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1.1. Introduction

In artificial intelligence, there is an inherent problem of integrating low-level perception
and high-level reasoning. If solved, it has the potential to not only bring the areas of
symbolic logic and learning closer together, but also provide potential benefits, such as
interpretability, reasoning, safety, tractability, and data efficiency, among others. In this
chapter we attempt to show several advantages of integrating high-level reasoning in the
low-level perception learning process. That is, we will conduct a generalized overview
of the different approaches of integrating symbolic logic to enhance deep learning meth-
ods. Then, we will concretely discuss three approaches [16, 23, 36] that are representa-
tive of these general strands. This chapter’s material is drawn from the discussions and
contributions of these methodologies.

We will begin this chapter by discussing the type of approaches that enhance deep
learning methods to perform reasoning. Deep learning methods are widely known to
dominate perception-based learning, including the domains of vision [26], speech [30],
and linguistic grammar [40]. Due to this, domain-specific approaches have been devel-
oped as a way of performing symbolic reasoning [35, 13]. To illustrate the advantages of
these approaches, this chapter will focus on a method which integrates logic reasoning in
a visual setting [16]. In this method, we look at whether the hidden layers of neural net-
works can be used to represent and reason about Boolean functions via so called tractable
circuits [28]. In particular, we consider Variational Autoencoders (VAEs) [27, 42] that
are widely used for dimensionality reduction. With this method we were able to define
a symbolic generative framework, which demonstrates the ability to perform logic rea-
soning using the feature layers of our deep learning structure. In this context we are able
to learn relations and functions over multiple images at a time, as well as handle noisy
labels.



Next, we will show how symbolic logic can be used to allow domain experts to
encode prior knowledge in neural network training. Encoding expert knowledge is im-
portant for various reasons, one being enforcing safety constraints on critical systems
[3, 21]. In this setting, machine learning solutions must ensure that they work within
specific symbolic domain constraints defined by experts. As an example in a manufac-
turing learning setting, we may wish to encode that an actuator for a robotic arm does
not exceed some threshold (e.g., causing the arm to move at a hazardous speed). In our
contribution, called MultiplexNet [23], we provide a logic framework that is able to guar-
antee that prior knowledge is always satisfied during training. Our methodology repre-
sents domain knowledge as a logical formula in disjunctive normal form (DNF), which
is easy to encode and to elicit from human experts. Then it compiles the formula into
a differentiable circuit with a categorical latent variable which guarantees that the for-
mula is always satisfied when applied with a neural architecture. Lastly, the learning pro-
cess jointly trains the neural network and the categorical latent variable to choose over
the valid space imposed by the domain knowledge. This allows for a flavor of logical
reasoning over the data.

Finally, we will provide a methodology for learning functional representations of
propositional formulas relying solely on deep learning methods. We start by proposing
a neuron [36] based on Minsky’s parallel machines [38]. This new perceptron is defined
using linear combinations of analytic sinusoids to form an analytic signal representation
of the function that we want to learn. The importance of this reformulated parallel mech-
anism is that it can learn with a single layer any k-ary Boolean function. This result was
used as proof that there are perceptron architectures that can solve the long-standing lin-
ear separability problem [38]. In addition we show that compared to other perceptrons,
and even multilayer architectures, this new perceptron achieves competitive spatial and
computational complexity for logic and visual perception tasks.

1.2. Literature Survey

As mentioned in Section 1.1, this chapter will survey some key strategies that integrate
symbolic logic and deep learning. In the following section, we will cover related litera-
ture and provide a more in-depth discussion of our specific contributions.

1.2.1. Logical interpretation for autoencoders

In the first part of this chapter, we introduce a novel method for performing visual rea-
soning considering a logical interpretation of variational autoencoders [16]. More specif-
ically, we will show that we can re-purpose these autoencoders in a way that can perform
probabilistic reasoning over the learned latent space of these mechanisms [19, 27, 42].
In addition, our methodology allows for a visualization of the learned relations by con-
ditional sampling over the latent space. In that regard, our methodology can be thought
of as a symbolic-generative framework.

Within the deep learning literature there exists multiple frameworks focused on visu-
alizing, inspecting, and interpreting neural networks (NNs) [45, 46]. Usually such meth-
ods are used to decode regions of interest in a specific layer of a pre-trained network. In
contrast, our proposed logical approach uses a symbolic generative framework to inter-



pret NNs. Note that we do not infer the meaning of individual variables, although they
can be visualized, we rather calculate their conditional probabilities.

As a symbolic logic framework our approach is based on a special case of proba-
bilistic logical models [10, 18]. Tractable probabilistic models have emerged as an ex-
tension to data structures such as binary decision diagrams (BDDs). Our approach is
based on probabilistic sentential decision diagrams (PSDDs) [28], which are a complete
and canonical representation of a probabilistic distribution defined over the models of a
propositional theory.

Note that recent circuit models have also attempted to solve vision problems (for
example, [41, 17, 33]), and so it is possible to realize the entire image classification
pipeline using these tractable probabilistic models. However, such methods solve vision
problems without relying on deep learning techniques. As stated above, our approach
repurposes state-of-the-art deep learning architectures by adding a symbolic framework
rather than replacing it.

1.2.2. Multiplex Networks

In the second part of this chapter, we will discuss a methodology to enforce domain
knowledge constraints into the deep learning model’s training process [23]. This has
several benefits, such as enforcing critical constraints and data efficiency. Within the
deep learning literature, some solutions encode the relevant domain knowledge into a
network’s architecture by relying on non-trivial and/or domain-specific engineering [19].
An alternative approach is to express domain knowledge as logical constraints that can
then be used to train neural networks [?, 14, 1]. These approaches compile the constraints
into the loss function of the network by quantifying the extent to which the output of
the network violates the constraints. This is appealing, as logical constraints are usually
easy to elicit from experts [23, 35, 14]. However, the solution outputted by the network
is designed to minimize the loss function — which combines both data and constraints
— rather than to guarantee the satisfaction of the domain constraints. Thus, representing
constraints in the loss function is not suitable for safety critical domains where 100%
constraint satisfaction is desirable. Taking this into consideration, our work introduces a
methodology to compile domain knowledge constraints directly into the output of NNs
[23].This allows us to guarantee that any network output from the MultiplexNet will
satisfy the domain constraints, which is crucial in safety-critical domains [3, 21].

Similarly to our line of work, there are several methods that guarantee satisfaction
of logic constraints [35, 15, 24], but these come with expressive and training trade-offs
when used in conjunction with deep learning techniques. For example in [24], there is no
means to express rules that constrain real-valued outputs as seen in satisfiability modulo
theories (SMT), like in [31]. Xsat [15] overcomes this problem, but it’s methodology for
solving SMT formulae is not differentiable. Finally, the DeepProblog [35] framework
presents a compelling method to integrate logical constraints in the form of a ProbLog
program. However, their integration with neural networks requires a complex procedure
to handle the real-valued arithmetic constraints that we represent in MultiplexNet, and
does not guarantee a 100% satisfaction of constraints.



1.2.3. Signal Perceptrons

Lastly, in the third part of this chapter we will discuss the signal perceptron, a neural
architecture capable to learn any k-ary boolean function using only a single layer [36].
Arguably, the birth of deep learning architectures could be attributed to the need for a
solution to the learning limitations of its foundational architectures called perceptrons
[38]. These elementary units were proven to only be able to learn linearly separable
patterns. This led to the solution of connecting multiple layers to learn separable non-
linear patterns [5, 9]. These multilayer solutions called multilayer perceptrons (MLPs)
came in the form of mathematical proofs which lead to a new branch of analysis of
theoretical bounds on deep learning architectures [44].

Interestingly, the non-linearity problem was first introduced as a symbolic logic
problem, where the functions to be learned were Boolean functions. For example, from
the set of all binary Boolean functions, only 14 of the 16 possible functions are linearly
separable. Additionally, increasing the number of variables exponentially increases the
number of non-linear separable functions [20]. For Boolean binary functions, an MLP
with sigmoid activation function needs at least one hidden layer to approximate any func-
tion from the k-ary Boolean function space with almost negligible error [25, 22]. But as
the arity of the function increases, its topological boundaries (i.e. the number of learn-
ing parameters) grow exponentially, which also results in a higher computational com-
plexity [36]. To solve these issues novel types of perceptrons have been proposed, such
as complex-valued neurons [37, 2], generalized neurons [29], spiking neurons [34], and
dendrite neurons [8]. However, these approaches are limited to solving only a limited set
of non-linear functions [36].

Apart from the signal perceptron, the morphological-dentrite model [43] is the only
mechanism capable of learning any k-ary boolean function. However, this model comes
at the expense of requiring a similar amount of learning parameters as the MLP, and
cannot be trained using gradient optimization methods.

1.3. Three Interpretations

Now, let us start the discussion of our three frameworks that integrate symbolic logic
and deep learning. In this chapter, we only provide a high-level overview of the three ap-
proaches, and a practical example to demonstrate their capabilities. For a complete anal-
ysis on the theoretical foundations and empirical results, please refer to the main articles
[16, 23, 36]. We assume that the reader is familiar with the basics of logical connectives
e.g. conjunction (AND), disjunction (OR), exclusive disjunction (XOR), a general un-
derstanding of propositional logic, as well as a familiarity with the Boolean satisfiabil-
ity problem (SAT), model counting #SAT problem and its extension Satisfiability Mod-
ulo Theory (SMT)–which extends the SAT problem in attempting to find assignments to
usually quantifier-free formulas involving real-valued variables.

1.3.1. Logical Interpretations of Autoencoders

Firstly, we propose a framework to learn a symbolic generative model from a neural net-
work that is trained on unstructured data [16]. A symbolic generative framework can be



defined as a symbolic framework that can handle probabilistic and generative queries. In
our framework, probabilistic queries refer to establishing a conditional probability over
observed data. In the article, our symbolic framework answers probabilistic queries to
know if some logical constraint is satisfied, given some data as evidence. As an example,
one query of interest is if two images belong to the same category. In this query, the
symbolic relation could be a propositional formula which will be true if indeed the two
images belong to the same category. The data provided as evidence to answer this query
could be an encoded version of the pair of images or some partial information/noisy
representation of the images.

For the case of generative queries, the framework responses are data sampled from
a predicted conditional distribution. As an analog to the previous example, a generative
query may ask the framework to produce a sample of an image, given that we provide
as evidence an image and know that the symbolic relation (i.e. that both images should
be from the same category) is false. In this case, we expect the framework to produce
an image that belongs to a different category. Now, let us start by providing a general
overview of the system.

1.3.1.1. Description

Our framework can be deconstructed into two separate systems. The first is a set of
autoencoders that are used to encode the unstructured data [27, 42]. The requirement in
our proposal is that the encoded data (which we will refer to as the feature layer) should
be a vector of discrete domain. Therefore, if X is the set that is to be encoded and {Ai}
the set of features (finite sets) that will be used to encode it, then an autoencoder of X is
a function eX : X ! ’i Ai. As an example, for the MNIST dataset [32], a set of images
and labels are encoded by two separate autoencoders. Once we have encoded multiple
images and labels into a set of feature layers, we can then proceed to find the relations
between them.

The second part consists of designing and implementing a logic circuit that is used to
represent the dependencies between the individual variables in the set of feature layers.
That is, the logic circuit represents the joint probability distribution on the variables of
the feature layers. In theory, any architecture (for example, sum product networks (SPNs)
[41]) can be used to learn the statistical model for the joint probability distribution. In
our paper, we chose to use Probabilistic Sentencial Decision Diagrams (PSDDs) [28]
for two distinct reasons. First, because they have the ability to handle constraints in the
learning regime. These could be “one-of” label constraints or any other kind of Boolean
function over the inputs. And second, as shown by Theorem 7 of [28], the computational
complexity for many probabilistic queries can be achieved in polynomial time with re-
spect to the size of the graph. This property is commonly referred to as tractability in the
literature [41, 28, 6].

Regarding the learning process, our framework is defined in two phases (see Figure
1). The first phase involves the learning of the encoder-decoder function pairs for each
domain (independently and unsupervised). After completing phase one, we can use the
encoders to map the data as feature representations and use them to learn the logical
generative model (phase II of learning), that is, PSDD. This is done in an unsupervised
manner by iteratively approximating the joint probability distribution over the data. Es-
sentially, the variables in the set of feature layers are interpreted as logic propositions in
the PSDD.
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Figure 1. The learning phases of the generative symbolic framework proposed in [16].

Once the learning process is complete, we can use the logic system to answer
probabilistic queries in a tractable manner, that is, to compute queries of the form:
Pr(q|v) = Pr(q^v)

Pr(v) where q is the query and v is the evidence. As example of a query
using the MNIST [32] dataset, consider computing the probability of an image q given
that we observe that it must belong to the category labeled as v,that is, Pr(eX (q) | eY (v))
where eX ,eY are the image and label autoencoders, respectively. Also, given evidence v

we can define the task of a generative query as one that samples values for all encoded
variables which are not assigned in the evidence. Given only a label as evidence v, PSDD
can be used to sample an encoded image xe (i.e. xe = generativeQuery(PSDD,eY (v)))
that belongs to the label. Finally, the encoded image xe sampled from the model, can be
decoded for visualization.

1.3.1.2. Demonstration

Let us demonstrate the frameworks’ capabilities for visual reasoning by describing what
is referred to as the visual XOR problem. In the visual XOR problem, there are two pairs
of images that are semantically related to each other. In the paper, we consider a canonical
relation to be the “categorical similarity”, in which two images are related if they have the
same label. For the case of the visual problem XOR, we will consider the opposite; if two
images belong to the same category, we will expect the framework to learn a feature layer
composed of a single Boolean variable Ye that describes this relationship. If properly
learned, this feature layer will return “0” if two images belong to the same category and
“1” if they belong to a different category.1 Conversely, we can perform a visualization of
the relationship by providing a value to the logic relation Ye = ye and the encoded version
of an image eX (x). With this information, we can define a generative query that can be

1For ease of exposition, all our examples across the three interpretations are somewhat simple formulas. But
it is worth noting that all these extend to arbitrary quantifer-free formulas.



processed by the logic framework. If trained correctly the output should be an image that
belongs to the same category as xe if Ye = 0 and an image from a different category if
Ye = 1.

Let us briefly describe the learning process required for the visual XOR problem. As
explained above, the first step is to train the VAE on all (e.g., MNIST, FashionMNIST)
data in an unsupervised manner. Then, we create a custom training dataset for our proba-
bilistic logic framework. For the custom dataset, each entry contains two images and the
logical relationship between them. For the case of the MNIST we used the images “0” or
“1” as the image pair and for Fashion-MNIST “T-shirts” and “Trousers” (the rest of the
image categories can be dealt with analogously in this example). Then for the symbolic
relation, we define an autoencoder that is trained using the labels of the image pair and
encode them according to the Visual XOR relation. That is, for our symbolic relation we
will obtain a value “0” if the labels belong to the same category and “1” if they belong to
different categories. Then, we learn the PSDD by using the encoded version image pairs
and the output of the symbolic relation. After training, we can visualize the symbolic
relation by performing a generative query as depicted in Figure 2.
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MNIST) Sampled images (with border) for
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Figure 2. Visual XOR problem. Given a learned visual relation (XOR), we sample the image that is congruent
with the symbolic relation value and the input image [16].

The generated images depicted in Figure 2 illustrates that indeed, our symbolic
framework learned to generate images consistent with the logic relation. We can observe
that for the MNIST dataset, if the input for the generative query was an image of the
digit “0” and the symbolic relation XOR was set to “1”, the framework produces sampled
images with “1”. Also, for the case of the fashion-MNIST, if the inputs of the generative
query were “Trousers” and the XOR variable was set to “0”, we can observe that the
generated images were also ”Trousers”. The same applies to the other categories used in
the training.



1.3.2. Logical constraints with Multiplex Networks

Now that we’ve shown a way to use the symbolic logic framework to perform visual
reasoning, we will shift our attention to a novel method for encoding expert knowledge
into the training process of deep networks called Multiplex Networks (MultiplexNets).
As briefly mentioned in Sections 1.1 and 1.2, there are several applications of incorpo-
rating knowledge into the training process of the deep learning architecture. One rea-
son is safety constraints, which are rules that deep learning agents must satisfy while
training. An example of this may be a self-driving car where a controller should operate
within a predefined set of geometric and physical constraints (e.g., the car should always
stop completely at a stop-street). Another area of application is data efficiency. Deep
learning models have shown unprecedented performance on a wide variety of tasks, but
these come at the cost of large data requirements. For example, OpenAI’s GPT-3 [7]
was trained on approximately 500 billion tokens, and ImageNet-21k, used to train the
ViT network [11], consists of 14 million images. In theory, for similar tasks where do-
main knowledge exists, we could use it to structure the network’s training to reduce the
data burden placed on the learning process. With this in mind, we will show how Multi-
plexNets can be used to encode expert knowledge into the neural architecture for safety
constraint tasks.

1.3.2.1. Description

Let us begin by providing a general specification of the problem we are trying to solve
and the set of assumptions necessary for our framework to operate. Consider a data set of
N i.i.d. samples from a probability density function p

⇤ [6] i.e. we assume that the data set
was generated by some random process where the probability of obtaining x is p

⇤(x)–in
which there exists domain or expert knowledge. In the MultiplexNets article the expert
knowledge about the random process p

⇤ is represented in the form of a logical formula
j . We can formally summarize these assumptions as follows.

x ⇠ p
⇤(x) =) x |= j (1)

In Eq. 1, the notation x |= j , denotes that the sample x satisfies the logic formula
j [4]. For example, if j := (x > 3.5)^ (y > 0), then a sample (x,y) = (5,2), satisfies
that (x,y) |= j .

The aim of MultiplexNets is to approximate p
⇤(x) with some parametric model

pq (x) and to incorporate the domain knowledge j into the maximum likelihood esti-
mation of q , on the available data set. To achieve this, the framework proposes a repa-
rameterization methodology that transforms the unconstrained output of the network x̃

into an output that is consistent with the domain knowledge h(x) |= j . To exemplify this
process, if the knowledge to be encoded is j : 8x(cx � b), MultiplexNets will perform
the following:

1. Constrain x̃ to be non-negative by applying an activation function g–this can be
any element-wise non-negative, for example, a ReLU [39] or Softplus [12] .

2. Apply a transformation f . In this case, f can implement the transformation f (z) =
sgn(c)z+ b

c
where sgn is the operator that returns the sign of c.



By construction we have the following:

h(x) = f (g(x̃)) |= j (2)

It follows that more complex conjunctions of constraints can be encoded by compos-
ing transformations of the form presented in Eq. 2. Conceptually, appending additional
conjunctions to j serves to restrict the space that the output can represent. But in many
situations, domain knowledge is complex and consists of complicated formulas that go
beyond mere conjunctions or inequalities. To solve this, the paper proposes a transforma-
tion of complex formulas into a disjunctive normal form (DNF). This transformation al-
lows us to seamlessly apply the transformations to satisfy j . Following this process, the
method proceeds to the training of the neural architecture, which is now guaranteed to al-
ways satisfy the safety constraints while being trained. To illustrate the safety constraint
satisfaction process, we will present the synthetic toy example called safety XOR.

1.3.2.2. Demonstration

In the safety XOR problem, a scientist wants to use deep learning methods to train the
navigation system of a reusable rocket. The rocket navigation system needs to learn to
predict the best pair of (x,y) coordinates for the rocket to land based on some sensory
data. The scientist knows that the success of the landing is dependent on some critical
areas which can be described by the logic constraint j = (x  5)XOR(y > 5). Outside
of this geometric boundary, there is complete certainty that the rocket will fail to land
and be critically damaged. For this reason, before starting the training of the navigation
system, the scientist proceeds to create the MultiplexNet to satisfy such a constraint.

To encode this expert knowledge during training, the framework transforms formula
j into a disjunctive normal form (DNF), that is, j = ((x  5)^¬(y > 5))_ (¬(x 
5)^ (y > 5)). With this encoding, we can observe that there are two possible models that
satisfy the constraint, which are j1 = (x 5)^¬(y> 5)) and j2 = (¬(x 5)^(y> 5))).

Then the MultiplexNets apply a similar transformation to Equation 2, on the uncon-
strained output (x,y) to satisfy each formula j1,j2. This results in two transformations
h1(x,y) = (�g(x)+ 5,�g(y)+ 5) and h2(x,y) = (g(x)+ 5,g(y)+ 5). For this example,
we assume that g is the RELU activation function. Note that each hk 2 {h1,h2} transfor-
mation to the output of the unconstrained system only satisfies a particular hk(x,y) |= jk

which is sufficient to satisfy j as hk(x,y) |= j for all k 2 [1, . . . ,K]. Nonetheless, the
choice of formula is left for the training process by introducing a latent Categorical vari-
able k that selects among the different terms jk,k 2 [1, . . . ,K] [23]. Now the modeller
can start the neural network training process and guarantee that the constraints will be
satisfied 100% of the time.

Figure 3 displays the samples obtained from the navigation system, which are drawn
from a multivariate normal distribution. In the left side of the figure, the model’s uncon-
strained inputs are shown; where the green dots are samples from the model that satisfy
the safety XOR, and the red dots are samples that violate the constraint. In the right side,
the unconstrained outputs are transformed by h1,h2, which yield two clouds of datapoints
that always satisfy the constraint.



Figure 3. Safety XOR example, where red points represent samples that doesn’t satisfy the safety constraint
and green dots samples that satisfies it. On the left, we display the set of samples taken from the unconstrained
system. On the right, we show the the same set of samples constrained by the MultiplexNet transformations h1
and h2 which guarantee to satisfy the formulas j1,j2 respectively.

1.3.3. Learning functional representations of propositional formulas with the Signal

Perceptron

Finally, for our third contribution, we will discuss how deep learning can be used to
solve pure symbolic logic problems. Specifically, we propose a neural mechanism that
is capable of learning a functional representation of any n-ary propositional formula–a
propositional formula that is composed with n atomic propositions–using a single layer.
The functional form of an n-ary propositional formula can be defined as a mapping of the
form j : {0,1}n ! {0,1}. Similarly to Section 1.3.1, where the values 0 and 1 correspond
to the truth values true and false respectively, and for each vector (x1, ...,xn) 2 {0,1}n,
the i-th coordinate is the truth value of the i-th variable. In this section we will illustrate
how this architecture can easily be implemented and trained to learn any binary logic
connective such as the AND, OR and the XOR.

1.3.3.1. Description

First, let us start by providing a definition of our learning mechanism. The signal per-
ceptron is a novel architecture that can be defined as a sum of sinusoids (sine waves). In
the main article [36], there is a proposal of different versions of the architecture where
the sinousoids are defined in a complex or real domain. In this section, we will provide a
definition of the real domain signal perceptron in which sinousoids are cosine functions.

In its vector form, the real signal perceptron can be defined as:

s(x̂) =
m

k�1

Â
j=0

q jcos(
p

m�1
ŵ j · x̂) (3)

where m,n 2 N, w̄ j 2 m
n = {(a1, ...,an)|ai 2 {0, ...,m� 1}} , q j 2 C and w̄ j · x̄ the

dot product.
As an example, if we want to learn any binary boolean function–where m = n = 2

then Equation 4 is:



s(x̂) =
3

Â
j=0

q jcos(pŵ j · x̂) = q1 +q2cos(px1)+q3cos(px2)+q3cos(p(x1 + x2)) (4)

In the article [36] we provide a formula to compute the amount of learnable param-
eters,given by m

n. While this parameter is of exponential magnitude, in reality, this rep-
resents only an upper bound as some functions will require less parameters to be learned
[36]. Also, this upper bound is the smallest in the literature, showing that for architec-
tures that claim to be able to learn any n-ary boolean function, the amount of param-
eters required is higher. Now we proceed to demonstrate the capabilities of the signal
perceptron for learning Boolean functions.

1.3.3.2. Demonstration

To provide an intuition of how the signal perceptron is able to learn any n-ary Boolean
function, we will show the learning process for the functional representation of any other
binary logic connectives–including the XOR. First, let us remember that we are perform-
ing function learning, as opposed to function approximation. This means that as a re-
quirement, we will need to ensure that each point in the domain X gets assigned the cor-
rect value of the codomain Y . For binary Boolean functions, the domain is quite small, as
it is defined by four elements X = {(0,0),(0,1),(1,0),(1,1)}. In the article, it is shown
that we can train the architecture using gradient descent, and the proof that it can learn
any Boolean function is equivalent to proving that each function determines a system of
linear equations that always has a solution [36].

In this section we will illustrate the gradient descent process. The domain X is passed
as an input and then the signal perceptron predicts an output which is compared against
the corresponding values through a loss function. Then, the loss value is used by the
gradient descent algorithm to update the parameters. The process is repeated until the
algorithm returns a zero loss, which tells us that the Boolean function is learned. Fig-
ure 4 shows the results of the training process using vanilla gradient descent with the
signal perceptron and the one hidden layer MLP. The results clearly show that the signal
perceptron requires fewer iterations to converge to the true value while the MLP takes
longer. Interestingly, for the XOR function labeled function 6 and the double-implication
operator labeled function 9, the MLP has the greatest difficulty to converge. Let us re-
member that these functions are in fact the only non-linear separable functions from the
set of binary Boolean functions.

1.3.4. Conclusion

In this paper we consider three approaches for integrating symbolic logic systems and
deep learning methods. We demonstrate that these techniques allow us to extend the
capabilities of current deep learning methods to be able to perform visual reasoning [16],
guaranteeing the satisfaction of safety constraints while training [23] and to creating deep
learning models that are able to perform exact function learning [36].
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[8] R. D. Cazé, M. Humphries, and B. Gutkin. Passive dendrites enable single neurons to compute linearly

non-separable functions. PLOS Computational Biology, 9(2):1–15, 02 2013.
[9] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals,

and Systems (MCSS), 2(4):303–314, Dec. 1989.
[10] L. De Raedt and A. Kimmig. Probabilistic (logic) programming concepts. Machine Learning, 100(1):5–

47, 2015.
[11] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,

M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[12] C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, and R. Garcia. Incorporating second-order functional knowl-
edge for better option pricing. Advances in neural information processing systems, pages 472–478,
2001.



[13] S. Dumancic, T. Guns, W. Meert, and H. Blockleel. Auto-encoding logic programs. In International

Conference on Machine Learning, Location: Stockholm, Sweden, 2018.
[14] M. Fischer, M. Balunovic, D. Drachsler-Cohen, T. Gehr, C. Zhang, and M. Vechev. DL2: Training and

querying neural networks with logic. In Proceedings of the 36th International Conference on Machine

Learning, pages 1931–1941, 2019.
[15] Z. Fu and Z. Su. XSat: A Fast Floating-Point Satisfiability Solver. In Proceedings of the 28th Interna-

tional Conference on Computer Aided Verification, Part II, pages 187–209. Springer, 2016.
[16] A. Fuxjaeger and V. Belle. Logical interpretations of autoencoders, 2019.
[17] R. Gens and P. Domingos. Discriminative learning of sum-product networks. In Advances in Neural

Information Processing Systems, pages 3239–3247, 2012.
[18] L. Getoor and B. Taskar. Introduction to Statistical Relational Learning. Adaptive computation and

machine learning. MIT Press, 2007.
[19] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning, volume 1. MIT press Cambridge,

2016.
[20] N. Gruzling. Linear separability of the vertices of an n-dimensional hypercube., 2007.
[21] L. Hammond and V. Belle. Learning tractable probabilistic models for moral responsibility and blame.

Data Mining and Knowledge Discovery, 35(2):621–659, 2021.
[22] J. A. Hertz, A. S. Krogh, and R. G. Palmer. Introduction To The Theory Of Neural Computation.

Addison-Wesley, Reading. MA. USA, 1991.
[23] N. Hoernle, R. Karampatsis, V. Belle, and K. Gal. Multiplexnet: Towards fully satisfied logical con-

straints in neural networks. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022,

Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth

Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 -

March 1, 2022, pages 5700–5709. AAAI Press, 2022.
[24] Z. Hu, X. Ma, Z. Liu, E. Hovy, and E. Xing. Harnessing deep neural networks with logic rules. In

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), pages 2410–2420, 2016.
[25] G.-B. Huang and H. Babri. General approximation theorem on feedforward networks. In Proceedings of

ICICS, 1997 International Conference on Information, Communications and Signal Processing. Theme:

Trends in Information Systems Engineering and Wireless Multimedia Communications (Cat., volume 2,
pages 698–702 vol.2, 1997.

[26] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah. Transformers in vision: A survey.
ACM Comput. Surv., 54(10s), sep 2022.

[27] D. P. Kingma and M. Welling. Auto-encoding variational bayes. In 2nd International Conference on

Learning Representations (ICLR), 2014.
[28] D. Kisa, G. Van den Broeck, A. Choi, and A. Darwiche. Probabilistic sentential decision diagrams. In

KR, 2014.
[29] R. V. Kulkarni and G. K. Venayagamoorthy. Generalized neuron: Feedforward and recurrent architec-

tures. Neural Networks, 22(7):1011–1017, 2009.
[30] A. Kumar, S. Verma, and H. Mangla. A survey of deep learning techniques in speech recognition. In

2018 International Conference on Advances in Computing, Communication Control and Networking

(ICACCCN), pages 179–185, 2018.
[31] S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras. Smt techniques for fast predicate abstraction. In Inter-

national Conference on Computer Aided Verification, pages 424–437. Springer, 2006.
[32] Y. LeCun, C. Cortes, and C. Burges. Mnist handwritten digit database. ATT Labs [Online]. Available:

http://yann.lecun.com/exdb/mnist, 2, 2010.
[33] Y. Liang and G. Van den Broeck. Learning logistic circuits. In Proceedings of the 33rd Conference on

Artificial Intelligence (AAAI), 2019.
[34] W. Maass and M. Schmitt. On the complexity of learning for a spiking neuron (extended abstract).

In Proceedings of the Tenth Annual Conference on Computational Learning Theory, COLT ’97, page
54–61, New York, NY, USA, 1997. Association for Computing Machinery.
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