

* Corresponding author. E-mail address: m.cytowski@icm.edu.pl

Available online at www.prace-ri.eu

Partnership for Advanced Computing in Europe

Performance analysis of parallel applications on modern multithreaded
processor architectures

Maciej Cytowski*a, Maciej Filocha a, Jakub Katarzyński a, Maciej Szpindler a
aInterdisciplinary Centre for Mathematical and Computational Modeling (ICM), University of Warsaw, Poland

Abstract

In this whitepaper we describe the effort we have made to measure performance of applications and synthetic benchmarks
with the use of different simultaneous multithreading (SMT) modes. This specific processor architecture feature is currently
available in many petascale HPC systems worldwide. Both IBM Power7 processors available in Power775 (IH) and IBM Power
A2 processors available in Blue Gene/Q are built upon 4-way simultaneous multithreaded cores. It should be also mentioned that
multithreading is predicted to be one of the leading features of future exascale systems available by the end of next decade [1].

1. Introduction

Performance of today's general purpose processor architectures is driven by three main components: clock speed, number of
computational cores and number of double precision operations per cycle. The combination of those three is widely used as a
basic measure of processors performance known as FLOPs – number of floating point operations per cycle. Since further
increasing clock speed and core count is technologically still very difficult, hardware vendors continue to develop different ways
to increase single core application’s performance i.e. vector processing units, support for fused multiply and add operations and
hardware support for simultaneous processing of multiple threads, so-called multithreading. One of the most appropriate ways to
measure real performance of a given processor architecture is to measure its efficiency when used for chosen classes of scientific
algorithms and applications.

In this whitepaper, we describe the effort we have made to measure performance of applications and synthetic benchmarks
with the use of different simultaneous multithreading (SMT) modes. It should be stated that SMT mechanism does not increase
the maximum number of FLOPs, however it might influence the performance of chosen algorithms and applications. This
specific processor architecture feature is currently available in many petascale HPC systems available worldwide. Both IBM
Power7 processors available in Power775 (IH) and IBM Power A2 processors available in Blue Gene/Q are built upon 4-way
simultaneous multithreaded cores. It should be also mentioned that multithreading is predicted to be one of the leading features
of future exascale systems available by the end of next decade [1].

This work was motivated by results presented in [2] which show that the performance gain from SMT varies depending on the
program execution and its execution model, the threading mode being used on the processor, and the resource utilization of the
program. The gains from using SMT modes with chosen algorithms where measured with the use of few well known
benchmarks: SPEC CFP2006, NAS Parallel Benchmark Class B (OpenMP) and NAS Parallel Benchmark Class C (MPI). One of
the conclusions of the study presented in [2] was that throughput type workloads are best suited to see gains from using higher
SMT modes. On the other hand high memory traffic codes will most likely not perform well when executed in SMT2 or SMT4
mode.

Through all of this paper we will extensively use the formulation that a specific application is using SMT2/SMT4 mode. By
saying this we will refer to parallel codes which are executed with number of processes and/or threads that exceed the physical
number of cores available in the system. This may be achieved by:

 executing an application with 2x or 4x more MPI processes,
 executing an OpenMP/Pthreads code with 2x or 4x more threads,
 mixing those two MPI and multithread execution modes (e.g. in the case of hybrid MPI/OpenMP codes).

Results presented in this whitepaper show that SMT mechanism available in modern processor chips can be efficiently use to

 Performance analysis of parallel applications on modern multithreaded processor architectures

 2

increase performance of chosen applications and algorithms. On the other hand, there is a class of algorithms and applications
that does not benefit from mutithreading. In-depth investigation of the reasons of such divergence is described as future work.

In Section 2 we describe the effort we have made to measure performance of chosen scientific applications with different SMT
modes. Our selection of applications was based on previous work of the PRACE project [3][4][5]. This benchmarks where
executed on a Power750 system with two Power7 processors (each with 8 cores) operating at 3.5 GHz with total of 128 GB
RAM. In Section 3 we present an in-depth analysis of one chosen application – GADGET2. We have measured performance of
different algorithms used in GADGET2 code. In Section 4 we describe the work which was motivated by results of previous
investigations. We have measured the performance of chosen scientific algorithms available in BOTS benchmark. BOTS
benchmark was executed on computational nodes of PRACE Tier-1 Boreasz system available at ICM, University of Warsaw.
Boreasz is a IBM Power775 (IH) supercomputer whose computational nodes (called octants) are composed of four Power7
processors (each with 8 cores) operating at 3.8 GHz with total of 128 GB RAM. This gave us additional information on the type
of algorithms whose performance might benefit from SMT mechanism. At last we discuss our plans for future work.

2. Performance analysis of scientific applications

2.1 Computational cosmology

GADGET2 package was developed for large scale cosmological simulations on massively parallel computers with
distributed memory [6]. The GADGET2 code employs a variety of computational algorithms: hierarchical tree and particle mesh
algorithms for gravitational computations and Smoothed Particle Hydrodynamics (SPH) for modeling hydrodynamic of barionic
content of the Universe. GADGET2 code uses few external libraries: Message Passing Interface (MPI) for parallelization, FFTW
v.2.1.5 library for particle mesh computations and GNU Scientific Library for mathematical algorithms.

The test case used in this study consisted of
almost 28 million particles from which the half
were gas particles. The PMGRID parameter was
set to the size of 1024. The following compiler
options were used during the compilation phase on
the POWER7 system: -q64 -qarch=pwr7 -
qtune=pwr7 -O3 -qhot -qaltivec -qsimd=auto.
Results of the measurements are shown in Figure
1.

During the preliminary testing phase we have
noticed a very unusual low performance on
POWER7 processor. The domain decomposition
of GADGET2 code was more than 50x slower
than on modern x86-64 architecture. Thanks to
detailed analysis of the source code we have found
very poor performing program fragment. Domain
construction and decomposition algorithm
implemented in GADGET2 code used qsort for
sorting and for unspecified reason this program was
responsible for generating such a poor time
performance. We have corrected this issue by
replacing the qsort call by gsl_heapsort procedure
of GNU Scientific Library. The performance level
achieved thanks to this minor change in the code
was significant (around 46x faster when compared
with initial version).

2.2 Climate modeling

WRF [7] is a numerical weather prediction model
used for both operational forecasting and
atmospheric research in many leading
meteorological institutes around the world. WRF
code was prepared for execution on highly parallel
computer architectures and is well known from its ability to scale using significant amount of processes and computing cores.

Figure 2 Performance of WRF code measured against different SMT modes (mean elapsed
time per time step)

Figure 1 Performance of GADGET2 application versus different SMT modes.

 Performance analysis of parallel applications on modern multithreaded processor architectures

 3

For the purpose of this analysis we have used WRF v.3.2 compiled in the 64-bit mode and MPI-only version (DMPAR). We
have used January 2000 test case of WRF as a benchmark. The following compiler options were used during the compilation
phase on the POWER7 system: -q64 –O3 –qarch=pwr7 –qtune=pwr7 =qaltivec –lmass –lmassv. Results of the measurements
are shown in Figure 2.

2.3 Molecular dynamics

We have selected two popular molecular dynamics
codes for our benchmark: GROMACS [8] and
CPMD [9].

GROMACS is a package for performing molecular
dynamics simulations with hundreds to millions of
particles. It is implemented in C and Fortran and
uses MPPI library for parallelization. The test case
used in this work was a vesicles in water system
consisting of more than 1 million atoms.
GROMACS v.4.0.7 was compiled and optimized
on Power7 system with the use of following
compiler options: -q64 –qarch=pwr7 –
qtune=pwr7 –O3 –qhot –qalitvec –qsimd=auto.
Results of the measurements are shown in Figure
3.

The CPMD code is an implementation of Density
Functional Theory (DFT), particularly designed for
ab-initio molecular dynamics. It runs on many
different computer architectures including parallel
systems. CPMD is parallelized with MPI and
OpenMP. End users can choose between different
versions of parallelization (distributed memory,
shared memory and mixed modes) during the
compilation phase. The test case used for
performance measurements was a water system
with 32 oxygen atoms and the mesh size of
128x128x128. CPMD v.3.13.2 was compiled and
optimized on Power7 system in the MPI-only
version with the use of following compiler options:
-q64 –qarch=pwr7 –qtune=pwr7 –O3 –qhot –
qaltivec –qsimd=auto. Results of the
measurements are shown in Figure 4.

2.4 Materials sciences

We have executed SMT performance tests with
GPAW simulation package [10]. GPAW is a
Density-Functional Theory (DFT) code based on
the projector-augmented wave method. It was
written in Python and C and requires NuMPy and
Atomic Simulation Environment (ASE) packages.
The parallel version of the code was prepared with
the use of MPI library. For the purpose of
performance analysis on Power7 system we have
run few iterations of a ground state calculations for 256 water molecules. GPAW v.0.7.6383 was installed on the Power7 system
together with its all dependencies. The following
options were used for C language parts of the
package: -q64 –O3 –qhot –qaltivec –qarch=pwr7 –
qtune=pwr7. Results of the measurements are shown in Figure 5.

Figure 3 Performance of GROMACS code measured against different SMT modes

Figure 4 Performance of CPMD code measured against different SMT modes.

Figure 5 Performance of GPAW code measured against different SMT modes.

 Performance analysis of parallel applications on modern multithreaded processor architectures

 4

2.5 Conclusions

As it was expected the performance gain from SMT varies when measured with different applications. GADGET2 is an example
of application which benefits from using SMT mechanisms. The best walltime results are always achieved for SMT4 mode
regardless of number of cores in use. On the other hand in the case of WRF and GPAW codes the expected performance gain
from using SMT is rather small (10% in the case of WRF). The usage of SMT mechanism in the case of WRF seems to be
limited to SMT2. For GPAW the situation is even worst since using higher SMT modes decrease the overall performance.
Performance results obtained for GROMACS and CPMD show that those codes achieve rather good results from using SMT2
mode, but not from SMT4.

All test described above are also very important recommendations for users of Boreasz Tier-1 system since they can check which
type of SMT mode could be beneficial for their computations. As an example one of the latest large scale cosmological
simulations of VIRGO consortium (so called CoCo simulation) computed on Boreasz system has been extensively using SMT2
mode. The simulation was executed on 68 nodes of the system and took around 1.5 months of computing. Performance gain was
on the level of approximately 22%, which allowed us to save around 10 days of the machine time.

3 GADGET2 performance – in-depth analysis

In this section we take a closer look at the performance of GADGET2 code. This work was motivated by following observations:

 GADGET2 benefits from using higher SMT modes,

 GADGET2 implements and uses algorithms of different computational nature: tree code, FFT, particle computations.

 We have decided to have a closer look at the performance of different GADGET2 algorithms measured in various SMT modes.
Results are shown in Table 1.

 Single cpu Single node (2 cpus)

Algorithm SMT 1 SMT 2 SMT 4 SMT 1 SMT 2 SMT 4

Tree walk 51,64s 33,57s 25,23s 26,73s 18,49s 13,07s

SPH 81,28s 56,26s 42,79s 42,2s 31,4s 22,42s

Particle-Mesh 40,39s 34,15s 33,53s 25,94s 31,84s 26,66s

Measurements obtained for different algorithms used in GADGET2 code demonstrate that SMT mechanism is not always the
key for better performance. Especially the Particle-Mesh algorithm which extensively uses FFT computations does not benefit
from SMT 2 and SMT 4 at all. However, both Tree walk and Smoothed Particle Hydrodynamics steps present very good
performance when executed in higher SMT modes. These results motivated us for further work described in Section 5, where we
investigate the performance of synthetic benchmarks. Our final goal is to understand why only chosen algorithms can benefit
from multithreading. We believe that precise explanation can be only given through deep analysis of chosen performance metrics
and performance counters.

4 Performance analysis of synthetic benchmarks

As it was described in Section 2, performance analysis of applications based only on walltime of the simulation run is sometimes
not sufficient. To understand and identify performance bottlenecks an in-depth analysis of basic components of the applications
(i.e. algorithms in use) is required. Therefore we have decided to analyze the performance of a representative set of algorithms
which prove their usefulness in many scientific disciplines. Since the SMT mechanism is especially interesting in the case of
multithreaded applications based on OpenMP/Pthreads model, we have decided to perform tests with BOTS benchmark [11].
BOTS was developed as a basic set of applications that allows researchers and vendors to evaluate OpenMP implementations,
and that can be easily ported to other programming models. An additional goal was for the OpenMP community to have a set of
examples using the tasking model available recently in OpenMP programming model.

Table 1 Performance of GADGET2 algorithms measured against different SMT modes.

 Performance analysis of parallel applications on modern multithreaded processor architectures

 5

Our testing procedure consisted of following steps:

1. Compile and execute BOTS benchmark on the Power775 system (Boreasz).

2. Identify the best scalable versions (tied/untied,for/single) through preliminary scalability testing of BOTS applications
on the single node of Power775 system.

3. Test the performance of selected versions of BOTS applications against different SMT modes.

BOTS benchmark was compiled on Boreasz system with the use of following compiler options: -q64 –qalloca –qsmp=omp –O3
–qarch=pwr7 –qtune=pwr7 –qaltivec -qthreaded.

The following versions of chosen applications have been identified:

 Strassen (tied tasks, manual - 3) – computes a matrix multiply with Strassen’s method, dense linear algebra algorithm

 N Queens (tied tasks, manual -3) – finds solutions of the N Queens problem, search algorithm

 SparseLU (tied tasks) – computes the LU factorization of a sparse matrix, sparse linear algebra algorithm

 Health (tied tasks, manual - 2) – simulates a country health system, simulation algorithm

 Floorplan (tied tasks, manual - 5) – computes the optimal placement of cells in a floorplan, optimization algorithm

Each of the application was executed with the largest possible input data provided within BOTS with the use of 32, 64 and 128
threads on the single node of Power775 system (Boreasz).

Application
Single
thread

Single node (4 cpus)

SMT 1 SMT 2 SMT 4

Strassen 101,05s 5,11s 4,43s 5,88s

N Queens 27,8s 1,16s 0,83s 0,79s

SparseLU 129,19s 4,79s 4,18s 5,03s

Health 96,54s 3,97s 3,7s 4,8s

Floorplan 12,22s 0,55s 0,58s 0,79s

As can be seen in the above Table 2 performance of Strassen, SparseLU and Health algorithms can benefit only from SMT 2
mode. N Queens search algorithm improve its performance also in the SMT 4 mode. Only for the Floorplan algorithm we did not
see any increase of performance when using higher SMT modes. As it was pointed out before, we believe that precise
explanation of these results can be only given through analysis of chosen performance metrics and performance counters. This is
one of the tasks that we plan to do in our future work.

5 Future work

Results described in Sections 2,3 and 4 motivated us to plan future work related to performance study of algorithms and
applications on multithreaded and multicore architectures.

Firstly, we are very keen to know why performance of chosen algorithms can benefit from using higher SMT modes while others
do not. We believe that this problem might be addressed by detailed analysis of hardware performance counters. Currently we are
analyzing hardware performance counters for the chosen applications from the BOTS benchmark. We are looking for a
correlation between the ability to efficiently use the SMT mechanism and the performance profile of the given application. Such

Table 2 Performance of BOTS benchmark codes measured against different SMT
modes.

 Performance analysis of parallel applications on modern multithreaded processor architectures

 6

a result would lead us to better understanding of computational nature of different algorithms, but it could also be used to
propose an automatic heuristic algorithm (e.g. based on decision trees) to decide which multithreaded code fragment should be
using SMT2 or SMT4 mode.

Secondly, many modern HPC applications use both MPI and thread parallel model (e.g. mixed MPI + OpenMP). Parallel
processes executed on different computational nodes include many thread parallel regions which are executed on available
computational cores. Very often the number of threads in thread based parallelization is controlled by a single switch (e.g. the
OMP_NUM_THREADS environment variable). Since different algorithms and code fragments may present different scalability
on given HPC platform, it would be appropriate to choose number of threads for execution to each parallel region individually.
Moreover such a decision could be made automatically only with a minor information gathered from code user (mainly the
information about the preferred execution model of the code).

The tool that we are currently developing within PRACE-2IP project will address both above mentioned challenges.

Acknowledgements

This work was financially supported by the PRACE project funded in part by the EUs 7th Framework Programme (FP7/2007-
2013) under grant agreement no. FP7-283493. The work is achieved using the PRACE Research Infrastructure Tier-1 resource
Boreasz at ICM, University of Warsaw in Poland. We would like to thank Maciej Marchwiany (ICM, University of Warsaw),
Mateusz Wolszczak, Piotr Iwaniuk and Piotr Wojciechowski (MIM, University of Warsaw) for helping us to obtain sufficiently
good performance with chosen benchmarks.

References

[1] J.Dongarra et al., “The international exascale software project roadmap”, International Journal of High Performance
Computing Applications, 2011, 25(I), 3-60

[2] J.Abeles et al., “Performance Guide for HPC Applications on IBM Power 775 Systems”, Release 1.0, April 15, 2012, IBM
Systems and Technology Group

[3] A.D.Simpson, M.Bull, J.Hill, “Identification and Categorisation of Applications and Initial Benchmarks Suite”, PRACE-PP
Public Deliverables, http://www.prace-ri.eu/Public-Deliverables

[4] M.Bull, S.Janetzko, J.C.Sancho, J.Engelberts, “Benchmarking and Performance Modelling on Tier-0 systems”, PRACE-PP
Public Deliverables, http://www.prace-ri.eu/Public-Deliverables

[5] P.Michielse, L.Arnold, O.-P.Lehto, W.Lioen, “Final Benchmark Suite”, PRACE-PP Public Deliverables, http://www.prace-
ri.eu/Public-Deliverables

[6] V. Springel "The cosmological simulation code GADGET-2", 2005, Monthly Notices of the Royal Astronomical Society

[7] J. Michalakes et al., “Development of a Next Generation Regional Weather Research and Forecasting Model”, Development
in Teracomputing: Proceedings of the 9th ECMWF Workshop on the Use of High Performance Computing in Meteorology, 20011
Eds. Walter Zwieflhofer and Norbert Kreitz, World Scientific, Singapore, pp. 269-276.
[8] Berendsen et al. (1995) Comp. Phys. Comm. 91:43-56.
[9] D.Marx, J.Hutter, “Ab-initio Molecular Dynamics: Theory and Implementation”, Modern Methods and Algorithms in
Quantum Chemistry, Forschungzentrum Juelich, NIC Series, vol. 1, (2000)
[10] J.J.Mortensen, L.B.Hansen, K.W.Jacobsen, “Real-space grid implementation of the projected augmented wave method”,
Physical Review B, Vol.71, 035109 (2005)
[11] A.Duran, X.Teruel, R.Ferrer, X.Martorell, E.Ayguade, “Barcelona OpenMP Tasks Suite: A Set of Benchmarks Targeting the
Exploitation of Task Parallelism in OpenMP”, Proceeding ICPP '09 Proceedings of the 2009 International Conference on Parallel
Processing, p.124-131, IEEE Computer Society Washington, DC, USA

