

Big Data technologies and extreme-scale analytics

Multimodal Extreme Scale Data Analytics for Smart Cities Environments

D3.6: Efficient deployment of AI-optimised ML/DL models – final

version†

Abstract: The objective of this deliverable is to provide an overview of the MARVEL Edge-

to-Fog-Cloud framework, which serves as the deployment layer for the AI/DL MARVEL

components. This framework encompasses the deployment logic that operates behind

MARVdash, a proposed Kubernetes dashboard used to instantiate services as orchestrated

containers and deploy them to desired execution sites, following an optimisation strategy. The

primary aim of the optimisation strategy is to ensure that MARVEL components are deployed

onto Kubernetes nodes based on their specific resource requirements and the available resources

on the respective nodes. Furthermore, this document will outline methods for compressing

machine learning algorithms/models by leveraging the resources present at the edge, such as

reducing the size and operation time of deep learning models with millions of parameters. This

compression approach can help minimise the computational overhead on edge servers.

Contractual Date of Delivery 30/06/2023

Actual Date of Delivery 30/06/2023

Deliverable Security Class Public

Editor Manos Papoutsakis, Anthi Barmpaki,
Emmanouil Michalodimitrakis (FORTH)

Contributors ATOS, AU, AUD, CNR, FBK, GRN,

INTRA, ITML, STS, TAU, UNS, ZELUS

 Quality Assurance Alessio Brutti (FBK)
Goran Martic (UNS)

† The research leading to these results has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 957337.

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 2 - June 30, 2023

The MARVEL Consortium

Part.

No.
Participant organisation name

Participant

Short Name
Role Country

1

FOUNDATION FOR

RESEARCH AND

TECHNOLOGY HELLAS

FORTH Coordinator EL

2
INFINEON TECHNOLOGIES

AG
IFAG Principal Contractor DE

3 AARHUS UNIVERSITET AU Principal Contractor DK

4 ATOS SPAIN SA ATOS Principal Contractor ES

5
CONSIGLIO NAZIONALE

DELLE RICERCHE
CNR Principal Contractor IT

6
INTRASOFT INTERNATIONAL

S.A.
INTRA Principal Contractor LU

7
FONDAZIONE BRUNO

KESSLER
FBK Principal Contractor IT

8 AUDEERING GMBH AUD Principal Contractor DE

9 TAMPERE UNIVERSITY TAU Principal Contractor FI

10 PRIVANOVA SAS PN Principal Contractor FR

11
SPHYNX TECHNOLOGY

SOLUTIONS AG
STS Principal Contractor CH

12 COMUNE DI TRENTO MT Principal Contractor IT

13

UNIVERZITET U NOVOM

SADU FAKULTET TEHNICKIH

NAUKA

UNS Principal Contractor RS

14

INFORMATION

TECHNOLOGY FOR MARKET

LEADERSHIP

ITML Principal Contractor EL

15 GREENROADS LIMITED GRN Principal Contractor MT

16 ZELUS IKE ZELUS Principal Contractor EL

17

INSTYTUT CHEMII

BIOORGANICZNEJ POLSKIEJ

AKADEMII NAUK

PSNC Principal Contractor PL

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 3 - June 30, 2023

Document Revisions & Quality Assurance

Internal Reviewers

1. Alessio Brutti, (FBK)

2. Goran Martic, (UNS)

Revisions

Version Date By Overview

1.0 30/6/2023 Editors (FORTH) Final version for submission to the EC

0.9 30/6/2023 Editors (FORTH) Addressing comments from PC

0.8 28/06/2023 Editors (FORTH) Final draft submitted to PC for quality

check

0.7 28/06/2023 Editors (FORTH) Approval from IRs

0.6 23/06/2023 Editors (FORTH) 2nd draft addressing comments from IRs

0.5 20/06/2023 Internal Reviewers

(FBK, UNS)

Comments from Internal Reviewers

0.4 13/06/2023 Editors (FORTH),

Contributors (ATOS,

AU, AUD, CNR, FBK,

GRN, INTRA, ITML,

STS, TAU, UNS,

ZELUS)

1st draft for internal review

0.3 08/05/2023 Editors (FORTH) Revised ToC

0.2 02/05/2023 STPM Comments on the TOC

0.1 08/05/2023 Editors (FORTH) Initial ToC

Disclaimer
The work described in this document has been conducted within the MARVEL project. This project has

received funding from the European Union’s Horizon 2020 research and innovation programme

under grant agreement No 957337. This document does not reflect the opinion of the European Union,

and the European Union is not responsible for any use that might be made of the information

contained therein.
This document contains information that is proprietary to the MARVEL Consortium partners. Neither

this document nor the information contained herein shall be used, duplicated or communicated by any

means to any third party, in whole or in parts, except with prior written consent of the MARVEL
Consortium.

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 4 - June 30, 2023

Table of Contents

LIST OF TABLES .. 6

LIST OF LISTINGS... 7

LIST OF FIGURES .. 8

LIST OF ABBREVIATIONS .. 9

EXECUTIVE SUMMARY .. 10

1 INTRODUCTION... 11

1.1 PURPOSE AND SCOPE .. 11
1.2 CONTRIBUTION TO WP3 AND PROJECT OBJECTIVES ... 11
1.3 RELATION TO OTHER WORK PACKAGES, DELIVERABLES, AND ACTIVITIES ... 11
1.4 STRUCTURE OF THE REPORT ... 12

2 FINAL CONTAINER IMAGES OF MARVEL COMPONENTS .. 13

2.1 AI SUBSYSTEM ... 13
2.1.1 Visual Anomaly Detection – ViAD ... 13
2.1.2 Audio-Visual Anomaly Detection – AVAD ... 16
2.1.3 Visual Crowd Counting – VCC .. 16
2.1.4 Audio-Visual Crowd Counting – AVCC ... 19
2.1.5 Audio content analysis – AAC, SED, SELD, AT... 19
2.1.6 Audio-Visual Vulnerable Road Users Detection: YOLO-SED ... 27
2.1.7 CATFlow... 30
2.1.8 Text Anomaly Detection – TAD .. 30
2.1.9 Rule Based Anomaly Detection – RBAD .. 31

2.2 SECURITY, PRIVACY AND DATA PROTECTION SUBSYSTEM ... 33
2.2.1 EdgeSec Virtual Private Network – VPN ... 33
2.2.2 EdgeSec Trusted Execution Environment – TEE ... 33
2.2.3 VideoAnony ... 36
2.2.4 AudioAnony & VAD (devAIce) ... 36

2.3 DATA MANAGEMENT AND DISTRIBUTION SUBSYSTEM ... 37
2.3.1 StreamHandler ... 37
2.3.2 Data Fusion Bus – DFB ... 40
2.3.3 DatAna .. 41
2.3.4 Hierarchical Data Distribution – HDD ... 42

2.4 E2F2C SUBSYSTEM .. 43
2.4.1 GPURegex .. 43
2.4.2 DynHP .. 45
2.4.3 FedL .. 45

2.5 SYSTEM OUTPUTS SUBSYSTEM ... 45
2.5.1 SmartViz ... 45
2.5.2 MARVEL Data Corpus-as-a-Service .. 53

3 E2F2C OPTIMISED DEPLOYMENT SOLUTION ... 55

3.1 ARCHITECTURE OF THE MARVEL E2F2C FRAMEWORK ... 55
3.2 DEPLOYMENT OPTIMISATION ... 58

3.2.1 MARVdash new deployment method .. 58
3.2.2 Monitoring and optimisation tools ... 63
3.2.3 Real-time decision-making in all layers of the MARVEL E2F2C framework 68

4 MODEL OPTIMISATION FOR EFFICIENT INFERENCE ... 71

4.1 METHODS AND APPROACHES FOR EFFICIENT INFERENCE ... 71
4.1.1 Compression applied to Audio Visual Crowd Counting Models.. 71
4.1.2 Compression of Visual Crowd Counting Model ... 72

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 5 - June 30, 2023

4.1.3 Deployment and evaluation of compression on an edge device ... 73
4.2 EFFICIENT ANOMALY DETECTION THROUGH DECENTRALISED AND UNSUPERVISED LEARNING 74

4.2.1 Motivation... 74
4.2.2 Methodology description .. 75
4.2.3 Cost analysis for phase I .. 75
4.2.4 Cost analysis for phase II ... 76
4.2.5 Experimental setup ... 77
4.2.6 Results of Group Detection .. 77
4.2.7 Federated outlier detection .. 77

4.3 EFFICIENT FACE-SWAPPING USING HARDWARE-AWARE SCALING .. 78
4.3.1 Summary of the state-of-the-art .. 78
4.3.2 Description of work performed so far .. 78
4.3.3 Performance Evaluation ... 79

5 KPIS ... 80

5.1 PROJECT-RELATED KPIS .. 80
5.2 ASSET SPECIFIC KPIS ... 81

6 CONCLUSION ... 82

7 REFERENCES .. 83

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 6 - June 30, 2023

List of Tables

Table 1: MARVEL components deployed through MARVdash ... 13
Table 2: MARVEL E2F2C Kubernetes nodes ... 56
Table 3: MARVdash API methods .. 69
Table 4: Output of GET services ... 69
Table 5: Output of GET templates ... 70
Table 6: Compression-accuracy performance comparison between compressed vs. uncompressed

models trained on Disco Dataset .. 72
Table 7: Comparison between VCC full and compressed model .. 73
Table 8: Inference time performance evaluation ... 74
Table 9: Community detection ... 77
Table 10: AUC-ROC mean values summarising the performance of the proposed anomaly detection

method .. 78
Table 11: Comparative analysis of the performance of the proposed approach 79

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 7 - June 30, 2023

List of Listings

Listing 1: ViAD Dockerfile ... 16
Listing 2: VCC Dockerfile ... 18
Listing 3: Dockerfile for the audio AI component (AAC, SED, SELD, AT). 21
Listing 4: An example of the deployment template for SED component for edge layer of the

infrastructure. ... 25
Listing 5: YOLO-SED Dockerfile ... 29
Listing 6: TAD container creation commands ... 30
Listing 7: RBAD Dockerfile .. 32
Listing 8: TEE & VideoAnony combined template YAML file ... 36
Listing 9: Service 2 Docker file for GRN Fog 2 deployment .. 38
Listing 10: Service 1 Docker file for GRN Fog 2 deployment .. 40
Listing 11: Use of NodePort method in the deployment YAML configuration file for the DFB Kafka

service. ... 41
Listing 12: Exposing the Kafka topics to be monitored by the DataFusion connector service as

parameters. ... 41
Listing 13: GPURegex container creation commands ... 43
Listing 14: GPURegex execution commands .. 43
Listing 15: Template used to deploy the newly added GPURegex image (Intel CPU and NVIDIA GPU)

 .. 45
Listing 16: SmartViz Dockerfiles and Docker-compose yaml .. 53

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 8 - June 30, 2023

List of Figures

Figure 1. DatAna topologies for R2 ... 42
Figure 2. Topology of MARVEL E2F2C Kubernetes cluster ... 55
Figure 3. Create Service Updated .. 59
Figure 4. Create Service - Select layer ... 60
Figure 5. Create Service - Select Node .. 60
Figure 6. Create Service - Select GPU ... 61
Figure 7. Create Service - Without GPU ... 61
Figure 8. Create Service - GPU setting requests and limits ... 62
Figure 9. Create Service - Select Fog Layer .. 62
Figure 10. Create Service - Select Fog Layer Node with GPU ... 63
Figure 11. MARVdash updated menu ... 65
Figure 12. Grafana Dashboards.. 65
Figure 13. Compute Resources per namespace.. 66
Figure 14. Grafana MARVdash dashboard .. 66
Figure 15. Grafana MQTT dashboard .. 67
Figure 16. Zabbix MARVEL dashboard .. 68
Figure 17. Zabbix Data Corpus dashboard .. 68
Figure 18. SmartViz Service Management .. 70
Figure 19. Production of heatmaps .. 71
Figure 20. Example of A/V Input Output from Disco dataset ... 72
Figure 21. SASNet architecture [4] .. 73
Figure 22. Deployment procedure of AVCC on the Apollo Device .. 74
Figure 23. Block diagram of the proposed approach ... 78
Figure 24. Qualitative evaluation of the proposed method against the two state-of-the-art approaches79

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 9 - June 30, 2023

List of Abbreviations

AI Artificial Intelligence

API Application Programming Interface

AT Audio Tagging

AVAD Audio-Visual Anomaly Detection

AVCC Audio-Visual Crowd Counting

CPU Central Processing Unit

CRE Container Runtime Environment

DFB Data Fusion Bus

DL Deep Learning

DMT Decision-Making Toolkit

DNN Deep Neural Network

E2F2C Edge to Fog to Cloud

GA Grant Agreement

GPU Graphics Processing/Processor Unit

HDD Hierarchical Data Distribution

HDFS Hadoop Distributed Files System

HP Hard Pruning

HTTP Hypertext Transfer Protocol

ML Machine Learning

MNIST Modified National Institute of Standards and Technology

MQTT Message Queuing Telemetry Transport

R2 2nd Release of the MARVEL Framework

REST REpresentational State Transfer

SED Sound Event Detection

TAD Text Anomaly Detection

TEE Trusted Execution Environment

UI User Interface

VAD Voice Activity Detection

VCC Visual Crowd Counting

ViAD Visual Anomaly Detection

VPN Virtual Private Network

WP Work Package

YAML Ain't Markup Language

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 10 - June 30, 2023

Executive Summary

The purpose of this deliverable is to provide the final version of the MARVEL Edge-to-Fog-

to-Cloud (E2F2C) framework. The deliverable has been developed within the scope of WP3 of

the MARVEL project under Grant Agreement (GA) No. 957337.

The document reports the outcomes of Tasks T3.4 and T3.5. As per the GA, the goals of T3.4

are to:

• Provide the deployment logic that will exploit the full potential of the personalised

Federated Learning approach implemented in T3.2;

• Optimise and manage the deployment of Artificial Intelligence (AI) and Deep Learning

(DL) components;

• Provide an optimisation strategy, for the component deployment, based on resource

requirement and consumption.

Therefore, activities in the context of T3.4 were to:

• Create the infrastructure that will be used for the deployment of the MARVEL

components. This infrastructure consists of a set of hosts part of a Kubernetes cluster.

On top of this Kubernetes cluster, MARVdash was placed as a dashboard service for

facilitating interaction with the underlying E2F2C testbed, by supplying the landing

page for users, allowing them to launch services, design workflows, request resources,

and specify other parameters related to execution through a user-friendly interface.

• Develop a deployment method, where MARVdash is used by the end users, allowing

them to select execution environment for their applications without having to

understand lower-level tools and interfaces.

• Install monitoring and managing tools such as Grafana, Prometheus, and Loki. Such

tools allow for monitoring and analysing the performance and health of the underlying

Kubernetes cluster.

The goals of T3.5 are to:

• Provide techniques and algorithms suitable for deployment at the edge layer;

• Study the compression requirements of AI/DL models based on resource availability;

• Compress such models for reduction of the computational overhead.

Therefore, the first activity of T3.5 was the exploration of different methods and approaches to

improve inference efficiency and optimise models. Furthermore, the utilisation of decentralised

and unsupervised learning for efficient anomaly detection was investigated and techniques for

efficient face-swapping using hardware-aware scaling were presented.

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 11 - June 30, 2023

1 Introduction

1.1 Purpose and scope

This document provides a comprehensive overview of the development process involved in

creating an E2F2C execution environment, which includes the implementation of a specialised

dashboard (MARVdash). This dashboard serves as a means to interact with the underlying

environment (Kubernetes cluster), coordinate the execution of data management platforms and

other software components, and handle external access to services that need to be accessible

outside the MARVEL infrastructure.

Additionally, the document presents the methodology devised for compressing DL models

during the training phase. It outlines the steps and techniques involved in compressing neural

models and specifically focuses on the application of this methodology to the Audio-Visual

Crowd Counting (AVCC) model developed by AU. The report provides insights into the

practical implementation and results achieved through this compression approach.

1.2 Contribution to WP3 and project objectives

The deliverable is directly related to the achievement of MARVEL Objective 3: “Break

technological silos, converge very diverse and novel engineering paradigms and establish a

distributed and secure Edge-to-Fog-to-Cloud (E2F2C) ubiquitous computing framework in the

big data value chain”.

One of the outputs of the above objective is to have a distributed E2F2C deep learning approach

including a model optimisation approach that adapts to the E2F2C resources that is related to

Task 3.4: Adaptive E2F2C distribution and optimisation of AI tasks and Task 3.5: Edge-optimal

ML/DL deployment for multimodal processing. The deliverable constitutes the output of those

tasks.

The work conducted in the above tasks, described in this deliverable, contributes mainly in two

objectives of WP3:

• (iv) optimise ML deployment in the E2F2C infrastructure in a continuous manner

• (v) deploy ML algorithms at all layers of E2F2C.

These objectives are fulfilled with:

• The new deployment method offered by MARVdash.

• The monitoring tools that are deployed i.e. Prometheus, Grafana, Loki and Zabbix.

• The scheduler utilised by Kubernetes that follows the best fit approach.

• The API offered by MARVdash for initializing and stopping services at any layer.

Finally, the work done under T3.4 and T3.5 contributes to achieving the KPIs mentioned in

Section 5.

1.3 Relation to other work packages, deliverables, and activities

This document has strong connections to various tasks within WP3. T3.1 focuses on developing

AI-based methods for data privacy, T3.2 aims to create a Federated Learning (FL) framework

based on distributed data, and T3.3 addresses the development of multimodal audio-visual AI

models. The deployment logic discussed in this document enables the realisation of the

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 12 - June 30, 2023

personalised Federated Learning approach implemented in T3.2, as well as embodies the

E2F2C approach in general for all components.

Furthermore, the Kubernetes dashboard for the MARVEL E2F2C framework will play a crucial

role in deploying all the other MARVEL components, which are responsible for functionalities

beyond AI model training and inference. These components are involved in data transfer and

management. As a result, this document relates to other tasks across different Work Packages

(WPs) dedicated to the development of MARVEL components. It also connects with the

corresponding deliverables that describe the functionality of these components.

Additionally, this document is highly pertinent to the tasks within all technical WPs, namely

WP2, WP3, WP4, and WP5, as it aligns with the overarching objective of delivering the

MARVEL E2F2C framework. Spanning across multiple WPs, the contents of this document

serve as a crucial foundation for the successful implementation and realization of the MARVEL

E2F2C framework.

1.4 Structure of the report

The deliverable focuses on the progress performed from the previous version, that is D3.21.

This approach is followed throughout the subsequent sections. In cases where we deemed it

essential for the completeness of the deliverable, we opted to provide a summary of background

information that was already addressed in the initial version.

The deliverable is structured as follows. Section 2 provides a comprehensive overview of all

the MARVEL components that utilise the MARVdash dashboard for deployment on one or

more nodes within the MARVEL E2F2C framework.

In Section 3, the focus shifts to the proposed deployment solution. It starts with a description

of the MARVEL E2F2C framework, which consists of two main components, i.e., the

underlying Kubernetes cluster and the MARVdash dashboard on top of it. This section also

delves into the selected monitoring and managing tools that report the performance and health

of the cluster, and the provided MARVdash Application Programming Interface (API) that

allows for the real-time decision-making functionality offered by the MARVEL E2F2C

framework.

Section 4 focuses on the exploration of diverse approaches to optimise models, improve

inference efficiency, enable efficient anomaly detection, and enhance face-swapping techniques

through the implementation of hardware-aware strategies. The compression methods, namely

DynHP and AVCC, are described in detail.

Section 5 focuses on the description of Key Performance Indicators (KPIs) and evaluates the

extent to which they have been met based on the progress made until M30 of the project's

lifespan.

Finally, Section 6 summarises the conclusions drawn from the deliverable, providing a concise

overview of the document's key findings.

1 MARVEL D3.2 - Efficient deployment of AI-optimised ML/DL models – initial version, 2022.

https://doi.org/10.5281/zenodo.6821232

https://doi.org/10.5281/zenodo.6821232

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 13 - June 30, 2023

2 Final container images of MARVEL components

The foundation of the developed MARVEL E2F2C framework relies on a Kubernetes cluster,

enabling the deployment of various MARVEL components across its nodes. By leveraging

containerisation, the deployment process within the Kubernetes creates individual isolated fully

packaged and portable computing environments. In this section, we outline the methodology

employed to construct these execution environments for each specific MARVEL component,

utilising Docker containers.

A summary table with all the MARVEL components that are deployed in the MARVEL E2F2C

framework (Kubernetes cluster) is depicted below (Table 1). Details regarding the functionality

of each component and the way they are deployed can be found in the next subsections.

Table 1: MARVEL components deployed through MARVdash

Component name
Component

Owner
E2F2C Layer

Visual anomaly detection (ViAD) AU Cloud

Audio-Visual anomaly detection (AVAD) AU Fog, Cloud

Visual crowd counting (VCC) AU Fog, Cloud

Audio-Visual crowd counting (AVCC) AU Cloud

Automated audio captioning (AAC) TAU Fog

Sound event detection (SED) TAU Edge, Fog

Sound event localisation and detection

(SELD)

TAU Edge

Audio tagging (AT) TAU Fog, Cloud

Audio-Visual Vulnerable Road Users

Detection (YOLO-SED)

AU Edge

CATFlow GRN Edge, Fog

Text Anomaly Detection (TAD) GRN Edge, Fog

Rule Based Anomaly Detection (RBAD) AU Edge, Fog

EdgeSec TEE FORTH Edge

VideoAnony FBK Edge, Fog, Cloud

AudioAnony & VAD (devAIce) FBK Edge, Cloud

StreamHandler INTRA Fog

Data Fusion Bus (DFB) ITML Cloud

DatAna ATOS Edge, Fog, Cloud

Hierarchical Data Distribution (HDD) CNR Cloud

GPURegex FORTH Fog

DynHP CNR Cloud

FedL UNS Edge, Fog

SmartViz ZELUS Cloud

2.1 AI subsystem

2.1.1 Visual Anomaly Detection – ViAD

The ViAD component learns to differentiate between normal and anomalous situations in

visual-only videos. Therefore, an anomaly can be any novel event that has not occurred in the

scene before, but those that have been present in the training dataset are detected with higher

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 14 - June 30, 2023

accuracy. It receives as an input a sequence of video frames and it produces a single flag

specifying whether any anomalies are present in the input sequence.

The base image for the ViAD component is the Pytorch:1.12.0 container (Listing 1). The next

commands set the time zone, required to properly synchronise with the other MARVEL

components. The RUN command installs prerequisite software. Then, the model, python

requirements as well as the Mudas library, developed by AU for the MARVEL project, are

copied and installed within the image. Finally, the last command starts the component, passing

the required parameters.

FROM pytorch/pytorch:1.12.0-cuda11.3-cudnn8-runtime

ARG DEBIAN_FRONTEND=noninteractive

ENV TZ=Europe/Copenhagen

RUN apt-get update && \

 apt-get install -y build-essential && \

 apt-get install -y libgl1 libsndfile1 && \

 apt-get install -y ffmpeg && \

 apt-get clean

COPY containers/container_source/vggish_pretrained.pth /app/

COPY containers/container_source/requirements.txt /tmp/

RUN pip install --default-timeout=100 -r /tmp/requirements.txt

COPY containers/container_source/mudas-0.3.8-py3-none-any.whl /tmp/

RUN pip install --default-timeout=100 /tmp/mudas-0.3.8-py3-none-any.whl --no-

dependencies

WORKDIR /app

COPY containers/container_source/utils.py /app/

COPY containers/container_source/model_repo.py /app/

COPY containers/container_source/preprocessing_core.py /app/

COPY containers/container_source/pp_source_avad_viad.py /app/

CMD ["sh", "-c", "echo PARAMETERS:; \

 echo ------; \

 echo ACCESS_AV_REGISTRY=${ACCESS_AV_REGISTRY};\

 echo ANOMALY_THRESHOLD=${ANOMALY_THRESHOLD};\

 echo AUDIO_LENGTH=${AUDIO_LENGTH};\

 echo AUDIO_SIZE=${AUDIO_SIZE};\

 echo AUDIO_URL=${AUDIO_URL};\

 echo BROKER=${BROKER};\

 echo CAMERA_ID=${CAMERA_ID};\

 echo CROP_PARAMS=${CROP_PARAMS};\

 echo DETECTED_BY=${DETECTED_BY};\

 echo EVENT_TYPE=${EVENT_TYPE};\

 echo EXAMPLE_HOP_SECS=${EXAMPLE_HOP_SECS};\

 echo EXAMPLE_WINDOW_LENGTH_SECS=${EXAMPLE_WINDOW_LENGTH_SECS};\

 echo GET_MODEL_REPO=${GET_MODEL_REPO};\

 echo ID=${ID};\

 echo LIMIT=${LIMIT};\

 echo LOG_OFFSET=${LOG_OFFSET};\

 echo LOWER_EDGE_HERTZ=${LOWER_EDGE_HERTZ};\

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 15 - June 30, 2023

 echo MODE=${MODE};\

 echo MODEL_NAME=${MODEL_NAME};\

 echo MQTT_PASSWORD=${MQTT_PASSWORD};\

 echo MQTT_USERNAME=${MQTT_USERNAME};\

 echo NUM_MEL_BINS=${NUM_MEL_BINS};\

 echo OWNER=${OWNER};\

 echo OWNER_BIN=${OWNER_BIN};\

 echo PORT=${PORT};\

 echo REGISTRY_URL=${REGISTRY_URL};\

 echo SECOND_CAMERA_ID=${SECOND_CAMERA_ID};\

 echo SFT_HOP_LENGTH_SECS=${SFT_HOP_LENGTH_SECS};\

 echo SFT_WINDOW_LENGTH_SECS=${SFT_WINDOW_LENGTH_SECS};\

 echo TARGET_SAMPLE_RATE=${TARGET_SAMPLE_RATE};\

 echo TOPIC=${TOPIC};\

 echo VERBOSE=${VERBOSE};\

 echo SHORT_SIDE=${SHORT_SIDE};\

 echo VIDEO_URL=${VIDEO_URL};\

 echo SEQUENCE_LENGTH=${SEQUENCE_LENGTH};\

 echo USE_GPU=${USE_GPU};\

 echo WORKER_COUNT=${WORKER_COUNT};\

 echo QUEUE_SIZE=${QUEUE_SIZE};\

 echo AUDIO_CONTEXT_LENGTH=${AUDIO_CONTEXT_LENGTH};\

 python pp_source_avad_viad.py \

 --access_av_registry ${ACCESS_AV_REGISTRY} \

 --anomaly_threshold ${ANOMALY_THRESHOLD} \

 --audio_length ${AUDIO_LENGTH} \

 --audio_size ${AUDIO_SIZE} \

 --audio_url ${AUDIO_URL} \

 --broker ${BROKER} \

 --camera_id ${CAMERA_ID} \

 --crop_params ${CROP_PARAMS} \

 --detected_by ${DETECTED_BY} \

 --event_type ${EVENT_TYPE} \

 --example_hop_secs ${EXAMPLE_HOP_SECS} \

 --example_window_length_secs ${EXAMPLE_WINDOW_LENGTH_SECS} \

 --get_model_repo ${GET_MODEL_REPO} \

 --id ${ID} \

 --limit ${LIMIT} \

 --log_offset ${LOG_OFFSET} \

 --lower_edge_hertz ${LOWER_EDGE_HERTZ} \

 --mode ${MODE} \

 --model_name ${MODEL_NAME} \

 --mqtt_password ${MQTT_PASSWORD} \

 --mqtt_username ${MQTT_USERNAME} \

 --num_mel_bins ${NUM_MEL_BINS} \

 --owner ${OWNER} \

 --owner_bin ${OWNER_BIN} \

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 16 - June 30, 2023

 --port ${PORT} \

 --registry_url ${REGISTRY_URL} \

 --second_camera_id ${SECOND_CAMERA_ID} \

 --sft_hop_length_secs ${SFT_HOP_LENGTH_SECS} \

 --sft_window_length_secs ${SFT_WINDOW_LENGTH_SECS} \

 --sft_window_length_secs ${SFT_WINDOW_LENGTH_SECS} \

 --topic ${TOPIC} \

 --verbose ${VERBOSE} \

 --short_side ${SHORT_SIDE} \

 --video_url ${VIDEO_URL} \

 --sequence_length ${SEQUENCE_LENGTH} \

 --worker_count ${WORKER_COUNT} \

 --queue_sizes ${QUEUE_SIZE} \

 --audio_context_length ${AUDIO_CONTEXT_LENGTH} \

 --use_gpu ${USE_GPU}"]

Listing 1: ViAD Dockerfile

2.1.2 Audio-Visual Anomaly Detection – AVAD

The ViAD component learns to differentiate between normal and anomalous situations in

audio-visual videos. Therefore, an anomaly can be any novel event that has not occurred in the

scene before, but those that have been present in the training dataset are detected with higher

accuracy. It receives as an input a sequence of video frames and it produces a single flag

specifying whether any anomalies are present in the input sequence.

The structure of the AVAD Dockerfile is the same as that of the ViAD component presented in

Section 2.1.1.

2.1.3 Visual Crowd Counting – VCC

The VCC component counts the total number of people present in an image. Since the

annotations in the training data specify the locations of the heads, crowd counting can be viewed

as counting the total number of heads present in the image. The input to this component is an

image from a scene that may contain people, and the output is a number representing the total

count of people in that scene. Optionally, the output may contain a heatmap specifying the

density of people for each pixel of the image (also known as “density map”).

The VCC component’s Dockerfile follows the same structure as those for ViAD and AVAD

(Listing 2). Pytorch:1.12.0 is the base image. The next commands copy the required files and

install the libraries. The last command starts the VCC component loop.

FROM pytorch/pytorch:1.12.0-cuda11.3-cudnn8-runtime

ARG DEBIAN_FRONTEND=noninteractive

ENV TZ=Europe/Copenhagen

RUN apt-get update && \

 apt-get install -y build-essential && \

 apt-get install -y libgl1 libsndfile1 && \

 apt-get install -y ffmpeg && \

 apt-get clean

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 17 - June 30, 2023

COPY containers/container_source/vggish_pretrained.pth /app/

COPY containers/container_source/requirements.txt /tmp/

RUN pip install --default-timeout=100 -r /tmp/requirements.txt

COPY containers/container_source/mudas-0.3.9-py3-none-any.whl /tmp/

RUN pip install --default-timeout=100 /tmp/mudas-0.3.9-py3-none-any.whl --no-

dependencies

WORKDIR /app

COPY containers/container_source/utils.py /app/

COPY containers/container_source/model_repo.py /app/

COPY containers/container_source/pp_source_avcc_vcc.py /app/

CMD ["sh", "-c", "echo PARAMETERS:; \

 echo ------; \

 echo ACCESS_AV_REGISTRY=${ACCESS_AV_REGISTRY};\

 echo AUDIO_CONTEXT_LENGTH=${AUDIO_CONTEXT_LENGTH};\

 echo AUDIO_LENGTH=${AUDIO_LENGTH};\

 echo AUDIO_SIZE=${AUDIO_SIZE};\

 echo AUDIO_URL=${AUDIO_URL};\

 echo BROKER=${BROKER};\

 echo CAMERA_ID=${CAMERA_ID};\

 echo CROP_PARAMS=${CROP_PARAMS};\

 echo DETECTED_BY=${DETECTED_BY};\

 echo EVENT_TYPE=${EVENT_TYPE};\

 echo EXAMPLE_HOP_SECS=${EXAMPLE_HOP_SECS};\

 echo EXAMPLE_WINDOW_LENGTH_SECS=${EXAMPLE_WINDOW_LENGTH_SECS};\

 echo GET_MODEL_REPO=${GET_MODEL_REPO};\

 echo HEATMAP_FREQUENCY=${HEATMAP_FREQUENCY};\

 echo ID=${ID};\

 echo LIMIT=${LIMIT};\

 echo LOG_OFFSET=${LOG_OFFSET};\

 echo LOWER_EDGE_HERTZ=${LOWER_EDGE_HERTZ};\

 echo MODE=${MODE};\

 echo MODEL_NAME=${MODEL_NAME};\

 echo MQTT_PASSWORD=${MQTT_PASSWORD};\

 echo MQTT_PORT=${MQTT_PORT};\

 echo MQTT_USERNAME=${MQTT_USERNAME};\

 echo NUM_MEL_BINS=${NUM_MEL_BINS};\

 echo OWNER=${OWNER};\

 echo OWNER_BIN=${OWNER_BIN};\

 echo QUEUE_SIZES=${QUEUE_SIZES};\

 echo REGISTRY_URL=${REGISTRY_URL};\

 echo SECOND_CAMERA_ID=${SECOND_CAMERA_ID};\

 echo SFT_HOP_LENGTH_SECS=${SFT_HOP_LENGTH_SECS};\

 echo SFT_WINDOW_LENGTH_SECS=${SFT_WINDOW_LENGTH_SECS};\

 echo TARGET_SAMPLE_RATE=${TARGET_SAMPLE_RATE};\

 echo TIMESTAMP_MODE=${TIMESTAMP_MODE};\

 echo TOPIC=${TOPIC};\

 echo USE_GPU=${USE_GPU};\

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 18 - June 30, 2023

 echo VERBOSE=${VERBOSE};\

 echo VIDEO_SIZE=${VIDEO_SIZE};\

 echo VIDEO_URL=${VIDEO_URL};\

 echo WORKER_COUNT=${WORKER_COUNT};\

 python pp_source_avcc_vcc.py \

 --access_av_registry ${ACCESS_AV_REGISTRY} \

 --audio_context_length ${AUDIO_CONTEXT_LENGTH} \

 --audio_length ${AUDIO_LENGTH} \

 --audio_size ${AUDIO_SIZE} \

 --audio_url ${AUDIO_URL} \

 --broker ${BROKER} \

 --camera_id ${CAMERA_ID} \

 --crop_params ${CROP_PARAMS} \

 --detected_by ${DETECTED_BY} \

 --event_type ${EVENT_TYPE} \

 --example_hop_secs ${EXAMPLE_HOP_SECS} \

 --example_window_length_secs ${EXAMPLE_WINDOW_LENGTH_SECS} \

 --get_model_repo ${GET_MODEL_REPO} \

 --heatmap_frequency ${HEATMAP_FREQUENCY} \

 --id ${ID} \

 --limit ${LIMIT} \

 --log_offset ${LOG_OFFSET} \

 --lower_edge_hertz ${LOWER_EDGE_HERTZ} \

 --mode ${MODE} \

 --model_name ${MODEL_NAME} \

 --mqtt_password ${MQTT_PASSWORD} \

 --mqtt_port ${MQTT_PORT} \

 --mqtt_username ${MQTT_USERNAME} \

 --num_mel_bins ${NUM_MEL_BINS} \

 --owner ${OWNER} \

 --owner_bin ${OWNER_BIN} \

 --queue_sizes ${QUEUE_SIZES} \

 --registry_url ${REGISTRY_URL} \

 --second_camera_id ${SECOND_CAMERA_ID} \

 --sft_hop_length_secs ${SFT_HOP_LENGTH_SECS} \

 --sft_window_length_secs ${SFT_WINDOW_LENGTH_SECS} \

 --timestamp_mode ${TIMESTAMP_MODE} \

 --topic ${TOPIC} \

 --use_gpu ${USE_GPU} \

 --verbose ${VERBOSE} \

 --video_url ${VIDEO_URL} \

 --worker_count ${WORKER_COUNT} \

 "]

Listing 2: VCC Dockerfile

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 19 - June 30, 2023

2.1.4 Audio-Visual Crowd Counting – AVCC

The AVCC component counts the total number of people present in an image. Since the

annotations in the training data specify the locations of the heads, crowd counting can be viewed

as counting the total number of heads present in the image. The input to this component is an

image from a scene that may contain people and a 1-second audio snippet preceding that frame.

The output is a number representing the total count of people in that scene. Optionally, the

output may contain a heatmap specifying the density of people for each pixel of the image (also

known as “density map”).

The AVCC component’s Dockerfile follows the same structure as that for VCC (Listing 2).

2.1.5 Audio content analysis – AAC, SED, SELD, AT

Four audio content analysis components released by TAU, automated audio captioning (AAC),

sound event detection (SED), sound event localisation and detection (SELD), and audio tagging

(AT), share the same code base. The component type is selected at the component deployment

and the internal data processing pipeline is selected accordingly and the correct AI model is

fetched from the AI Model Repository component. The component can be run either in the

cloud, in the edge or in the fog layer of the infrastructure. Nodes in these layers can have a high-

performance Central Processing Unit (CPU) or а Graphics Processing/Processor Unit (GPU)

available for AI computations. The component is designed to consume continuous audio-visual

streams and operate in real-time.

The component is deployed with a Docker Image shown in Listing 3. The component is

implemented in Python and the audio AI subsystem is using PyTorch machine learning

framework. The environmental variables inside the Docker container are used to relay

parameters from the Kubernetes deployment template at the deployment time to the component

launch command inside the Docker image.

The component is deployed into MARVEL infrastructure using the Kubernetes deployment

template in YAML format. An example of such template is shown in Listing 4. This example

has default parameters set to deploy the SED component for the GRN2 use case (Road User

Behaviour) in the edge layer of the infrastructure. The same template can be used to deploy

other types of components by changing the “COMPONENT” parameter (sets the component

type, e.g., SED, AT, SELD) and the “MODEL_ID” parameter (sets the used AI model). The

audio-visual stream source information is fetched at the component start-up from the AV

Registry component based on the given “CAMERAID” parameter. Similarly, the AI model is

fetched at component start-up from the Model Repository component based on the given

"MODEL ID” parameter.

FROM python:3.9-bullseye

ENV PYTHONDONTWRITEBYTECODE=1

ENV PYTHONUNBUFFERED=1

RUN apt-get update -y && apt-get install -y --no-install-recommends build-

essential gcc libsndfile1

RUN apt-get update -y && apt-get upgrade -y && apt-get install -y ffmpeg

WORKDIR /app

COPY ai.py /app/

COPY base_process.py /app/

COPY daemon.py /app/

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 20 - June 30, 2023

COPY receiver.py /app/

COPY transmitter.py /app/

COPY utils.py /app/

COPY models.py /app/

COPY config/ /app/config/

RUN adduser -u 5678 --disabled-password --gecos "" appuser && chown -R appuser

/app

USER appuser

ENV PATH="/home/appuser/.local/bin:$PATH"

RUN python -m pip install numpy==1.20.3

RUN python -m pip install torch==1.9.1+cu111 -f

https://nelsonliu.me/files/pytorch/whl/torch_stable.html

RUN python -m pip install dcase_util==0.2.19

RUN python -m pip install ffmpeg-python==0.2.0

RUN python -m pip install multiprocessing-logging==0.3.1

RUN python -m pip install paho-mqtt==1.6.1

RUN python -m pip install pika==1.2.0

RUN python -m pip install minio==7.1.8

RUN python -m pip install transformers==4.21.2

RUN python -m pip install essential_generators==1.0

RUN python -m pip install logger_tt==1.7.3

CMD ["sh", "-c", "\

 python daemon.py \

 --component ${COMPONENT} \

 --owner=${OWNER} \

 --infrastructure_id ${INFRASTRUCTURE_ID} \

 --avr_hostname ${AVR_HOSTNAME} \

 --avr_port ${AVR_PORT} \

 --registry_id ${CAMERAID} \

 --model_url ${MODEL_URL} \

 --model_id ${MODEL_ID} \

 --mqtt_enabled ${MQTT_ENABLED} \

 --mqtt_hostname ${MQTT_HOSTNAME} \

 --mqtt_port ${MQTT_PORT} \

 --mqtt_topic ${MQTT_TOPIC} \

 --generate_input ${GENERATE_INPUT} \

 --generate_output ${GENERATE_OUTPUT} \

 --local ${LOCAL} \

 --use_local_model ${LOCAL_MODEL} \

 --use_local_avregistry ${LOCAL_AVREGISTRY} \

 --show_config ${SHOW_CONFIG} \

 --show_input ${SHOW_INPUT} \

 --show_output ${SHOW_OUTPUT} \

 --input_stream ${INPUT_STREAM} \

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 21 - June 30, 2023

 --device ${DEVICE} \

 "]

Listing 3: Dockerfile for the audio AI component (AAC, SED, SELD, AT).

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: $NAME

spec:

 rules:

 - host: $HOSTNAME

 http:

 paths:

 - path: /

 pathType: Prefix

 backend:

 service:

 name: $NAME

 port:

 number: 8080

apiVersion: v1

kind: Service

metadata:

 name: $NAME

spec:

 type: ClusterIP

 ports:

 - port: 8080

 selector:

 app: $NAME

apiVersion: apps/v1

kind: Deployment

metadata:

 name: $NAME

spec:

 replicas: 1

 selector:

 matchLabels:

 app: $NAME

 template:

 metadata:

 labels:

 app: $NAME

 spec:

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 22 - June 30, 2023

 affinity:

 nodeAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 nodeSelectorTerms:

 - matchExpressions:

 - key: Layer

 operator: In

 values:

 - GRNEDGE1

 containers:

 - name: $NAME

 image: 192.168.50.1:5000/tau_audio_ai:1.9.62

 ports:

 - containerPort: 8080

 env:

 - name: COMPONENT

 value: $COMPONENT

 - name: DEVICE

 value: $DEVICE

 - name: OWNER

 value: $OWNER

 - name: AVR_HOSTNAME

 value: $AVR_HOSTNAME

 - name: AVR_PORT

 value: $AVR_PORT

 - name: CAMERAID

 value: $CAMERAID

 - name: INFRASTRUCTURE_ID

 value: $INFRASTRUCTURE_ID

 - name: MODEL_URL

 value: $MODEL_URL

 - name: MODEL_ID

 value: $MODEL_ID

 - name: MQTT_ENABLED

 value: $MQTT_ENABLED

 - name: MQTT_HOSTNAME

 value: $MQTT_HOSTNAME

 - name: MQTT_PORT

 value: $MQTT_PORT

 - name: MQTT_TOPIC

 value: $MQTT_TOPIC

 - name: GENERATE_INPUT

 value: $GENERATE_INPUT

 - name: GENERATE_OUTPUT

 value: $GENERATE_OUTPUT

 - name: LOCAL

 value: $LOCAL

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 23 - June 30, 2023

 - name: LOCAL_MODEL

 value: $LOCAL_MODEL

 - name: LOCAL_AVREGISTRY

 value: $LOCAL_AVREGISTRY

 - name: SHOW_CONFIG

 value: $SHOW_CONFIG

 - name: SHOW_INPUT

 value: $SHOW_INPUT

 - name: SHOW_OUTPUT

 value: $SHOW_OUTPUT

 - name: INPUT_STREAM

 value: $INPUT_STREAM

 resources:

 requests:

 memory: "3G"

 cpu: "1"

 limits:

 aliyun.com/gpu-mem: 1

 memory: $MEMORY

 cpu: $CPUS

 tolerations:

 - key: "Layer"

 operator: "Equal"

 value: "GRNEDGE1"

kind: Template

name: TAU Audio AI / GRNEDGE1 / GPU

description: TAU Audio AI / GRN2 / GRNEDGE1 / GPU / SED

variables:

- name: NAME

 default: tau-audio-ai-grnedge1-sed

- name: HOSTNAME

 default: tau-sed.example.com

- name: OWNER

 default: GRN2

 help: Owner override

- name: COMPONENT

 default: SED

 help: Component type [SED, AT, AAC, SELD]

- name: DEVICE

 default: cuda

 help: Set device to cpu or cuda

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 24 - June 30, 2023

- name: AVR_HOSTNAME

 default: avregistry-grn.karvdash-tkanellos

 help: AV Registry hostname

- name: AVR_PORT

 default: "\"3000\""

 help: AV Registry port

- name: CAMERAID

 default: "\"Cam-GRN-VA-01-Audio\""

 help: Registry id to query AV registry

- name: INFRASTRUCTURE_ID

 default: GRNEDGE1

 help: Infrastructure ID

- name: MODEL_URL

 default: minio.karvdash-minio.svc:9000

 help: Model Registry URL

- name: MODEL_ID

 default: SED_GRN2_v01

 help: AI model ID

- name: MQTT_ENABLED

 default: "\"1\""

 help: MQTT output enabled, possible values are "0" or "1", make sure to use

quotes.

- name: MQTT_HOSTNAME

 default: mqtt-kubernetesgrnedge1.karvdash-datanagrnedge.svc

 help: MQTT broker hostname

- name: MQTT_PORT

 default: "\"1883\""

 help: MQTT broker port

- name: MQTT_TOPIC

 default: SED

 help: MQTT topic [SED, AT]

- name: GENERATE_INPUT

 default: "\"0\""

 help: Generate random input signal for debugging purposes, possible values are

"0" or "1", make sure to use quotes.

- name: GENERATE_OUTPUT

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 25 - June 30, 2023

 default: "\"0\""

 help: Generate random output for debugging purposes, possible values are "0"

or "1", make sure to use quotes.

- name: LOCAL

 default: "\"0\""

 help: Run component in local mode, av registry and AI model loaded from local

registry, possible values are "0" or "1", make sure to use quotes.

- name: LOCAL_MODEL

 default: "\"0\""

 help: Run component with local MLMODEL, possible values are "0" or "1", make

sure to use quotes.

- name: LOCAL_AVREGISTRY

 default: "\"0\""

 help: Run component with local AV Registry, possible values are "0" or "1",

make sure to use quotes.

- name: SHOW_CONFIG

 default: "\"1\""

 help: Show config information, possible values are "0" or "1", make sure to

use quotes.

- name: SHOW_INPUT

 default: "\"1\""

 help: Show input, possible values are "0" or "1", make sure to use quotes.

- name: SHOW_OUTPUT

 default: "\"1\""

 help: Show output, possible values are "0" or "1", make sure to use quotes.

- name: INPUT_STREAM

 default: "\"\""

 help: Input stream URL override

- name: MEMORY

 default: "\"6G\""

 help: Limit for memory usage (e.g. "6G")

- name: CPUS

 default: "\"6\""

 help: Limit for CPU usage (e.g. "6")

Listing 4: An example of the deployment template for SED component for edge layer of the infrastructure.

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 26 - June 30, 2023

Automated audio captioning – AAC

The automated audio captioning (AAC) component creates textual descriptions with full

sentences for an audio segment. The caption will describe what is happening in the audio signal,

for example, “people yelling while siren wails”. These captions can be used as direct

descriptions for humans accessing audio-visual streams, as well as for further text-based

analysis to assist the decision-making process. The AAC component is used in monitoring use

cases in MARVEL to provide descriptive captions of audio-visual segments accessed by the

monitoring system users.

The AAC component is deployed by specialising in the base Audio AI component by setting

the “COMPONENT” parameter to “AAC” at the deployment and setting the appropriate

“MODELID” to fetch the AAC model from the AI Model Repository component.

Sound event detection – SED

The sound event detection (SED) component enables the detection of sound events and their

temporal location in the audio signal. Acoustic environments in smart cities are full of sounds

which provide important information for understanding what is happening in the environment.

Humans have formed tight associations between events in the scene and the sounds these events

produce. These associations are called sound events and they are represented as a textual label.

This functionality is used in the various use cases of MARVEL to offer the ability to detect

actions and events through sound. The detection of these sound events can be used as standalone

information in the scene analysis or as complementary information to other systems to gain a

deeper understanding of the scene. The specific sound events detected by the component will

be dependent on the use cases. A SED component takes as an input an audio signal and provides

detection of sound events in pre-specified units of time.

The SED component is deployed by specialising in the base Audio AI component by setting

the “COMPONENT” parameter to “SED” at the deployment and setting the appropriate

“MODELID” to fetch the SED model from the AI Model Repository component.

Sound event localisation and detection – SELD

The sound event localisation and detection (SELD) task is a joint task where a system performs

sound event localisation and sound event detection. The localisation detects the directional

characteristics of the sound events by outputting the azimuth and elevation of the direction of

arrival of the sound that is associated with an event. The localisation is performed concerning

the microphone position and orientation. A SELD system is used in monitoring use cases in

MARVEL to produce an in-depth view of the auditory scene in use cases where sound

localisation is an important aspect.

The SELD component is deployed by specialising in the base Audio AI component by setting

the “COMPONENT” parameter to “SELD” at the deployment and setting the appropriate

“MODELID” to fetch the SELD model from the AI Model Repository component.

Audio tagging - AT

The audio tagging (AT) component enables the recognition of the sound source activity inside

audio segments with predefined fixed lengths. This functionality is used in the use cases of

MARVEL to offer the ability to recognise sounds related to actions or events with coarse time

resolution. The sound classes to be recognised depend on the use case specifications. The

information about the sound class activity can be used as standalone information or as

complementary information to other systems to gain a deeper understanding of the scene.

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 27 - June 30, 2023

The AT component is deployed by specialising in the base Audio AI component by setting the

“COMPONENT” parameter to “AT” at the deployment and setting the appropriate

“MODELID” to fetch AT model from the AI Model Repository component.

2.1.6 Audio-Visual Vulnerable Road Users Detection: YOLO-SED

The YOLO-SED component analyses audio-visual data on the edge and detects anomalies

using the YOLO object detector and SED audio analysis module. The component receives input

images from a scene, coupled with audio data. The outputs of YOLO and SED modules are

fused with a rule-based approach to detect if there is an anomaly in the current time frame or

not, represented by a single Boolean value.

YOLO-SED component can be deployed directly on the device, or in a containerised form using

Docker. The Docker image is based on a pre-built image for NVIDIA Jetson devices that is

compatible with the 4.6 JetPack: nvcr.io/nvidia/l4t-pytorch:r32.7.1-pth1.10-py3.

Dockerfile sets locale parameters to avoid Python ASCII error, removes inaccessible links from

the sources list, copies needed files and installs system and Python requirements.

The container relies on NVidia runtime, which should be either set as a default runtime on the

Jetson device or be specifically called during the docker run command. This allows accessing

GPU libraries from inside the Docker container.

FROM nvcr.io/nvidia/l4t-pytorch:r32.7.1-pth1.10-py3

ARG DEBIAN_FRONTEND=noninteractive

ENV TZ=Europe/Copenhagen

ENV export LC_ALL=en_US.UTF-8

ENV export LANG=en_US.UTF-8

RUN echo $(cat /etc/apt/sources.list)

RUN grep -v "https://apt.kitware.com/ubuntu" /etc/apt/sources.list > tmpfile &&

mv tmpfile /etc/apt/sources.list

RUN echo $(cat /etc/apt/sources.list)

RUN apt-get update && \

apt-get install -y build-essential && \

apt-get install -y libgl1 libsndfile1 && \

apt-get install -y ffmpeg && \

apt-get install -y python3-pip && \

apt-get install -y locales && \

apt-get clean

RUN sed -i '/en_US.UTF-8/s/^# //g' /etc/locale.gen && \

locale-gen

ENV LANG en_US.UTF-8

ENV LANGUAGE en_US:en

ENV LC_ALL en_US.UTF-8

RUN locale

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 28 - June 30, 2023

COPY yolosed/models/yolov4.cfg /app/models/

COPY yolosed/models/yolov4.weights /app/models/

COPY yolosed/yolo/yolov4_id_to_labels.json /app/models/

COPY yolosed/maps/cutout_map.png /app/maps/

COPY yolosed/docker/requirements.txt /tmp/

RUN python3 -m pip install pillow==8.3

RUN python3 -m pip install --default-timeout=100 -r /tmp/requirements.txt

COPY yolosed/docker/mudas-0.3.9-py3-none-any.whl /tmp/

RUN python3 -m pip install --default-timeout=100 /tmp/mudas-0.3.9-py3-none-

any.whl --no-dependencies

WORKDIR /app

COPY yolosed/tau_sed/__init__.py /app/tau_sed/

COPY yolosed/tau_sed/tau_audio_ai.py /app/tau_sed/

COPY yolosed/utils.py /app/

COPY yolosed/data_receiver.py /app/

COPY yolosed/fusion_logic.py /app/

COPY yolosed/main.py /app/

COPY yolosed/yoload.py /app/

CMD ["sh", "-c", "echo PARAMETERS:; \

echo ------; \

echo ACCESS_AV_REGISTRY=${ACCESS_AV_REGISTRY};\

echo APPLY_MAP=${APPLY_MAP};\

echo AUDIO_DEVICE=${AUDIO_DEVICE};\

echo AUDIO_URL=${AUDIO_URL};\

echo BROKER=${BROKER};\

echo CAMERA_ID=${CAMERA_ID};\

echo CONFIDENCE=${CONFIDENCE};\

echo DETECTED_BY=${DETECTED_BY};\

echo EVENT_TYPE=${EVENT_TYPE};\

echo FPS=${FPS};\

echo FUSION=${FUSION};\

echo FUSION_THRESHOLD=${FUSION_THRESHOLD};\

echo GET_MODEL_REPO=${GET_MODEL_REPO};\

echo ID=${ID};\

echo LIMIT=${LIMIT};\

echo LOGGING_LEVEL=${LOGGING_LEVEL};\

echo MODE=${MODE};\

echo MODEL_NAME=${MODEL_NAME};\

echo MQTT_PASSWORD=${MQTT_PASSWORD};\

echo MQTT_PORT=${MQTT_PORT};\

echo MQTT_USERNAME=${MQTT_USERNAME};\

echo OWNER=${OWNER};\

echo QUEUE_SIZES=${QUEUE_SIZES};\

echo REGISTRY_URL=${REGISTRY_URL};\

echo SECOND_CAMERA_ID=${SECOND_CAMERA_ID};\

echo TARGET_SAMPLE_RATE=${TARGET_SAMPLE_RATE};\

echo THRESHOLD=${THRESHOLD};\

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 29 - June 30, 2023

echo TOPIC=${TOPIC};\

echo USE_GPU=${USE_GPU};\

echo VERBOSE=${VERBOSE};\

echo VIDEO_URL=${VIDEO_URL};\

echo WATCH_LIST=${WATCH_LIST};\

echo WORKER_COUNT=${WORKER_COUNT};\

echo AUDIO_DEVICE=${AUDIO_DEVICE};\

echo AUDIO_CONTEXT_LENGTH=${AUDIO_CONTEXT_LENGTH};\

python3 main.py \

--access_av_registry ${ACCESS_AV_REGISTRY} \

--apply_map ${APPLY_MAP} \

--audio_device ${AUDIO_DEVICE} \

--audio_url ${AUDIO_URL} \

--broker ${BROKER} \

--camera_id ${CAMERA_ID} \

--confidence ${CONFIDENCE} \

--detected_by ${DETECTED_BY} \

--event_type ${EVENT_TYPE} \

--fps ${FPS} \

--fusion ${FUSION} \

--fusion_threshold ${FUSION_THRESHOLD} \

--get_model_repo ${GET_MODEL_REPO} \

--id ${ID} \

--limit ${LIMIT} \

--logging_level ${LOGGING_LEVEL} \

--mode ${MODE} \

--model_name ${MODEL_NAME} \

--mqtt_password ${MQTT_PASSWORD} \

--mqtt_port ${MQTT_PORT} \

--mqtt_username ${MQTT_USERNAME} \

--owner ${OWNER} \

--queue_sizes ${QUEUE_SIZES} \

--registry_url ${REGISTRY_URL} \

--second_camera_id ${SECOND_CAMERA_ID} \

--target_sample_rate ${TARGET_SAMPLE_RATE} \

--threshold ${THRESHOLD} \

--topic ${TOPIC} \

--use_gpu ${USE_GPU} \

--verbose ${VERBOSE} \

--video_url ${VIDEO_URL} \

--watch_list ${WATCH_LIST} \

--worker_count ${WORKER_COUNT} \

--audio_context_length ${AUDIO_CONTEXT_LENGTH} \

"]

Listing 5: YOLO-SED Dockerfile

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 30 - June 30, 2023

2.1.7 CATFlow

CATFlow, developed by GRN, is a software asset that takes a video stream as input and

provides a list of traffic objects tracked within the camera's field of view. It specifically

classifies vehicles into six categories: cars, buses, light goods vehicles, heavy goods vehicles,

bicycles, and motorcycles. Each object, whether it's a vehicle or a pedestrian, is tracked, and its

trajectory is extracted and stored for visualisation or further analysis.

To protect GRN's intellectual property (IP) related to the CATFlow software asset, the

CATFlow configurator was uploaded to the MARVEL registry. This configurator is responsible

for retrieving the CATFlow image from GRN's Azure registry and deploying it onto the device.

This ensures the secure and controlled distribution of the CATFlow software asset while

safeguarding GRN's proprietary technology.

The CATFlow image consists of two main files: Dockerfile-base and Dockerfile. Dockerfile-

base is responsible for building an image that includes all the required libraries to run CATFlow,

such as ffmpeg, CUDNN, Python, and OpenCV. The base image is derived from NVIDIA's

cuda image to minimise build time, as these libraries are not frequently updated. Once the base

image is built, the CATFlow code is added to it. The code is written in Python but compiled

into Cython. These steps, excluding the base image build, are automated through GRN's

continuous integration/continuous deployment (CI/CD) pipeline, ensuring that the image is

always up-to-date.

Similarly, the Configurator image follows a similar approach. The Configurator pulls the pre-

built CATFlow image from GRN's repository using Docker commands. This image also follows

the CI/CD pipeline, ensuring its freshness and alignment with the latest CATFlow version.

Both images are built on an Ubuntu 20.04 system, utilising CUDA 11.2.1, CUDNN 8, and

Python 3.9. Moreover, the CATFlow image makes use of OpenCV 4.5.2. It's important to

address the computing capability of the GPU used by CATFlow, as it impacts the base image.

This is due to the CUDA architectures compiled by OpenCV during the image-building process.

The specific Dockerfile for CATFlow is not provided in the document for privacy reasons, as

it aims to avoid exposing sensitive information about the component and its input sources.

2.1.8 Text Anomaly Detection – TAD

Text Anomaly Detection (TAD) is a component that automatically detects anomalous events in

data, for example, anomalous vehicle velocities and trajectories. TAD takes as input the JSON

messages outputted from CATFlow, and, after processing them, flags any anomalous

behaviour. The TAD component was updated for R2 (2nd Release of the MARVEL Framework)

integration to be able to distinguish between detector errors which give anomalous speeds and

real anomalous speeds. In addition, the speed per path taken by vehicle was taken into account.

The corresponding TAD image is built on an Ubuntu 20.04 system with Python 3.9. The

packages required are installed through the docker file. Listing 7 shows the commands for the

manual deployment of TAD using the created Docker image.

docker login registry.marvel-platform.eu
docker pull registry.marvel-platform.eu/tad:0
docker run -it registry.marvel-platform.eu/tad:0 /bin/sh

Listing 6: TAD container creation commands

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 31 - June 30, 2023

The first command logins the user in the MARVEL platform registry. A pull command follows

that fetches the available image, while the run command creates the corresponding container

from the downloaded image. As a result, a TAD container is created and started.

2.1.9 Rule Based Anomaly Detection – RBAD

The RBAD component detects anomalies, as defined by human expert-created rules. Those

rules come in the form of maps drawn over the camera image (they define areas where certain

objects cannot be present, for example, pedestrians on a road), bus schedule (RBAD checks

whether buses arrive within the expected time) and definition of rush hours (heavyweight

vehicles during rush hours are reported as anomalies). The input to this component is CATFlow

messages, which contain the location, type and trajectory of detected objects. The output is a

message containing the type of the anomaly detected.

The base image for the RBAD component is the Pytorch:1.12.0 container (Listing 7). The next

commands set the time zone, required to properly synchronise with the other MARVEL

components. The RUN command installs prerequisite software. Then, the model, python

requirements are copied and installed within the image. Finally, the last command starts the

component, passing the required parameters.

FROM pytorch/pytorch:1.12.0-cuda11.3-cudnn8-runtime

ARG DEBIAN_FRONTEND=noninteractive

ENV TZ=Europe/Copenhagen

RUN apt-get update && \

 apt-get install -y build-essential && \

 apt-get install -y libgl1 libsndfile1 && \

 apt-get install -y ffmpeg && \

 apt-get clean

COPY containers/container_source/requirements_rbad.txt /tmp/

RUN pip install --default-timeout=100 -r /tmp/requirements_rbad.txt

WORKDIR /app

COPY containers/container_source/maps/map_bicycle_not_on_lane_grn-va-01.png

/app/temp/

COPY containers/container_source/maps/map_pedestrian_jaywalking_grn-va-01.png

/app/temp/

COPY containers/container_source/maps/map_bicycle_not_on_lane_grn-va-02.png

/app/temp/

COPY containers/container_source/maps/map_pedestrian_jaywalking_grn-va-02.png

/app/temp/

COPY containers/container_source/maps/map_bicycle_not_on_lane_grn-va-03.png

/app/temp/

COPY containers/container_source/maps/map_pedestrian_jaywalking_grn-va-03.png

/app/temp/

COPY containers/container_source/maps/bus_schedule.csv /app/temp/

COPY containers/container_source/utils_rbad.py /app/

COPY containers/container_source/source_rbad.py /app/

CMD ["sh", "-c", "echo PARAMETERS:; \

 echo ------; \

 echo BROKER=${BROKER};\

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 32 - June 30, 2023

 echo SOURCE_BROKER=${SOURCE_BROKER};\

 echo CAMERAID=${CAMERAID};\

 echo DETECTED_BY=${DETECTED_BY};\

 echo EVENT_TYPE=${EVENT_TYPE};\

 echo ID=${ID};\

 echo LIMIT=${LIMIT};\

 echo LOGGING_LEVEL=${LOGGING_LEVEL};\

 echo MQTT_PASSWORD=${MQTT_PASSWORD};\

 echo SOURCE_MQTT_PASSWORD=${SOURCE_MQTT_PASSWORD};\

 echo MQTT_USERNAME=${MQTT_USERNAME};\

 echo SOURCE_MQTT_USERNAME=${SOURCE_MQTT_USERNAME};\

 echo MODE=${MODE};\

 echo OWNER=${OWNER};\

 echo MQTT_PORT=${MQTT_PORT};\

 echo SOURCE_PORT=${SOURCE_PORT};\

 echo TARGET_TOPIC=${TARGET_TOPIC};\

 echo SOURCE_TOPIC_VEHICLES=${SOURCE_TOPIC_VEHICLES};\

 echo SOURCE_TOPIC_PEDESTRIANS=${SOURCE_TOPIC_PEDESTRIANS};\

 echo VERBOSE=${VERBOSE};\

 echo RUSH_HOURS=${RUSH_HOURS};\

 echo BUS_THRESHOLD=${BUS_THRESHOLD};\

 echo VIDEO_SIZE=${VIDEO_SIZE};\

 python source_rbad.py \

 --broker ${BROKER} \

 --source_broker ${SOURCE_BROKER} \

 --cameraid ${CAMERAID} \

 --detected_by ${DETECTED_BY} \

 --event_type ${EVENT_TYPE} \

 --id ${ID} \

 --limit ${LIMIT} \

 --logging_level ${LOGGING_LEVEL} \

 --mqtt_password ${MQTT_PASSWORD} \

 --source_mqtt_password ${SOURCE_MQTT_PASSWORD} \

 --mqtt_username ${MQTT_USERNAME} \

 --source_mqtt_username ${SOURCE_MQTT_USERNAME} \

 --mode ${MODE} \

 --owner ${OWNER} \

 --mqtt_port ${MQTT_PORT} \

 --source_port ${SOURCE_PORT} \

 --target_topic ${TARGET_TOPIC} \

 --source_topic_vehicles ${SOURCE_TOPIC_VEHICLES} \

 --source_topic_pedestrians ${SOURCE_TOPIC_PEDESTRIANS} \

 --verbose ${VERBOSE} \

 --rush_hours ${RUSH_HOURS} \

 --bus_threshold ${BUS_THRESHOLD} \

 --video_size ${VIDEO_SIZE}"]

Listing 7: RBAD Dockerfile

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 33 - June 30, 2023

2.2 Security, privacy and data protection subsystem

2.2.1 EdgeSec Virtual Private Network – VPN

EdgeSec VPN is based on the n2n architecture, which consists of two main components: edge

nodes and Super Nodes. The edge nodes utilise the Super Nodes to discover other edge nodes

within the network. In addition, the Super Nodes play a crucial role in routing traffic when the

nodes are located behind symmetrical firewalls. The n2n architecture operates as a peer-to-peer

VPN functioning at the second layer of the OSI model. This allows the peers to establish

connectivity across network address translation (NAT) devices and firewalls. The edge nodes

that belong to the same virtual network form a community, while Super Nodes can serve

multiple communities. Furthermore, a single computer can join multiple communities in the

network. The functionality of EdgeSec VPN is described in detail in D4.22.

EdgeSec VPN is unchanged since its first version. One important aspect to note is that for each

new node added to the MARVEL Kubernetes cluster, EdgeSec VPN needs to be deployed. This

means that whenever a new node is introduced to the cluster, the EdgeSec VPN solution must

be installed and configured on that specific node. This ensures that the newly added node can

participate in the secure and private network established by EdgeSec VPN within the MARVEL

Kubernetes environment. By deploying EdgeSec VPN to each new node, the network

connectivity and communication between the nodes can be established in a protected manner,

maintaining the overall security and integrity of the cluster.

2.2.2 EdgeSec Trusted Execution Environment – TEE

The primary goal of EdgeSec Trusted Execution Environment (TEE) is to offer a secure and

confidential execution environment for sensitive data processing applications and components

within MARVEL. It achieves this by utilising Intel Software Guard Extensions (SGX)

technology, which is specifically supported by a subset of Intel processors. To enhance security

even within containers, EdgeSec TEE integrates with Secure Container Environment (SCONE),

a software platform specifically designed to safeguard the data and code of applications running

in Linux containers. This integration ensures that the execution of sensitive applications within

containers remains protected and confidential.

With Intel SGX, developers can partition their applications into two parts: a sensitive portion

that requires integrity and data protection, and a non-sensitive portion. The trusted execution

provided by Intel SGX involves isolating the sensitive code within encrypted memory regions

known as memory enclaves. Furthermore, Intel SGX offers remote attestation, a security feature

that ensures the enclave's integrity before transmitting data to it.

In R2, the combination of EdgeSec TEE and VideoAnony becomes relevant due to the handling

of sensitive data like camera feed URLs, usernames, and passwords. A simple Hypertext

Transfer Protocol (HTTP) service based on Python Flask was created, where the endpoints of

this service provide sensitive information to VideoAnony. The concept of EdgeSec TEE is

applied to the mentioned HTTP service. Through the process of sconification, the container

running the HTTP service is executed within protected private memory regions known as

enclaves.

2 MARVEL D4.2 - Security assurance and acceleration in E2F2C framework – initial version, 2022.

https://doi.org/10.5281/zenodo.6821254

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 34 - June 30, 2023

For the deployment of EdgeSec TEE a new template was created where 3 containers are

instantiated in a single pod. The first container is the sconified image where the sensitive data

is encrypted, the second one is part of the attestation process and the last one is for the

VideoAnony. For further details concerning the sconification process as well as the attestation

please refer to D4.53.

edgesecTEE.template.yaml

apiVersion: v1

kind: Service

metadata:

 name: $NAME

spec:

 type: ClusterIP

 ports:

 - port: 8554

 targetPort: rtsp

 protocol: TCP

 name: rtsp

 selector:

 app: $NAME

apiVersion: apps/v1

kind: Deployment

metadata:

 creationTimestamp: null

 labels:

 app: $NAME

 name: $NAME

spec:

 replicas: 1

 selector:

 matchLabels:

 app: $NAME

 strategy: {}

 template:

 metadata:

 creationTimestamp: null

 labels:

 io.kompose.network/sconify-image-default: "true"

 app: $NAME

 spec:

 affinity:

 nodeAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

3 MARVEL D4.5 - Security assurance and acceleration in E2F2C framework – final version, 2023. To appear.

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 35 - June 30, 2023

 nodeSelectorTerms:

 - matchExpressions:

 - key: Layer

 operator: In

 values:

 - UNSEDGE1

 containers:

 - image: registry.scontain.com:5050/sconecuratedimages/kubernetes:las-

scone5.1

 name: las

 ports:

 - containerPort: 18876

 resources: {}

 securityContext:

 privileged: true

 - args:

 - sh

 - -c

 - sleep 15; export SCONE_LOG=7 ; export SCONE_LAS_ADDR=localhost ;

export SCONE_CAS_ADDR=scone-cas.cf; export SCONE_CONFIG_ID=my_namespace-

8617/flask/service ; echo SESSION=my_namespace-8617/flask SCONE_HEAP=1G ; export

SCONE_STACK=4M ;export SCONE_HEAP=1G ; export SCONE_ALLOW_DLOPEN=2 ;

/usr/local/bin/python

 image: 192.168.50.1:5000/flask_restapi_image:0.7

 name: python

 ports:

 - containerPort: 4996

 resources: {}

 securityContext:

 privileged: true

 - name: $NAME

 image: 192.168.50.1:5000/videoanonycputee:0.4

 command: [sh, -c]

 args: ["until python3 src/anonymize.py --source CAM_UNS_CCTV_01 --tee

Τrue --head-model /private/weights/crowdhuman1280x_yolov5s.pt --lpd-model

/private/weights/grn1280x_yolov5s.pt --vstream-uri rtsp://rtspserver-grnedge1-

nodeport.karvdash-lucadvlfbk.svc:8554/GRN-VA-01_Mgarr_VideoAnony --stream-fps 2;

do echo 'Restarting ffmpeg command...'; sleep 10; done"]

 tolerations:

 - key: "Layer"

 operator: "Equal"

 value: "UNSEDGE1"

 restartPolicy: Always

status: {}

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 36 - June 30, 2023

metadata:

 creationTimestamp: null

 name: sconify-image-default

spec:

 ingress:

 - from:

 - podSelector:

 matchLabels:

 io.kompose.network/sconify-image-default: "true"

 podSelector:

 matchLabels:

 io.kompose.network/sconify-image-default: "true"

kind: Template

name: Deploy EdgeSec TEE on UNS1 with VideoAnony

description: Deploy EdgeSec TEE on UNS1

variables:

- name: NAME

 default: edgesectee-uns1

- name: PRIVATE_VOLUME

 default: private-volume

Listing 8: TEE & VideoAnony combined template YAML file

2.2.3 VideoAnony

The goal of the component is to read the raw video streams from the cameras and anonymise

faces and car plates via blurring. The component has not been changed since D3.2. Note that in

the MT use cases, the component is deployed outside MARVdash for privacy restrictions

introduced by MT’s DPO.

2.2.4 AudioAnony & VAD (devAIce)

This component represents the MARVEL audio anonymisation pipeline. Its goal is to ingest

and process, in real-time, audio streams to detect sensitive audio data, mainly manifesting in

speech segments. This is done via the voice activity module. These segments are further

processed to be anonymised with signal-processing-based techniques; this is done with

AudioAnony. The processed segments, anonymised or not, are forwarded to the later stages of

the MARVEL audio-visual pipeline, to be consumed and used by the pool of the audio AI

components available. The component also keeps track of the analysis by forwarding the

event’s boundaries to the related Message Queuing Telemetry Transport (MQTT) broker,

which will be later stored in the Elastic Search database and consumed by SmartViz.

The component is deployed as a docker image via MARVdash in UNS use cases, while in MT

use cases it is installed outside the Kubernetes cluster.

The current version of the component has not been changed since D3.2. Changes have been

applied to read the new 8-channel microphone arrays but without modifying the functionality

and deployment process.

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 37 - June 30, 2023

2.3 Data management and distribution subsystem

2.3.1 StreamHandler

INTRA’s StreamHandler Platform provides all the necessary functionalities of a modern

scalable big data platform. The core functionality of StreamHandler has been completely

reconstructed compared to the StreamHandler version presented in D3.2.

In the context of the MARVEL framework, the StreamHandler’s core functionality deployed

in the R2 phase consists of four services:

• Service 1 - Receive and store live streams in binary format.

• Service 2 - Provide access to the stored audio-visual files to external components

through a REpresentational State Transfer (REST) API.

• Service 3 - Receive the information of an occurred event, retrieve from the storage

component the audio-visual segments required and store in a binary format the event’s

audio-visual context.

• Service 4 - Store binary files, it is used for storing, retrieving and sharing the produced

audio-visual files in binary format.

Below, in Listing 9 and Listing 10, the corresponding Ain't Markup Language (YAML) files

from the GRN Fog 2 use case deployment is depicted.

media-content-service-grn.yaml

apiVersion: v1

kind: Service

metadata:

 name: $NAME

spec:

 type: ClusterIP

 selector:

 app: $NAME

 ports:

 - name: http

 protocol: TCP

 port: 8889

 targetPort: 8080

apiVersion: apps/v1

kind: Deployment

metadata:

 name: $NAME

spec:

 replicas: 1

 selector:

 matchLabels:

 app: $NAME

 template:

 metadata:

 labels:

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 38 - June 30, 2023

 app: $NAME

 spec:

 containers:

 - name: $NAME

 image: 192.168.50.1:5000/media-content-service:1.0

 volumeMounts:

 - name: ${PRIVATE_VOLUME}

 mountPath: /conf.json

 subPath: conf/conf.json

 ports:

 - containerPort: 8080

 affinity:

 nodeAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 nodeSelectorTerms:

 - matchExpressions:

 - key: Layer

 operator: In

 values:

 - GRNFOG2

 tolerations:

 - key: "Layer"

 operator: "Equal"

 value: "GRNFOG2"

kind: Template

name: media-content-services-grn

description: media-content-service-grn

variables:

- name: NAME

 default: media-content-service-grn

- name: PRIVATE_VOLUME

 default: private-volume

Listing 9: Service 2 Docker file for GRN Fog 2 deployment

rtsp-stream-handler-grn.yaml

apiVersion: v1

kind: Service

metadata:

 name: $NAME

spec:

 type: ClusterIP

 selector:

 app: $NAME

 ports:

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 39 - June 30, 2023

 - name: http

 protocol: TCP

 port: 8881

 targetPort: 8080

apiVersion: apps/v1

kind: Deployment

metadata:

 name: $NAME

spec:

 replicas: 1

 selector:

 matchLabels:

 app: $NAME

 template:

 metadata:

 labels:

 app: $NAME

 spec:

 containers:

 - name: $NAME

 image: 192.168.50.1:5000/rtsp-stream-handler-grn:1.0

 volumeMounts:

 - name: ${PRIVATE_VOLUME}

 mountPath: /conf.json

 subPath: conf/conf.json

 ports:

 - containerPort: 8080

 affinity:

 nodeAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 nodeSelectorTerms:

 - matchExpressions:

 - key: Layer

 operator: In

 values:

 - GRNFOG2

 tolerations:

 - key: "Layer"

 operator: "Equal"

 value: "GRNFOG2"

kind: Template

name: rtsp-stream-handler-grn

description: rtsp-stream-handler-grn

variables:

- name: NAME

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 40 - June 30, 2023

 default: rtsp-stream-handler-grn

- name: PRIVATE_VOLUME

 default: private-volume

Listing 10: Service 1 Docker file for GRN Fog 2 deployment

For more information about StreamHandler, the reader is referred to deliverable D2.44.

2.3.2 Data Fusion Bus – DFB

The DFB component has not undergone any significant changes after the time of D3.2

preparation and therefore the information in Section 2.3.2 of D3.2 is still applicable. The main

changes are described below.

The following services were added to the DFB deployment as running pods within the

MARVEL Kubernetes cluster:

• Fusion service. This service is responsible for consuming messages from the Kafka

cluster that originate from the AVAD, ViAD, SED, and AT components, applying

fusion and elimination rules on these messages and re-publishing the resulting messages

on Kafka and permanently storing them on the Elastic Search repository.

• Kafdrop. A simple Web User Interface (UI) tool for monitoring the messages published

on the Kafka cluster was deployed. The Kafdrop tool is developed by Obsidian

Dynamics and is available at the following Github repo5.

The Kafka service has been modified to expose the Kafka cluster to other services that reside

outside of the MARVEL Kubernetes cluster using the NodePort method. The relevant changes

in the YAML file used for the Kafka service deployment configuration are presented in Listing

11 below.

apiVersion: v1
kind: Service
metadata:
 name: kafka-broker-0
spec:
 type: NodePort
 ports:
 - port: 30090
 targetPort: 30090
 nodePort: 30090
 protocol: TCP
 selector:
 statefulset.kubernetes.io/pod-name: cp-kafka-0

apiVersion: v1
kind: Service
metadata:
 name: kafka-broker-1
spec:
 type: NodePort

4 MARVEL D2.4 - Management and distribution Toolkit – final version, 2023. To appear.

5 https://github.com/obsidiandynamics/kafdrop

https://github.com/obsidiandynamics/kafdrop

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 41 - June 30, 2023

 ports:
 - port: 30091
 targetPort: 30091
 nodePort: 30091
 protocol: TCP
 selector:
 statefulset.kubernetes.io/pod-name: cp-kafka-1

apiVersion: v1
kind: Service
metadata:
 name: kafka-broker-2
spec:
 type: NodePort
 ports:
 - port: 30092
 targetPort: 30092
 nodePort: 30092
 protocol: TCP
 selector:
 statefulset.kubernetes.io/pod-name: cp-kafka-2

Listing 11: Use of NodePort method in the deployment YAML configuration file for the DFB Kafka service.

Furthermore, the DataFusion connector service has been modified to include the Kibana tool

that is connected to the deployed Elastic Search repository. In addition, the Kafka topics to be

monitored for transferring the published messages to the permanent Elastic Search storage have

been exposed as parameters in the YAML file used for the configuration of the service (relevant

excerpt in Listing 12 below).

 - name: topicsfilepath
 value: "/root/es-connector/topics.properties"
 - name: topicstoupdate
 value: "CATFlow-V,CATFlow-P, TAD, ViAD, AVAD, VCC, AVCC, SED, AT,
VAD, AAC, RBAD, YOLO-SED, SELD, GPURegex"
 - name: elasticsearch.host
 value: "es-es-http"
 - name: elasticsearch.port
 value: "9200"
 volumeMounts:
 - name: ${PRIVATE_VOLUME}
 mountPath: /root/es-connector
 subPath: .es-connector

Listing 12: Exposing the Kafka topics to be monitored by the DataFusion connector service as parameters.

2.3.3 DatAna

DatAna is a Data Management Platform acting as a bridge to collect the results of the inference

in the different layers of the pilots (edge, fog, and cloud infrastructure). The main usage of

DatAna in the E2F2C MARVEL infrastructure was explained in D3.2 and has not changed

substantially for the R2 (Release #2 of the MARVEL Framework). A summary of the usage of

DatAna along with some minimal updates is explained below.

DatAna is an Apache NiFi-based tool working in combination with MQTT brokers in the

different layers to collect, validate and transform the inference data to the agreed data models

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 42 - June 30, 2023

for Alert, Anomaly, and MediaEvent, inherited from the Smart Data Models initiative [1] and

extended for MARVEL purposes. The results of these transformations are sent to the cloud and

populated in the Kafka instance of the DFB for further fusion and storage.

DatAna is deployed as docker containers in the different layers where it is needed to manage

results from inference using MARVdash. NiFi docker containers and YAML files have been

provided and fine-tuned, as well as the secure mechanisms implemented by NiFi to connect the

different instances via the secured Site-to-Site (S2S) protocol. The use of TLS certificates has

been enabled among the instances, on a client-server basis to enable the S2S secure

communication among the network of NiFi instances.

Figure 1 shows graphically the network or topology of deployment of NiFi instances and MQTT

brokers in the different layers for the pilots’ use cases in R2. It is worth noticing that in some

cases at the edge, a decision was made to deploy only MQTT and collect the results from the

instance of NiFi at the fog, mainly to not overload edge devices with more components

deployed in them. Therefore, the way of deploying the NiFi services using MARVdash has not

changed in the second half of the project, but only the infrastructure where DatAna is deployed.

Figure 1. DatAna topologies for R2

2.3.4 Hierarchical Data Distribution – HDD

HDD is an algorithmic framework to optimise the configuration of an Apache Kafka cluster, in

particular, by determining for a given topic the number of brokers and partitions that match the

hard constraints of the application on the replication latency and unavailability time, while using

the system resources efficiently, e.g., in terms of the OS load. In principle, HDD can be used in

a closed-loop manner within an edge-cloud domain as follows: 1) a background service waits

for the current configuration of the applications and Apache Kafka topics; 2) when there are

any changes, the background service is triggered and provided with the new data; 3) it runs

HDD, which currently supports two approximation algorithms, called BroMin and BroMax,

which have been evaluated through simulation [2]; 4) it returns the new configuration

parameters to the caller, which can take appropriate measures to optimise the run-time

configuration of the Apache Kafka cluster. We have showcased this approach by deploying the

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 43 - June 30, 2023

Docker image registry.marvel-platform.eu/hddv0:2, which is available as a service in

MARVdash, as already described in D3.2.

2.4 E2F2C subsystem

2.4.1 GPURegex

GPURegex can be deployed to any OpenCL-enabled processor or hardware accelerator (such

as a discrete GPU or a shared GPU). As already mentioned in D3.2, OpenCL drivers are

required to be installed in the specific docker container before the execution of GPURegex.

Each vendor (e.g., Intel, NVIDIA) and each hardware device (e.g., CPU, discrete GPU,

integrated GPU) is supported by the vendor and device-specific OpenCL drivers, libraries and

runtimes. In the first version of this deliverable (D3.2), GPURegex was offered via two different

docker images. The first image was tailored for Intel CPUs only (for hardware setups that do

not include a GPU), while in the second image, GPURegex could be executed on top of either

the CPU or the shared GPU (Intel HD Graphics). After M18, GPURegex for NVIDIA GPUs

has been uploaded to the MARVEL docker image registry. This container can be used for

hardware setups that include an Intel CPU and an NVIDIA GPU.

Once downloaded from the MARVEL docker image registry, the GPURegex component can

be deployed following the steps presented in Listing 13.

docker login registry.marvel-platform.eu

docker pull registry.marvel-platform.eu/gpuregex-intel-gpu:4

docker run -it registry.marvel-platform.eu/gpuregex-intel-gpu:4 /bin/sh

Listing 13: GPURegex container creation commands

GPURegex is compiled and executed using the commands presented in Listing 14. Option “-d
1” indicates the device position that we wish to use for execution; in this case, the position of

the NVIDIA GPU is 1. The devices and their positions can be found via the command “clinfo
-l”. With the option “-m 0”, we instruct the program that the device selected for execution

does not share the same memory address space with the CPU. In the case of an integrated GPU

or CPU, we must use the option “-m 1”, which is the default selection if not specified. Options

“-p” and “-i” accept the pattern file and input file, respectively. GPURegex reports any input

entries that match at least one of the patterns contained in the pattern file.

$ make

$./bin/gpuregex -d 1 -m 0 -p patterns.dat -i TheAdventuresOfSherlockHolmes.dat

Listing 14: GPURegex execution commands

Finally, the template that was used for the deployment configuration of the newly added image

is displayed in Listing 15.

gpuregex-priviledged-MTFOG2.template.yaml

apiVersion: v1

kind: Service

metadata:

 name: $NAME

spec:

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 44 - June 30, 2023

 type: ClusterIP

 ports:

 - port: 8080

 selector:

 app: $NAME

apiVersion: apps/v1

kind: Deployment

metadata:

 name: $NAME

spec:

 replicas: 1

 selector:

 matchLabels:

 app: $NAME

 template:

 metadata:

 labels:

 app: $NAME

 spec:

 affinity:

 nodeAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 nodeSelectorTerms:

 - matchExpressions:

 - key: Layer

 operator: In

 values:

 - MTFOG2

 containers:

 - name: $NAME

 image: 192.168.50.1:5000/gpuregex-intel-gpu:4

 command: ["sleep"]

 args: ["infinity"]

 securityContext:

 privileged: true

 ports:

 - containerPort: 8080

 env:

 - name: MESSAGE

 value: $MESSAGE

 resources:

 limits:

 aliyun.com/gpu-mem: 1

 tolerations:

 - key: "Layer"

 operator: "Equal"

 value: "MTFOG2"

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 45 - June 30, 2023

kind: Template

name: GPURegex MTFOG2 Intel/NVIDIA priviledged

description: GPURegex running in MTFOG2 (Intel Xeon CPU & NVIDIA GPU)

priviledged

variables:

- name: NAME

 default: gpuregex-priviledged2-mtfog2

- name: HOSTNAME

 default: gpuregex-priviledged2-mtfog2.example.com

Listing 15: Template used to deploy the newly added GPURegex image (Intel CPU and NVIDIA GPU)

2.4.2 DynHP

DynHP is a methodology to compress Deep Neural Networks (DNN) via pruning. This

methodology has been developed having in mind the edge scenario where an edge device needs

to compress a model using its data. To this end, it is designed as an iterative process where a

DNN is trained and compressed incrementally implementing the Hard-Pruning paradigm, i.e.,

when a group of parameters is removed it cannot be recovered in the future. This feature allows,

at least in principle, to run it and, at the same time, free memory resources from the edge device.

Concerning D3.2, the algorithmic implant has not changed. The main modifications regarded

the application of this approach to other models, e.g., AVCC. This required complete code

refactoring to make it easily extensible and usable by third parties. Since DynHP is not a service

but a library, it has been publicly released on GitHub.

2.4.3 FedL

FedL has been delivered in the previous version of the MARVEL framework. The details of

the component, container images and deployment have been provided in D3.3. The component

has been applied in use cases MT1 (Monitoring of Crowded Areas), GRN4 (Junction Traffic

Trajectory Collection), and UNS1 (Drone Experiment), with visual crowd-counting model

incorporated. For R2 use cases, FedL has also been further developed for the audio-visual

emotion recognition (AVER) model within (the former) UNS2 use case AVER6. The details of

this development are provided in D3.57.

2.5 System outputs subsystem

2.5.1 SmartViz

The system outputs of MARVEL are realised through the Decision-Making Toolkit (DMT)

which aims at assisting the stakeholders in short and long-term decision-making. The DMT is

based on the SmartViz component created by ZELUS, which contains a collection of

visualisation widgets, offering multi-purpose advanced data representations and visualisations.

6 We remark that the former UNS2 use case AVER was meanwhile replaced by a new UNS2 use case focused on Sound event

localization and detection in crowds. The rationale of this change is provided in D6.3.

7 MARVEL D3.5 - Multimodal and privacy-aware audio- visual intelligence – final version, 2023. To appear.

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 46 - June 30, 2023

SmartViz is a versatile data visualisation toolkit that allows domain experts and simple users to

discover behaviours and correlations of data items. The toolkit visualises both real-time and

historical data, and it is configured according to the MARVEL stakeholders’ needs.

Using its Data Intake adapters, SmartViz can connect with multiple data sources and then uses

its internal data API and configuration options to produce predefined as well as user-defined

visualisation dashboards. The output of the adapters is handled by a middleware, that transforms

information into internal data representations, which can afterwards feed the visualisations.

In the internal architecture of SmartViz in R2 there is an addition of a connection with

MARVdash, which introduces a new functionality that empowers users with service-control

capabilities. This functionality is achieved through the interaction of SmartViz and MARVdash

via a REST API. Through this REST API, SmartViz can communicate with MARVdash and

retrieve information about the services that are currently deployed within MARVEL. Based on

this information, SmartViz allows users to initiate or terminate selected services within the

system.

The Frontend part of the tool is served as a web application directly accessible by end-users.

SmartViz is under a single deployment in the cloud, and it is utilised in all the use cases. Since

the previous version of this deliverable (D3.2), this toolkit has no major changes regarding its

deployment, besides the support of new connections with some of MARVEL’s components and

its services.

SmartViz consists of two images, one for the Frontend and one for the Middleware part, and it

also uses an NGINX web server to act as a proxy for the internal services. There are two

Dockerfiles as seen below (Listing 16) for each part of the application and a docker-

compose.yaml file.

Middleware Dockerfile:

FROM node:14

WORKDIR /usr/src/app/srv

COPY package.json package-lock.json ./

RUN npm install

COPY . .

CMD ["node", "server.js"]

Frontend Dockerfile:

FROM node:14-alpine As builder

WORKDIR /usr/src/app/smartviz

COPY package.json package-lock.json ./

RUN npm install

COPY . .

RUN npm run build -- --base-href='/smartviz/'

FROM nginx:alpine

COPY --from=builder /usr/src/app/smartviz/dist /usr/share/nginx/html/smartviz

CMD ["/bin/sh", "-c", "envsubst <

/usr/share/nginx/html/smartviz/assets/env.template.js >

/usr/share/nginx/html/smartviz/assets/env.js && exec nginx -g 'daemon off;'"]

Docker-compose yaml:

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 47 - June 30, 2023

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

 annotations:

 nginx.ingress.kubernetes.io/force-ssl-redirect: '"true"'

 nginx.ingress.kubernetes.io/proxy-read-timeout: "3600"

 nginx.ingress.kubernetes.io/proxy-send-timeout: "3600"

 nginx.ingress.kubernetes.io/proxy-body-size: "0"

 name: $NAME

spec:

 rules:

 - host: $HOSTNAME

 http:

 paths:

 - backend:

 serviceName: $NAME

 servicePort: 80

apiVersion: v1

kind: Service

metadata:

 name: $NAME

spec:

 type: ClusterIP

 ports:

 - port: 80

 selector:

 app: $NAME

apiVersion: v1

kind: ConfigMap

metadata:

 name: nginx-config

data:

 default.conf: |

 upstream server {

 server 127.0.0.1:8000;

 }

 upstream smartviz {

 server 127.0.0.1:8080;

 }

 upstream serverws {

 server 127.0.0.1:31016;

 }

 server {

 listen 80;

 location /smartviz {

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 48 - June 30, 2023

 proxy_set_header Host $host;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

 proxy_http_version 1.1;

 proxy_set_header Upgrade $http_upgrade;

 proxy_set_header Connection "upgrade";

 proxy_pass http://smartviz;

 }

 location /server {

 rewrite ^/server/(.*) /$1 break;

 proxy_set_header Host $host;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

 proxy_http_version 1.1;

 proxy_set_header Upgrade $http_upgrade;

 proxy_set_header Connection "upgrade";

 proxy_pass http://server/;

 }

 location /apiProxy {

 rewrite ^/apiProxy/(.*) /$1 break;

 proxy_set_header Host $host;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

 proxy_pass http://datafusion-es-proxy.karvdash-ikyrannas.svc:8080;

 }

 location /apiMarvSer {

 rewrite ^/apiMarvSer/(.*) /$1 break;

 proxy_set_header Host $host;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

 proxy_pass http://karvdash.default.svc/api/services/;

 }

 location /AVProxyMT {

 rewrite ^/AVProxyMT/(.*) /$1 break;

 proxy_set_header Host $host;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

 proxy_pass http://avregistry-mt.karvdash-tkanellos:3000;

 }

 location /AVProxyGRN {

 rewrite ^/AVProxyGRN/(.*) /$1 break;

 proxy_set_header Host $host;

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 49 - June 30, 2023

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

 proxy_pass http://avregistry-grn.karvdash-tkanellos:3000;

 }

 location /AVProxyUNS {

 rewrite ^/AVProxyUNS/(.*) /$1 break;

 proxy_set_header Host $host;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

 proxy_pass http://avregistry-uns.karvdash-tkanellos:3000;

 }

 location /StreamHandlerGRN {

 rewrite ^/StreamHandlerGRN/(.*) /$1 break;

 proxy_set_header Host $host;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

 proxy_pass http://media-content-service-grn.karvdash-manf.svc:8889;

 }

 location /MinioGRN {

 rewrite ^/MinioGRN/(.*) /$1 break;

 proxy_set_header Host $host;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

 proxy_pass http://streamhandler-minio-server-grn-red.karvdash-

manf.svc:9000;

 }

 location /StreamHandlerMT {

 rewrite ^/StreamHandlerMT/(.*) /$1 break;

 proxy_set_header Host $host;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

 proxy_pass http://media-content-service-mt.karvdash-manf.svc:8889;

 }

 location /MinioMT {

 rewrite ^/MinioMT/(.*) /$1 break;

 proxy_set_header Host $host;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

 proxy_pass http://streamhandler-minio-server-mt-red.karvdash-

manf.svc:9000;

 }

 location /StreamHandlerUNS {

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 50 - June 30, 2023

 rewrite ^/StreamHandlerUNS/(.*) /$1 break

 proxy_set_header Host $host;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

 proxy_pass http://media-content-service-uns.karvdash-manf.svc:8889;

 }

 location /MinioUNS {

 rewrite ^/MinioUNS/(.*) /$1 break;

 proxy_set_header Host $host;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

 proxy_pass http://streamhandler-minio-server-uns-red.karvdash-

manf.svc:9000;

 }

 location /serverws {

 proxy_set_header Host $host;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

 proxy_http_version 1.1;

 proxy_set_header Upgrade $http_upgrade;

 proxy_set_header Connection "upgrade";

 proxy_pass http://serverws/;

 }

 }

apiVersion: v1

kind: ConfigMap

metadata:

 name: smartviz-config

data:

 default.conf: |

 server {

 listen 8080;

 location / {

 root /usr/share/nginx/html; #nginx root html

 index index.html index.htm;

 try_files $uri $uri/ /smartviz/index.html =404; #subfolder's index path

 }

 include /etc/nginx/extra-conf.d/*.conf;

 }

apiVersion: apps/v1

kind: Deployment

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 51 - June 30, 2023

metadata:

 name: $NAME

spec:

 replicas: 1

 selector:

 matchLabels:

 app: $NAME

 template:

 metadata:

 labels:

 app: $NAME

 spec:

 affinity:

 nodeAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 nodeSelectorTerms:

 - matchExpressions:

 - key: workerName

 operator: In

 values:

 - masterCloud

 containers:

 - name: nginx

 image: nginx:1.19.6-alpine

 ports:

 - containerPort: 80

 volumeMounts:

 - name: nginx-config-volume

 mountPath: /etc/nginx/conf.d/default.conf

 subPath: default.conf

 - name: server

 image: stellamarkop/dmtserv:$VERSIONSE

 ports:

 - containerPort: 8000

 - containerPort: 31016

 env:

 - name: PORT

 value: "8000"

 - name: KAFKA_URL

 value: $KAFKA #setting the kafka IP + Port (broker)

 - name: TOPIC

 value: $TOPIC #setting the topics

 - name: EL

 value: http://$ELASTICSEARCH #setting the elastic search IP + Port

 - name: smartviz

 image: stellamarkop/dmtsmartviz:$VERSIONSM

 ports:

 - containerPort: 8080

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 52 - June 30, 2023

 env:

 - name: SERV_HOST

 value: https://$HOSTNAME/server

 - name: SOCKET_HOST

 value: https://$HOSTNAME #server base IP for Socket.io. Server runs

under nginx proxy pass. The frontend is configured to request the Socket under

/server subdomain.

 - name: ES_SVC

 value: https://$HOSTNAME/apiProxy

 - name: AV_MT_SVC

 value: https://$HOSTNAME/AVProxyMT

 - name: AV_GRN_SVC

 value: https://$HOSTNAME/AVProxyGRN

 - name: AV_UNS_SVC

 value: https://$HOSTNAME/AVProxyUNS

 - name: SH_MT_SVC

 value: https://$HOSTNAME/StreamHandlerMT

 - name: MINIO_MT_SVC

 value: https://$HOSTNAME/MinioMT

 - name: SH_GRN_SVC

 value: https://$HOSTNAME/StreamHandlerGRN

 - name: MINIO_GRN_SVC

 value: https://$HOSTNAME/MinioGRN

 - name: SH_UNS_SVC

 value: https://$HOSTNAME/StreamHandlerUNS

 - name: MINIO_UNS_SVC

 value: https://$HOSTNAME/MinioUNS

 - name: WS

 value: wss://$HOSTNAME/serverws

 - name: MARV_SVC

 value: https://$HOSTNAME/apiMarvSer

 volumeMounts:

 - name: smartviz-config-volume

 mountPath: /etc/nginx/conf.d/default.conf

 subPath: default.conf

 volumes:

 - name: nginx-config-volume

 configMap:

 name: nginx-config

 defaultMode: 0644

 - name: smartviz-config-volume

 configMap:

 name: smartviz-config

 defaultMode: 0644

kind: Template

name: SmartViz (DMT)

description: SmartViz

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 53 - June 30, 2023

singleton: yes

datasets: no

variables:

- name: NAME

 default: smartvizR2

- name: HOSTNAME

 default: smartviz.example.com

- name: VERSIONSM

 default: smartviz_R2

 help: Container SmartViz version/tag

- name: VERSIONSE

 default: smartviz_server_R2

 help: Container Server version/tag

- name: KAFKA

 default: kafka.karvdash-ikyrannas.svc:9092

 help: Kafka service endpoint

Listing 16: SmartViz Dockerfiles and Docker-compose yaml

2.5.2 MARVEL Data Corpus-as-a-Service

The MARVEL Data Corpus will provide a comprehensive collection of datasets that have been

anonymised and labelled. It will gain data from testing areas such as video/audio recordings

from surveillance cameras, and then store it in a Big Data storehouse. This will allow users to

obtain the necessary material for a more efficient utilisation of machine learning approaches.

The data is available to both internal and external users, including research and commercial

entities.

The core file repository of the Data Corpus-as-a-Service is still the Hadoop Distributed Files

System (HDFS) but it is now installed natively on dedicated machines. Management of this Big

Data database is performed through HBase which operates as a separate container.

The augmentation techniques deployed in the Corpus have been placed in a separate individual

container to enable the reuse across the several nodes of the Corpus. The main Data Corpus

VM is located in the MARVEL backend/cloud server and the MARVdash. It includes the

elements of the Master HBase/Hadoop Node, the Name Node, the graphical interfaces, the

Python augmentation libraries, and the JAVA applications that implement the programmable

interfaces and the integration with other MARVEL components (i.e., DFB and StreamHandler).

In addition, a separate container that handles the view-only part of the Data Corpus has been

also deployed.

To sum up, the following docker images are deployed:

• HBase

o hbase-master:1.0.0-hbase1.2.6

o hbase-regionserver:1.0.0-hbase1.2.6

• Zookeeper

o zookeeper:3.4.10

• Ambari

o docker-ambari

• ELK

o elasticsearch:elastdocker-7-17.0

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 54 - June 30, 2023

o logstash:elastdocker-7-17.0

o kibana:elastdocker-7.17.0

• Python augmentations

o augmentation_container

• JAVA application

o docker-hbase_fileservice

• GUI

o angular-gui_service

o angular-gui_service for view only

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 55 - June 30, 2023

3 E2F2C optimised deployment solution

This section is dedicated to the description of the proposed deployment solution that was

developed during the lifetime of the project. In the first subsection, we describe the architecture

of the MARVEL E2F2C framework. The optimisation regarding the deployment procedure is

analysed in the second subsection.

3.1 Architecture of the MARVEL E2F2C framework

The MARVEL E2F2C framework is a cluster of nodes that has been created as a testbed for

developing and implementing the deployment logic proposed for the AI MARVEL

components. It should be mentioned that the same logic was used for the deployment of the

whole set of MARVEL components. MARVEL E2F2C framework consists of nodes for all

pilots and use cases.

Figure 2. Topology of MARVEL E2F2C Kubernetes cluster

These nodes are spread across three layers: edge, fog, and cloud (Figure 2). Placing some of the

MARVEL framework nodes at the edge and fog layers brings several benefits such as:

• Reduction of latency in processing tasks. By bringing computational resources closer to

the data producers (sensors), the transportation time is reduced and application response

time becomes faster.

• Improvement of data privacy. Sensitive data are kept close to their generation

environment and it is not transferred to centralised cloud hosts with questionable

security.

• Real-time decision-making. Decision-making becomes faster when it takes place close

to the source of data generation, making immediate responses to events possible and

time-sensitive applications feasible.

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 56 - June 30, 2023

• Scalability. Edge or fog nodes can scale horizontally when the user base of an

application increases, ensuring high availability.

The whole set of Kubernetes nodes can be seen in Table 2 below. The offerings of edge and

fog layers make them valuable additions to the cloud layer, allowing efficient and intelligent

data processing. By putting together, the benefits of the edge/fog layers and those of the cloud

layer (scalability, cost-effectiveness, geographic distribution, management and monitoring,

etc.), we end up with a comprehensive framework where the proposed deployment logic can be

applied. This deployment logic exploits the full potential of the personalised Federated

Learning approach in an optimised way, taking under consideration resource availability and

DL inference requirements, and enabling real-time decision-making.

Table 2: MARVEL E2F2C Kubernetes nodes

E2F2C Layer Nodes Description

Cloud

Master VM

worker1 VM

worker2 VM

worker3 VM

worker4 VM

GPU worker Physical Machine Server with GPU

Fog

GRN fog 2 Physical Machine Server with GPU

UNS fog 1 Physical Machine Server with GPU

MT fog 2 Physical Machine Server with GPU

Edge

GRN edge 1 Physical Machine Desktop

GRN edge 2 Physical Machine Desktop

GRN edge 3 Jetson

GRN edge 4 Jetson

UNS edge 1 Intel NUC

UNS edge 2 Raspberry Pi

UNS edge 3 Physical Machine Laptop

MARVEL E2F2C framework primarily consists of the Kubernetes open-source container

management platform [3] and the MARVdash service management software that acts as a

Kubernetes dashboard.

Kubernetes

Kubernetes is a portable, extensible, and open-source platform designed for managing

containerised workloads and services. It offers a range of benefits and features that make it a

popular choice for orchestrating container-based applications.

One of the key advantages of Kubernetes is its ability to manage containers effectively.

Containers are lightweight, portable, and immutable, providing a consistent environment for

running applications. Kubernetes takes care of container management, including network setup,

resource allocation, scaling, and handling resource failures. This distributed nature of

Kubernetes, achieved through a cluster of interconnected nodes, ensures high availability and

fault tolerance for applications.

Kubernetes is designed to be highly versatile, running on any scale and architecture. It operates

on a variety of host machines as long as a Container Runtime Environment (CRE) like Docker

and Kubernetes tools are installed, making it operating system and hardware independent. This

flexibility allows Kubernetes to be deployed in diverse environments, including on-premises

data centres, public clouds, or hybrid cloud setups.

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 57 - June 30, 2023

With its container orchestration capabilities, Kubernetes streamlines the deployment process,

making it faster and easier. Updates and changes can be rolled out with minimal downtime,

ensuring continuous availability of services. Kubernetes also can detect and restart failed

containers, ensuring the resilience of applications.

Another benefit of Kubernetes is its ability to load balance traffic across multiple containers,

ensuring optimal resource utilisation and scalability. By appropriately scaling the nodes,

Kubernetes prevents application failures due to resource constraints. Additionally, Kubernetes

provides the ability to mount and add storage, allowing the deployment of stateful applications

that require persistent data storage.

The core building blocks of Kubernetes include Pods, which are groups of one or more

containers with shared storage and network resources. Deployments define a set of pods using

a template and replica count, specifying the desired number of pods to run. Services provide a

stable endpoint to direct traffic to the desired pods, even as they change dynamically. Ingress

objects expose application endpoints to external traffic, typically through HTTP.

Kubernetes is designed to enable communication between pods without the need for NAT

(Network Address Translation), which poses a challenge when dealing with remote nodes. As

it is already mentioned above, the MARVEL E2F2C framework includes such remote nodes in

edge and fog layers that belong to independent networks. NAT is necessary for the

communication of all these individual networks. This issue can be resolved by using a VPN

(Virtual Private Network). By establishing a VPN connection, all participating nodes are

brought together as if they were part of the same local network. This eliminates the

complications of NAT or firewalls and ensures seamless communication between the nodes.

As a result, all components deployed in Kubernetes can utilise the VPN tunnel for their

communication needs. This ensures a smooth and transparent network environment for the

entire Kubernetes infrastructure.

MARVdash

MARVdash is a user-friendly Kubernetes dashboard designed to simplify the instantiation of

orchestrated container services in the MARVEL E2F2C framework. It enables domain experts

to interact with platform resources without requiring in-depth knowledge of lower-level tools

and interfaces. By serving as the landing page for users, MARVdash acts as a gateway to

MARVEL's E2F2C framework, allowing users to launch services, design workflows, request

resources, and specify execution parameters through an intuitive web-based interface.

MARVdash itself is deployed as a service on Kubernetes, providing a graphical interface for

managing services and applications launched from customisable templates. It ensures secure

access to multiple services through a single externally accessible HTTPS endpoint.

Additionally, MARVdash includes a private Docker registry for organising container images.

User management is handled at a high level, with services assigned to individual namespaces

to ensure isolation. Furthermore, MARVdash enables seamless interaction with datasets,

automatically attaching them to service and application containers upon launch.

It is important to note that MARVdash does not perform processing itself. Instead, it facilitates

the efficient deployment of services across various computing layers that support container-

based execution. To configure and initiate services, MARVdash utilises a service templating

mechanism. Each service is defined with variables that can be assigned values by the user as

execution parameters through the dashboard. MARVdash takes care of setting other "internal"

platform configuration values, such as the location of the private Docker registry and external

DNS name, among others.

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 58 - June 30, 2023

3.2 Deployment optimisation

3.2.1 MARVdash new deployment method

In the first version of MARVdash, users could deploy AI and other MARVEL components on

individual nodes within the Kubernetes cluster. The component owners had the option to select

a specific cluster node for deployment based on their requirements. To achieve this, a

combination of taints, tolerations, and affinity rules were employed to dedicate nodes

exclusively for specific pods (each MARVEL component or application corresponds to a set of

pods).

The utilisation of taints and tolerations ensures that pods without appropriate selectors are not

placed on tainted nodes. This prevents incompatible pods from running on those nodes.

Additionally, node affinity is employed to prevent pods with specific tolerations from being

scheduled on unlabelled nodes, further enforcing deployment restrictions. These Kubernetes

mechanisms are thoroughly explained in D3.2.

However, the decision regarding the execution environment of a component was made

manually. This involved modifying the tolerations and affinity attributes within the YAML file

of each component. By adjusting these values, users could control the placement of pods and

specify their desired execution environment within the cluster, allowing for fine-grained control

and customisation while deploying MARVEL components.

The goal of the updated MARVdash is to automate the selection of deployment targets based

on resource availability at each layer of the MARVEL E2F2C framework. This updated version

of MARVdash simplifies the process of writing the YAML file by eliminating the need for

declaring information regarding the deployment node. MARVdash users now have the option

to select specific node based on the deployment layer as well as the resource requirements of

their components using the MARVdash UI (i.e., GPU). In this case, the component will be

deployed on a specific node based on the choice made by the user. The user can also select just

the desired deployment layer, without specifying the node. In that case, the component will be

deployed on any node on that specific layer that satisfies the resource requirements and

constraints. MARVdash extends the provided YAMLs with the corresponding tolerations,

affinity, and resource fields. Kubernetes scheduler will then make decisions regarding the

desired execution environment by considering the component's resource requirements and the

actual availability of devices, network resources, and overall resource consumption throughout

the E2F2C framework.

The Kubernetes scheduler8 follows a strategy known as "best-fit" when making scheduling

decisions for pods. The scheduler first applies a set of filtering rules to eliminate nodes that do

not meet the pod's resource requirements and constraints. This includes checking CPU and

memory availability, node selectors, taints and tolerations, and other affinity rules. Once the

initial set of suitable nodes is identified, the scheduler assigns a score to each node. Finally, the

pod is assigned to the node with the highest ranking. Kubernetes scheduler ensures that the sum

of the resource requests from the scheduled containers within the pods is within the node's

capacity. Even if the actual resource usage, such as memory or CPU, on a node is currently low,

the scheduler will not assign a pod to that node if the capacity check fails. This mechanism

serves as a safety measure to accommodate potential resource usage peaks.

8 https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/

https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 59 - June 30, 2023

Towards the above, we implemented new fields in the Creation of each Service where the

MARVdash user can easily select Layer, Node, and GPU (Figure 3) without having manually

to change the YAML file. When the MARVdash user selects the layer (Figure 4) the lists with

the available nodes are updated (Figure 5). The user can select whether to run the service with

GPU (Figure 6) if the node has one, or not (Figure 7). If the MARVdash user selects GPU, then

a list with the appropriate values (Figure 8) will appear to create the appropriate requests and

limits for GPU. By changing the Layer, the list of nodes is updated (Figure 9) and also the list

of available resources (Figure 10). By selecting the above, MARVdash takes care of the

instantiation of the appropriate service in the correct node.

Figure 3. Create Service Updated

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 60 - June 30, 2023

Figure 4. Create Service - Select layer

Figure 5. Create Service - Select Node

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 61 - June 30, 2023

Figure 6. Create Service - Select GPU

Figure 7. Create Service - Without GPU

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 62 - June 30, 2023

Figure 8. Create Service - GPU setting requests and limits

Figure 9. Create Service - Select Fog Layer

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 63 - June 30, 2023

Figure 10. Create Service - Select Fog Layer Node with GPU

By implementing this approach, we achieved deployment optimisation by intelligently

determining where the processing should take place, thereby optimising the distributed DL

(Deep Learning) architectures within the E2F2C framework.

3.2.2 Monitoring and optimisation tools

One of the primary goals is to manage and maximise the performance of a Kubernetes cluster.

Towards this goal, we have implemented monitoring tools. These tools provide real-time

visibility into the health and performance of a Kubernetes cluster, enabling administrators to

proactively identify and resolve issues. By this, admins ensure high availability and reliability

of applications running on the cluster. By leveraging these tools, MARVdash admins can make

data-driven decisions to improve efficiency, reduce costs, and enhance the overall performance

of their Kubernetes infrastructure.

To serve the above purpose, we installed in the MARVEL’s Kubernetes cluster Prometheus,

Grafana, Loki and Zabbix.

Prometheus9 is an open-source monitoring and alerting system specifically designed for

monitoring highly dynamic and distributed environments. It provides a robust infrastructure for

collecting, storing, and analysing metrics from various systems, applications, and services in

real time. One of Prometheus's main features is a multi-dimensional data model with time series

data identified by metric name and key/value pairs. Another key feature is its flexible and

powerful query language, PromQL, which allows users to slice, aggregate, and analyse

9 https://prometheus.io/

https://prometheus.io/

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 64 - June 30, 2023

collected metrics. In addition, Prometheus has no reliance on distributed storage; single server

nodes are autonomous and time series collection happens via a pull model over HTTP. Pushing

time series is supported via an intermediary gateway and targets are discovered via service

discovery or static configuration Prometheus's architecture is designed to be highly scalable

and resilient. It can be easily integrated with other monitoring tools and systems through its

extensive range of exporters, enabling seamless monitoring of various components within a

system or infrastructure.

Grafana10 is a popular open-source data visualisation and analytics platform known for its rich

features and user-friendly interface. It is widely used to create interactive dashboards that help

users gain deep insights from their data. With Grafana, users can connect to a variety of data

sources, including databases, monitoring systems, and cloud services, and easily visualise the

data in the form of charts, graphs, and tables. Grafana has an extensive library of pre-built

panels and plugins. This allows users to customise and design dashboards tailored to specific

needs. It supports real-time data streaming and dynamic updates, enabling users to monitor

metrics and track changes as they happen. Moreover, Grafana's intuitive query editor and

powerful query language give the ability to users to perform advanced data analysis and

exploration.

Grafana complements Prometheus since it integrates seamlessly with Prometheus to retrieve

and display the collected metrics in visually appealing dashboards. More specifically with

Grafana, MARVdash users can create customisable dashboards, charts, and graphs to visualise

the performance and health of the Kubernetes cluster. Prometheus collects and stores metrics,

while Grafana offers a user-friendly interface to explore and visualise the collected data. This

combination allows MARVEL administrators and developers to gain real-time insights into the

cluster's performance, troubleshoot issues, and make data-driven decisions to optimise the

MARVEL E2F2C framework for better reliability and efficiency.

On top of the above, there was a need in the MARVEL framework for users to have access to

Logs apart from the ones provided by MARVdash through the instantiation of Kubebox from

the templates of MARVdash. As a solution to this need, we installed Loki11 in the Kubernetes

cluster. Loki is an open-source log aggregation system developed by Grafana Labs. It is

designed to provide efficient and cost-effective log storage and analysis for modern distributed

architectures like Kubernetes. Instead of following the traditional centralised log storage

approach, Loki utilises a unique indexing strategy called "labels". This approach allows logs to

be indexed based on user-defined labels, enabling fast and efficient querying and retrieval of

log data. This way Loki facilitates quicker log searching and analysis. Loki integrates smoothly

with Grafana, enabling MARVdash users to create visualisations and dashboards based on log

data. Loki simplifies log management, streamlines troubleshooting processes, and empowers

organisations to derive valuable insights from their log data.

MARVEL users can navigate to the pre-built dashboards as well as to the custom-made

dashboards which visualise the MARVEL environment. In each node of the Kubernetes cluster,

there is a pod of Prometheus collecting the information and this is visualised through Grafana

which is accessible via the MARVdash menu (Figure 11) to all users.

10 https://grafana.com/

11 https://grafana.com/oss/loki/

https://grafana.com/
https://grafana.com/oss/loki/

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 65 - June 30, 2023

Figure 11. MARVdash updated menu

By selecting the “Grafana” option, the MARVdash user can select from a list of dashboards

accordingly (Figure 12).

Figure 12. Grafana Dashboards

By selecting for example one of the pre-built dashboards Compute Resources per namespace

(Figure 13), the MARVdash user can see all the pods that are instantiated and the metrics for

each one of them. Some of the metrics that are displayed are CPU Quota, Memory Quota,

Memory Usage, Current Network Usage, Bandwidth, Rate of packets, Rate of Packets Dropped,

and Storage IO. Moreover, through Grafana, the user can access the dashboard MARVdash

(Figure 14), where the logs of the pods concerning the MARVdash deployment are depicted.

The MQTT dashboard is also a very useful one since logs from MQTT brokers that are

instantiated through MARVdash in the Kubernetes cluster are visualised (Figure 15).

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 66 - June 30, 2023

Figure 13. Compute Resources per namespace

Figure 14. Grafana MARVdash dashboard

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 67 - June 30, 2023

Figure 15. Grafana MQTT dashboard

To strengthen the monitoring options in MARVEL’s Kubernetes cluster we installed Zabbix12

agents on each node. Zabbix is a widely used open-source monitoring solution that provides

comprehensive monitoring, alerting, and visualisation capabilities. Zabbix allows users to

monitor various aspects of their IT infrastructure, including servers, networks, applications, and

services. It supports both agent-based and agentless monitoring approaches, giving flexibility

in monitoring different types of devices and systems. Zabbix, offers real-time monitoring of

performance metrics, such as CPU usage, memory utilisation, network traffic, and disk space,

providing administrators with valuable insights into the health and performance of their

infrastructure. It also supports advanced monitoring capabilities like event correlation, trend

analysis, and anomaly detection.

Zabbix provides a user-friendly web interface where users can configure monitoring settings,

create dashboards, and generate reports for analysing historical data. It also supports the

creation of custom templates, making it easy to monitor specific applications or devices with

pre-defined configurations. For the sake of MARVEL, up to now, we have created 2 custom

dashboards. One dashboard to visualise the basic metrics (CPU, RAM, GPU, DISK USAGE)

of each node of the Kubernetes cluster (Figure 16) and one for the COPRUS (Figure 17).

12 https://www.zabbix.com/

https://www.zabbix.com/

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 68 - June 30, 2023

Figure 16. Zabbix MARVEL dashboard

Figure 17. Zabbix Data Corpus dashboard

3.2.3 Real-time decision-making in all layers of the MARVEL E2F2C framework

Real-time decision-making refers to the process of making informed and timely decisions based

on up-to-date data and insights. In the context of E2F2C computing, several exit points exist

where decisions can be made based on the data flow and processing stages. Edge computing

refers to processing and analysing data closer to the source, typically at or near the devices or

sensors generating the data. At the edge, decisions can be made instantaneously, allowing for

low-latency response times and reduced dependence on cloud connectivity. Fog computing,

which occurs between the edge and the cloud, involves distributing computing resources and

data storage in a decentralised manner. At the fog layer, decisions can be made to filter and

aggregate data, perform preliminary analysis, and prioritise information before transmitting it

to the cloud. The cloud, as the central repository for data storage and processing, provides a

powerful and scalable infrastructure for advanced analytics and decision-making. At the cloud

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 69 - June 30, 2023

level, data can be processed holistically, leveraging machine learning algorithms and data

models to derive deeper insights and make complex decisions.

By leveraging these exit points within the E2F2C framework, MARVEL users can make

decisions at various stages of data processing. This distributed decision-making approach

allows for a balance between local autonomy and centralised control, by enabling optimisation

of operations, improving efficiency, and enhancing overall decision-making capabilities.

To serve the above purpose, we need to be able to instantiate or delete the service that is

responsible for making decisions at different layers. A REST API is provided by MARVdash

to perform service management from external systems. This API includes the following

methods (Table 3) under the API’s base URL13:

Table 3: MARVdash API methods

Method Path Description

GET /services/ List running services

POST /services/ Create/start a service

POST /services/<name>/ Execute a command at service pods

DELETE /services/<name>/ Delete/stop a running service

GET /templates/ List available templates

POST /templates/ Add a template

GET /templates/<id> Get template data

DELETE /templates/<id> Remove a template

GET /services/ List running services

POST /services/ Create/start a service

POST /services/<name>/ Execute a command at service pods

All methods use a JSON dictionary for input data and respond using JSON formatting. A Python

library called karvdash_client has been implemented to easily use the API in any Python script.

To use the client library, you should provide the API endpoint and an authentication token in a

configuration file. For MARVdash users this file is automatically created and mounted in pods

at /var/lib/karvdash/config.ini.

The output of the GET /services/ is a dictionary containing the following keys (Table 4):

Table 4: Output of GET services

Key Type Description

name <string> The service name

url <string> The URL to access the service frontend

created <string> When the service was created (not included

in response to service create calls)

actions <boolean> True if service can be deleted

template <dictionary> Service template information

The output of the GET /templates returns a dictionary with the following keys (

13 https://marvel-platform.eu/static/docs/api.html

https://marvel-platform.eu/static/docs/api.html

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 70 - June 30, 2023

Table 5):

Table 5: Output of GET templates

Key Type Description

id <string> The template identifier

name <string> The template name as shown in the dashboard

description <string> The template description as shown in the

dashboard

singleton <boolean> True if only one instance can be running

auth <boolean> True if HTTP authentication should be added

by the ingress

datasets <boolean> True if dataset volumes should be mounted in

pods

variables <dictionary> Template variables

values <dictionary> Instance values for template variables

(included when template is returned as part of

a service)

filename <string> The template filename (included for system

templates)

data <string> The actual template (included when requesting

a single template)

To start a service, you should use as parameters the following:

• identifier (string) – the template identifier

• variables (dictionary) – template variables as key-value pairs (provide at least a name

key)

and returns: The service created.

To delete a service, you should use as parameters the following:

• name (string) – the service to delete

All the above were realised in DMT. This functionality is made possible through the interaction

between SmartViz and MARVdash via its API (Table 3). By utilising this functionality,

SmartViz can communicate with MARVdash and retrieve information about the services that

are currently available and deployed within the system. Users can then initiate and terminate

services on specific exit points (edge, fog, cloud). For example, in Figure 18 the user can

terminate the SED component from the edge and initialise it to a different exit point such as fog

or cloud. This interaction provides the end users with the ability to control and manage services

within the system. Therefore, an efficient distributed E2F2C DL deployment is realised

enabling real-time decision-making in all layers of the framework.

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 71 - June 30, 2023

Figure 18. SmartViz Service Management

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 72 - June 30, 2023

4 Model optimisation for efficient Inference

4.1 Methods and approaches for efficient Inference

The DynHP library has been developed using the following frameworks: Pytorch and Pytorch-

Lightning. This ensures that the application of DynHP to a generic model, built using both

densely connected and convolutional layers, remains modular.

4.1.1 Compression applied to Audio Visual Crowd Counting Models

The DynHP has been applied to the AVCC architecture developed within MARVEL. In this

architecture, there are many options regarding where to apply the gates used by DynHP to

identify the groups of parameters that can be safely removed. Given the specific purpose of

AVCC, i.e., the production of heatmaps used to count the number of people in a specific scene

(Figure 19), removing entire filters for reducing the size of the model might be critical.

The specific procedure adopted in this case is to apply the gates only to the convolutional layers

in the Fusion Blocks and to perform the standard train through DynHP. To maintain consistency

with the two input branches and the output format, the first and last blocks of the Fusion Blocks

are left unchanged. Once done, the resulting network has been re-instantiated in the compressed

form and trained a second time using 16 bits precision.

Figure 19. Production of heatmaps

The results are showcased in the following. Figure 20 shows an example of input taken from

the Disco dataset used to test the performance of the methodology. We compare the output of

the compressed model with two benchmarks: the uncompressed AVCC model in full precision

(32-bit) and the same uncompressed model trained with half-precision (16-bit).

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 73 - June 30, 2023

Figure 20. Example of A/V Input Output from Disco dataset

As shown in Table 6 the compression reduces the overall size of the model by 60% limiting the

accuracy degradation limited to 3.14%. As reported in the last row, the compressed model is

58% faster than the original one.

Table 6: Compression-accuracy performance comparison between compressed vs. uncompressed models trained

on Disco Dataset

AVCC Full

(original)

AVCC Half prec.

(16bits)

AVCC Half

compressed

Mean Abs Error

(difference %)
18.11 17.04 21.25

Size (MB) (gain %) 88 (-) 48 (50%) 35 (60%)

Time (s) (1 frame exec

time increment %)
0.48 (-) 0.32 (33%) 0.20 (58%)

4.1.2 Compression of Visual Crowd Counting Model

The DynHP compression methodology has been applied to a second AI model, i.e., SASNet,

used in MARVEL for Visual Crowd Counting (VCC).

As shown in Figure 21, the SASNet architecture is a U-Net with a rather complex connectivity

concerning the pruning process performed by DynHP. We recall that DynHP performs

structured pruning which, in this specific case, means pruning the output channels of the

Conv2d Layers used in the network. We observed that applying the pruning methodology to

both encoder and decoder at the same can be too aggressive, due to the inherent structure of the

SASNet architecture, whose expected output is a heatmap. Indeed, this resulted in severe

damage to the capabilities of the network in reconstructing the input images into the

corresponding heatmaps. Note that in the presence of low-quality final heatmaps, the accuracy

of the crowd-counting would degrade significantly.

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 74 - June 30, 2023

Figure 21. SASNet architecture [4]

Therefore, we applied the L0-layers, i.e., the layers equipped with the gates used to learn which

groups of parameters can be removed, to the Decoder only. Placing the gates on the Decoder

has the advantage of propagating the effects of pruning also to the other blocks: i.e., the Encoder

and the upper layers (Confidence and Density Heads).

As for AVCC, the compression process is divided into two phases: i) training and compression

and ii) fine-tuning, using half precision. The resulting compressed model on the MT dataset

collected in MARVEL is reported in Table 7.

Table 7: Comparison between VCC full and compressed model

Metric VCC Full (32bit) VCC compressed (16bit)

Accuracy (MAE) 27 29 (-2%)

Size (MB) 148 53 (64%)

4.1.3 Deployment and evaluation of compression on an edge device

The compressed model has been deployed on an edge device for the sake of performance

evaluation. The edge device adopted for such a test is an Apollo Dev Kit produced by

Smartcow. Such a device is equipped with an Nvidia Jetson Xavier NX with 16GB of RAM

and Nvidia Jetpack 4.6.

The deployment has been performed directly on the system, and no intermediate layers, e.g.,

Docker, were used.

The whole deployment procedure is as follows:

1. Train the model on a capable device. For this phase, the current version of the library

is compatible with Python 3.6 and newer versions.

2. Export the final state model, i.e., using the standard exporting methods of Pytorch.

3. Move the exported model to the edge device, i.e., the Apollo Dev Kit.

4. Export the Model in TorchScript format.

5. Run the performance evaluation

Figure 22 shows how to create the Torchscript version of the compressed model.

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 75 - June 30, 2023

Figure 22. Deployment procedure of AVCC on the Apollo Device

The testing procedure consisted in performing an inference task on the device and comparing

the inference time of both compressed and original AVCC models. In this test, we measured

only the inference time once the data is loaded into the GPU memory. Optimising the data

transfer is not achievable with model compression.

Table 8: Inference time performance evaluation

Model Inference Time Speedup

AVCC Full 0.045s -

AVCC Compressed 0.010s 4.5x

4.2 Efficient anomaly detection through decentralised and unsupervised

learning

In the following, we report an efficient methodology for obtaining a decentralised and

unsupervised anomaly detector that can be suitable in the context where edge devices have to

collaborate to train an anomaly detector using unsupervised data.

4.2.1 Motivation

The ability to obtain valuable insights from Big Data through AI techniques is a key component

in improving the services provided by a smart city to its citizens. In this scenario, resource-

limited edge devices gather, process, and utilise data generated during their operations. These

devices have built-in computing and communication capabilities for AI tasks.

The prevalent AI paradigm is centralised, where data gathered by edge devices is transmitted

to the cloud for AI model training. However, due to the explosive growth of data generated at

the edge and heightened concerns about data privacy and ownership, there is a shift towards

relocating AI processes to the edge, transitioning the paradigm towards a more distributed or

decentralised approach.

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 76 - June 30, 2023

Federated learning (FL) has emerged as an attractive method for training machine learning

models without the need to share raw data among different clients. This decentralised

framework maintains data privacy, reduces communication overhead, and facilitates more

scalable training. Challenges in federated learning encompass managing heterogeneous data

distributions among clients and devising efficient solutions.

This study concentrates on unsupervised federated learning, specifically targeting the

enhancement of federated anomaly detection for mobile edge devices. We examine and refine

a federated anomaly detection method as presented in D3.2 that employs global information to

boost performance while minimising communication overhead. Our approach is not only

suitable for preserving privacy and addressing network resource constraints but also designed

for utilising tiny ML models on individual nodes.

Unlike the reference work, our focus lies on analysing communication costs and selecting

suitable models to attain competitive results with reduced overhead. By opting for the

appropriate model architecture on the Fashion-MNIST (Modified National Institute of

Standards and Technology) dataset, we successfully improve the methodology’s performance,

achieving an 83.33% reduction in communication cost. This makes it a highly effective solution

for settings involving large local datasets and a moderate number of clients, offering a robust

alternative to conventional centralised methods.

4.2.2 Methodology description

What is summarised in the following has been extensively reported in D3.414.

We study a distributed learning system with clients 𝑀 and data distributions 𝐶, where |𝐶| ≤ |𝑀|.

Each client obtains a fraction 𝑑 of its samples from 𝐶𝑜𝑢𝑡 ∈ 𝐶 ⧵ 𝐶𝑖𝑛, with 𝐶𝑖𝑛 ≠ 𝐶𝑜𝑢𝑡, and the

remaining (100 – 𝑑)% from 𝐶𝑖𝑛 ∈ 𝐶. Typically, 𝑑 ∈ [5%, 15%] is considered realistic and is

commonly used in anomaly detection contexts. The methodology’s goal is to create consistent

groups of clients and perform standard federated learning within those groups. In the following,

we revisit the two-phase structure that constitutes the entire process.

Phase I aims to enable clients to join a group with the same (or similar) majority class 𝐶𝑖𝑛.

Clients train a lightweight anomaly detection model on local data, and pairs of clients exchange

models to classify their local data. If nodes have similar inlier/outlier ratios using each other’s

models, they share the same inlier class and should be in the same group. An undirected graph

is generated using candidate groups from each client, and a community detection algorithm is

applied to identify groups of nodes for the upcoming standard FL step.

In phase II, 𝑘 groups (or communities) 𝐺0, ..., 𝐺𝑘 are formed. For each group, federated learning

is initiated using autoencoders as models. Autoencoders are suitable because they naturally fit

the FL framework and can effectively be used in AD tasks. The Federated Averaging (FedAvg)

protocol is used for FL. At the end of each communication round, the trained autoencoder is

shared among the clients of the same group.

4.2.3 Cost analysis for phase I

First, each client trains a model on its local data and exchanges it with the other clients. Given

|M|=n clients and letting Sm be the size of a single local model, the total communication cost

for exchanging models between all pairs of clients can be estimated as n(n-1) × Sm. Clients then

14 MARVEL D3.4 - MARVEL’s federated learning realization, 2023. https://doi.org/10.5281/zenodo.7543936.

https://doi.org/10.5281/zenodo.7543936

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 77 - June 30, 2023

share pairwise association information, adding a cost of n(n-1) × Sr, with Sr = 1 bit. Clients

share candidate groups with a single client, who builds the graph, runs the community detection

algorithm, and sends back the community information. A predefined policy selects the client

for this task, like the one with the lowest ID. Assuming the average candidate group size is Gm

and each client ID size is Sid, the total communication cost for sharing candidate groups with

the selected client can be estimated as (n-1) × Gm × Sid. Gm can vary depending on the

performance of the first step. In the worst case, Gm is equal to the number of clients, i.e., |Gi | =

n. In the ideal case, Gm is equal to the average size of the real groups, where each group is a set

of nodes sharing the same data distribution. Assuming that the average number of nodes in each

group is 𝑝 ≥ 1, it holds that in the Ideal case Gm = p = n/|C|.

In our experiments, we observed that Gm typically aligns with this ideal condition,

demonstrating our methodology’s effectiveness in grouping clients with similar data

distributions. After the community graph has been computed, an additional cost of (n-1) × Gm

× Sid is required for sending community information back to the clients. Therefore, the overall

communication cost for the first phase can be summarised as:

𝑃1 = 𝑛(𝑛 − 1)𝑆𝑚 + 𝑛(𝑛 − 1)𝑆𝑟 + 2(𝑛 − 1)𝑛|𝐶|𝑆𝑖𝑑

The first phase’s communication cost is dominated by the quadratic term 𝑛(𝑛–− 1). As the

number of clients grows, this impacts the cost significantly. The model size, Sm, also becomes

a dominant component in the cost compared to other information types. Thus, the first phase’s

communication cost can be expressed as 𝑂(𝑛2𝑆𝑚), emphasising the model size’s importance

in the overall cost.

4.2.4 Cost analysis for phase II

In the second phase of the methodology, each group (community) G0, …, Gk starts a federated

learning instance using a corresponding model U0, …, Uk (they all have the same architecture).

The communication cost analysis in this phase involves local model updates, model

aggregation, and global model update distribution. For simplicity, we first consider a single

group and an external aggregator. Each client trains their model on local data and computes

updates. The size of these updates depends on the model architecture, and we denote it as Su.

Clients share local updates with the aggregator, which combines these updates using the

Federated Averaging algorithm.

The communication cost for sending local model updates is |Gi| × Su for each group Gi, here

|Gi| is the number of clients in group 𝑖. Afterwards, the aggregator distributes the global model

update to all clients in the group, with a communication cost of |Gi| × Su. The total

communication cost for the second phase is the sum of the costs for all groups. Given 𝑟

communication rounds in each FL instance and assuming there are 𝑘 groups, the formula for

the total communication cost in the second phase is:

𝑃2 = 𝑟𝑘∑2|𝐺𝑖|𝑆𝑢
𝑖

Considering that the sum over |Gi| counts all the clients in the system, and that selecting a client

within the group as the aggregator slightly improves the communication cost (i.e., that client

does not need to send its update), we can rewrite the total communication cost formula for the

second phase as follows:

𝑃2 = 2𝑟(𝑛 − 𝑘)𝑆𝑢

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 78 - June 30, 2023

Where 𝑛 is the number of clients. Asymptotically, the communication cost in the second phase

is linear concerning the number of clients and the size of the local model updates

4.2.5 Experimental setup

We evaluate the proposed methodology using a common benchmark (Fashion-MNIST) and we

focus on the communication aspect. The experimental setup is the following: the Fashion-

MNIST dataset has ten classes (|𝐶| = 10). We ensure that clients have numerically balanced and

disjoint datasets. We set 𝑝 = 9, representing the number of clients within the same data

distribution (class). The ideal partitioning that we aim to find consists of 𝑘 = |𝐶| = 10 groups

with 𝑝 clients each. We only consider the case of 𝑝 = 9 for this evaluation.

The models used in phase I and II are convolutional autoencoders with 5 and 7 layers,

corresponding to 4k and 28k parameters in total, respectively.

The results presented in the following regard: i) the correctness of the group detection, i.e., the

ability of each device to group with the other devices holding data with a compatible

distribution.

4.2.6 Results of Group Detection

In Table 9, we observe that most of the communities found for Fashion-MNIST consist of

clients with the same majority class, such as 𝐺0 with 𝐼6, 𝐺1 with 𝐼8, and so on. An exception is

given by 𝐺6, which is formed by clients with majority classes 𝐼2, 𝐼0, 𝐼3, and 𝐼4. This indicates

that there is a higher degree of similarity between the clients’ data distributions

in these majority classes.

Table 9: Community detection

Group ID Members

𝑮𝟎 𝐼6

𝑮𝟏 𝐼8

𝑮𝟐 𝐼1

𝑮𝟑 𝐼5

𝑮𝟒 𝐼7

𝑮𝟓 𝐼9

𝑮𝟔 𝐼2 + 𝐼0 + 𝐼3 + 𝐼4

4.2.7 Federated outlier detection

We compare as follows. We take two baselines as reference: (i) local, where clients only train

on local data; and (ii) ideal, in which a client uses the model trained through federated learning

on the set of clients sharing the same majority class (identified through the group identification

phase). The test samples for each client are randomly sampled from the Fashion-MNIST test

set, following the same inlier/outlier classes and the ratio of the corresponding client. The

results presented in Table 10 show the average AUC-ROC scores across clients having the same

inlier class. Our proposed configuration outperforms the local baseline, indicating that the

federated outlier detection approach effectively leverages global information to improve the

model’s performance. Furthermore, our results are consistently close to the performance of the

ideal baseline, demonstrating the potential of the methodology to achieve near-optimal results.

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 79 - June 30, 2023

Table 10: AUC-ROC mean values summarising the performance of the proposed anomaly detection method

 Local Our method Ideal

Mean 0.649 0.728 0.740

Std dev 0.012 0.013 0.014

4.3 Efficient face-swapping using hardware-aware scaling

Preserving user privacy in DL applications, especially in the context of smart cities and

surveillance applications, is fundamental. However, traditional methods for anonymising

images, such as blurring and pixelation, can compromise downstream tasks and limit the

effectiveness of the anonymised image. More advanced approaches, such as face-swapping

algorithms, can remove personal information while preserving the image's quality and

expression. Still, these methods are typically computationally intensive and cannot be run in

real-time on resource-constrained devices.

Our work targets developing a many-to-many face-swapping technique that is lightweight and

can be used for face anonymisation on edge devices with limited computational capabilities.

The approach enables anonymisation pipelines compliant with the Privacy by Design principle.

4.3.1 Summary of the state-of-the-art

Advanced approaches such as face-swapping algorithms are effective ways to anonymise

images but can be computationally intensive. Among the state-of-the-art approaches, two main

techniques are used - inpainting-based approaches and GAN-based ones. Inpainting methods

are computationally simpler and can replace the face area but may not preserve pose and

expression. GAN-based approaches, instead, aim to generate high-fidelity images but at a

higher computational cost. Among these, CIAGAN uses a discriminator network to generate

different faces but requires retraining for each different target identity. SimSwap [5] and

FaceShifter [6] allow for many-to-many identity mappings but come with even higher

computational costs. Some works try to compress these techniques; however, they fail to reach

complexity levels low enough for low-powered edge devices. Because of this, classical

computer vision-based algorithms are typically used on embedded devices with minimal RAM.

4.3.2 Description of work performed so far

Figure 23. Block diagram of the proposed approach

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 80 - June 30, 2023

We developed an approach based on SimSwap, managing to significantly compress the network

(achieving a >90% reduction in operations and parameters) through two main steps:

• The original model has been replaced with a lightweight, easily scalable GAN model

(XiNet)

• The generation of target face features has been moved from being computed at runtime

to a pre-processing step, eliminating a significant portion of operations needed during

the face-swapping operation

As of now, our approach has been adapted to run on a low-powered Risc-V MCU coupled with

a tensor processing unit, managing speeds of over 10 frames per second.

4.3.3 Performance Evaluation

We evaluate the performance of our proposed approach comparing against SimSwap and

FaceShifter considering the number of operations, the total number of parameters, and latency

for what concern the computational complexity while we use the not reidentification rate and

the pose MSE for the image quality, evaluating on the VggFace dataset.

Table 11: Comparative analysis of the performance of the proposed approach

Method MAC Parameters
Latency (Nvidia

RTX2060)

Not reidentification

rate

Pose

MSE

Proposed 1266M 3.3 M 9.3 ms 98.8% 0.050

SimSwap 20621M 43.5 M 289 ms 98.1% 0.048

Faceshifter 97400M 350.0M 491 ms 99.4% 0.071

Figure 24. Qualitative evaluation of the proposed method against the two state-of-the-art approaches

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 81 - June 30, 2023

5 KPIs

The section describes the relation of the main MARVEL components, associated with tasks

T3.4 and T3.5, to the project KPIs and the corresponding component-related KPIs.

5.1 Project-related KPIs

KPI-O3-E2-1: Model compression algorithms to achieve 70% compression rates, without

noticeable degradation of accuracy. Status: Achieved.

The results reported in the previous deliverable showed that, depending on the architecture to

compress, it is possible to achieve different results. For MLP, we got 88% at no degradation on

benchmark datasets. The compression scheme applied to AVCC and VCC ended up with 60%

and 64% of compression with an accuracy degradation of less than 4%. Note that the final

compression depends on a combination of model, and dataset target tasks.

KPI-O3-E2-2: Optimise performance (prediction accuracy, time-to-decision) of DL

deployment by 20%. Status: Achieved.

This KPI is linked with the distributed execution of DL tasks. Towards that end, the

implemented MARVEL E2F2C framework (Kubernetes cluster and MARVdash dashboard)

enables DL task distributed execution, taking into consideration the efficient use of execution

resources. MARVdash contributes to the ability to match the task resource requirements (GPU

availability) to the various execution sites available in the MARVEL distributed environment.

The choice of hardware greatly influences the time-to-decision. GPUs (Graphics Processing

Units) can significantly speed up the computations involved in DL, resulting in faster decision

times compared to using CPUs alone. Consequently, it is possible to enable improvements both

in performance, particularly time-to-decision, as well as in the sophistication of the DL models

being deployed, thus enhancing prediction accuracy. The optimisation goal of this KPI is

achieved with the new deployment method offered by MARVdash (Section 3.2.1).

KPI-O3-E2-3: Increase accuracy levels of real-time observations at the edge devices by 20%.

Status: Achieved.

This task is related to the deployment of the compressed models on edge devices, where the

real-time requirements can be satisfied. Indirectly, it is possible to evaluate the FLOPs required

to execute the model after compression and compare it with the FLOPs required by the original

uncompressed model, by considering the compression of the model, as reported in KPI-O3-

E2-1. We measured the inference time of the compressed models and compared it to the original

one, achieving more than 4x speed-up. This would allow to increase by 4 times the number of

images that can be processed in the same time window, by increasing the number of events that

can be recognised.

iKPI-1.1: At least three (3) tools for complex/federated/distributed systems handling extremely

large volumes and streams of data. Status: Achieved.

MARVdash contributes to this KPI indirectly, by enabling the instantiation of the FedL

component (2.4.3). FedL is scalable to a large number of FL clients and capable of handling

data from multiple sites arriving in a streaming fashion. Additional stream-handling tools that

can be deployed through MARVdash are StreamHandler (2.3.1), DFB (2.3.2), DatAna (2.3.3),

and HDD (2.3.4).

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 82 - June 30, 2023

5.2 Asset Specific KPIs

• MARVdash: The asset-specific KPI related to MARVdash focuses on usability,

specifically in terms of simplifying the process of specifying and automating

component/service deployments. Additionally, user satisfaction with the MARVdash

user interface is considered an important aspect of usability. The baseline for this KPI

is the deployment of services in a Kubernetes cluster without utilising the user-facing

front end of MARVdash. A second assessment round was conducted in February 2023

since the FORTH team believed that MARVdash users will be more familiar with the

dashboard and their answers will be more indicative. The initial assessment involved a

benchmarking process, as documented in D5.215. According to the assessment results,

the main functionalities of MARVdash were scored with an average ranging from 4.86

(lowest) to 6.79 (highest), which falls within the "Very good" category (with one rating

in the "Excellent" category) in terms of qualitative assessment. The previous numbers

were 4.75 and 6.22 correspondingly. Being more familiar with MARVdash, MARVEL

partners rated the tool’s functionalities with higher scores. Furthermore, the user

experience assessment revealed that MARVdash performed above average compared to

numerous other products. These results suggest that MARVdash has the potential to be

successful in the market.

• DynHP: The component-related KPI focuses on providing interactive training. Since

DynHP is a training methodology, it cannot be configured as a standalone service. The

interaction with the user is required to configure the DNN training process, i.e.,

hyperparameter tuning, number of training epochs, etc. The DynHP component offers a

Jupyter-lab environment through which it is possible to run and monitor the

compression and training of a model on a specific dataset. Concerning the previous

version, it is now compatible with Pytorch-lightning. This goes in the direction of

focusing the effort only on the model implementation and compression configuration,

leaving untouched the logic for compression.

15 MARVEL D5.2 - Technical evaluation and progress against benchmarks – initial version, 2022.

https://doi.org/10.5281/zenodo.6322699.

https://doi.org/10.5281/zenodo.6322699

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 83 - June 30, 2023

6 Conclusion

In this document, we present the process of creating the infrastructure for deploying MARVEL

components, which consists of a Kubernetes cluster. The cluster hosts MARVdash, a user-

friendly dashboard service placed on top of the Kubernetes cluster. MARVdash facilitates

interaction with the underlying E2F2C testbed by providing a landing page for users. Through

MARVdash, users can launch services, design workflows, request resources, and specify

execution parameters using a user-friendly interface.

Furthermore, we develop a deployment method that leverages MARVdash, allowing end users

to select the execution environment for their applications without requiring a deep

understanding of lower-level tools and interfaces.

To ensure efficient monitoring and management of the Kubernetes cluster, we install

monitoring and managing tools such as Grafana, Prometheus, and Loki. These tools enable us

to monitor and analyse the performance and health of the underlying infrastructure effectively.

Additionally, various aspects of model optimisation and efficient inference techniques were

highlighted. The efficiency of inference processes was explored through the discussion of

different methods and approaches. The utilisation of decentralised and unsupervised learning

for achieving efficient anomaly detection was investigated. Furthermore, techniques for

efficient face-swapping, utilising hardware-aware scaling to enhance performance, were also

discussed. In summary, the focus was placed on the exploration of diverse approaches to

optimise models, improve inference efficiency, enable efficient anomaly detection, and enhance

face-swapping techniques through the implementation of hardware-aware strategies. Lastly, we

described the contribution made to the MARVEL project and the KPIs related to the

components involved.

In the future, optimization techniques are expected to undergo further improvements.

Additionally, fine-tuning of components deployment will become more refined, allowing for

better resource allocation and utilization, resulting in optimized workflows and reduced latency.

These advancements will contribute to providing a stable infrastructure solution, ensuring

reliable and consistent performance for various applications and services.

MARVEL D3.6 H2020-ICT-2018-20/№ 957337

MARVEL - 84 - June 30, 2023

7 References

[1] Smart data models (2023) Smart Data Models. Available at: https://smartdatamodels.org/

(Accessed: 30 June 2023).

[2] T. P. Raptis and A. Passarella, "On Efficiently Partitioning a Topic in Apache Kafka," 2022

International Conference on Computer, Information and Telecommunication Systems

(CITS), Piraeus, Greece, 2022, pp. 1-8, doi: 10.1109/CITS55221.2022.9832981.

[3] Kubernetes (2023) Kubernetes. Available at: https://kubernetes.io/ (Accessed: 30 June

2023).

[4] Song, Q., Wang, C., Wang, Y., Tai, Y., Wang, C., Li, J., Wu, J., & Ma, J. (2021). To Choose

or to Fuse? Scale Selection for Crowd Counting. Proceedings of the AAAI Conference on

Artificial Intelligence, 35(3), 2576-2583. https://doi.org/10.1609/aaai.v35i3.16360

[5] Chen, R., Chen, X., Ni, B., & Ge, Y. (2021). SimSwap: An Efficient Framework For High

Fidelity Face Swapping

[6] Li, L., Bao, J., Yang, H., Chen, D., & Wen, F. (2019). FaceShifter: Towards High Fidelity

And Occlusion Aware Face Swapping.

https://kubernetes.io/
https://doi.org/10.1609/aaai.v35i3.16360

	List of Tables
	List of Listings
	List of Figures
	List of Abbreviations
	Executive Summary
	1 Introduction
	1.1 Purpose and scope
	1.2 Contribution to WP3 and project objectives
	1.3 Relation to other work packages, deliverables, and activities
	1.4 Structure of the report

	2 Final container images of MARVEL components
	2.1 AI subsystem
	2.1.1 Visual Anomaly Detection – ViAD
	2.1.2 Audio-Visual Anomaly Detection – AVAD
	2.1.3 Visual Crowd Counting – VCC
	2.1.4 Audio-Visual Crowd Counting – AVCC
	2.1.5 Audio content analysis – AAC, SED, SELD, AT
	2.1.6 Audio-Visual Vulnerable Road Users Detection: YOLO-SED
	2.1.7 CATFlow
	2.1.8 Text Anomaly Detection – TAD
	2.1.9 Rule Based Anomaly Detection – RBAD

	2.2 Security, privacy and data protection subsystem
	2.2.1 EdgeSec Virtual Private Network – VPN
	2.2.2 EdgeSec Trusted Execution Environment – TEE
	2.2.3 VideoAnony
	2.2.4 AudioAnony & VAD (devAIce)

	2.3 Data management and distribution subsystem
	2.3.1 StreamHandler
	2.3.2 Data Fusion Bus – DFB
	2.3.3 DatAna
	2.3.4 Hierarchical Data Distribution – HDD

	2.4 E2F2C subsystem
	2.4.1 GPURegex
	2.4.2 DynHP
	2.4.3 FedL

	2.5 System outputs subsystem
	2.5.1 SmartViz
	2.5.2 MARVEL Data Corpus-as-a-Service

	3 E2F2C optimised deployment solution
	3.1 Architecture of the MARVEL E2F2C framework
	3.2 Deployment optimisation
	3.2.1 MARVdash new deployment method
	3.2.2 Monitoring and optimisation tools
	3.2.3 Real-time decision-making in all layers of the MARVEL E2F2C framework

	4 Model optimisation for efficient Inference
	4.1 Methods and approaches for efficient Inference
	4.1.1 Compression applied to Audio Visual Crowd Counting Models
	4.1.2 Compression of Visual Crowd Counting Model
	4.1.3 Deployment and evaluation of compression on an edge device

	4.2 Efficient anomaly detection through decentralised and unsupervised learning
	4.2.1 Motivation
	4.2.2 Methodology description
	4.2.3 Cost analysis for phase I
	4.2.4 Cost analysis for phase II
	4.2.5 Experimental setup
	4.2.6 Results of Group Detection
	4.2.7 Federated outlier detection

	4.3 Efficient face-swapping using hardware-aware scaling
	4.3.1 Summary of the state-of-the-art
	4.3.2 Description of work performed so far
	4.3.3 Performance Evaluation

	5 KPIs
	5.1 Project-related KPIs
	5.2 Asset Specific KPIs

	6 Conclusion
	7 References

