

Faculty of Science Institute for Astronomy and Astrophysics

Stellar flares with PLATO

PLATO "Flares Work Package" (WP 123 700)

Stefanie Raetz¹

B. Stelzer^{1,2}, T. Vicanek Martinez¹, G. Bruno³, K. Vida⁴, R. Szabo⁴, D. Feliz^{5,6} and K. Stassun⁵ ¹IAAT Tübingen; ²INAF/OA Palermo, ³INAF – OA Catania; ⁴Konkoly Observatory; ⁵Vanderbilt University; ⁶AMNH NYC

Stellar Activity

- Stellar activity is directly linked to the existence of strong magnetic fields
 → generated and maintained by dynamo processes
- Magnetic activity affects all atmospheric layers of late-type stars
- Phenomena are:
- photospheric star spots
- chromospheric line emission
 (e.g. Ca II , Hα)
- strong coronal UV, X-ray, and radio emissions
- multi-wavelength flares

Two days in the life of the Sun (Aug 15-17, 2011)

Solar Dynamics Observatory Image Gallery: https://sdo.gsfc.nasa.gov/gallery/main

White light (optical) flares

Sun in visible light (photosphere):

Localized brightening = "flare"

Images: JAXA/Hinode Satellit

Other stars:

The stellar surface can not be resolved spatially.

→ Measurement of <u>abrupt brightness change</u> associated with flare

Flare parameters:

- flare amplitude
- flare duration (rise and decay time)
- flare energy
- flare frequency

Flare parameters:

- flare amplitude
- flare duration (rise and decay time)
- flare energy
- flare frequency

Flare parameters:

- flare amplitude
- flare duration (rise and decay time)
- flare energy
- flare frequency

Rotation vs flares from K2 light curves of nearby M dwarfs

Stelzer et al. (2016); Raetz et al. (2020)

RESULT: Photometric activity drastically changing at $P_{rot} \sim 10 d$ cf. saturated vs correlated regions in $L_x - P_{rot}$ relation

Activity decays as stars spin down and dynamo becomes less efficient.

Physics hidden in the noise:

Activity diagnostic: std.deviation of lightcurve (= "residual noise") after removal of flares and rotational modulation: S_{flat}

 S_{flat} shows the same bimodality with P_{rot} as the other activity indicators.

 → There is unresolved variability in light curves of fast rotators,
 e.g. nano-flares, many small/rapidly
 changing spots

 (signatures of energy build-up)

EPIC 205913009 0.0020 flattened lightcurve Outlier 0.0015 Flare lux ("flattened") 0.0010E 0.0005 0.0000 stddev (no outlier + interpolated) -0.0010 10000 S_{flat} [p.p.m.] 1000 100 0.00.5 2.01.01.5 $\log P_{rot}$ [d] Stelzer et al. (2016)

Flare energy frequency distributions (FFD):

→ quiescent corona heated by "nanoflares"

Flare effects on potential planets in the habitable zone

- (1) highly energetic or frequent flare events can cause ozone depletion and, therefore, endanger life
 - > O_3 layer depletion for $E_f > 10^{34}$ erg/s @ flare occurrence frequency $n_F \sim 1$ / month
 - > consider fraction of flares hitting HZ: $n_F > 0.1...0.4 d^{-1}$

Tilley et al. (2019), Guenther et al. (2020)

- (2) Flares of appropriate energy and frequency can be beneficial for the development of life on exoplanets
 - the minimum flare frequency required to enable prebiotic reactions ("abiogenesis zone"):

$$\nu \ge 25.5 \text{ day}^{-1} \left(\frac{10^{34} \text{ erg}}{E_U}\right) \left(\frac{R_*}{R_\odot}\right)^2 \left(\frac{T_*}{T_\odot}\right)^4$$

Fig. from Bogner et al. (2021)

TESS observations of 35 flaring M stars from the TESS Habitable Zone Star Catalog (HZCat, Kaltenegger et al. 2019)

Aims of WP "Stellar flares" (WP123 700)

- (A) Removal of flare events to "clean" light curve for other purposes,e.g. search for periodic signals (planets, rotation, oscillations, ...)
- (B) Study the physics of stellar flares \rightarrow save ADP with flare parameters

Status of WP "Stellar flares"

- Prototype algorithm **identifying** flare data points → delivered to PDC
- Flare validation
 - & determination of physical parameters of flares \rightarrow work in progress

The "flare data point identification" prototype code

Example: TESS light curve of an M dwarf

Example: TESS light curve of an M dwarf

Results for the Kepler Superflare sample

Kepler Superflare sample:

- Shibayama et al. (2013) based on the initial sample of Maehara et al. (2012)
- 279 flaring G-type stars
- 15 of these stars have Kepler short cadence data in multiple quarters
 - > 53 light curves were analysed in the early test phase of the prototype code

Results for selected light curves from the TESS HZCat sample

- Three out of the 35 flaring stars from our TESS HZCat sample were selected
- Selection Criteria for this test:
 - Clear rotation signal
 - High number of flares
- Light curves of 2 sectors were analysed with the prototype code

Next steps / Open problems

- Performing flare injection test on realistic PLATO light curves
 Inject flares with physical input distributions
- Implementing a Flare validation procedure & determination of physical parameters of flares
- Complex flare shapes are not considered
 & flare code is not adapted to recover them

Thank you for your attention!