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Abstract

Unmanned aerial vehicles (UAVs), also known as drones, are acquiring increasing autonomy.
With their commercial adoption, the problem of testing their functional and non-functional, and
in particular their safety requirements has become a critical concern. Simulation-based testing
represents a fundamental practice, but the testing scenarios considered in software-in-the-loop
testing may not be representative of the actual scenarios experienced in the field.
In this paper, we propose SURREALIST (teSting UAVs in the neighboRhood of REAL flIghtS),
a novel search-based approach that analyses the logs from real UAV flights and automatically
generates simulation-based test cases in the neighborhood of such real flights, thereby improv-
ing the realism and representativeness of the simulation-based tests. This is done in two steps:
first, SURREALIST faithfully replicates the given UAV flight in the simulation environment, gen-
erating a simulation-based test that mirrors a pre-logged real-world behavior. Then, it smoothly
manipulates the replicated flight conditions to discover slightly modified test cases that are chal-
lenging or trigger misbehaviors of the UAV under test in simulation. In our experiments, we were
able to replicate a real flight accurately in the simulation environment and to expose unstable and
potentially unsafe behavior in the neighborhood of a replicated flight, which even led to crashes.
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1 Introduction

With the boost of cyber-physical systems (CPS) in both academia and industry over the past decade,
we have witnessed impressive advancements in the technology available in healthcare, avion-
ics, automotive, railway, and robotics sectors [67, 16]. Unmanned Aerial Vehicles (UAVs) [72] or
drones equipped with onboard cameras and sensors have already demonstrated that autonomous
flights are possible in real environments. This sparked great interest in a plethora of application
scenarios, with crop monitoring [15], surveillance [8], medical and food delivery [19], and search
and rescue in disaster areas [18] representing only some of the relevant applications of UAVs.
Support for UAV developers has increased over the years, with open-access projects for the soft-
ware (i.e., firmware) and hardware (e.g., flight controller). Well-known examples are Ardupilot [6]
and PX4 [41] (autopilot software) and Pixhawk [50] (open standards for UAV hardware). On the
other hand, automated testing of UAVs (and in general, CPS) to ensure their proper behavior rep-
resents still an open research challenge [4, 37, 58, 20, 61]. Simulation-based testing is a promising
direction to improve UAV testing practices [3, 63, 66]. Researchers proposed the use of digital-
twins, i.e., virtual representations of real-time, physical objects or processes, to simulate and test
CPS in diversified scenarios [30, 14, 49, 11, 44, 13], and to support test automation [5, 69]. However,
it is challenging to capture the same bugs as physical tests in simulation [66, 4] and to generate
representative simulated test cases that expose realistic bugs [3].
To better illustrate the problem statement, let us consider the following scenario: Bob is a UAV
customer using a quad-copter based on PX4 [41] (a popular open-source UAV firmware enabling
autonomous flight, path planning, and obstacle avoidance) for crop monitoring missions over
various croplands. Since some of these lands are close to or include trees, buildings, roads, or
other populated areas and facilities, he is particularly concerned about the safety and reliability
of his quad-copter during the missions. He has already tested the UAV in a specific scenario
over one of these lands: an autonomous flight from a starting point S to a destination point D,
crossing a small building on the way. Bob observed that the UAV reached the destination safely
while avoiding obstacles in the scene, but he is not yet convinced that it will be the case in other
possible scenarios and over other lands. Specifically, he is interested to know if the UAV would
still complete the mission safely, even if the scenario was a bit different, e.g.,different building
sizes, planned paths, or weather conditions.
Since he does not have the budget to test the UAV in all such variations manually in the field, Bob
contacts Alice, an experienced PX4 developer, to help in the (safety) assessment of his UAV in such
diversified scenarios. As the first step, Alice asks Bob for the Flight Logs of his field tests, as the logs
include valuable information about how the environment was perceived by the UAV during the
flights, e.g., all sensor readings, received commands, and motor control signals.
Now, Alice has the challenge of manually analyzing the flight logs, interpreting the results of
the test, and investigating ways to make a proper assessment of the drone in alternative, neigh-
boring flight scenarios. As a practical and viable strategy, Alice decides to use simulators (e.g.,
Gazebo[36]) to replicate the real test flights in simulation, and to identify close-related scenarios
that could potentially fail in the real world. However, the problem of replicating the logged real
flight in simulation with high fidelity remains a big issue for Alice. In the context of our work, we
assume that if the UAV behavior in simulation is in line with its behavior in the field (e.g., the tra-
jectory during the flight), the simulated replication can be considered realistic. Here, the questions
are: 1) how to enable Alice to faithfully replicate a real UAV flight in simulation, by analyzing the
flight log coming from an unknown environment? and 2) how to enable Alice to test the UAV in a
set of diversified possible scenarios in the neighborhood of the given field test?
Software engineering researchers proposed several automated solutions to generate test cases re-
producing the crashes of software-only systems [7, 43, 60, 32, 22, 59]. However, to the best of our
knowledge, no existing approach for CPS/UAV testing [27, 63, 61, 71] addresses the problem of
test scenario replication and test case generation, where the execution state to be reproduced is
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not only the state of the program, but it involves also the state of the real world.
In this paper, we propose SURREALIST 1(teSting UAVs in the neighboRhood of REAL flIghtS),
a novel search-based approach that automatically generates simulation-based test cases in the
neighborhood of previously logged real-world UAV flights, thereby improving the realism of
software-in-the-loop testing. Using our approach, the work done by Alice in the previous sce-
nario is drastically reduced by simply giving Bob’s flight log as an input to SURREALIST. Following
the steps described in Section 3, our approach first analyses the flight log, extracts any available
UAV and environment configurations, and searches for optimal values for the unknown configu-
rations to replicate the real-world UAV behavior in the simulation environment. Then, it smoothly
manipulates the replicated configurations (flight conditions) to discover related test scenarios that
can potentially trigger unsafe behavior of the UAV in simulation, which can also guide Bob toward
potential corner cases for field testing.
This paper provides the following contributions:

• A generic approach for automatically generating a simulation-based test case that replicates
a real flight scenario, by searching for optimal simulation environment configurations using
only the flight log.

• A generic approach that automatically modifies a (replicated) simulation-based test case to
generate more challenging test scenarios.

• An empirical evaluation of a specific instance of the generic approaches, for optimal place-
ment of obstacles in the simulation environment during an autonomous flight.

• A replication package [34] on Github including SURREALIST implementation and experi-
ments data and results.

2 Background

This section provides an overview of the UAV Architecture and UAV Firmware and Software used
in our research.

2.1 UAV Architecture

UAVs are characterized by the Perception, Planning, and Control [47] software components, and
the hardware components that interact with the environment and the UAV software. The Per-
ception component is responsible for the UAV’s understanding and modeling of the surrounding
environment based on sensor signals. The functionalities of this component include state estima-
tion [26, 55] and mapping [45]. State estimation recreates the drone state in the environment and
enables navigation and autonomous movement [55], while mapping strategies compute obstacle
distances, to create a model of the surrounding area [45]. The Planning component aims at finding
an optimal trajectory from starting point to the destination, e.g., by computing polynomial trajec-
tories [42, 57] and then applying trajectory optimization [25]. The Control component determines
the actuator control commands to be executed by the UAV to safely navigate the environment and
enables the autopilot (onboard commands) and/or the ground-control station (commands from a
remote station) modalities [64, 47, 17].

1Surrealism is an art movement aimed at resolving the previously contradictory conditions of dream and reality into
an absolute reality, a super-reality, or surreality.
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2.2 UAV Firmware and Software

2.2.1 PX4 Platform

PX4 [41] open-source flight control platform is often used to implement a UAV system. PX4 sup-
ports Software In-the-Loop (SIL) simulation to safely execute UAV flights in simulation environ-
ments, with the purpose of checking novel control algorithms before actually flying the UAV, lim-
iting the risk of damaging the vehicle. It also supports Hardware In-the-Loop (HIL) simulation,
by providing simulation inputs to the firmware deployed on a real flight controller board.

2.2.2 PX4 Simulation Environments

Simulators allow PX4 to control a modeled vehicle in a simulated world. Hence, PX4 communicates
with a simulator (e.g., Gazebo [36]) to receive sensor data from the simulated world and send ac-
tuator control commands back. In this setting, the UAV pilot (user), similarly to a real vehicle, can
interact with the simulated vehicle using a ground control station (GCS), a radio controller (RC)
or an offboard API (e.g. ROS), both to send control commands and to receive telemetry data. PX4
supports several HIL and SIL simulators [51]. In the context of our work, we considered Gazebo
[36] as PX4’s reference 3D simulation environment since it is particularly suitable for testing its
obstacle avoidance and computer vision functionalities.

2.2.3 Flight Logs

PX4 logs any message communicated between RC or GCS and UAVs, or between its internal mod-
ules [53]. This includes the sensor outputs, location, other estimations based on sensor readings,
the commands sent to the UAV, and the errors/warnings from the internal modules. Logs are
stored on the UAV file system after each flight, to help investigate issues encountered during a
flight and their root causes [53]. A sample flight log [33] we used in our experiments is visualized
in the footnote link2.

2.2.4 Flight Modes

Flight modes define how the autopilot responds to RC input, and how it manages the vehicle
movements during fully autonomous flights. Flight modes provide different levels of autopilot
assistance, ranging from automation of common tasks (e.g., takeoff and landing) or flying a pre-
planned path, to mechanisms that make it easier to hold a certain altitude level or position when
needed. Flight modes can be divided into manual and autonomous modes. Manual modes allow the
user to control the vehicle movement via the RC sticks, while autonomous modes are fully con-
trolled by the autopilot, with no pilot/RC input. During an autonomous flight, obstacle avoidance
[54] can be enabled to let the UAV locate any obstacle on its path using its onboard cameras, and
navigate around them safely to reach the destination.

3 Approach

The de-facto standard testing process of UAVs relies on manually-written system-level tests for test-
ing UAVs in the field. These tests are defined as software configurations in a given physical envi-
ronment and a set of runtime commands that make the UAV fly with a specific observable behavior
(e.g., flight trajectory, speed, distance to obstacles). We model a UAV-simulated test case with the
following test properties:

2https://logs.px4.io/plot_app?log=f986a896-c189-4bfa-a11a-1d80fa4b9633
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• UAV Configuration: Autopilot parameters 3 set at startup, configuration files (e.g., mission plan)
required.

• Environment Configuration: Simulation settings such as simulation world (e.g., surface ma-
terial, UAV’s initial position), surrounding objects (e.g., obstacles size, position), weather
condition (e.g., wind, lighting).

• Runtime Commands: Timestamped external commands sent from GCS or RC to the UAV
during the flight (e.g., changing the flight mode, flying in a specific direction, starting au-
tonomous flight).

Since the physical attributes of the simulated and real UAVs and the surrounding environments
are often not identical, simply replaying the same set of commands sent to a physical UAV (as
recorded in the logs) would not always result in the same observable behavior in simulators. For
instance, sending a command for going forward with full power for 1 second, will likely not bring
the real and simulated UAVs to have the same speed and acceleration, and to cover the same
distance. This is typically due to the differences in the UAV’s real vs simulated characteristics
(e.g., weight, motors power, and sensors accuracy) and to unpredictable environmental factors
(e.g., wind and other disturbances).
Given a field test log, SURREALIST aims to generate simulated test cases that replicate, as closely
as possible, real-world observations (e.g., flight trajectory). This is done by finding the best combi-
nation of the above-mentioned test properties, so as to minimize some distance measure between
the sensor readings of the field test and its simulated counterpart (e.g., the Euclidean distance
between the two flight trajectories).
Starting from this replicated simulation test, SURREALIST generates variants in the close neigh-
borhood of the test case, with the goal of creating potentially more challenging scenarios. This
is achieved by updating the test properties, with the purpose of increasing the difficulty (or risk
level) of the generated test cases. The test difficulty is measured according to a given fitness func-
tion, e.g., the minimum distance of the UAV to the obstacles during the flight. To achieve these
goals, we propose a generic search-based approach that generates simulation-based test cases that
minimize a given distance measure (or maximize a given fitness function) by iteratively manipulat-
ing the corresponding test properties.
In the following sections, we first describe the generic approach to generate test cases that optimize
a given fitness function. Then, we instantiate it for replicating the flight trajectory of autonomous
flights, and for generating challenging test cases for maintaining safe distance to the obstacles, by
manipulating obstacles in the simulation environment. It is important to note that the generic ap-
proach can also be instantiated to replicate other UAV behaviors (e.g., speed, acceleration, outputs
to motors), or generate challenging test cases w.r.t other requirements (e.g., UAV stability, mission
duration, power consumption), and by manipulating other test properties (e.g., wind, planned
waypoints, runtime commands) which are out of the scope of this paper.

3.1 Generic Approach

3.1.1 Context

The proposed generic approach can be used in two different contexts:
A) [Flight Replication] Given a real flight log, the goal is to generate a simulation-based test case
that replicates the flight w.r.t. specific UAV behavioral properties. The behavioral properties to
reproduce can be any logged variable, such as outputs to the actuators (motors thrust), raw inputs
coming from sensors, or higher-level variables calculated from them (e.g., UAV position in the
3D space), with the replication accuracy measured by a distance metric (or similarity measure). For

3https://docs.px4.io/main/en/advanced_config/parameter_reference.html
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instance, by choosing to replicate the 3D space position variables we create a simulated flight with
a similar trajectory as that recorded in the real-world log.
B) [Test Generation] Given a simulation-based test case, the goal is to generate variants of such test
that are more challenging w.r.t specific difficulty measures. The difficulty of the test case is calculated
based on the risk level of violating (safety) requirements, such as flying too close to obstacles.
We formulate both problems as a search problem focused on finding the optimal test properties that
maximize a relevant fitness function.

3.1.2 Search Algorithm

Algorithm 1 details our approach. Overall, the search is an iterative process that finds the best
mutations to apply to the current solution at any given step.
The process starts with an initial seed solution (test properties). In the context of flight replica-
tion, the seed is available directly from the raw data in the original flight log. It includes the
logged drone configurations, RC command series, and potential obstacle information that can be
extracted from distance sensors. In the case of test generation, the seed consists of an existing
simulation-based test case, from which the algorithm generates more challenging variants.
The second input, fitness_func, is the function computing the fitness of the solutions. It gets the
simulated flight logs as input, and computes a fitness value according to the given goal (see section
3.1.4). For flight replication, it consists of a distance metric between the original flight sensor
values and the simulated ones, as described in detail in section 3.2. For test generation, it consists
of a risk assessment measure for the given test case, as described in detail in section 3.3.
The third input is the budget assigned to the search process: the maximum number of test case
evaluations performed before returning the final solution found during the search. We measure
the search budget as the number of allowed test case evaluations since evaluating a candidate test
is the most expensive operation performed by the proposed algorithm, as it consists of a full
simulation of the UAV behavior. The final input, min_rounds corresponds to the minimum ensured
rounds of global search (the while loop in lines 6-11).
The initial best solution is set at line 2 as the seed. At line 3, we initialize an empty dictionary,
named evaluation_hash which will record all the evaluated solutions and their fitness values as
the algorithm proceeds. evaluation_hash will be used by the function EVALUATE (described in
section 3.1.3, pseudo-code not shown for space reasons) to implement memoization, i.e., to skip
the simulations if the same test properties have been already evaluated in previous iterations and
directly set the fitness value as obtained from the dictionary. The EVALUATE function is also in
charge of updating the execution budget, which is decreased by one when a simulation is needed,
while it is left unchanged if the fitness for the requested execution is available from evaluation_hash
(the last parameter, which is NULL at line 4, is a local budget updated similarly to the global one).
After evaluating the initial seed solution, which consumes one simulation from the budget, the
main optimization loop is entered at line 6. The loop terminates when the local search, invoked at
line 10, is unable to find a better solution for all parameters that can be mutated in the test prop-
erties. We assume here that test properties come with mutators, i.e., parameterized operators that
can be applied individually to each test property. For example, the property obstacle.position.x
can be modified by an additive mutator, which moves the current position of the obstacle in the
simulation environment along the x axis by a parameter value called MOV E_X .
The for loop at line 9 iterates over all mutators available for the given test properties and tries to
optimize each of them individually by invoking a local optimization procedure at line 10. The
local budget is obtained by uniformly distributing the available budget across all mutators in the
remaining ensured rounds (line 8), with each local search not necessarily consuming entirely its
local budget. Hence, when re-entering the while loop at line 6, the residual global budget might
still be available for the next iteration.
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Algorithm 1: GENERIC-TEST-PROPERTIES-SEARCH
Input: seed: original test properties

fitness_func: fitness function to maximize
budget: global search budget (max num of simulations)
min_rounds: minimum ensured round of global search

Result: best: test properties that optimize the fitness
1 begin
2 best = seed
3 evaluation_hash = {}
4 EVALUATE(fitness_func, best, evaluation_hash, budget, NULL)
5 improved = true
6 while improved do
7 improved = false
8 local_budget = budget/(|seed.mutators|×min_rounds)
9 for mutator in seed.mutators do

10 improved = improved ∨ LOCAL-TEST-PROPERTIES-SEARCH(best, mutator,
evaluation_hash, local_budget, budget)

11 min_rounds = min_rounds - 1

12 return best

Algorithm 2 shows the details of the local search. This algorithm can be classified as an adaptive
greedy algorithm that searches the parameter space of each mutator. We chose a greedy technique
to reduce the number of simulations needed to reach the optimum (executing an entire simulation
is computationally expensive). At the same time, to avoid the choice of a sub-optimal greedy
optimization step, we adapt the step parameter as the algorithm progresses.
Each mutator comes with a default value and a default step. The default value is a value that
leaves the test properties unchanged. For a multiplicative mutator, it is 1; for an additive mutator,
0. The default step is mutator specific. For example, the mutator that moves the obstacle along
the x axis has a default value of 0, because it is additive, and has a default step of 4 meters. The
default step is defined specifically for each mutator parameter, based on the expected parameter
range. Its value is not critical, as the local search adjusts it in an adaptive way. At lines 2-3 the
default step and parameter value for the given mutator are assigned to the variables step, param.
The optimization loop starts at line 7, with 2 termination conditions: the local budget expired, or
no improvement in the best solution for more than MAX_IT iterations.
In lines 8-9, we create two mutated solutions by either increasing or decreasing the mutator pa-
rameter by the current optimization step. These candidate solutions are evaluated at lines 10-11
(function EVALUATE will skip simulation if the test properties can be found in evaluation_hash).
Then, if either the first mutated solution or the second one improves the current best solution by a
margin higher than ε, the new best solution is recorded. Otherwise, if we are in a plateau (line 29)
the optimization loop stops, while if both mutations mu1, and mu2 have decreased the fitness value
by an amount greater than ε (else case at line 28 with a false condition at line 29), the optimization
step is halved adaptively (line 31).
If the same step is applied multiple times in the positive (resp. negative) direction, at line 19 (resp.
27) the optimization step is doubled, to converge more quickly to the final solution. The local
search terminates by assigning the new best solution to the input/output variable best, which is
eventually returned by Algorithm 1. It returns true if a better solution was found during the local
search; false otherwise.
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Algorithm 2: LOCAL-TEST-PROPERTIES-SEARCH
InOut: best: best solution found so far
Input : mutator: test property mutator
InOut: evaluation_hash: memory of past evaluations
Input : local_budget: max simulations for current mutator
InOut: budget: overall max simulations allowed
Result: improved: previous best solution was improved

1 begin
2 step = mutator.default_step
3 param = mutator.default_value
4 positive_moves = negative_moves = 0
5 iter_with_no_improvements = 0
6 new_best = best
7 while local_budget > 0 ∧ iter_with_no_improvements < MAX_IT do
8 mu1 = MUTATE(best, mutator, param + step)
9 mu2 = MUTATE(best, mutator, param - step)

10 EVALUATE(mu1, evaluation_hash, budget, local_budget)
11 EVALUATE(mu2, evaluation_hash, budget, local_budget)
12 if mu1.fitness > new_best.fitness + ε ∧ mu1.fitness > mu2.fitneess then
13 new_best = mu1
14 param = param + step
15 positive_moves += 1
16 negative_moves = 0
17 iter_with_no_improvements = 0
18 if positive_moves > MAX_SEQ_IT then
19 step = step · 2

20 else if mu2.fitness > new_best.fitness + ε then
21 new_best = mu2
22 param = param - step
23 negative_moves += 1
24 positive_moves = 0
25 iter_with_no_improvements = 0
26 if negative_moves > MAX_SEQ_IT then
27 step = step · 2

28 else
29 if |new_best.fitness - mu1.fitness| < ε ∧ |new_best.fitness - mu2.fitness| < ε then
30 break

31 step = step / 2
32 positive_moves = negative_moves = 0
33 iter_with_no_improvements += 1

34 improved = false
35 if new_best 6= best then
36 best = new_best
37 improved = true

38 return improved

3.1.3 Solution Evaluation

To evaluate a search solution, i.e., the candidate test properties, we generate and execute the cor-
responding simulated test case automatically. The test case automates all necessary steps: setting
up the test environment, building and running the firmware code, configuring the simulator with
the simulated world properties, connecting the simulated UAV to the firmware, and applying
the UAV configurations from the test case properties at startup. Then, the test case commands are
scheduled and sent to the UAV, the flight is monitored for any issues, and after test completion, the
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flight log file is extracted. Due to the nature of the control mechanisms and the surrounding en-
vironment, the UAV behavior (both in simulation and in the real world) can be non-deterministic.
To eliminate the effects of outliers in our experiments, we run each test case n times, extract the
logs, and use the average of the variables recorded in the logs for computing the fitness function.

3.1.4 Fitness Function

Our search algorithm has the overall goal of maximizing the given fitness function (fitness_func)
provided as input to the algorithm with the following signature:
fitness_func(flight_logs : List < Log >)→ float

The input is a list of flight logs, obtained from multiple executions of the same simulation-based
test case. The output is a numeric value measuring the overall fitness of the test case w.r.t. our
goal. Since the fitness function is maximized by the local search algorithm (see lines 12, 20), when
the goal is to minimize some metric value (e.g., the distance d between trajectories) we supply the
negation of the metric value (−d) as the fitness function.

3.2 Flight Replication in Autonomous Mode

3.2.1 Context

Given the flight log and the mission configuration of an autonomous flight that includes a given
number of N (> 1) obstacles, with unknown size and position, we generate a simulated test case
that includes the optimized size and position of the obstacles, with similar UAV trajectory in sim-
ulation. We propose an instance of our generic flight replication algorithm for this problem. In
PX4’s autonomous mode, the mission is uploaded to the UAV in advance. After the mission start
command, the UAV follows the mission waypoints in a completely autonomous way. If obstacle
avoidance [54] is enabled, the UAV will use its distance sensors and camera to locate any obstacle
on the way and will automatically find its way to the next waypoint beyond the obstacle.

3.2.2 Fitness Function

Since the relevant logged variables are time series, the fitness function must be able to compare
two time series, measuring the distance between the sequence of replicated states from the sim-
ulation log (intermediate solutions of the search algorithm) and the sequence of expected states
from the original log (real-world flight to be replicated). As a general-purpose fitness function
that could potentially work on any metrics from the original log, we use Dynamic Time Warping
(DTW) [9], a well-known distance measure for multi-dimensional time series of different lengths
that has already been used for comparing UAV flight trajectories [2]. DTW is based on a dynamic
programming algorithm that matches the elements appearing in two sequences s, t by finding the
pairing that minimizes the overall cost. The minimum cost for pairing the element in position i
from s with the element in position j from t is recursively determined as:

DTW [i, j] = d(si, tj) + min{DTW [i− 1, j],

DTW [i, j − 1], DTW [i− 1, j − 1]}
(1)

where d(si, tj) is the distance between the metric values appearing at position i (resp. j) in the
two logs (in the simplest case, just the Euclidean distance ‖si − tj‖), while the recursive choice of
the minimumDTW value corresponds respectively to advancing the pairwise comparison by one
position along the first list only, the second only, or both. Here, the compared sequences s and t
are UAV trajectory points 〈x, y, z〉.
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Since we run each test scenario multiple times to eliminate outliers’ effect, we also need an aggrega-
tion function to group the logs obtained from multiple runs of the same simulated test scenario into
one, coherent time series to be compared by DTW. Here, we adopt DTW Barycenter Averaging [48],
an averaging method for time series data that determines and keeps the shape of the series, while
computing the average.

3.2.3 Test Case Properties

The physical world is assumed to be a plain area with N obstacles of predefined shape (e.g., box).
Since the flight is operated in autonomous mode, the only variable properties of the generated
test cases are the obstacle properties, i.e., the size (length, width, height), position (x, y, z), and
rotation angle (r) of each obstacle.

3.2.4 Mutation Operators

To search for the optimal obstacle properties, we use the following mutation operators for any of
the N obstacles individually:
Move: This mutation operator moves the obstacle from the previous location in the simulated
world by ∆x,∆y. We ignore the z dimension since we assume the boxes are always placed on the
ground.
Resize: This mutation operator resizes the obstacle in place (keeping the center position) by
∆l,∆w,∆h.
Rotate: This mutation operator rotates the obstacle around its geometric center in the x,y plane by
∆r degrees.

3.2.5 Seed

If no information on the placement and size of the N obstacles is available in the original log, we
create an initial seed solution by randomly placing N obstacles in positions that intersect with the
mission flying area.

3.3 Test Case Generation in Autonomous Mode

To find challenging and buggy UAV fly conditions, we designed another instance of the generic
approach (Algorithms 1, 2), which generates challenging test scenarios, starting from the output of
flight replication. The search seeds are the final solutions of the algorithms instantiated in Section
3.2.

3.3.1 Context

Given a simulated test case configuration for autonomous flight (the mission waypoints and ob-
stacle locations and sizes), we want to generate a more challenging simulated test case by in-
troducing an additional obstacle, to force the UAV to get too close to the obstacle (i.e., having a
distance below a predefined safety threshold) while still completing the mission. This will create
a risky environment for the UAV to operate the mission.
Most of the algorithm is identical to the algorithm instance described in Section 3.2 for autonomous
flight replication, with few modifications. Specifically, we use the same test case properties (loca-
tion, size, and rotation of the additional obstacle) and the same mutation operators (move, resize
and rotate). The fundamental distinction is in the fitness function.
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3.3.2 Fitness Function

We define the fitness such that the algorithm is guided to get the drone close to all the obstacles in
general and close to the border of one obstacle in particular. Correspondingly, the fitness function
has two components:

sum_dist = min
p∈trj.points

∑
o∈obs

d(p, o)

min_dist = min
o∈obs,p∈trj.points

d(p, o)

fitness = sum_dist + 2×min_dist

(2)

sum_dist accounts for the minimum distance of a single trajectory point to all of the obstacles com-
bined (favoring obstacles closer to each other), while min_dist accounts for the minimum distance
of the trajectory to any of the obstacles (to be compared against the safety distance). We give the
min_dist component a weight that is twice the weight of the sum_dist component, because it is
expected to contribute the most to the generation of risky test scenarios.
In this case, since in multiple runs of the same test case (parallel simulations), the flight trajectories
can differ significantly from each other in corner cases (test cases with low min_dist), instead of
taking the average trajectory, we take the trajectory with the lowest fitness value when returning
the fitness value for a given mutation of a test scenario.

4 Experimental Results

The goal of our empirical evaluation is to assess SURREALIST’s ability to replicate a logged UAV
flight and to manipulate it to expose challenging flight conditions. In this section, we elaborate
on the research questions, evaluation scenarios, and the results obtained when evaluating our
approach.

4.1 Research Questions

4.1.1 RQ1 [Flight Replication]

Can we generate simulated test cases that faithfully replicate autonomous flight trajectories? The goal is
to replicate the test environment in a way that makes the simulated flight trajectory as similar as
possible to the original one, using only logged data as input information. The variable test proper-
ties are the environment configurations where the UAV flies a predefined mission autonomously.
We investigate an environment setup where placing an obstacle on the map can influence the tra-
jectory, making it more or less similar to the logged one.

4.1.2 RQ2 [Test Generation]

Can we modify simulated test case properties of autonomous flights to make them more challenging for
the UAV autonomous controller? The goal is to investigate the possibility of generating more chal-
lenging test cases based on an existing one, replicated from a real-world test. Specifically, we
investigate a similar environment setup as RQ1 where placing an additional obstacle properly can
result in unsafe or faulty behavior of the UAV.
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4.2 Subject and Original Flights

The subject of our experiments is PX4’s [41] Autopilot controlling a quad-copter. For RQ1, we
consider an original flight conducted in a real-world environment containing an obstacle along
the mission route. We set up the PX4 Vision Autonomy Development Kit4, enable module PX4-
Avoidance [54], and define a survey mission consisting of taking off to 3 meters altitude, flying
towards a waypoint at about 20m distance, and landing. The test field is an empty parking area,
with a cargo container sized about 2.5m × 12m × 2.5m placed in the middle. The original flight
trajectory, as extracted from the flight log [33] is shown in Figure 1 (left) as a blue line.
For RQ2, we consider a simulated test case in Gazebo [52] with a similar setup (taking off to 10
meters altitude, flying towards a waypoint at about 50m distance, and flying back to the landing
point, about 12m to the left of the starting point). We put a box-like obstacle (representing a
small building) sized 8m × 5m × 20m on the direct route towards the destination. Then, we
ran SURREALIST to generate more challenging environment configurations, obtained by adding a
second obstacle to the environment. The flight trajectory, as extracted from the flight log, is shown
in Figure 2 (middle).

4.3 Metrics and Experimental Procedure

To run our experiments, we set the hyper-parameters of Algorithms 1,2 (see Section 3.1) to the
values reported in Table 1. To evaluate our approach, we run SURREALIST to replicate the flight
trajectory (RQ1) or generate test cases (RQ2), applying 10 repetitions with the same configurations,
to gain statistical validity of our results. To deal with the non-determinism of simulated trajecto-
ries, at each step of the algorithms, we run multiple simulations in parallel (5 for RQ1 and 10 for
RQ2 because of the higher non-determinism in the corner test cases; see parameter sim. runs in
Table 1). We run SURREALIST inside Docker containers in a Kubernetes cluster, with main algo-
rithm containers limited to 1.5 virtual CPUs (VCPUs) and 15GB of Ram and simulation containers
(running PX4 and Gazebo) limited to 6 VCPUs and 2 GB.
For the best found solutions of each algorithm repetition, we computed the metrics in Table 2.
We measure the reduction in DTW distance from the original (org) when flight reproduction is
achieved by SURREALIST (best) with respect to the search seed, as well as the reduction in Fréchet
distance [24] for RQ1. Fréchet distance is defined as the maximum distance observed when travel-
ing through the two trajectories (original and replicated flights), considering an optimal mapping
of the points visited along the two trajectories. For RQ2, the seed for the additional obstacle has
the same size as the first obstacle and is placed 15m to the right side of it, so that it does not af-
fect the flight trajectory compared to the original test (figure 2, middle). To ensure the realism of
the second obstacle, we kept its initial size and angle and used only the Obstacle Move mutation.
For RQ2, we measure the reduction of the minimum distance between the UAV and obstacles as
well as the percentage of failing (crashing to obstacle) and unsafe (getting closer than 1.5m) sim-
ulations for the best generated test cases. We also report the needed evaluation budget (solution
evaluations through simulation) to reach the best solutions and the average evaluation time for
each solution (run the parallel simulations and process the logs). For each of these metrics, we
report the average across 10 repetitions.
Once we have collected all the data, we used statistical tests to verify whether there is a statistically
significant difference between the seed and the best solution for both RQs across the algorithm rep-
etitions. We employed parametric tests since the Shapiro-Wilk test revealed that the distributions
across all experiments follow a Gaussian distribution (p � 0.05). Hence, we used the one-way
Anova test with a p-value threshold of 0.05. We also computed the effect-size of the observed dif-
ferences using the Vargha-Delaney (Â12) statistic [65]. The Vargha-Delaney (Â12) statistic classifies
the quantitative effect size values into four qualitative levels (negligible, small, medium, and large),

4https://docs.px4.io/v1.12/en/complete_vehicles/px4_vision_kit.html
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Table 1: Experiment Hyper-parameters

RQ Parameter Value

RQ1,2 repetition 10
RQ1,2 MAX_SEQ. 5
RQ1,2 MAX_IT 5
RQ1,2 default_step 4m (MOVE, RESIZE), 30◦ (ROTATE)
RQ1,2 default_value 0m (MOVE, RESIZE), 0◦ (ROTATE)
RQ1,2 ε 0

RQ1 budget 200 (seed 1), 100 (seed 2)
RQ1 min_rounds 4 (seed 1), 2 (seed 2)
RQ1 sim. runs 5

RQ2 budget 50
RQ2 min_rounds 2
RQ2 sim. runs 10

Table 2: Experiment Evaluation Metrics

Metric Definition

DTW Reduction (RQ1) = 1− DTW (best,org)
DTW (seed,org)(%)

Fréchet Reduction (RQ1) = 1− Frechet(best,org)
Frechet(seed,org)(%)

Min_dist Red. (RQ2) = 1− Min_dist(best)
Min_dist(seed)(%)

Crash & Unsafe Rate (RQ2) = % of crash & unsafe in the simulations of best
P-value comparing seed and best fitness distributions
Effect Size comparing seed and best fitness distributions
Needed Budget = # of evaluations to reach best
Eval. Time = average time for each solution evaluation

which are easier to interpret.

4.4 Results

4.4.1 RQ1 [Flight Replication]

The seed obstacle is a small (3m × 3m × 3m) box, aligned with the direct path between takeoff
and landing position as extracted from the original log. We do the experiments with two different
positioning of this obstacle as seed, illustrated in Figure 1 (left). One is placed right below the
center of the direct path (seed 1) so that the UAV is probable to fly around the obstacle from the
right side, and the other is placed on the opposite side (seed 2) so that the UAV is more likely to
fly to the left side. The two choices aim to analyze if the algorithm is equally effective when the
starting trajectory is on different sides of the obstacle.
As can be seen in Figure 1, showing the best final solution across 10 runs for Seed 1, SURREALIST

was able to position and size the obstacle very well, so that the trajectory of the replayed flight
is almost identical to the original one (with less than 75cm Fréchet distance). During this specific
run, the obstacle was moved 2m upwards, rotated 30◦ clockwise, and the height was increased by
2.8m by the algorithm over the iterations. Although the final obstacle properties are not identical
over the 10 runs, the very low DTW between the simulated and original trajectories shows that
we do not need to replicate the exact same obstacle configurations to be able to test the UAV in the
same manner.
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Figure 1: RQ1 Seeds 1 and 2 (left) and Final (right) solutions (simulated in Gazebo) compared to
the real-world flight

Table 3: RQ1 Evaluation metrics for both seeds

seed 1
Metric Ave.

Seed DTW 383.5
Best DTW 63.15
DTW Red. 83.1%
Seed Fréchet 6.87 (m)
Best Fréchet 1.14 (m)
Fréchet Red. 83.4 %
P-value 1.9 e-12
Effect Size 7.9
Needed Budget 74.8
Eval. Time 152.9 (s)

seed 2
Metric Ave.

Seed DTW 116.1
Best DTW 59.1
DTW Red. 48.8%
Seed Fréchet 2.25 (m)
Best Fréchet 1.05 (m)
Fréchet Red. 51.6 %
P-value 1.2 e-12
Effect Size 8.13
Needed Budget 65
Eval. Time 158.9 (s)
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Figure 2: RQ1 Fitness progress over iterations (left), RQ2 Seed (middle) and Final solutions (right)

As reported in Table 3, the algorithm was able to locate and size the obstacles consistently well in
all 10 runs for both seeds, finding solutions with an average DTW of 63 and 59 respectively, which
corresponds to an almost identical trajectory, while reducing the seed DTW by 83% and 48% with
respect to the distance obtained with the seed obstacles. The two compared DTW distributions are
Gaussian (p > 0.3 in the Shapiro-Wilk test), so we could use the Anova test: a low p-value (� 0.01)
and a large effect size (7.9 � 0.8) suggest that the improvement achieved by the algorithm is
statistically significant and extremely large.
Table 3 reports both the average required budget (i.e., the average number of evaluations) and the
evaluation time (in seconds). With the search budget set to 200 simulations for Seed 1 (100 for Seed
2), on average the final solution was found after 75 (65) evaluations and about 3.5 minutes were
used to run all the computations (parallel simulations and distance calculations) at each solution
evaluation, adding up to almost 5 hours for each run of the experiment. Figure 2 (left) shows
the convergence of the fitness over the iterations. The initial round of mutations (iterations 1-58)
are contributing to most improvements in the fitness function, while during the second and third
rounds (59-117, 118-165) only marginal improvements are observed.
Discussion on minimum feasible distance: As can be seen in the flight trajectories in Figure 1
(right), the individual runs of the exact same test case can have slightly different trajectories due
to the simulation randomness. Although we already mitigated this with the averaging method
discussed in Section 3.2.2, it also limits the minimum DTW distance that can be possibly reached
from the original flight. To estimate the potential lower bound due to the simulation randomness,
we took the average flight trajectories from the seed solutions of all the 10 runs, and computed
their pairwise DTW distance to each other. These distances were in the range [15.9−121.3] with an
average of 58.5. This means that, due to the simulation randomness, even replicating a simulated
flight in the same simulator, by putting the exact same test configurations, could reach a DTW
distance within this range. Hence, this average (58.5) can be considered as the bottom-line for
our optimization process, which indeed reached an average DTW distance of 63.15 when starting
from Seed 1; 59.1 when starting from Seed 2.

RQ1: The information available in the flight logs allows searching for optimal test properties
that faithfully replicate UAV autonomous flight trajectories in simulation.

4.4.2 RQ2 [Test Generation]

As can be seen from the best final solution across 10 runs in Figure 2 (right), SURREALIST was able
to position and size the second obstacle in a way that the UAV (i) was forced to behave in a non-
deterministic way across the parallel simulations; (ii) experienced an unsafe behavior, often too
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Table 4: RQ2 Evaluation metrics

Metric Ave.

Seed Min_dist 3.36
Best Min_dist 0
Min_dist Red. 100%
Crash Rate 25 %
Unsafe Rate 84 %
P-value 6.7 e-12
Effect Size 119.9
Needed Budget 36.8
Eval. Time 388.1 (s)

close to the first obstacle; (iii) even worse, occasionally crashed into the obstacle in some simula-
tions. The second obstacle was moved by SURREALIST to almost 8m to the left and 1.1m upwards,
making it increasingly harder for the UAV to follow the path. Interestingly, if we position the
obstacles even slightly closer to each other, the UAV would act in a safe and deterministic way,
always flying risk-free around the left of the first obstacle. Indeed, we have found a bug regarding
the violation of a safety requirement, i.e., maintaining a minimum distance to the obstacles.
As reported in Table 4, the algorithm was able to find crashing test cases consistently in all 10 runs,
forcing the UAV to get as close as 0m to the obstacle, down from the 3.3m safe distance for the
seed. Also, on average, the UAV crashed into the obstacle in around 3 out of the 10 simulations
for the best test cases found, and got unsafely close (<1.5m) in 5 more.
The two compared distance distributions are Gaussian (p > 0.69 in the Shapiro-Wilk test), so we
could use the Anova test: a low p-value (� 0.01) and a large effect size (119.9� 0.8) suggests that
the improvement achieved by the algorithm is statistically significant and extremely large.

RQ2: Modifying a simulation-based test case allows generating challenging test cases that can
expose the UAV to unsafe behaviors or even crashes.

4.5 Threats to validity

Threats to construct validity concern the metrics used to draw a relation between theory and ob-
servation. The distance between the trajectory reproduced in the simulator and the original log’s
trajectory is affected by randomness, due to various sources of noise and non-determinism that
affect the simulation environment (e.g., the effect of the wind or the multi-threaded execution
in the simulator). Hence, we cannot consider one solution to be closer to the log than another if
their trajectories have a small difference (see "Discussion on minimum feasible distance" in Section
4.1). To address this threat we introduced a distance threshold MIN_DIST and two trajectories are
regarded as equivalent if their distance is lower than MIN_DIST. When comparing a simulated
trajectory to the log data, we take the average trajectory over 5 simulations to reduce the effects
of non-determinism. To gather statistically significant results, we repeated our experiments 10
times. For what concerns the choice of the distance metric used to compare trajectories during
the evaluation, we adopted DTW [9] and Fréchet[24], well-known metrics that have already been
used before for comparing UAV flight trajectories [2].
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Threats to internal validity concern the technologies used to generate the UAV scenarios and tests.
To increase the generality of our results we could have used also other supported simulators (e.g.,
jMAVSim). However, it is acceptable to use Gazebo as PX4’s reference simulation environment
since it is suitable for testing the obstacle avoidance functionalities. Another threat that affects the
internal validity is the choice of the seeds for the obstacles used to answer RQ1 and RQ2. We used
two different seeds for RQ1 with the flight trajectory being on different sides of them, and a seed
additional obstacle for RQ2 that does not affect the flight trajectory. While our choices were aimed
to minimize the effect of the seed solution on the evaluations, a replication with other obstacle
types and seed position/size is needed to corroborate our findings.
Threats to external validity concern the generalization of our findings. Although we experimented
with a widely used UAV firmware and simulator (PX4 and Gazebo), we cannot claim that our
results can be generalized to other UAV platforms or other CPS domains. Therefore, further repli-
cations and studies considering more CPS domains are desirable.
Conclusion validity threats concern our conclusions about the improvement brought by our algo-
rithm. After verifying its applicability conditions, we used the parametric Anova test to verify that
there is a statistically significant difference between the fitness values of seed and final solutions.

5 Related Works

Wang et al. [66] studied UAV software bugs from UAV Autopilot platforms (PX4 [41] and Ardupi-
lot [6]) and created a taxonomy of UAV bugs and identified their root causes. They report that
developers mainly use simulators for reproducing bugs, but setting up realistic-enough simula-
tion environments that capture the same bugs as physical tests is a hard and expensive task. Afzal
et al. [4, 2] studied the challenges of testing robotic systems and recognize the engineering complex-
ity of the test environment, including the design of realistic inputs to test the system, as one of
the biggest challenges. Afzal et al. [3] surveyed robotic practitioners on their use of simulators for
testing robots and identified the reality gap of the robot behavior in simulation and the reproducibil-
ity of issues encountered in real or simulated tests in simulation as the top challenges they face.
Timperly et al. [63] conducted an empirical study on fixed bugs in Ardupilot [6] and found that
many bugs can be potentially detected before field tests if proper simulation-based testing is in
place.
Lindval et al. [38] developed a framework for automated testing of autonomous drones in simula-
tion with the aim of solving the test oracle definition problem. Recently, Woodlief et al. proposed
PHYS-FUZZ [68], a fuzzing approach tailored specifically for testing mobile robots, taking into
account the physical attributes and hazards of such robots. To address the simulation-reality gap,
Hildebrandt et al. [29] propose a mixed-reality approach for testing UAVs. Their approach, called
world-in-the-loop simulation, integrates and mixes sensor data from both the simulated and real
world, and feeds these mixed sensor inputs to the system under test (UAV).
Complementary, we address UAV simulation-based testing challenges concerning realistic test
cases, engineering complexity, and field test reproducibility, by an approach that faithfully repli-
cates real-world test scenarios in simulation and generates similar but challenging variants of
these test cases.
Testing of Deep Learning (DL) based systems is a research area that has attracted a growing inter-
est in the last few years. Traditional testing techniques have been adapted to the specific features
of machine learning components, addressing problems such as test input generation [40, 70, 21,
23, 39], test oracle definition [62, 31], and test adequacy [46, 40, 35].
In the existing DL testing literature, most related works deal with automated test data generation.
Only a few input generators are model-based and expose failures within a simulated environment.
Gambi et al. [28], Stocco et al. [62]. Riccio et al. [56], Birchler et al. [11, 12, 10], and Abdessalem
et al. [1] test self-driving cars by generating failure-inducing driving scenarios. We share with
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them the usage of a simulator to control the environment in which an autonomous vehicle is
tested, but differently from these works, we aim at generating realistic simulated test cases by first
reproducing flying conditions experienced in the field and then manipulating such conditions to
identify failure scenarios.

6 Conclusion and Future Work

Simulation-based testing of UAVs is an important quality assurance step before systems can be
released to production. We have proposed a generic adaptive greedy algorithm that can be in-
stantiated to replicate a flight trajectory observed in the field and manipulate it in order to expose
misbehaviors. Our experimental results show that SURREALIST, implementing our approach, can
achieve faithful flight replication by reconstructing the obstacles encountered along the mission’s
path. After replication, SURREALIST is also able to manipulate the obstacles in the environment to
find challenging conditions that lead to unsafe behavior of the UAV.
In our future work, we plan to investigate surrogate models that can predict the behavior of the
UAV without actually running any simulations. Such models can guide our adaptive greedy
search algorithm at low computational cost, making the search more efficient and potentially ca-
pable of exploring more complex critical scenarios. We also intend to experiment with additional
UAV models and environment configurations, including e.g. different weather conditions and
obstacle types.
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