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Abstract 

In this whitepaper we describe the effort we have made to measure performance of applications and synthetic benchmarks 
with the use of different simultaneous multithreading (SMT) modes. This specific processor architecture feature is currently 
available in many petascale HPC systems worldwide. Both IBM Power7 processors available in Power775 (IH) and IBM Power 
A2 processors available in Blue Gene/Q are built upon 4-way simultaneous multithreaded cores. It should be also mentioned that 
multithreading is predicted to be one of the leading features of future exascale systems available by the end of next decade [1].  
 

 

1. Introduction 

Performance of today's general purpose processor architectures is driven by three main components: clock speed, number of 
computational cores and number of double precision operations per cycle. The combination of those three is widely used as a 
basic measure of processors performance known as FLOPs – number of floating point operations per cycle. Since further 
increasing clock speed and core count is technologically still very difficult, hardware vendors continue to develop different ways 
to increase single core application’s performance i.e. vector processing units, support for fused multiply and add operations and 
hardware support for simultaneous processing of multiple threads, so-called multithreading. One of the most appropriate ways to 
measure real performance of a given processor architecture is to measure its efficiency when used for chosen classes of scientific 
algorithms and applications. 

In this whitepaper, we describe the effort we have made to measure performance of applications and synthetic benchmarks 
with the use of different simultaneous multithreading (SMT) modes. It should be stated that SMT mechanism does not increase 
the maximum number of FLOPs, however it might influence the performance of chosen algorithms and applications. This 
specific processor architecture feature is currently available in many petascale HPC systems available worldwide. Both IBM 
Power7 processors available in Power775 (IH) and IBM Power A2 processors available in Blue Gene/Q are built upon 4-way 
simultaneous multithreaded cores. It should be also mentioned that multithreading is predicted to be one of the leading features 
of future exascale systems available by the end of next decade [1].  

This work was motivated by results presented in [2] which show that the performance gain from SMT varies depending on the 
program execution and its execution model, the threading mode being used on the processor, and the resource utilization of the 
program. The gains from using SMT modes with chosen algorithms where measured with the use of few well known 
benchmarks: SPEC CFP2006, NAS Parallel Benchmark Class B (OpenMP) and NAS Parallel Benchmark Class C (MPI). One of 
the conclusions of the study presented in [2] was that throughput type workloads are best suited to see gains from using higher 
SMT modes. On the other hand high memory traffic codes will most likely not perform well when executed in SMT2 or SMT4 
mode. 

Through all of this paper we will extensively use the formulation that a specific application is using SMT2/SMT4 mode. By 
saying this we will refer to parallel codes which are executed with number of processes and/or threads that exceed the physical 
number of cores available in the system. This may be achieved by:  

 executing an application with 2x or 4x more MPI processes,  
 executing an OpenMP/Pthreads code with 2x or 4x more threads, 
 mixing those two MPI and multithread execution modes (e.g. in the case of hybrid MPI/OpenMP codes).  

Results presented in this whitepaper show that SMT mechanism available in modern processor chips can be efficiently use to 
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increase performance of chosen applications and algorithms. On the other hand, there is a class of algorithms and applications 
that does not benefit from mutithreading. In-depth investigation of the reasons of such divergence is described as future work. 
 
In Section 2 we describe the effort we have made to measure performance of chosen scientific applications with different SMT 
modes. Our selection of applications was based on previous work of the PRACE project [3][4][5]. This benchmarks where 
executed on a Power750 system with two Power7 processors (each with 8 cores) operating at 3.5 GHz with total of 128 GB 
RAM. In Section 3 we present an in-depth analysis of one chosen application – GADGET2. We have measured performance of 
different algorithms used in GADGET2 code. In Section 4 we describe the work which was motivated by results of previous 
investigations. We have measured the performance of chosen scientific algorithms available in BOTS benchmark. BOTS 
benchmark was executed on computational nodes of PRACE Tier-1 Boreasz  system available at ICM, University of Warsaw. 
Boreasz is a IBM Power775 (IH) supercomputer whose computational nodes (called octants) are composed of four Power7 
processors (each with 8 cores) operating at 3.8 GHz with total of 128 GB RAM. This gave us additional information on the type 
of algorithms whose performance might benefit from SMT mechanism. At last we discuss our plans for future work.   

2. Performance analysis of scientific applications 

2.1 Computational cosmology 

GADGET2 package was developed for large scale cosmological simulations on massively parallel computers with 
distributed memory [6]. The GADGET2 code employs a variety of computational algorithms: hierarchical tree and particle mesh 
algorithms for gravitational computations and Smoothed Particle Hydrodynamics (SPH) for modeling hydrodynamic of barionic 
content of the Universe. GADGET2 code uses few external libraries: Message Passing Interface (MPI) for parallelization, FFTW 
v.2.1.5 library for particle mesh computations and GNU Scientific Library for mathematical algorithms.  

The test case used in this study consisted of 
almost 28 million particles from which the half 
were gas particles. The PMGRID parameter was 
set to the size of 1024. The following compiler 
options were used during the compilation phase on 
the POWER7 system: -q64 -qarch=pwr7 -
qtune=pwr7 -O3 -qhot -qaltivec -qsimd=auto. 
Results of the measurements are shown in Figure 
1. 

During the preliminary testing phase we have 
noticed a very unusual low performance on 
POWER7 processor. The domain decomposition 
of GADGET2 code was more than 50x slower 
than on modern x86-64 architecture. Thanks to 
detailed analysis of the source code we have found 
very poor performing program fragment. Domain 
construction and decomposition algorithm 
implemented in GADGET2 code used qsort for 
sorting and for unspecified reason this program was 
responsible for generating such a poor time 
performance. We have corrected this issue by 
replacing the qsort call by gsl_heapsort procedure 
of GNU Scientific Library. The performance level 
achieved thanks to this minor change in the code 
was significant (around 46x faster when compared 
with initial version). 

2.2 Climate modeling 

WRF [7] is a numerical weather prediction model 
used for both operational forecasting and 
atmospheric research in many leading 
meteorological institutes around the world. WRF 
code was prepared for execution on highly parallel 
computer architectures and is well known from its ability to scale using significant amount of processes and computing cores. 

Figure 2 Performance of WRF code measured against different SMT modes (mean elapsed 
time per time step) 

Figure 1 Performance of GADGET2 application versus different SMT modes. 
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For the purpose of this analysis we have used WRF v.3.2 compiled in the 64-bit mode and MPI-only version (DMPAR). We 
have used January 2000 test case of WRF as a benchmark. The following compiler options were used during the compilation 
phase on the POWER7 system: -q64 –O3 –qarch=pwr7 –qtune=pwr7 =qaltivec –lmass –lmassv. Results of the measurements 
are shown in Figure 2. 

2.3 Molecular dynamics 

We have selected two popular molecular dynamics 
codes for our benchmark: GROMACS [8] and 
CPMD [9]. 

GROMACS is a package for performing molecular 
dynamics simulations with hundreds to millions of 
particles. It is implemented in C and Fortran and 
uses MPPI library for parallelization. The test case 
used in this work was a vesicles in water system 
consisting of more than 1 million atoms. 
GROMACS v.4.0.7 was compiled and optimized 
on Power7 system with the use of following 
compiler options: -q64 –qarch=pwr7 –
qtune=pwr7 –O3 –qhot –qalitvec –qsimd=auto. 
Results of the measurements are shown in Figure 
3. 

The CPMD code is an implementation of Density 
Functional Theory (DFT), particularly designed for 
ab-initio molecular dynamics. It runs on many 
different computer architectures including parallel 
systems. CPMD is parallelized with MPI and 
OpenMP. End users can choose between different 
versions of parallelization (distributed memory, 
shared memory and mixed modes) during the 
compilation phase. The test case used for 
performance measurements was a water system 
with 32 oxygen atoms and the mesh size of 
128x128x128. CPMD v.3.13.2 was compiled and 
optimized on Power7 system in the MPI-only 
version with the use of following compiler options: 
-q64 –qarch=pwr7 –qtune=pwr7 –O3 –qhot –
qaltivec –qsimd=auto. Results of the 
measurements are shown in Figure 4. 

2.4 Materials sciences 

We have executed SMT performance tests with 
GPAW simulation package [10]. GPAW is a 
Density-Functional Theory (DFT) code based on 
the projector-augmented wave method. It was 
written in Python and C and requires NuMPy and 
Atomic Simulation Environment (ASE) packages. 
The parallel version of the code was prepared with 
the use of MPI library. For the purpose of 
performance analysis on Power7 system we have 
run few iterations of a ground state calculations for 256 water molecules. GPAW v.0.7.6383 was installed on the Power7 system 
together with its all dependencies. The following 
options were used for C language parts of the 
package: -q64 –O3 –qhot –qaltivec –qarch=pwr7 –
qtune=pwr7. Results of the measurements are shown in Figure 5.  

Figure 3 Performance of GROMACS code measured against different SMT modes 

Figure 4 Performance of CPMD code measured against different SMT modes. 

Figure 5 Performance of GPAW code measured against different SMT modes. 
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2.5 Conclusions 

As it was expected the performance gain from SMT varies when measured with different applications. GADGET2 is an example 
of application which benefits from using SMT mechanisms. The best walltime results are always achieved for SMT4 mode 
regardless of number of cores in use. On the other hand in the case of WRF and GPAW codes the expected performance gain 
from using SMT is rather small (10% in the case of WRF). The usage of SMT mechanism in the case of WRF seems to be 
limited to SMT2. For GPAW the situation is even worst since using higher SMT modes decrease the overall performance. 
Performance results obtained for GROMACS and CPMD show that those codes achieve rather good results from using SMT2 
mode, but not from SMT4. 

All test described above are also very important recommendations for users of Boreasz Tier-1 system since they can check which 
type of SMT mode could be beneficial for their computations. As an example one of the latest large scale cosmological 
simulations of VIRGO consortium (so called CoCo simulation) computed on Boreasz system has been extensively using SMT2 
mode. The simulation was executed on 68 nodes of the system and took around 1.5 months of computing. Performance gain was 
on the level of approximately 22%, which allowed us to save around 10 days of the machine time.  

3 GADGET2 performance – in-depth analysis 

In this section we take a closer look at the performance of GADGET2 code. This work was motivated by following observations: 

 GADGET2 benefits from using higher SMT modes, 

 GADGET2 implements and uses algorithms of different computational nature: tree code, FFT, particle computations. 

 We have decided to have a closer look at the performance of different GADGET2 algorithms measured in various SMT modes. 
Results are shown in Table 1. 

 Single cpu Single node (2 cpus) 

Algorithm SMT 1 SMT 2 SMT 4 SMT 1 SMT 2 SMT 4 

Tree walk 51,64s 33,57s 25,23s 26,73s 18,49s 13,07s 

SPH 81,28s 56,26s 42,79s 42,2s 31,4s 22,42s 

Particle-Mesh 40,39s 34,15s 33,53s 25,94s 31,84s 26,66s 

 

Measurements obtained for different algorithms used in GADGET2 code demonstrate that SMT mechanism is not always the 
key for better performance. Especially the Particle-Mesh algorithm which extensively uses FFT computations does not benefit 
from SMT 2 and SMT 4 at all. However, both Tree walk and Smoothed Particle Hydrodynamics steps present very good 
performance when executed in higher SMT modes. These results motivated us for further work described in Section 5, where we 
investigate the performance of synthetic benchmarks. Our final goal is to understand why only chosen algorithms can benefit 
from multithreading. We believe that precise explanation can be only given through deep analysis of chosen performance metrics 
and performance counters.  

4 Performance analysis of synthetic benchmarks 

As it was described in Section 2, performance analysis of applications based only on walltime of the simulation run is sometimes 
not sufficient. To understand and identify performance bottlenecks an in-depth analysis of basic components of the applications 
(i.e. algorithms in use) is required. Therefore we have decided to analyze the performance of a representative set of algorithms 
which prove their usefulness in many scientific disciplines. Since the SMT mechanism is especially interesting in the case of 
multithreaded applications based on OpenMP/Pthreads model, we have decided to perform tests with BOTS benchmark [11]. 
BOTS was developed as a basic set of applications that allows researchers and vendors to evaluate OpenMP implementations, 
and that can be easily ported to other programming models. An additional goal was for the OpenMP community to have a set of 
examples using the tasking model available recently in OpenMP programming model.  

Table 1 Performance of GADGET2 algorithms measured against different SMT modes. 
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Our testing procedure consisted of following steps: 

1. Compile and execute BOTS benchmark on the Power775 system (Boreasz). 

2. Identify the best scalable versions (tied/untied,for/single) through preliminary scalability testing of BOTS applications 
on the single node of Power775 system. 

3. Test the performance of selected versions of BOTS applications against different SMT modes. 

BOTS benchmark was compiled on Boreasz system with the use of following compiler options: -q64 –qalloca –qsmp=omp –O3 
–qarch=pwr7 –qtune=pwr7 –qaltivec -qthreaded. 

The following versions of chosen applications have been identified: 

 Strassen  (tied tasks, manual - 3) – computes a matrix multiply with Strassen’s method, dense linear algebra algorithm 

 N Queens (tied tasks, manual -3) – finds solutions of the N Queens problem, search algorithm 

 SparseLU (tied tasks) – computes the LU factorization of a sparse matrix, sparse linear algebra algorithm 

 Health (tied tasks, manual - 2) – simulates a country health system, simulation algorithm 

 Floorplan (tied tasks, manual - 5) – computes the optimal placement of cells in a floorplan, optimization algorithm 

Each of the application was executed with the largest possible input data provided within BOTS with the use of 32, 64 and 128 
threads on the single node of Power775 system (Boreasz).  

Application 
Single 
thread 

Single node (4 cpus) 

SMT 1 SMT 2 SMT 4 

Strassen 101,05s 5,11s 4,43s 5,88s 

N Queens 27,8s 1,16s 0,83s 0,79s 

SparseLU 129,19s 4,79s 4,18s 5,03s 

Health 96,54s 3,97s 3,7s 4,8s 

Floorplan 12,22s 0,55s 0,58s 0,79s 

 

As can be seen in the above Table 2 performance of Strassen, SparseLU and Health algorithms can benefit only from SMT 2 
mode. N Queens search algorithm improve its performance also in the SMT 4 mode. Only for the Floorplan algorithm we did not 
see any increase of performance when using higher SMT modes. As it was pointed out before, we believe that precise 
explanation of these results can be only given through analysis of chosen performance metrics and performance counters. This is 
one of the tasks that we plan to do in our future work. 

5 Future work 

Results described in Sections 2,3 and 4 motivated us to plan future work related to performance study of algorithms and 
applications on multithreaded and multicore architectures.  

Firstly, we are very keen to know why performance of chosen algorithms can benefit from using higher SMT modes while others 
do not. We believe that this problem might be addressed by detailed analysis of hardware performance counters. Currently we are 
analyzing hardware performance counters for the chosen applications from the BOTS benchmark. We are looking for a 
correlation between the ability to efficiently use the SMT mechanism and the performance profile of the given application. Such 

Table 2 Performance of BOTS benchmark codes  measured against different SMT 
modes. 



 Performance analysis of parallel applications on modern multithreaded processor architectures 

 6

a result would lead us to better understanding of computational nature of different algorithms, but it could also be used to 
propose an automatic heuristic algorithm (e.g. based on decision trees) to decide which multithreaded code fragment should be 
using SMT2 or SMT4 mode.    

Secondly, many modern HPC applications use both MPI and thread parallel model (e.g. mixed MPI + OpenMP). Parallel 
processes executed on different computational nodes include many thread parallel regions which are executed on available 
computational cores. Very often the number of threads in thread based parallelization is controlled by a single switch (e.g. the 
OMP_NUM_THREADS environment variable). Since different algorithms and code fragments may present different scalability 
on given HPC platform, it would be appropriate to choose number of threads for execution to each parallel region individually. 
Moreover such a decision could be made automatically only with a minor information gathered from code user (mainly the 
information about the preferred execution model of the code). 

The tool that we are currently developing within PRACE-2IP project will address both above mentioned challenges. 
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