WP2 and project objectives
The work presented in this deliverable was conducted under the T2.2 framework and some parts
of this work are reported in other WP deliverables as well. The work reported in the following
Sections regards the updates of the tools after D2.2. Specifically, the data flow, distribution,
management, and storing across the Edge-to-Fog-to-Cloud (E2F2C) continuum, considering
all the pilot requirements and constraints that came up since M18. Further automations and
improvements on the efficiency of the previously reported management solutions have been
achieved, with a continuous development and integration process, in collaboration also with the
activities of WP3 and WP5, just to name a few. In addition, D2.4 is strongly coupled with the
Pilots’ activities. During the course of the project, the components presented in this document
fulfilled their initial goals, defined through the project’s KPIs. More details regarding the
components’ KPIs and metrics can be found on WP5 and WP6 deliverables D5.22, D5.53, and
D6.24. Some of the project’s KPIs that the DMT components achieved are:

• KPI-O1-E2-1: Execution time of data management and distribution improved at least
15%.

• KPI-O1-E2-2: Increase the number of different modality data streams that can be
handled by 30%.

• KPI-O1-E2-3: Increase the speed of the fusion process by at least 20%

• KPI-O1-E2-4: Improve data distribution in relevant device resource usage at least 15%.

1 MARVEL D2.2: Management and distribution Toolkit – initial version, 2022. https://doi.org/ 10.5281/zenodo.6821195
2 MARVEL D5.2: Technical evaluation and progress against benchmarks – initial version, 2022.
https://doi.org/10.5281/zenodo.6322699
3 MARVEL D5.5: Technical evaluation and progress against benchmarks. To appear.
4 MARVEL D6.2: Evaluation report, 2023. https://doi.org/10.5281/zenodo.7296312

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 12 - 30 June 2023

Table 1: Project's KPIs to DMT components mapping

Project’s KPI Components

KPI-O1-E2-1 DatAna, DFB, HDD

KPI-O1-E2-2 DatAna, DFB

KPI-O1-E2-3 DFB, StreamHandler

KPI-O1-E2-4 DFB, HDD

1.3 Relation to other WPs, deliverables, and activities
In WP2, the work carried out in T2.2 aims to maximise the impact of the MARVEL Data Corpus
on the international scientific and research community regarding data management and
distribution for smart cities. This involves utilising the components from both T2.2 and T2.3.
Additionally, the work in T2.2 is interconnected with various tasks in other WPs.

Specifically, it is closely related to T1.3, which deals with the experimental protocol and real-
life societal trial cases in smart city environments as outlined in D1.2. The management and
distribution functionalities in T2.2, along with the corresponding data-oriented components, are
described in T1.4. This work refines the specification of the conceptual architecture of the
MARVEL E2F2C ubiquitous computing framework as documented in D1.35.

The management and distribution functionalities developed in T2.2, using the components
discussed in the subsequent sections, are continuously integrated into the overall MARVEL
architecture. This integration takes place in WP5, specifically in T5.2, which focuses on
resource management and optimised automatic usage, and T5.3, which deals with continuous
integration towards the realisation of the MARVEL framework.

The effectiveness of the provided components will be assessed in T5.4 against societal,
academic, and industrial validated benchmarks, and in T5.5 as the prototype progresses towards
the final solution. Two components, namely DatAna and DFB, were included in the Minimum
Viable Product (MVP), as reported in D5.16. Furthermore, the initial release of the MARVEL
integrated framework (D5.47) included all four components: DatAna, DFB, StreamHandler,
and HDD.

1.4 Status updates since D2.2
In D2.2, the initial state (up to M18 of the project) of the DMT was described. Since then, the
partners have performed several modifications to their components. DatAna and DFB focused
on the adaptation of more use cases while maintaining the same level of performance.
StreamHandler received an architectural and functional update. CNR expanded their
experiments for the HDD to obtain more concrete results as well as to enhance the performance
within the MARVEL project. The progress demonstrated in the following sections, either minor
or major, contributes to the overall enhanced performance of the MARVEL framework.

5 MARVEL D1.3: Architecture definition for MARVEL framework, 2020. https://doi.org/10.5281/zenodo.5463897
6 MARVEL D5.1: MARVEL Minimum Viable Product, 2021. https://doi.org/10.5281/zenodo.5833310
7 MARVEL D5.4: MARVEL Integrated framework – initial version, 2022. Confidential

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 13 - 30 June 2023

1.5 Structure of the document
The document is structured as follows. Section 1 describes the purpose and scope of this
document, the contributions of the work conducted in T2.2 to WP2 and to the project objectives,
and its relation to other WPs and deliverables. Section 2 offers a detailed description of the
updates carried out since D2.2 for the components of the distribution and management toolkit
in terms of design, implementation, and performance, demonstration and interaction with other
components. Section 3 presents the components’ position within the Edge-to-Fog-Cloud
continuum. Finally, Section 4 outlines the future plans, for further development of the
components beyond M30.

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 14 - 30 June 2023

2 Components of the DMP toolkit

2.1 DatAna
As explained in deliverable D2.2, the main role of DatAna in MARVEL is related to gathering
the outputs of all inference models in real-time from different edge, fog, and cloud nodes.
DatAna transforms these outputs into the MARVEL-compliant data models and sends these
results to the DFB at the cloud for further processing, fusion, and storage. DatAna can be used
for both streaming and batch data acquisition. For R1 and R2, all the operations are done in
real-time, allowing gathering and processing the results of the inference pipelines introducing
a minimal latency, thus contributing to the quick reaction of the system to anomalies and events.
This is possible due to the fact that DatAna is based on the Apache NiFi8 ecosystem, a very
scalable, low-latency set of tools with a proven track record. As one of the DMP components
of MARVEL, it plays a central role in the distribution and management of data among the layers
of the computing continuum.

2.1.1 Progress beyond the state-of-the-art
Section 2.1.1 of D2.2 reported on the progress beyond the state-of-the-art of DatAna. Since
then, no major changes have arisen, as the work in DatAna in the second half of the project has
been focused on serving the new R2 use cases and fine-tuning the work done for R1. In
summary, the main progress highlighted in D2.2 is related to the usage of DatAna as an
inference data ingestion, transformation, and movement through the different layers of the
computing continuum in a reliable, efficient, secure, and scalable fashion, thanks to the
underlying capabilities of NiFi. Data is gathered in each of the elements of the infrastructure by
a dedicated combination of MQTT9 brokers while Apache NiFi services are located in the nodes
and moved up to the cloud seamlessly.

2.1.2 Design methodology.
The design methodology of DatAna was introduced in section 2.1.2 of D2.2. The Apache NiFi
main elements (flowfile, processors, connectors and NiFi) are described in that section as a
context to better understand the functioning of DatAna.

In general, the design of DatAna has not changed since then. The main idea, introduced in the
previous subsection, is the deployment of a set of NiFi and MQTT services in the majority of
the infrastructure nodes located at the edge, fog and cloud nodes used in MARVEL for the 3
pilots and the 10 use cases, connected as a tree or topology. The final view of this tree used in
R2 can be seen in Figure 1.

8 https://nifi.apache.org/
9 https://mosquitto.org/

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 15 - 30 June 2023

Figure 1. DatAna topologies for R2

The main difference between the equivalent Figure showed in D2.2 and Figure 1 is that in the
later DatAna is particularised to the use cases in the R2 release, showing only the DatAna
services used in each of the nodes for these specific scenarios. In general, the design of the
topology requires an MQTT broker in the nearest node to where the inference models run. Their
output is directed as messages to a set of dedicated MQTT queues named after the component
according to the MARVEL formatting guidelines (e.g., “sed” queue for the SED component).
DatAna then provides in the dedicated NiFi node a set of dataflows that can subscribe in real
time to the different MQTT topics, take the messages and transform them to the MARVEL data
models for Alert, Anomaly or MediaEvent (extended from their equivalent data modes from
the Smart Data Models initiative to allow further standardisation of our results). The results are
directed up in the topology to the next NiFi node via the NiFi Site-to-Site (S2S) protocol up to
the cloud. Then the correctly formatted messages are sent to the DFB Kafka for further
processing.

The Apache NiFi Registry10 located at the cloud, provides dataflows version control and has
been extensively used in R2, while in R1 was only used sparsely and as a proof-of-concept.
This component is key to not duplicating pieces of code or dataflows, especially useful to
deploy similar dataflows in different NiFi nodes (e.g., the dataflows in NiFi related to the
transformation of the VAD component placed in different layers and devices).

The equivalent section of D2.2 provides a set of configuration and design principles for NiFi
pipelines and dataflows. These have not changed. Please, refer to section 2.1.2 of D2.2 for the
details.

10 https://nifi.apache.org/registry.html

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 16 - 30 June 2023

2.1.3 Implementation
As in the previous sections, the implementation of DatAna for R2 follows a very similar
approach to what was described for R1 in section 2.1.3 of D2.2. As a summary, we have
provided and implemented the following elements:

• We have provided the NiFi containers (v1.15.3, for compatibility with the R1 version)
and a Helm Chart installation approach for NiFi based on the cetic11 helm chart to be
adapted to deploy NiFi as a service on a Kubernetes cluster. FORTH proceed to use and
fine-tune the template to enable it in the different layers in MARVdash. NiFi and MQTT
are deployed as shown in Figure 1.

• The security in the communications enabled via NiFi S2S protocol and TLS (by
populating the necessary keystores and trust stores) has been set. All the instructions on
how to enable the security and the configuration have been provided in the MARVEL
GitHub for DatAna12.

• NiFi dataflows to enable the ingestion have been developed for all the inference
components at play, namely AAC, AT, CATFlow-P, CATFlow-V, RBAD, SED, SELD,
VAD, VCC, AVCC, ViAD, AVAD, and YOLO-SED. Figure 2 shows an example of
one of these dataflows developed for the new components in R2.

Figure 2. Example dataflow in NiFi for R2

11 https://github.com/cetic/helm-nifi
12 https://git.marvel-project.eu/marvel/datana/datana/-/tree/main/docker/secureNifi

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 17 - 30 June 2023

Figure 2 shows a NiFi dataflow that serves to transform the outputs of the AVAD, ViAD,
RBAD, and YOLO-SED components. These outputs are similar; therefore, a single dataflow is
enough for transforming them to the Anomaly, Alert or MediaEvent data models. The dataflow
is structured in a way that first subscribes from the respective MQTT queues (in this case,
“avad”, “viad”, “rbad” and “yolo-sed” queues) located in the node. Then a couple of blocks of
the dataflow validate that the format of the data received is the expected (if not, an error is
raised and directed to the log while the message doesn’t go forward). After that, the
transformations to the “Alert”, “Anomaly” or “MediaEvent” data models are done in the
following block, before sending the results to the upper NiFi layer in the topology (the last
processor at the bottom of the figure). All the rest of the dataflows for inference data
transformation work in the same way as the one described above.

As a side note, some specific nodes at the edge do not have NiFi services, but just MQTT as it
can be perceived in Figure 1. This is due to the implementation decision to not overload some
edge devices with NiFi or Apache MiNiFi13 services, since these nodes need to run already
several services (anonymisation, streaming, inference). Although the MiNiFi footprint is not
too high, it may impact negatively on the performance. Therefore, in some cases it has been
decided to deploy only an MQTT service at the edge, and the next NiFi in the topology (at the
fog) would subscribe to the messages produced at the MQTT at the edge for further processing.
The result is more performant, provides the same functionality and allows running more
services, or the same with better performance, in the edge devices.

2.1.4 Connection to other components
As introduced in D2.2 section 2.1.4 and commented in previous subsections, DatAna has
connections with all the inference models via dedicated MQTT queues in each of the layers of
the E2F2C continuum. This connection via MQTT allows the separation of the components and
DatAna. This makes for a loosely coupled integration of the inference pipeline.

Once the data arrives at the upper NiFi in the topology (the NiFi cloud) via a NiFi input port,
the data is directed to the DFB via equivalent Kafka topics to the MQTT queues, as shown in
Figure 3.

Figure 3. Sending the inference data to the Kafka of the DFB from DatAna cloud

This last action allows real-time streaming of the inference pipeline results and decouples the
interactions between DatAna and the DFB via the Kafka pub-sub mechanism.

2.1.5 Demonstration
As stated previously, NiFi and MQTT have been included in most of the nodes at edge, fog,
and cloud across the MARVEL pilots as needed. NiFi has been deployed as a service in the
Kubernetes cluster, with the required YAML files, in at least 7 locations. One at the cloud
(master instance of the topology), at the 4 fog servers (one for UNS, one for MT and two in

13 https://nifi.apache.org/minifi/

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 18 - 30 June 2023

GRN), and at least in 2 edge devices (2 in GRN). MQTT instances associated with DatAna
have been deployed in the same locations, and additionally in all the rest of the edge devices.
One NiFi Registry has been deployed at the cloud and contains versions of the dataflows serving
all the rest of the NiFi in the topology.

All the necessary dataflows for the inference components running at the specific node have
been deployed in the correspondent NiFi, according to the architecture of the use cases.
Therefore, each NiFi instance only contains the dataflows needed for the specific use cases that
the node is working for. All these dataflows are using the latest versions stored in the NiFi
Registry.

Figure 4 shows an example of a message processed by DatAna from VCC before sending it to
the DFB. The resulting message shows the required field by the MediaEvent data model (field
type). Note for instance that this message was produced at the cloud (detectedBy=”PSNC-C1”),
by a specific instance of the VCC model (as in the MLModelId field), from a video stream
coming from a specific camera from the UNS setting (content of CameraId field), for a UNS
use case (owner=”UNS1”). The model predicts in this case 3 elements (data.predictedCount=3)
in the video at the specific time (timestamp from May 9 2023). Some other fields provide extra
info about the processing time (dateCreated and dateProcessed), which in combination with
other fields to be filled in by the DFB (dateModified and dateStored) will serve later on to
understand the overall latency introduced by the system from a benchmarking perspective.
DatAna has produced all these fields using transformation rules embedded in the dataflows, in
this case in the dataflow for VCC executed at the cloud NiFi instance.

Figure 4. Sample data from VCC inference results after DatAna process it as MediaEvent

As occurs with the rest of the DMP platforms, DatAna works behind the scenes. Therefore, its
demonstration is only visible from the user point of view if the messages arrive to the SmartViz
tool correctly after being stored by the DFB. The NiFi GUI allow nevertheless to check the
messages that are passing through NiFi. Using the latter interface (only available for developers
or admin users), it is possible to see the messages as they pass through the different steps to the

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 19 - 30 June 2023

dataflow, as shown for instance in Figure 4. NiFi allows to track the lineage of the data as it
passes to the different steps of the dataflow.

Figure 5. Sample of data provenance inspection in NiFi of a message from a SED inference results

Finally, NiFi also provides the means to check many other aspects of its utilisation. For instance,
admins might be interested in checking the average number of processes running during a time
interval. The GUI provides the possibility to check it among many other parameters of the
system, as shown in Figure 6.

Figure 6: NiFi admin interface to check status of the system

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 20 - 30 June 2023

2.1.6 Performance
As stated in D2.2, the main metrics related to DatAna are throughput and latency. In the scope
of the benchmarking activities carried out in WP5, some measurements of these metrics have
been provided in the first quarter of 2023. It is important to consider that DatAna as a whole is
composed of a topology of multiple components residing in different layers. Therefore, its
latency is the combined latency since the inference models put their output in MQTT until the
processed message arrives at the DFB. This means the latency combined of MQTT, plus the
edge, fog, and cloud NiFi that intervene in each of the cases, plus the latency introduced by the
network in the communication among these layers up to the DFB. Nevertheless, in the
benchmarking results, the average latency introduced by DatAna is between 100 and 400ms,
below or comparable in most of the cases to the latency introduced by the inference
components. A more detailed performance evaluation will be carried out in the scope of WP5.

It is important to point out that DatAna is operating in all nodes with a standalone NiFi instance
with minimal settings, which are enough to operate within the current MARVEL infrastructure
and needs. If necessary, especially at the cloud, NiFi could be deployed as a cluster. This will
provide the necessary scalability for more demanding environments. For a more in-depth
analysis of performance metrics, Cloudera produced a benchmarking study14 reporting the
scalability and performance (data rates) using very demanding workloads.

2.2 Data Fusion Bus (DFB)
As reported in D2.2, the DFB is a customisable component that implements a trustworthy way
of transferring large volumes of heterogeneous data between several connected components
and a permanent storage. It comprises a collection of dockerised, open-source components
which allow easy deployment and configuration as needed.

The DFB aggregates data that originates from multiple sources and is relayed by DatAna as
streams. The DFB permanently stores this data and exposes it to SmartViz both in real-time and
asynchronously in the form of historical data. The DFB is positioned at the cloud layer and
considered an integral part of the DMP and inference pipeline, with a pivotal role in all 10 R2
use cases.

The DFB can also be used for interfacing with third-party components that are not part of the
MARVEL framework but may need to act as data producers or consumers in potential future
use cases (e.g., other AI components, data visualisation tools, etc).

2.2.1 Progress beyond the state-of-the-art
The main novelties and innovations of DFB were documented in detail in section 2.2.1 of D2.2,
and are associated with the seamless integration of underlying state-of-the-art technologies
(e.g., Apache Kafka, Elastic Search, Grafana) and their efficient coupling with innovative
custom-built services in order to deliver a comprehensive, customisable, scalable, and
extensible data management solution that is optimised for IoT and Big Data Analytics
applications, offering high data reliability, insightful data visualisations, secure data access, and
effective data transformations. At the same time, DFB provides all the necessary endpoints to
connect with components of the MARVEL framework, while the interface of the DFB with the
HDD component further reinforces and optimises the scalability potential of the DFB. The
novelties and innovations reported in D2.2 are still relevant as no major structural changes have
been introduced to the DFB for R2.

14 https://blog.cloudera.com/benchmarking-nifi-performance-and-scalability/

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 21 - 30 June 2023

More specifically, this possibility is enabled by the APIs and data models that the DFB adopts,
which are widely accepted in the industry (e.g., Apache Kafka15, Elastic Search API16,
compliance to Smart Data Model initiative standards17). Potential future implementation of the
MARVEL framework may need to incorporate data streams from other third-party tools and
components, such as AI components deployed outside of the MARVEL framework. In such
cases, the third-party components will only need to comply with the data models specified by
MARVEL and to implement corresponding Kafka Producer clients that can publish the
necessary information to the DFB Kafka cluster. In addition, the DFB allows the integration of
third-party front-end applications or other post-processing and visualisation tools, in cases
where potential end-users with an interest in adopting MARVEL express such demands. In
these cases, any third-party tool can access the real-time data managed by the DFB by
connecting to the Kafka cluster via a Kafka Consumer client implementation, while historical
data can be accessed by using the native Elastic Search API or the REST API of the ES proxy
service that has been purpose-built for MARVEL to support a range of composite queries.

This role of the DFB adds to the overall versatility, adaptability, extensibility, scalability, and
sustainability of the MARVEL framework and increases its commercialisation potential. This
functionality is expected to be further analysed in T5.5.

2.2.2 Design methodology.
The general design methodology, internal architecture and constituent components of the DFB
have not changed since R1 and are therefore sufficiently described in section 2.2.2 of D2.2.

2.2.3 Implementation
Work on the DFB after R1 has focused on fine-tuning DFB functionalities for solving identified
issues that emerged from rigorous testing activities as well as adjustments for accommodating
changes in the data models of managed inference result data. In addition, data maintenance
tasks have been performed to improve data integrity. The use of persistent volumes was
introduced for storing health and performance metrics obtained from the Kafka cluster, while
the foreseen retention for such data has been increased. New performance measurement features
have been added, which will serve the needs of benchmarking after the delivery of R2. For
example, a feature has been introduced that registers the time of arrival of each message at the
Kafka cluster and the time of storing the message within the Elastic Search repository in
dedicated fields, which will allow the calculation of the latency introduced by the process of
permanent data storage.

Furthermore, the data fusion functionality introduced in R1 has been revised and extended. This
functionality refers to merging events of the same nature that are very close in time in order to
form meaningful events of lower granularity that can be more effectively monitored and
comprehended by human operators. This functionality has been extended to support inference
results from SED and AT in addition to AVAD and ViAD which were supported in R1.
Additionally, the fusion rules were revised to accommodate changes in the data models of
supported AI inference results and to improve efficiency. Furthermore, elimination rules have
been introduced to filter out incoming events that are considered outliers. Fused events from
AVAD and ViAD are now published on Kafka topics apart from being permanently stored in
Elastic Search so that they can be immediately consumed by SmartViz.

15 https://kafka.apache.org/
16 https://www.elastic.co/guide/en/elasticsearch/reference/current/rest-apis.html
17 https://smartdatamodels.org/

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 22 - 30 June 2023

Finally, the DFB has now been configured to support incoming data that originate from even
more MARVEL AI components, leading to the support of 15 distinct data models using
corresponding Kafka topics and Elastic Search indices.

In the context of R2, the DFB was successfully implemented and tested in 10 use cases in total,
including 5 new use cases that were introduced after R1. Throughout R2 integration and
validation tests, the DFB was found to demonstrate notable robustness, stability, and efficiency.

2.2.4 Connection to other components
The types of interaction of the DFB with other components have not changed from R1 to R2.
Therefore, the description in section 2.2.4 of D2.2 is still applicable.

However, additional Kafka topics and Elastic Search indices have been added to account for
inference result data originated by AI components introduced in R2. This affects the connection
of the DFB to DatAna, which acts as a data producer towards the DFB, and to SmartViz and
Data Corpus, that act as data consumers.

Furthermore, the ES Proxy service of the DFB was updated to address additional needs of
SmartViz regarding queries of data from the DFB Elastic Search data repository.

2.2.5 Demonstration
The following figures illustrate indicative operational aspects of the DFB during runtime. In
particular, Figure 7 demonstrates an indicative screenshot of the DFB monitoring UI dashboard
that is based on the Grafana18 framework and is used for monitoring the health status of the
DFB Kafka cluster.

Figure 7. Indicative screenshot of the DFB health monitoring UI dashboard

18 https://grafana.com/

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 23 - 30 June 2023

Figure 8 displays a dashboard created using the DFB Grafana tool for monitoring the
performance of the DFB Kafka cluster.

Figure 8. Kafka Cluster performance monitoring dashboard for each supported Kafka Topic over a period of 1
month. Top-Left: Bytes In. Top-Right: Bytes Out. Mid-Left: Failed Kafka Producer requests per second. Mid-
Right: Failed Kafka Consumer requests per second. Bottom-Left: Total Producer requests per second. Bottom-

Right: Total Consumer requests per second

Figure 9 displays a time series graph created using the DFB Grafana tool that is used for
monitoring the activity of the DFB Kafka cluster and visualises the number of messages that is
published on each Kafka topic.

Figure 9. Number of messages published on each Kafka topic over a period of 1 month

Figure 10, Figure 11 and Figure 12 demonstrate the use of the DFB Kibana tool for visualising
the distribution of generated inference results across time and for creating customised tabular
views of such results. In these cases, the results originate from AT, SED and CATFlow,
respectively.

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 24 - 30 June 2023

Figure 10. Inspection of inference results from AT in the DFB Kibana tool. Top: Distribution of produced
events over a period of 2 days. Bottom: Configured tabular view of most recent events in given time range

Figure 11. Inspection of inference results from SED in the DFB Kibana tool. Top: Distribution of produced
events over a period of 12 days. Bottom: Configured tabular view of most recent events in given time range

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 25 - 30 June 2023

Figure 12. Inspection of inference results from CATFlow in the DFB Kibana tool. Top: Distribution of produced

events over a period of 11 days. Bottom: Configured tabular view of most recent events in given time range

Figure 13 displays a dashboard created using the DFB Kibana tool for data visualisation that is
connected to the Elastic Search Repository. The dashboard includes data visualisations of the
number of vehicle and pedestrian detections over a period of 2 days at each of the three
monitored locations of the GRN pilot, which are provided by the CATFlow component.

Figure 13. Dashboard created using the DFB Kibana tool displaying the number of detections of vehicles (left)

and pedestrians (right) per hour by CATFlow at each of the 3 locations of the GRN pilot (Cam01, Cam02,
Cam03) for a period of two days

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 26 - 30 June 2023

Figure 14 illustrates a visualisation of the distribution of the number of type event types that
were detected by the AT component, produced with the DFB Kibana tool.

Figure 14. Data visualisation created using the DFB Kibana tool displaying the percentage of each type of event

detected by the AT component over a period of 20 days in the GRN pilot

Figure 15 demonstrates the ability of the DFB Kibana tool to inspect singular events in their
raw JSON format. DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 27 - 30 June 2023

Figure 15. Inspection of singular inference result from CATFlow in its raw JSON format within the DFB

Kibana tool

2.2.6 Performance
To assess the contribution of DFB to the MARVEL framework, we need to address the
following high-level performance indicators: a) Data Integrity, b) Scalability, c) Availability,
and d) Performance for high volume, heterogeneous data streams.

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 28 - 30 June 2023

Specific, measurable metrics have been associated with the above indicators and are being
illustrated in this section, along with a brief description of the purpose of each metric and the
obtained measurements. These measurements were obtained from the DFB instance deployed
on the cloud infrastructure provided by PSNC, within the Kubernetes cluster that was
configured for MARVEL for the needs of R2 and supported by the MARVdash tool.

(a) Data Integrity KPI
Metric:
Data loss rate

Description:
Confirm that advanced encryption mechanisms over end-to-end data transfer will guarantee
data integrity.

Measurement:
No data loss detected.

(b) Scalability KPI
Metrics:

HW speed up.

Description:
Increase the number of modality data streams and verify that performance metrics improve or
at least stay the same.

Measurement:
The DFB in R2 supported 15 different modalities of data streams, corresponding to the available
distinct streams/topics for inference results of AI components:

CATFlow-V, CATFlow-P, TAD, ViAD, AVAD, VCC, AVCC, SED, AT, VAD, RBAD,
YOLO-SED, AAC, SELD, GPURegex

Hardware speedup measurements are currently in progress in accordance with D5.5 guidelines.
The plan is to measure latency and throughput under different load scenarios.

(c) Availability
Metrics:
Service availability-failed request, data access restriction

Description:
Verify that DFB resources are available and discoverable.

Measurement:
100% Availability

No access restriction detected.

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 29 - 30 June 2023

(d) Performance for high volume, heterogeneous data streams KPI
Metrics:

Data transfer latency, data throughput, response time, number of cluster nodes.

Description:
Thoroughly measure different performance metrics under different execution conditions.

Measurement:
For this KPI and metrics, multiple measurements were taken and are analysed below.

Kafka cluster performance measurement
The Kafka cluster performance was measured with scripts developed by Gerd Koenig
that are available at the following GitHub repository19.

Kafka cluster configuration specifications
• A cluster of 3 Kafka broker nodes was used

• Kafka Topic Replication factor: 3

• Kafka Topic Partitions: 5

Kafka Producer benchmark
• Benchmark configuration specifications:

o Number of messages sent: 200000

o Message size: 1024 bytes

o acks =1

o compression.type = lz4

o batch.size = 100000

o linger.ms = 50

• Benchmark results:
o Throughput: 71098.471383 records/sec (69.43
MB/sec)

o Average Latency: 625.79 ms

o Max Latency: 1307.00 ms

o 50th percentile Latency: 443 ms

o 95th percentile Latency: 1292 ms

o 99th percentile Latency: 1301 ms

o 99.9th percentile Latency: 1306 ms

19 https://github.com/gkoenig/kafka-benchmarking

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 30 - 30 June 2023

Kafka Consumer benchmark
• Benchmark configuration specifications:

o Messages: 10000

o fetch-size: 1048576

• Benchmark results:
o duration: 4.236 sec

o data.consumed.in.MB: 9.8096

o MB.sec: 2.3158

o data.consumed.in.nMsg: 10045

o nMsg.sec: 2371.3409"

Elastic Search performance measurement
The DFB Elastic Search Repo performance was measured using the Rally tool20.

Benchmark configuration specifications:
• Number of docs: 7k

• doc size: 0.5 kb

• message type: http log

Throughput measurements:
• Minimum: 222.57 docs/s

• Maximum: 791.85 docs/s

• Average: 358 docs/s

Latency measurements:
• 50th percentile: 4062ms

• 95th percentile: 10534 ms

• 99.9th percentile: 13485 ms

• Average: 5193 ms.

20 https://esrally.readthedocs.io/en/stable/

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 31 - 30 June 2023

2.3 StreamHandler
INTRA’s StreamHandler Platform is a complex system equipped with all the required
functionalities of a state-of-the-art big data platform focusing on scalability. The main
characteristics of the StreamHandler are described in the section 2.3 in D2.2, while in this
deliverable the main updates since D2.2 will be demonstrated. These are a) the breakdown of
the monolith architecture into microservices and b) the interconnection with DFB.

 The Microservices architecture design was selected for the core functionalities of the
StreamHandler deployed in the Marvel project to further enhance the robustness and efficiency
of the previously deployed platform as described in D2.2.

As described in section 2.3 in D2.2, the StreamHandler Platform was designed to interoperate
with many state-of-the-art IoT technologies and protocols. In this context, the interoperation of
StreamHandler with the DFB took place, leading to a more robust and efficient system. Further
details about the interoperation of those two components can be found in a latter subsection of
this deliverable.

The division of the monolith of the core functionality to a microservice approach of the
StreamHandler deployed in the MARVEL project alongside with the new interconnection with
the DFB component show that the StreamHandler is a scalable and continuous evolving
platform that can facilitate not only the current needs of a high-demand system but also the
future needs.

2.3.1 Progress beyond the state-of-the-art
The progress beyond the state-of-the-art of the StreamHandler Platform has been thoroughly
described in section 2.3.1 in D2.2. The in-depth analysis made in the context of the MARVEL
framework requirements unveiled a gap that could not be covered by the DFB and DatAna
components regarding the AV data management. This gap was filled by the StreamHandler
being located in the Fog layer and relaying the required AV data to the cloud components. After
the realisation of D2.2 a new need was discovered. This was the requirement of having
precompiled AV data for all the events that occurred. The StreamHandler’s interoperation with
the DFB component fills the newly identified gap.

2.3.2 Design methodology.
INTRA’s StreamHandler platform as described in section 2.3.2 in D2.2 was designed after
thoroughly analysing all the system requirements introduced within the MARVEL framework.
Based on these requirements, StreamHandler is being deployed in the fog layer of each pilot,
close to the various AV data sources (AudioAnony, VideoAnony, etc.). The main tasks of the
StreamHandler are to a) receive live feed through RTSP streams, segment them into smaller
chunks and store them and b) make these segments available to the cloud layer components
such as SmartViz and Data Corpus. In D2.2, a monolithic architecture was selected for the
implementation of the StreamHandler Platform, while recently the core functions of the
platform were transformed into a Microservice Architecture design, Figure 16. This makes the
StreamHandler a more efficient and robust tool. Some of the benefits of this approach are:

a) Highly scalable platform. This comes from the fact that each function of the
StreamHandler is a separate and independent module. In case a bottleneck is detected
in a particular module, then this module can be parallelised. As an example, if we detect
a lower throughput in the RTSP reception module then we can replicate this module and
load balancing the streams in each submodule.

b) Fault tolerant. In case a module fails, only one of the functionalities will be affected.
For example, if the SmartViz- StreamHandler module fails, then the rest of the

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 32 - 30 June 2023

Platform’s functionalities will remain unaffected. In addition, the microservice
approach allows us to have inactive backup services in stand-by mode, so in case of a
module’s failure they will be initiated and the end-to-end UX will be unaffected.

Figure 16. Monolithic vs Microservice Architectures of StreamHandler

2.3.3 Implementation
The current implementation of the modules of StreamHandler after D2.2 is totally reconstructed
compared to the one presented in section 4.3.3.2 in D2.4. As described in section 2.3.2 of this
deliverable, the new version is based on microservice architecture providing more flexibility
and stability over the monolithic approach described in D2.2. The basic components of this
newer version are:

• Java21
• SpringBoot22
• MinIO23
• Docker24
• REST API25
• Kafka26

21 https://dev.java/
22 https://spring.io/
23 https://min.io/
24 https://www.docker.com/
25 https://restfulapi.net/
26 https://kafka.apache.org/

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 33 - 30 June 2023

Figure 17. StreamHandler R2 implementation

As illustrated in Figure 17, the main tasks described in section 2.3.3 in D2.2 remain the same.
In addition to them, one more task is added after the D2.2 to allow communication between the
DFB component and StreamHandler. The main difference between the versions presented in
D2.2 and in D2.4 is the architecture used that decouples the relation between the several
services, with the only point of interaction of each service being the storage component. In
detail:

• Service 1 is responsible for retrieving the IDs of the AV components from AVRegistry
and initiating the segmentation procedure of each stream.

• Service 2 is responsible for providing the requested video to SmartViz through a REST

API call. The service provides three REST endpoints, a) an on-demand AV creation, b)
on-event AV creation and c) a list of segmented files. In the first case, the AV segments
from the storage component are retrieved and a new AV file is produced at that time.
The input parameters of this endpoint are: (i) sourceID (ii) timestamFrom, and (iii)
timestampTo. In the second case, the endpoint receives the event ID and retrieves from
the storage component the video produced by Service 3. The input parameter of this
endpoint is: media_event_id. The response of both endpoints is the link of the produced
file in the storage component. The last endpoint returns a JSON formatted response of
the segmented file names for a specific AV source. The input parameter of this endpoint
is: sourceID.

• Service 3 is responsible for constructing AV files based on events. This is achieved by

listening to the Kafka messages sent when an event occurs. Then, the service based on
the values shared (cameraId, startTime, endTime and timestamp if startTime, endTime
are not present) constructs a new AV file.

• Service 4 is the storage component. This service is responsible for storing the AV files

produced by Service 1 and Service 3. In addition, the SmartViz component is directly

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 34 - 30 June 2023

retrieving from the storage component the AV file through a shared link from Service
2.

2.3.4 Connection to other components
The StreamHandler maintains the interconnections described in section 2.3.4 in D2.2 and
enhanced its interconnections since D2.2. The new interconnections with the StreamHandler
are:

• SmartViz: In addition to the REST API endpoint described in section 2.3.4 in D2.2, a
new endpoint was added. This endpoint receives an event ID as an input parameter and
responds to the SmartViz with the URL of the file in the StreamHandler’s storage
component.

• DFB: StreamHandler is listening for the Kafka messages advertised by the DFB
component. Upon reception of such a message the StreamHandler is producing a new
AV file based on the camera ID, start/end time parameters found in the Kafka message.

2.3.5 Demonstration
INTRA’s StreamHandler has been deployed in all Pilots, i.e., GRN, MT, and UNS. As
described in subsection 2.3.2, the StreamHandler has been deployed as microservices. In
Listing 1 and Listing 2 the YAML files of the main microservices are presented. In Figure 18,
Figure 19 and Figure 20 a description of the developed APIs is provided. The documentation
was created using the SWAGGER27 API tool considering three use cases. In Figure 21, the
directory orchestration is illustrated. As can be seen, the directory segments contain all the
videos streamed from the AI components segmented in a predefined duration. The directory
“generated-media” contains the AV files created based on SmartViz’s requests and the AV files
created based on the event detection mechanisms of the AI components developed under the
MARVEL framework. In Figure 22, a sample of the segments stored is presented.

media-content-service-grn.yaml

apiVersion: v1
kind: Service
metadata:
 name: $NAME
spec:
 type: ClusterIP
 selector:
 app: $NAME
 ports:
 - name: http
 protocol: TCP
 port: 8889
 targetPort: 8080

apiVersion: apps/v1
kind: Deployment
metadata:
 name: $NAME

27 https://swagger.io/

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 35 - 30 June 2023

spec:
 replicas: 1
 selector:
 matchLabels:
 app: $NAME
 template:
 metadata:
 labels:
 app: $NAME
 spec:
 containers:
 - name: $NAME
 image: 192.168.50.1:5000/media-content-service:1.0
 volumeMounts:

 - name: ${PRIVATE_VOLUME}
 mountPath: /conf.json
 subPath: conf/conf.json
 ports:
 - containerPort: 8080
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: Layer
 operator: In
 values:
 - GRNFOG2
 tolerations:
 - key: “Layer”
 operator: “Equal”
 value: “GRNFOG2”

kind: Template
name: media-content-services-grn
description: media-content-service-grn
variables:
- name: NAME
 default: media-content-service-grn
- name: PRIVATE_VOLUME
 default: private-volume

Listing 1. StreaamHandler’s API service example YAML file

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 36 - 30 June 2023

rtsp-stream-handler-grn.yaml

apiVersion: v1
kind: Service
metadata:
 name: $NAME
spec:
 type: ClusterIP
 selector:
 app: $NAME
 ports:
 - name: http
 protocol: TCP
 port: 8881
 targetPort: 8080

apiVersion: apps/v1
kind: Deployment
metadata:
 name: $NAME
spec:
 replicas: 1
 selector:
 matchLabels:
 app: $NAME
 template:
 metadata:
 labels:
 app: $NAME
 spec:
 containers:
 - name: $NAME
 image: 192.168.50.1:5000/rtsp-stream-handler-grn:1.0
 volumeMounts:

 - name: ${PRIVATE_VOLUME}
 mountPath: /conf.json
 subPath: conf/conf.json
 ports:
 - containerPort: 8080
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: Layer
 operator: In
 values:
 - GRNFOG2
 tolerations:

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 37 - 30 June 2023

 - key: “Layer”
 operator: “Equal”
 value: “GRNFOG2”

kind: Template
name: rtsp-stream-handler-grn
description: rtsp-stream-handler-grn
variables:
- name: NAME
 default: rtsp-stream-handler-grn
- name: PRIVATE_VOLUME
 default: private-volume

Listing 2. StreamHandler’s Segmentation service example YAML file

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 38 - 30 June 2023

Figure 18. StreamHandler’s API documentation (part1)

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 39 - 30 June 2023

Figure 19. StreamHandler’s API documentation (part 2)

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 40 - 30 June 2023

Figure 20. StreamHandler’s API documentation (part 3)

Figure 21. Sample of the directories created per AV source in UNS Fog Pilot

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 41 - 30 June 2023

Figure 22. Sample of the segmented AV files produced by StreamHandler

2.3.6 Performance
StreamHandler is in its second version. During its development and deployment several
performance tests were carried out. As an indicative example, the performance results acquired
in the examined scenario are reported in Table 2. In our scenario, a four-core CPU machine was
used with AV RTSP input streams. The following four use cases were examined:

a. No load. In this scenario, we examined the resources consumed by the Platform without
any RTSP traffic. The results of this scenario were used as a baseline for the later results.

b. One stream. In this scenario, we considered that there is only one stream traffic load.

c. Two streams. In this scenario, we considered that there are two streams contributing as
traffic load to the platform.

d. Three streams. In this scenario, we considered that the platform is under load, serving
three streams in parallel.

Table 2: StreamHandler’s use case testing results

Use case CPU % Memory % NET I/O Block I/O

A 3.18% 1.97% 876B 0 B

B 3.61% 2.18% 1.69MB 410KB

C 4.06% 2.18% 2.77MB 3.42MB

D 4.28% 2.19% 5MB 5.51MB

The initial tests demonstrate that StreamHandler is a robust and efficient component. Further
results regarding StreamHandler’s performance can be found within the WP5 deliverables.

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 42 - 30 June 2023

2.4 HDD
The current version of our HDD expands the one described in D2.2 in several key ways. Firstly,
we have introduced a new methodology for the automated performance evaluation of Apache
Kafka clusters. This methodology allowed us to run experiments in an automatised prototype
to compare BroMax28 and BroMin with different replication factors, and numbers of
consumers. By doing so, we have been able to use scalable data and cross-check our MARVEL-
tailored simulation results of D2.2. Secondly, we have included the results of these experiments,
which have highlighted some qualitative differences with respect to the conclusions obtained
with the MARVEL-tailored simulation model alone. These differences emphasise the
importance of cross-checking analysis with real-life data before production deployment. Lastly,
we have made our evaluation framework29 available to the community so that others can use it
for their own performance evaluations. Overall, these additions provide a more complete and
robust analysis of Apache Kafka topic partitioning and demonstrate the practical implications
of our simulation-based approach.

2.4.1 Progress beyond the state-of-the-art
To the best of our knowledge, there has been no identified study in the state-of-the-art that (a)
models the Apache Kafka topic partitioning function in an exact, rigorous manner, (b)
identifies, formulates and characterises the underlying combinatorial problem(s), and (c)
designs efficient methodologies via considering the application constraints. For an exact
novelty positioning, the reader can refer to section 2.4.1 in D2.2.

2.4.2 Design methodology.
To extend the experimenting ability of the HDD, we designed an open-source, automatised,
prototype implementation. The implementation consists of two high-end servers: one hosting
the client-side scripts and tools and another handling the cluster-side, i.e., the Apache Kafka
brokers and a Zookeeper instance for leader election among them. The software on the cluster-
side server runs within Docker containers configured with Docker Compose30. This approach
is suitable for running the entire cluster within a single physical server, but the scripts we
developed can be adapted to match the specific characteristics of the target deployment under
test, e.g., a distributed environment where Apache Kafka is run within a Kubernetes cluster.
The methodology would remain the same and it is illustrated by means of the sequence diagram
in Figure 23 (notation explained in section 2.4.2 in D2.2), which is entirely managed through
the execution of a single Bash script on the client-side server:

28 https://arxiv.org/pdf/2205.09415.pdf
29 https://github.com/ccicconetti/kafka-hdd
30 https://docs.docker.com/compose/

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 43 - 30 June 2023

Figure 23. Methodology adopted for the execution of automated experiments with an Apache Kafka cluster

2.4.3 Implementation
At the beginning of the process, there is no Apache Kafka cluster running. In principle, there
are situations where we could reuse a running cluster from the previous experiment, i.e., when
the cluster parameters P and b remain the same, but we decided to start with clean conditions
to ensure independence and repeatability. The inputs of the process are: the Apache Kafka
cluster provisioning algorithm A, the replication factor r, the number of consumers c, and the
size of the Apache Kafka messages exchanged M, in bytes. The algorithms also require
additional system parameters, as described in D2.2. On the client, the algorithm A, i.e., BroMin
or BroMax, is run to determine the number of topic partitions P and brokers B. The client issues
commands to remotely start the Apache Kafka cluster of b brokers via Docker Compose31,
creates the topic that will be used in the current experiment, and configures it with the given
replication factor r and the number of partitions P. Once done, the client starts a producer to fill
the topic with a dataset of messages of size M. When the dataset is complete, the core part of
the experiment starts. It is carried out by means of a pool of c consumers, all belonging to the
same consumer group, started as independent processes with a small random initial delay. All
the consumers greedily read messages from the dataset as fast as they can, without performing

31 https://docs.docker.com/compose/

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 44 - 30 June 2023

any processing on the payload or saving it. This is because the experiment is intended to
measure an upper bound of the consumer throughput Tc, which is the final output together with
the rebalance time. The latter is the time needed for the assignment of the partitions to the
consumers to converge to its final configuration.

2.4.4 Connection to other components
As described in D2.2 and D5.4, HDD provides optimisation recommendations to DFB, as per
the application settings. Specifically, HDD interacts with the DFB as follows: (a) HDD receives
from the DFB the currently implemented Kafka topic partition table as a JSON object and a log
file with performance metrics. (b) DFB receives from HDD an updated Kafka topic partition
table as a JSON object.

2.4.5 Demonstration
We conducted some experiments to demonstrate the new findings. We have set the maximum
number of available brokers B to 16, based on the hardware characteristics of the cluster-side
server (a Supermicro server with four CPUs AMD Opteron(tm) Processor 6282 SE and 128 GB
RAM) and we varied the number of consumers c in the range [25,125].
In Figure 24, we show the output of the BroMax and BroMin algorithms, i.e., P on the left-side
plot and b on the right-side one, with two replication factors: r=3, which is a typical value used
in production systems, and r=5, which is intended for the dispatch of critical messages in a
system where brokers are prone to failures. The findings are reported in the next subsection.

Figure 24. Number of partitions and brokers selected by the BroMin/BroMax algorithms and used in the

experiments

2.4.6 Performance
We perform an analysis of results with messages of M=1 kB size. In Figure 25, we show the
consumer throughput Tc. As can be seen, all the curves decrease with increasing number of
consumers c. This is an expected behaviour with small message sizes and lightweight
consumers because they can ingest messages very fast, thus a more aggressive parallelisation
results in a negligible speed-up compared to a noticeable overhead. Furthermore, BroMax
always achieves the lowest Tc, even though it always saturates the number of brokers, i.e.,
b=B=16 in the experiments, and uses more partitions for the topic. There are some low-level
parameters in Apache Kafka that could be adjusted to fine-tune the communication

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 45 - 30 June 2023

performance, such as the size of the buffers used by TCP sockets. However, to the best of our
knowledge, there are no widely used guidelines that can be adopted to optimise performance
metrics according to a specific scenario, thus we have left the default values and did not consider
them as part of our analysis. Finally, the impact of the replication factor r=3 vs. r=5 is small
with BroMax and negligible with BroMin. Again, this is because of the small size of messages,
which keeps the additional overhead due to an increased replication low, especially with fewer
brokers/partitions, i.e., in the BroMin case.

Figure 25. Consumer throughput

In Figure 26, we show the rebalance time τR. Based on the results, the replication factor does
not significantly affect this metric. On the other hand, BroMax requires a significantly longer
time for the consumer group to converge to a stable distribution of partitions than BroMin with
a small number of consumers, i.e., as c < 85. This can be explained by the higher number of
brokers. However, as the number of consumers becomes very large, i.e., in the right part of the
plot, the τR curves become almost overlapping, due to the counterbalancing effect of the number
of consumers. Remember that in our experiments the consumers join the group with small
random offsets and every new consumer entering the group will trigger a rebalancing
procedure: more consumers result in a higher rate of rebalancing events triggered.

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 46 - 30 June 2023

Figure 26. Rebalance time

In Figure 27, we report a representative snapshot of the CPU load measured on the physical
servers, which were unloaded except for the Apache Kafka prototype experiments. The valleys
correspond to when the experiment iterations terminate, after which the load increases up to
peaks that mark the end of the respective experiments. In addition to following, the same time
pattern, incidentally, the CPU load of the client and server also have similar values. We included
this plot to show that neither of the two servers is overloaded (the server has 64 real CPU cores),
which otherwise would have affected the results.

Figure 27. CPU load on the physical servers

For the same reason, we report in Figure 28 the disk I/O on the cluster server. This metric is
irrelevant on the client side because the clients do not use the disk at all as they immediately

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 47 - 30 June 2023

drop the payload of messages after ingesting them. Also, for this metric, we can see that the
server cannot be overloaded, and in fact, Apache Kafka is known to be quite efficient in this
respect despite relying heavily on data persistence on disk.

Figure 28. Disk I/O load on the cluster server

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 48 - 30 June 2023

3 Positioning within the E2F2C continuum

3.1 The DMP toolkit architectural approach
The architectural approach followed for the application of the DMP in the R1 inference pipeline
was found to be effective and has remained intact in R2, being applied in all 10 R2 use cases.
Therefore, the description in section 4.1 of D2.2 accurately describes the current DMP internal
architecture and overall operation.

The DMP has been applied to 5 new use cases introduced for R2, and this has led to the support
of additional AI components and respective data models of their raw inference results.
Nevertheless, the same data models from the Smart Data Models (SDM) initiative, supported
by the FIWARE foundation32 that had been applied in R1 (Alert, Anomaly, MediaEvent data
models) could cover the needs of the added AI components. Therefore, DatAna processes the
raw inference results of the new AI components to transform them into the 3 SDM-compliant
data model counterparts before relaying them to the DFB.

One notable change concerns StreamHandler and its revised internal operation. The updated
version of StreamHandler now interacts with the DFB by subscribing to the Kafka topics where
AI inference results are published in order to consume these results and generate AV files that
correspond to these results. Therefore, StreamHandler acts proactively and AV files are no
longer created only at the request of SmartViz. Instead, in R2, SmartViz can also issue a request
to StreamHandler for an AV file by submitting the id of an inference result, for which the AV
file is required. This change has been reflected in the revised REST communication protocol
between StreamHandler and SmartViz.

The DMP has been applied in 10 use cases defined for the needs of the final version of the
MARVEL Integrated framework (R2). The following figures illustrate the system architecture
diagrams that were specified to address these 10 use cases, which include the specific
configuration of the DMP toolkit for each one along with the associated DMP components
(depicted in blue colour).

Figure 29. The DMP in the overall system architecture for use case GRN1: Safer Roads

32 https://www.fiware.org/

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 49 - 30 June 2023

Figure 30. The DMP in the overall system architecture for use case GRN2: Road user behaviour

Figure 31. The DMP in the overall system architecture for use case GRN3: Traffic Conditions and Anomalous

Events

Figure 32. The DMP in the overall system architecture for use case GRN4: Junction Traffic Trajectory

Collection

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 50 - 30 June 2023

Figure 33. The DMP in the overall system architecture for use case MT1: Monitoring of crowded areas

Figure 34. The DMP in the overall system architecture for use case MT2: Detecting criminal/anti-social

behaviours

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 51 - 30 June 2023

Figure 35. The DMP in the overall system architecture for use case MT3: Monitoring of parking places

Figure 36. The DMP in the overall system architecture for use case MT4: Analysis of a specific area

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 52 - 30 June 2023

Figure 37. The DMP in the overall system architecture for use case UNS1: Drone Experiment

Figure 38. The DMP in the overall system architecture for use case UNS2: Localising audio events in crowds

3.2 AV data handling activities
MARVEL relies on the analysis of multimodal AV data to provide real-time inference results
to its users. The AV data are typically produced by AV sources at the edge, i.e., microphone
and camera devices that are connected to the internet and provide a live streaming service of
the AV data. In this context, a thorough analysis was carried out to identify the live-streaming
protocol that best fits the MARVEL project's scope from the available industry-standard
protocols. The MARVEL Consortium nominated the RTSP as the protocol to be universally
used for all needs of live streaming of AV data within the MARVEL framework. The standard
for RTSP has been published as RFC236 in 1998 by the Multiparty Multimedia Session Control

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 53 - 30 June 2023

Working Group (MMUSIC WG) of the Internet Engineering Task Force (IETF) in 199833.
According to the RFC236 standard, RTSP is an application-layer protocol for the setup and
control of the delivery of data with real-time properties. RTSP provides an extensible
framework to enable controlled, on-demand delivery of real-time data, such as audio and video.
Sources of data can include both live data feeds and stored clips. This protocol is intended to
control multiple data delivery sessions; provide a means for choosing delivery channels such
as UDP, multicast UDP, and TCP; and provide a means for choosing delivery mechanisms
based upon RTP. Even though it is not one of the most recent protocols for live AV streaming,
RTSP is still widely used in the industry and allows backwards compatibility with the majority
of commercial CCTV camera models, since it has been adopted by most manufacturers during
the last decades. This is a very important aspect in the context of MARVEL, as its business case
foresees the use of existing surveillance infrastructure of cities.

For the needs of MARVEL, the transmission of the anonymised live stream takes place in two
stages: 1) the non-anonymised audio or video live stream from the IP cameras or microphones
is read and processed by the VideoAnony/AudioAnony component, and 2) the anonymised
audio or video stream is published via an RTSP34 server so that other MARVEL services that
need to consume live AV data streams (e.g., AI components) can establish a connection to the
server and start consuming the anonymised live stream.

In the case of VideoAnony, it reads the RTSP streaming data from an IP camera using
OpenCV35 and then performs face and number plate detection and anonymisation using deep
learning models. With the use of OpenCV and the GStreamer36 the anonymised visual stream
is sent to a server typically residing in the same processing layer.

A similar procedure to the VideoAnony applies to AudioAnony as well. However, the audio
data are handled differently in the three pilots. In GRN and UNS, audio feeds are provided by
either the cameras or the microphones as RTSP streams. Since in GRN anonymisation is not
required, FFmpeg37 is used to re-stream the audio to an RTSP server that then is accessible by
all components. Conversely, in UNS, AudioAnony reads the audio stream and publishes the
anonymised version on the related RTSP server. In MT, microphones are installed on edge
devices (designed and deployed specifically for MARVEL). Each device reads the data,
anonymises the audio segments and publishes them using a local RTSP server (i.e., 1 server per
microphone). Since the edge devices are outside the Kubernetes cluster, a re-streamer reads the
streams from each RTSP server and publishes them on the Kubernetes RTSP server (see WP5
deliverables for more technical details).

Inside the Kubernetes cluster these streams are processed and/or consumed by various
MARVEL components. Below two of the core components related to the advertisement and
processing of the AV data are briefly presented. More information regarding these components
can be found in the WP5 deliverables, such as D5.4 and D5.6 just to name a few.

• The AV Registry component is used to store and distribute information concerning AV
sources. It exposes a REST API that is accessible to all services deployed in the
MARVEL Kubernetes cluster to allow them to retrieve information related to available

33 https://datatracker.ietf.org/doc/html/rfc2326
34 https://github.com/aler9/rtsp-simple-server
35 https://opencv.org/
36 https://github.com/GStreamer/gstreamer
37 https://ffmpeg.org/

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 54 - 30 June 2023

AV sources in each MARVEL use case/deployment. The relative REST API foresees
two calls that can be used to (1) retrieve all stored AV source documents and (2) retrieve
a specific AV source document by referring to a particular AV source id. The REST
API returns the requested information in the form of JSON documents that follow the
specification of the Camera data model (Section 5.3.2.1 of D5.4).

• StreamHandler receives RTSP streams as input from the various AI components
developed and deployed under the MARVEL framework. These streams are segmented
into predefined time AV files and are stored in the storage component of StreamHandler.
These AV files are sent to two other components, SmartViz and Data Corpus. SmartViz
can access those AV files through a REST API endpoint by requesting an AV file for a
specific time range and source. Then the URL of the newly created file is sent to the
SmartViz component. Another way of interaction between SmartViz and
StreamHandler is through the event API endpoint. The functionality is the same as with
the previously mentioned endpoint, however in this case the AV file is created based on
the events advertised from the DFB component and before it is requested from the
SmartViz. Finally, StreamHandler periodically transmits the segmented files to the Data
Corpus, by using a routine procedure that transmits the data over an HTTP channel to
the Data Corpus platform.

3.3 The MARVdash facilitator
As already described in D2.2, MARVdash is a dashboard for Kubernetes that facilitates domain
experts to interact with resources in the E2F2C MARVEL platform in an easy and user-friendly
way. Instead of performing processing tasks itself, MARVdash offers the necessary
mechanisms for efficient deployment. It utilises a service templating mechanism to configure
and initiate services. Each service is characterised by a set of variables, and users have the
ability to specify values for these variables as execution parameters via the dashboard prior to
deployment. Additionally, MARVdash takes care of configuring other "internal" platform
settings, including the location of a private Docker registry, external DNS name, and other
relevant configurations.

During the second development phase of the project, the private docker registry under
MARVdash, which hosts the container images, was enriched with newer versions from partners
as they continuously updated their code. Partners were able to run their new version of code by
just redeploying a pre-existing template. This template had previously been created and
referenced the image version as a variable, so there was no need to create a new template for
each new image version.

Furthermore, with the latest version of MARVdash, the templates became even simpler by
removing the tolerations and labelling part from the YAML. Those parts were replaced by a
dropdown menu at the creation of the service thus providing an even simpler interaction with
the user.

In the latest version of MARVdash, Grafana, Prometheus38 and Loki39 were included. Grafana
provides a comprehensive range of features and functionalities to enhance the capabilities of a
Kubernetes dashboard. As a powerful data visualisation and analytics platform, Grafana enables
users to effectively monitor and analyse the performance and health of their Kubernetes cluster.
Providing to MARVdash users a rich set of customisable dashboards, it allows users to create

38 https://prometheus.io/
39 https://grafana.com/oss/loki/

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 55 - 30 June 2023

visually appealing representations of key metrics, such as CPU usage, memory utilisation,
network traffic, and more. These dashboards can be tailored to specific requirements and
provide real-time insights into the state of the Kubernetes environment. Additionally, Grafana
offers advanced querying and filtering capabilities, empowering users to explore and drill down
into their Kubernetes data with ease. It supports various data sources and integrates seamlessly
with Prometheus, enabling users to leverage existing monitoring data for comprehensive
visualisations. Overall, Grafana serves as a valuable tool for MARVdash users, enabling them
to gain deeper insights, monitor performance, and make data-driven decisions for their
Kubernetes clusters.

In addition to Grafana and Prometheus, Loki, which is a powerful log aggregation system,
offers significant benefits to MARVdash. It enables efficient and centralised collection,
indexing, and exploration of logs generated by various components within a cluster. With Loki,
MARVdash users can easily search, visualise, and analyse log data from different Kubernetes
pods, nodes, or namespaces. By integrating with popular logging libraries and frameworks,
Loki seamlessly captures and indexes logs in a scalable and cost-effective manner. Its ability to
store logs in a highly compressed and horizontally scalable manner significantly reduces
storage costs and simplifies log management. Moreover, Loki supports advanced querying and
filtering capabilities, allowing MARVdash users to extract meaningful insights from their logs.
With Loki integrated into a MARVdash, users gain enhanced observability, troubleshooting
capabilities, and the ability to identify and resolve issues quickly within the MARVEL
framework.

All the components that are part of the DMP toolkit can be easily deployed and managed
through MARVdash, leveraging the intuitive interface and simplified deployment mechanisms
provided by the dashboard. More specifically, DatAna installations of Apache NiFi are
deployed in many layers of the MARVEL E2F2C framework. These installations are simply
instantiated through MARVdash, by selecting the appropriate layer through the taint and
affinity Kubernetes methods that were described in D2.2. Likewise, Mosquitto MQTT message
brokers, which have been included in MARVEL to decouple messaging among components
and DatAna, can be easily deployed through MARVdash to the appropriate nodes of the E2F2C
deployment. In addition to the above, NiFiRegistry, which helps in data flows version control,
is instantiated through MARVdash in the MARVEL cloud.

DFB is similarly deployed through MARVdash to the cloud. All the components of the DFB
such as Kafka, Elastic Search, Kibana40, and the rest are deployed to Kubernetes Cluster by the
instantiation of the appropriate MARVdash templates leveraging the intuitive interface and
simplified deployment mechanisms provided by MARVdash. StreamHandler, which is parted
of different components is also deployed through MARVdash in the fog layer. Likewise, HDD
is instantiated to the cluster through MARVdash and deployed to the cloud layer. MARVdash
makes it effortless to deploy and manage applications. With its intuitive design, the dashboard
allows users to easily navigate through various components, view pod statuses, monitor
resource utilisation, and analyse logs and metrics. Additionally, MARVdash makes it incredibly
easy to update applications deployed within the cluster. MARVdash users can quickly roll out
new versions, or modify configuration parameters with just a few clicks, ensuring the cluster
remains up-to-date and responsive to evolving needs.

MARVdash as previously described in D2.2 enhances also the deployment of the Data Corpus
by integrating a web proxy service. This proxy implementation enables secure external access
to the Data Corpus API services. Moreover, a new ingress endpoint is registered within

40 https://www.elastic.co/kibana/

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 56 - 30 June 2023

Kubernetes, ensuring an HTTPS-compliant URL that guarantees the encryption of data
exchanges. Additionally, the endpoint is configured to utilise the existing authentication
mechanism provided by MARVdash, further enhancing the security and authentication process.
The Data Corpus, in the updated version of MARVdash, is accessed directly from the web page
menu. Furthermore, a new proxy service is added in the Kubernetes Cluster in order to
download files from the Hadoop41 cluster.

41https://hadoop.apache.org/

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 57 - 30 June 2023

4 Future plans after M30 of the project

4.1 DatAna
DatAna is considered finalised for the MARVEL use cases after this M30 release. The
upcoming months will be related to bug fixing and minor improvements in the data flows, if
required by the feedback from the pilots. DatAna will also provide input to WP5 in relation to
the benchmarking activities and provide the necessary support for the preparation of demos and
related activities.

4.2 DFB
In the final part of the project after this M30 release and beyond the project lifetime, the
following activities are being considered for the further development and improvement of the
DFB solution within the context of MARVEL:

• Further test and refine the data fusion process of inference results.

• Prepare additional meaningful visualisations in the DFB Kibana tool for long-term
analytics.

• Investigate and analyse scenarios of (a) interfacing with third-party components that are
external to MARVEL, (b) potential interfacing with multiple DatAna and SmartViz
instances and (c) improved scalability offered by HDD, in the context of T5.5 activities
and in the direction of demonstrating the capacity of the MARVEL framework to
achieve extreme scale analytics.

• Conduct more rigorous testing and measure performance more accurately based on
diversified load scenarios.

4.3 StreamHandler
INTRA’s StreamHandler recently received a complete refactoring both from architectural and
code perspectives. This release aims to increase the efficiency and resilience of the component.
Another major feature incorporated was the use of DFB’s event advertisement for compiling
AV files. Considering these, within the MARVEL framework, StreamHandler is finalised by
meeting all the initially stated requirements and specifications. The period left till the end of
the project will be devoted to minor tweaks to further boost the efficiency and performance of
StreamHandler on each Pilot use case. More details regarding the performance enhancement of
the StreamHandler will be reported in deliverable D5.5.

4.4 HDD
The new results have highlighted some qualitative differences with respect to the conclusions
obtained with the MARVEL-tailored simulation model of D2.2, which suggested the need for
cross-checking analysis with real-life scalable data before production deployment. Therefore,
our immediate plan for the short-term future is to explore the scalability potential of HDD, also
in the scope of WP5.

DRAFT

MARVEL D2.4 H2020-ICT-2018-20/№ 957337

MARVEL - 58 - 30 June 2023

5 Conclusion

The completion of Deliverable D2.4 represents a significant advancement in the development
and evolution of the MARVEL Management and Distribution Toolkit. Building upon the
foundation established in D2.2, this follow-up deliverable has effectively addressed stakeholder
feedback and requirements, resulting in a more refined and robust toolkit.

The enhancements introduced in D2.4 align with the project's overarching objectives of
optimising AV data management and maximising the value derived from MARVEL
components. By expanding functionality, improving interconnection interfaces, enhancing data
governance, and optimising performance, a comprehensive solution has been achieved.

This document has provided comprehensive information about the development of the DMT
since the inception of the project's technical development, with a particular focus on the final
stages of the project (M30). It has covered the main components of the DMT developed within
the MARVEL framework, ensuring that all necessary details are provided.

Lastly, the partners have outlined their plans for the future of their developed components
beyond the completion of the MARVEL project. These plans primarily involve optimising their
components and exploring new exploitation scenarios to further enhance their capabilities.

Overall, Deliverable D2.4 signifies a significant milestone in the advancement of the MARVEL
Management and Distribution Toolkit, providing a solid foundation for future development and
exploitation.

DRAFT

	List of Tables
	List of Figures
	List of Abbreviations
	Executive Summary
	1 Introduction
	1.1 Purpose and scope
	1.2 Contribution to WP2 and project objectives
	1.3 Relation to other WPs, deliverables, and activities
	1.4 Status updates since D2.2
	1.5 Structure of the document

	2 Components of the DMP toolkit
	2.1 DatAna
	2.1.1 Progress beyond the state-of-the-art
	2.1.2 Design methodology.
	2.1.3 Implementation
	2.1.4 Connection to other components
	2.1.5 Demonstration
	2.1.6 Performance

	2.2 Data Fusion Bus (DFB)
	2.2.1 Progress beyond the state-of-the-art
	2.2.2 Design methodology.
	2.2.3 Implementation
	2.2.4 Connection to other components
	2.2.5 Demonstration
	2.2.6 Performance

	2.3 StreamHandler
	2.3.1 Progress beyond the state-of-the-art
	2.3.2 Design methodology.
	2.3.3 Implementation
	2.3.4 Connection to other components
	2.3.5 Demonstration
	2.3.6 Performance

	2.4 HDD
	2.4.1 Progress beyond the state-of-the-art
	2.4.2 Design methodology.
	2.4.3 Implementation
	2.4.4 Connection to other components
	2.4.5 Demonstration
	2.4.6 Performance

	3 Positioning within the E2F2C continuum
	3.1 The DMP toolkit architectural approach
	3.2 AV data handling activities
	3.3 The MARVdash facilitator

	4 Future plans after M30 of the project
	4.1 DatAna
	4.2 DFB
	4.3 StreamHandler
	4.4 HDD

	5 Conclusion

