

1

Available online at www.prace-ri.eu

Partnership for Advanced Computing in Europe

Optimization of SHAKE and RATTLE Algorithms

Mariusz Uchronski
a
, Marcin Gebarowski

a
, Agnieszka Kwiecien

a,*

aWroclaw Centre for Networking and Supercomputing (WCSS), Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland

Abstract

SHAKE and RATTLE algorithms are widely used in molecular dynamics simulations and for this reason are relevant for

a broad range of scientific applications. In this work, an existing CPU+GPU implementations of the SHAKE and

RATTLE algorithms from the DL_POLY application are investigated. DL_POLY is a general purpose parallel molecular

dynamics simulation package developed at Daresbury Laboratory by W. Smith and I.T. Todorov. OpenCL code of the

SHAKE algorithm for DL_POLY application is analyzed for further optimization possibilities. Our work with RATTLE

algorithm is focused on porting of the algorithm from Fortran to OpenCL and adjusting it to the GPGPU architecture.

1. The goals of the project

In this project the work is focused on the optimization of SHAKE and RATTLE algorithms, using

the DL_POLY Molecular Simulation Package [1] as a base. Our plan is to evaluate these algorithms and

further develop OpenCL versions of the main parts of them (Leapfrog Verlet and Velocity Verlet integration

schemes). The main goal is increasing the potential of the algorithms to support asynchrony and check the

possibility of improving the accuracy of the GPU code.

2. Work done in the project

SHAKE is a two stage algorithm based on the Leapfrog Verlet integration scheme. The RATTLE algorithm

fits within the concept of the Velocity Verlet integration scheme [2]. These algorithms are widely used

in molecular dynamics simulations and for this reason are relevant for a broad range of scientific

applications. As a base for the study we used the DL_POLY application, which provides implementations

of the SHAKE and RATTLE algorithms on CPU and some parts on GPU using CUDA, and an OpenCL

partial implementation, developed by WCSS (within T7.5 / T7.2 of PRACE-1IP).

SHAKE

Implementation of the SHAKE algorithm for DL_POLY application has been continued and code has been

analyzed to find possibilities for further optimizations.

Some performance bottlenecks of SHAKE OpenCL implementation have been identified. One of them is

an initialization of the OpenCL environment – a possible solution for this issue is to divide OpenCL routines

into separate contexts, for example create one OpenCL context for SHAKE algorithm and another OpenCL

context for RATTLE algorithm.

The next bottleneck is GPU I/O operations – this is a well-known issue for GPU computations. This problem

occurs while accessing GPU memory (by “accessing” we mean copying data between host and GPU,

reading/writing from kernel code). Memory manipulations between host and GPU are very time consuming.

In most situations it is better to copy more data than copy small amounts many times. I/O bottleneck

* Corresponding author email address: agnieszka.kwiecien@pwr.wroc.pl

 Optimization of SHAKE and RATTLE algorithms

2

in kernels must be tackled considering the utilized memory type (global, local, texture) on GPU. Every type

has its advantages and disadvantages. Global memory (same as texture) has a considerably larger capacity,

which makes it possible to store more data in it. However, access times to this memory type are quite high.

Texture memory is cached and if accessed properly is significantly faster than the global memory, but one

cannot store every data type in it. In addition, a texture object can be read or write only. The local (or shared)

memory is, as described later, the fastest one but has very limited size. Due to these set of properties,

the memory type to be utilized in GPU must be selected properly, considering the kind of operations to be

performed on it.

The third bottleneck is due to synchronization between MPI processes in a multi-GPU environment. This

kind of synchronization requires copying data from GPU memory to local memory, synchronizing the data

and then copying synchronized data back to the GPU memory. There are already implemented kernels used

for improving efficiency of data transfers between host (_hs) and GPGPU device (_dv):

gather_dv_scatter_hs and gather_hs_scatter_dv. The data transfers are required for a synchronization of MPI

processes and they are large in volume. The kernels are packing or unpacking data in parallel on a device,

depending on the direction of communication. The only other solution for this issue in MPI+OpenCL code is

to minimize the number of synchronization operations.

RATTLE

DL_POLY provides an implementation of the RATTLE algorithm written in Fortran. Our work focused on

porting the algorithm to OpenCL and adjusting it to the GPGPU architecture.

The first step was an analysis of the algorithm and its Fortran implementation to identify possible points for

improvements. The source code in Fortran has 175 lines and contains many loops, which makes it a perfect

candidate for parallelization. The module was divided into two sections:

 calculate velocity constraint corrections,

 update velocities locally.

These sections have been implemented as OpenCL kernels to run on GPGPU devices (Figure 1). The first

implementation of the kernels was a simple port of the Fortran code. Further study of the input data led to

a discovery of several major problems of the algorithm, when parallelized on GPGPU. Multiple threads

running on GPGPU were assigned to the same indexes causing memory collisions on read/write operations.

The read collisions decrease the program performance due to higher memory access latency. These collisions

can be eliminated in a number of ways. One solution is to use a local (shared) GPGPU memory. The access

time for such memory is significantly smaller than for the global memory and read collisions do not cause

such big delays. However, this solution has its own costs. First of all, GPU devices usually do not have a lot

of local memory (for GTX 480 it is 48KB per Streaming Multiprocessor (SM)). In GPGPU, threads are

organized in groups, which are then assigned to SM. This means that every group of threads has its own

shared memory with data in it and other groups cannot access it.

Taking into account these constraints, we decided to use the local memory in the OpenCL kernels as a buffer

for the data required in a current iteration of computations. We determine which data will be needed using

indexes assigned to threads. Buffers in the local memory have size equal to groups sizes, which can lead to

situations when some threads cannot compute in current iteration because there is no data for them. For

example we have 64 threads in group. Thread with lowest id needs data from index 1 and 2, and last thread

needs data from 64 and 65. Rest of the threads need data between indexes 1 and 64. As mentioned earlier

local array can hold only 64 elements (because that is the size of group). This means that last thread cannot

compute because it lacks data from index 65. In such situations the respective thread waits and its task will

be given to the first thread in the next group or in the same group but in next iteration.

Second type of memory access collisions identified in the implementation is those which occur during write

operations. They are worse in terms of possible consequences and more difficult to eliminate than the read

conflicts. Even a simple code like: x = x +1; is liable to write collision, when executed by two threads.

 Optimization of SHAKE and RATTLE algorithms

3

Possible scenarios are:

 Thread#1 reads x value and adds 1 to it writing result to memory. Thread#2 reads the value which is

now x + 1 and final result will be x + 1 + 1.

 Thread#1 reads x value and adds 1 to it but before it will write result Thread#2 reads the memory.

Thread#1 writes its result x + 1 which is later overwrite by Thread#2 with x + 1.

The results obtained in the first and second scenario are different. We can also imagine a scenario where final

result will be “not a number’’ (NAN) because of some sort of collision or overwrite of some bits. This

example shows how important it is to avoid write hazards, which can lead to non-deterministic behavior of

the algorithm.

Write collisions inside a thread group were fixed by using sequential writing. Only one thread with the id

equal to some iterator can write and the rest must wait. Utilizing warps leaves only 32 threads we must take

care of because only these threads can execute commands in the same time (we know that thread with

id=T+32 will not be writing in the same time as thread with id=T). Warp is a definition of group of 32

threads which execute one common instruction at the time. If threads of a warp diverge via a data-dependent

conditional branch, the warp serially executes on each branch path, disabling threads that are not on that path,

and when all paths complete, the threads converge back to the same execution path [4]. Group can have more

than one warp, but only one warp will be working at the time. This property was used in collision-less code.

Figure 1. Fortran and OpenCL code comparison

 Optimization of SHAKE and RATTLE algorithms

4

3. Results obtained

SHAKE

The implementation of the SHAKE algorithm for DL_POLY application has been evaluated and tested on

local WCSS GPU machines (2x GTX480, 2x AMD Radeon HD 6900 Series). Performance results for the

H2O benchmark show that the OpenCL implementation works slower than the CUDA version of the same

algorithms (Figure 2). The biggest difference between an average duration time per invocation for NVIDIA

GPUs is for kernels: k1_th (OpenCL code is 10x slower than CUDA code), and install_red_struct (OpenCL

code is 5.5x slower than CUDA code). For other kernels OpenCL calls are 2x slower than particular CUDA

calls.

Figure 2. CUDA vs OpenCL kernels for DL_POLY constraints shake component

Figure 3. CUDA vs OpenCL I/O and communication for DL_POLY constraints shake component

RATTLE

The RATTLE algorithm has been analyzed and parts of it identified as good candidates for optimization by

moving computations to GPU. These parts have been successfully ported to OpenCL and integrated with the

DL_POLY application. Results for a subset of test cases [3] are presented in Table 1. Tests have been

performed at WCSS (2x GTX480). The results are promising, but as for the SHAKE algorithm, the OpenCL

environment initialization and I/O operations constitute performance bottlenecks.

k1_th k1_bh
install_red_

struct
correct_posi

tions

CUDA 0,00003 0,000025 0,000042 0,000011

OpenCL NVIDIA 0,000366 0,000046 0,000232 0,000023

OpenCL AMD 0,000371 0,000209 0,000307 9,4E-05

0

0,00005

0,0001

0,00015

0,0002

0,00025

0,0003

0,00035

0,0004

av
e

ra
ge

 d
u

ra
ti

o
n

p

e
r

in
vo

ca
ti

o
n

 [
s]

read write
gather_dv_s

catter_hs
gather_hs_s

catter_dv

CUDA 0,000022 0,000041 0,000032 0,000035

OpenCL NVIDIA 0,00004 0,000108 0,000061 0,000062

OpenCL AMD 0,000172 0,000599 0,000252 0,000257

0

0,0001

0,0002

0,0003

0,0004

0,0005

0,0006

0,0007

av
e

ra
ge

 d
u

ra
ti

o
n

p

e
r

in
vo

ca
ti

o
n

 [
s]

 Optimization of SHAKE and RATTLE algorithms

5

Performance results in general show that selected parts of the Fortran code can be executed faster on GPU

using OpenCL (overall GPU computation time) but the bottlenecks have great influence on the overall

computation time (test cases: H2O, TEST14). Further optimization work should be focused on decreasing

this influence.

Benchmark Fortran
OpenCL

Speedup
Initialization, I/O Kernels Overall

H2O 0.001101 0,001792 0,000294 0,002086 0,5278

TEST3 0,152225 0,011471 0,008079 0,01955 7,7864

TEST4 1,247404 0,048104 0,062032 0,110136 11,3260

TEST7 0,134984 0,022904 0,017279 0,040183 3,3592

TEST8 1,09763 0,075339 0,136363 0,211702 5,1847

TEST13 0,162882 0,02114 0,018883 0,040023 4,0697

TEST14 1,280869 3,031746 0,088209 3,119955 0,4105

Table 1. Results for RATTLE algorithm integrated with DL_POLY code (double floating point
precision)

4. Conclusions

In this report we presented results of our work on optimizing the SHAKE and RATTLE algorithms. Some

performance bottlenecks of SHAKE OpenCL implementation has been identified - initialization of the

OpenCL environment, GPU I/O operations and synchronization between MPI processes in a multi-GPU

environment. OpenCL version of RATTLE algorithm for DL_POLY application has been implemented and

tested. The RATTLE OpenCL algorithm shows up to 11x speedup for the test benchmark with 413896

atoms. Results also show that GPU I/O operations constitute performance bottlenecks.

Using OpenCL for the RATTLE algorithm implementation has one major disadvantage. GPUs are strongly

parallel and many collisions between threads may occour. Thus, before starting the implementation the input

data and their representation in the language data structures must be analyzed and the structures must be

adjusted to the new paradigm. Otherwise the code may not run effectivly. Copying data between GPU and

host system is a very time-consuming operation.

From the results obtained it may be concluded that dividing the code into more kernels may decrease

application performance, since the program spends too much time on transfering data. To avoid this

bottleneck, the kernels should be designed as compute-heavy with a minimal data exchange needs. Some

operations of both SHAKE and RATTLE algorithms need to be executed on a CPU, and these are generally

some kind of synchronization points, when data from different work groups or whole GPUs are aggregated

and then processed by one thread.

Acknowledgement

This work was financially supported by the PRACE-2IP project funded in part by the EUs 7th Framework

Programme (FP7/2007-2013) under grant agreement no. RI-283493.

References

1. DL_POLY Molecular Simulation Package home page:

http://www.stfc.ac.uk/CSE/randd/ccg/software/DL_POLY/25526.aspx

2. The DL_POLY_4 User Manual:

ftp://ftp.dl.ac.uk/ccp5/DL_POLY/DL_POLY_4.0/DOCUMENTS/USRMAN4.01.pdf

3. The DL_POLY test data:

ftp://ftp.dl.ac.uk/ccp5/DL_POLY/DL_POLY_4.0/DATA/

4. NVIDIA CUDA C Programming Guide:

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf

http://www.stfc.ac.uk/CSE/randd/ccg/software/DL_POLY/25526.aspx
ftp://ftp.dl.ac.uk/ccp5/DL_POLY/DL_POLY_4.0/DOCUMENTS/USRMAN4.01.pdf
ftp://ftp.dl.ac.uk/ccp5/DL_POLY/DL_POLY_4.0/DATA/

