
Self-assessment Oracles for Anticipatory Testing

TECHNICAL REPORT: TR-Precrime-2023-03

Andrea Stoccoa, Brian Pulferb, Paolo Tonellaa
aUniversità della Svizzera italiana, bUniversité de Genève
Model vs System Level Testing of Autonomous Driving Systems: A
Replication and Extension Study

Project no.: 787703
Funding scheme: ERC-2017-ADG
Start date of the project: January 1, 2019
Duration: 60 months

Technical report num.: TR-Precrime-2023-03
Date: January, 2023
Organization: Università della Svizzera italiana

Authors: Andrea Stoccoa, Brian Pulferb, Paolo Tonellaa
aUniversità della Svizzera italiana, bUniversité de Genève

Dissemination level: Public
Revision: 1.0

Disclaimer:
This Technical Report is a pre-print of the following publication:
Andrea Stocco, Brian Pulfer, Paolo Tonella: Model vs System Level Testing of Autonomous Driving
Systems: A Replication and Extension Study. Empirical Software Engineering, vol. 28, n. 3, 2023

Please, refer to the published version when citing this work.

TR-Precrime-2023-03 — Model vs System Level Testing of Autonomous Driving

Università della Svizzera Italiana (USI)

Principal investigator: Prof. Paolo Tonella
E-mail: paolo.tonella@usi.ch
Address: Via Buffi, 13 – 6900 Lugano – Switzerland
Tel: +41 58 666 4848
Project website: https://www.pre-crime.eu/

TECHNICAL REPORT ii

mailto:paolo.tonella@usi.ch
https://www.pre-crime.eu/

TR-Precrime-2023-03 — Model vs System Level Testing of Autonomous Driving

Abstract

Offline model-level testing of autonomous driving software is much cheaper, faster, and diver-
sified than in-field, online system-level testing. Hence, researchers have compared empirically
model-level vs system-level testing using driving simulators. They reported the general useful-
ness of simulators at reproducing the same conditions experienced in-field, but also some inade-
quacy of model-level testing at exposing failures that are observable only in online mode.
In this work, we replicate the reference study on model vs system-level testing of autonomous
vehicles while acknowledging several assumptions that we had reconsidered. These assumptions
are related to several threats to validity affecting the original study that motivated additional
analysis and the development of techniques to mitigate them. Moreover, we also extend the repli-
cated study by evaluating the original findings when considering a physical, radio-controlled
autonomous vehicle.
Our results show that simulator-based testing of autonomous driving systems yields predictions
that are close to the ones of real-world datasets when using neural-based translation to mitigate
the reality gap induced by the simulation platform. On the other hand, model-level testing fail-
ures are in line with those experienced at the system level, both in simulated and physical envi-
ronments, when considering the pre-failure site, similar-looking images, and accurate labels.

TECHNICAL REPORT iii

TR-Precrime-2023-03 — Model vs System Level Testing of Autonomous Driving

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Autonomous Driving Software . 3
2.2 Model-level Testing . 3
2.3 System-level Testing . 4

3 Replicated Study 4

4 Empirical Study 7
4.1 Research Questions . 7
4.2 Self-Driving Car Models . 8
4.3 The Platform . 8

4.3.1 Testing Tracks . 8
4.4 RQ0: Procedure and Results . 9

4.4.1 SDCs Data Collection . 9
4.4.2 SDCs Model Setup & Training . 9
4.4.3 SDCs Sanity Check . 10
4.4.4 Mitigating RQ0-T1 with CycleGAN . 10
4.4.5 Comparing real-world vs virtual driving . 10
4.4.6 RQ0: Results . 11

4.5 RQ1: Procedure and Results . 12
4.5.1 Generating Test Scenarios . 12
4.5.2 Mitigating RQ1-T2 with pre-failure window selection 12
4.5.3 Mitigating RQ1-T1 with visual similarity search 13
4.5.4 Configurations . 14
4.5.5 RQ1: Results . 14

4.6 Threats to Validity . 15
4.6.1 Internal validity . 15
4.6.2 External validity . 15
4.6.3 Reproducibility . 15

5 Qualitative analysis 15

6 Related Work 16
6.1 Model vs System Testing Comparison . 16
6.2 Model and System Testing Approaches . 16
6.3 Challenges for Autonomous Driving Testing . 17
6.4 Physical Testing of Autonomous Vehicles . 18
6.5 GAN-based Testing of Autonomous Vehicles . 18

7 Conclusions 18

TECHNICAL REPORT iv

TR-Precrime-2023-03 — Model vs System Level Testing of Autonomous Driving

Abstract

Offline model-level testing of autonomous driving software is much cheaper, faster, and
diversified than in-field, online system-level testing. Hence, researchers have compared em-
pirically model-level vs system-level testing using driving simulators. They reported the gen-
eral usefulness of simulators at reproducing the same conditions experienced in-field, but also
some inadequacy of model-level testing at exposing failures that are observable only in online
mode.

In this work, we replicate the reference study on model vs system-level testing of au-
tonomous vehicles while acknowledging several assumptions that we had reconsidered. These
assumptions are related to several threats to validity affecting the original study that motivated
additional analysis and the development of techniques to mitigate them. Moreover, we also
extend the replicated study by evaluating the original findings when considering a physical,
radio-controlled autonomous vehicle.

Our results show that simulator-based testing of autonomous driving systems yields pre-
dictions that are close to the ones of real-world datasets when using neural-based translation
to mitigate the reality gap induced by the simulation platform. On the other hand, model-
level testing failures are in line with those experienced at the system level, both in simulated
and physical environments, when considering the pre-failure site, similar-looking images, and
accurate labels.

Keywords: Autonomous Driving, Model Testing, System Testing, DNN Testing, Deep Neural
Networks

1 Introduction

Self-driving cars (SDCs) are autonomous cyber-physical systems capable of sensing the environ-
ment and moving safely within well-established and pre-defined scenarios. SDCs deployed on
public roads embed a large amount of software (estimated as +100 million lines of code [2]),
among which advanced Deep Neural Networks (DNNs) used as perception units to process dig-
ital images representing driving scenes and predict the driving control parameters of the vehi-
cle [13, 43, 59, 72]. This complexity makes half of the entire development budget attributed only
to testing [27]. Due to the virtually unlimited number of driving scenarios that DNN-based SDCs
should support, this cost is expected to grow when testing new vehicle models and versions.
In the literature, two main approaches are used to test DNNs that perform driving tasks. The first
approach is model-level testing — also referred to as offline testing, whereas the second approach is
called system-level testing, or online testing [18, 24]. In model-level testing, the DNN is used as an
independent unit of computation, and it is fed with a set of labeled driving images retrieved from
the real-world, or artificially generated, e.g., by a driving simulator. The DNN predicts values
that are compared to the ground truth labels, which serve as an oracle. The difference between the
prediction and the ground truth label is called error, and a test is considered failed (model-level
failure) when such an error is higher than some predefined threshold.
Differently, in system-level testing, the DNN is embedded within the operational ecosystem in
which it is designed to operate, such as a physical vehicle or a driving simulator. While the DNN
still processes a stream of (unlabeled) driving images captured by the onboard camera, its pre-
dictions have an immediate effect on the overall system behavior, as each prediction and driving
decision influence future driving decisions. Thus, the individual DNN’s prediction errors become
not only less meaningful but also uncomputable, because it is not possible to associate a ground
truth label to incoming data. As such, failing tests are characterized in terms of the misbehavior
of the whole system in response to the DNN’s predictions. A system-level failure is experienced
when the system no longer fulfills its safety requirements, such as excessive departure from the
driving lane.
While both testing approaches are adopted for ensuring the reliability of DNN-based SDCs, tra-
ditionally model-level testing has been more prevalent because of the availability of open-source

TECHNICAL REPORT 1

TR-Precrime-2023-03 — Model vs System Level Testing of Autonomous Driving

driving datasets that can be readily used, such as Udacity’s [60] or Waymo’s [66]. Moreover, it does
not necessitate the effort of embedding the DNN within a driving simulator (or a real vehicle), a
time-consuming and daunting process.
Researchers have compared the two testing levels and highlighted their differences [18, 24, 25].
In particular, the paper by Ul Haq et al. [24] compares model/system failures within the PreScan
simulator. In their work, the authors first assess that virtual tests can be considered an adequate
proxy for on-road testing, as their reproduction of the real-life driving conditions of the Udacity
dataset [60] within PreScan yields similar external behavior of the DNNs (i.e., steering angle pre-
diction errors) as the real-world. Second, they evaluate two deep neural networks vs an autopilot
with global knowledge at driving different scenarios to assess the level of agreement between
model and system-level failures. Their results show high disagreement between the failures de-
tected by the two testing levels. More specifically, the paper reports a large number of false nega-
tives, i.e., failing system-level scenarios in which the individual model-level prediction errors were
found to be acceptable. The authors explain that these failures are caused by an accumulation of
errors during online driving that is not observable during model-level testing.
We identified three main threats to validity in the work by Ul Haq et al. [24]. First, when com-
paring real-world and simulated behaviors, driving scenarios are matched by the similarity of the
predicted steering angles, not by comparing the images used by the DNNs to make their predic-
tions. Second, when comparing model and system failures, the matched driving scenarios are
likely to contain remarkably different input images because the different technologies involved,
i.e., DNN vs autopilot with global knowledge, may have different driving behaviours and hence
may follow different trajectories. As a consequence, the ground truth provided by the autopilot
is a quite imprecise proxy for the real ground truth that the DNN should target. Third, when
comparing model and system failures, error metrics are averaged on the entire scenario (deep
neural network’s and autopilot’s), instead of considering the behavior of the DNN/autopilot in
the immediate proximity of the system failure, when model-level errors are more likely to occur.
In this paper, we replicate the study by Ul Haq et al. [24], improving the experimental setting of the
original paper to address the identified threats to the validity. More in detail: (1) to improve the
association between simulated and real-world images, on which to compare the DNN behavior,
we take advantage of neural translation techniques. (2) To mitigate the false negatives possibly
due to error metric averaging over the entire test scenario, we focus the comparison only on a
sequence of online images that precede the failure (pre-failure window). (3) To retrieve accurate
labels, we perform visual similarity matching between corresponding pairs of online/offline images.
Moreover, our work doubles the comparison between model- and system-level failures as we
consider both a DNN operating in a simulator and a DNN driving a radio-controlled (RC) physical
self-driving car. Our extension to the physical dimension is a novel contribution to the literature.
We reproduced the same results and obtained similar conclusions as the replicated paper [24] on
the usefulness of the simulator to produce comparable offline prediction errors as in the real world.
Thanks to our improvements in the matching of images between simulated and real-world, we
obtained error distributions that are, in many cases, statistically indistinguishable. In the original
study, the compared distributions were significantly different, with a large effect size, despite the
small prediction error differences. Hence, our study provides stronger statistical support to the
findings of the original paper.
Our experimental results also show that violations of the offline oracle (i.e., the occurrence of a
high model-level prediction error) have a small number of system-level false positives (i.e., non-
corresponding system-level failures) and a small number of false negatives (i.e., system-level fail-
ures missed by the model level oracle), suggesting a high agreement between model vs system-
level testing. These findings are in contrast with one of the findings of the replicated paper by
Ul Haq et al. [24]: “Offline testing is more optimistic than online testing because the accumula-
tion of errors is not observed in offline testing.” In fact, by considering the pre-failure window
and by accurately matching pairs of images using visual similarity, we were able to observe an

TECHNICAL REPORT 2

TR-Precrime-2023-03 — Model vs System Level Testing of Autonomous Driving

accumulation of offline errors in most image sequences leading to an online failure.
The paper is structured as follows. Section 2 reports background information. Section 3 describes
the replicated study and the threats to validity. Section 4 illustrates the empirical study in which
we report our mitigation strategies to the threats to validity affecting the original paper, our ex-
tension to a physical SDC, and detailed statistical analysis. In Section 5 we provide a qualitative
analysis of our results. Section 6 gives an overview of the related work, while Section 7 concludes
the paper.

2 Preliminaries

2.1 Autonomous Driving Software

Most existing SDCs are vehicles equipped with specific sensors (such as cameras, LIDAR and GPS)
used to perform different prediction and control tasks, such as lane-keeping, object avoidance,
and path planning, to name a few. SDCs use the information collected by the sensors during a
supervised data collection process to train DNNs at predicting control values that are sent to the
car’s actuators to perform the actual maneuvers (e.g., steering).
In this work, we study SDC models that perform imitation learning for lane-keeping, i.e., a super-
vised learning task in which the DNN learns how to keep the position of the vehicle in lane, by
predicting the steering angle control from a dataset of driving scenes labeled during a driving
session with a human driver.
Our focus is the comparison between model (offline) and system (online) testing on a closed-loop
track, a widely adopted industrial practice that precedes on-road testing on public roads [30, 58,
11, 16, 65, 67].

2.2 Model-level Testing

After the training process, DNN models are tested by measuring evaluation metrics on test datasets [45]
such as accuracy or mean squared error (see Fig. 1).

3. MODEL-LEVEL TESTING1. DATA COLLECTION 2. TRAINING

DNN

predicttrain

Labelled DatasetSynthetic /

real-world images Training Set Testing Set

split

split
accuracy/

MSE

Figure 1: Model-level testing of autonomous vehicles.

We refer to this modality of testing as model-level testing [45], because the model is tested as a
standalone component, evaluating only the predictions the DNN makes on individual images.
This level of testing is comparable to unit testing for traditional software and can be useful to
reveal faults in the training process (e.g., suboptimal learning rate), or in the quality of the data
used for training (e.g., training data imbalance) [28].
For lane-keeping DNNs, error metrics measure the difference between the DNN’s predictions and
the ground truth values, e.g., by computing the mean squared error or the mean absolute error.
Let us take a driving sequence d composed of n images. The mean absolute error (MAE) is given
by:

MAE(d) =
1

n

n∑
i=1

|yi − f(xi)|

TECHNICAL REPORT 3

TR-Precrime-2023-03 — Model vs System Level Testing of Autonomous Driving

where xi denotes the ith image in the driving sequence d, f(xi) the output of the DNN, and yi the
ground truth value. A failure of the DNN, in model-level (offline) testing, is defined by a MAE
above a certain threshold ε.

Failure(d) =

{
True, if MAE(d) ≥ ε
False, otherwise

Thresholds confine the maximum tolerable prediction error within validity ranges that are defined
based on the domain knowledge of test engineers for the possible classes of images (i.e., straight
roads, bends, weather conditions).
The main advantages of model-level testing rely upon its simplicity and low requirements needed
to execute it. The disadvantages consist in being stateless, which makes it ineffective at revealing
faults occurring when the DNN is deployed in production. Indeed, when the DNN model is
tested within a vehicle, the whole system can compensate for some high DNN inaccuracies or, on
the contrary, it might be affected by the accumulation of small DNN inaccuracies over time.

2.3 System-level Testing

To overcome the limitations of model-level testing, system-level testing requires embedding the
DNN within a SDC to test the whole decision-making process. System-level testing is stateful as
it allows to observe the effects that the predictions made by the DNN have on the behavior of the
entire system (Fig. 2).

1. DATA COLLECTION 2. TRAINING

Labelled DatasetSynthetic /

real-world images

3. SYSTEM-LEVEL TESTING

Driving Images

capture

DNN Driving ControlsVehicle

predict

DNN

embedtrain Pass/Fail

Figure 2: System-level testing of autonomous vehicles.

With system-level testing, it is possible to gather concrete values of system quality metrics [31],
such as the speed or the position of the vehicle. Thus, a system-level failure (or online failure) is
characterized as one of the system quality metrics being higher than a threshold determined by
the environment (e.g., the road width), by the regulations in which the system operates (e.g., the
speed limit), or by safety requirements (e.g., the vehicle drives off-road or causes harm to other
vehicles, to the environment, or people).
The main advantages of system-level testing consist in the exposure of actual requirement viola-
tions, as failures are associated with the external behaviour of the software in response to the DNN
predictions. Extensive system-level testing is pivotal when the final goal is the deployment of the
SDC on public roads, which is subject to strict regulations [30, 58]. However, the main disadvan-
tage of system-level testing consists in its high execution cost, as it necessitates embedding the
DNN within a driving simulator or a real vehicle, in addition to the time required to run extensive
test-driving sessions (both virtual or in the field).

3 Replicated Study

This paper is a replication and extension of the work by Ul Haq et al. [24] presented at the Inter-
national Conference on Software Testing, Validation and Verification (ICST) in 2020. An extended
version of the paper has been published in the Empirical Software Engineering journal [25]. In
this paper, we consider the conference version of the work.

TECHNICAL REPORT 4

TR-Precrime-2023-03 — Model vs System Level Testing of Autonomous Driving

Figure 3: Example of simulator-generated driving image from PreScan corresponding to a real-
world image [24]

.

The work by Ul Haq et al. [24] (replicated paper, hereafter) aims to test a lane-keeping DNN
trained with real-world data of the Udacity dataset [60], both at model and system level. The
authors consider simulation-based testing within the driving simulator PreScan. The capability of
PreScan to reproduce the real-world conditions of the Udacity dataset [60] is assessed in the first
research question:
RQ0: Can we use simulator-generated data as a reliable alternative source to real-world data?
The authors performed a visual assessment of the Udacity dataset [60] to infer the road char-
acteristics and environmental conditions. Then, they instrumented PreScan to generate driving
scenarios that are in line with the retrieved characteristics. Finally, they selected sequences of
simulator-generated scenarios that are similar to the real-world data. In their work, the similarity
was measured by means of heuristics that consider only the DNN’s prediction, i.e., the steering
angle predicted by the DNN either on simulated or on real images. A pair of real and simulated
scenarios is considered matched if the scenarios have the same length and the average difference
between pairs of predicted steering angles is lower than a threshold ε (set to 2.5◦). The authors re-
port that the large majority of computer-generated “scenarios (92/100) could match subsequences
of the Udacity real-life test dataset”.
Fig. 3 shows an example of image match used in the original paper, from which it is evident that
visual similarity of the matched images is low (e.g., shadow or cloudy sky are not represented in
the real-world image). Despite the generally low resemblance of simulator-generated sequences,
empirical results show that the DNN’s “prediction error differences between simulator-generated
datasets and real-life datasets are less than 0.1, on average”. Thus, the authors “conclude that
we can use simulator generated datasets as a reliable alternative to real-world datasets for testing
DNNs”.
Threat RQ0-T1: poor visual similarity between real and simulated road images. The authors rec-
ognize the poor visual similarity between real-world and simulator-generated data in the threats
to validity. One goal of our replication is to address the main threat to validity affecting the origi-
nal authors’ findings for RQ0: the poor visual similarity between real and simulated road images.
Indeed, when poor visual similarity affects the comparison, the compared DNNs will learn fea-
tures that are quite different between real-world and simulated images as DNNs used for driving
make use of convolutional layers as feature extractors. For instance, considering Fig. 3, a DNN
will extract geometrical features both from the double solid yellow lines on the left as well as the
single solid white line on the right for the real-world image. The simulated image does not repre-
sent lane conditions, as the right lane is occluded by a shadow, not present in the real-world, and
the left lane is a single broken white line. In our paper, we address such a threat by adopting an
automated approach based on neural image translation (see Section 4.4.4).
The second and main research question of the replicated paper focuses on the comparison between
model- and system-level testing on the simulation platform:
RQ1: How do offline and online testing results differ and complement each other?

TECHNICAL REPORT 5

TR-Precrime-2023-03 — Model vs System Level Testing of Autonomous Driving

Pre-failure
sub-scenario

DNN-based SDC

Autopilot with
global knowledge

Nominal
sub-scenario

Failure

Generated
Test Scenario

Figure 4: Scenario-level matching may cause different sets of images to be compared as it typically
combines both nominal and failing sub-scenarios.

The authors extended the set of conditions that can be generated by PreScan, including weather
effects to create unseen scenarios that could expose failures of the DNNs under test at the system
level. Then, they generated 50 random scenarios and used the autopilot module of PreScan to
generate a ground truth driving trajectory (i.e., sequence of steering angles). We contacted the first
author and asked for clarifications about the computation of the ground truth steering angles; the
response was quick and detailed.
They executed two pre-trained DNNs models from the literature, Autumn [13] and Chauffeur [57],
on the same 50 random scenarios, to collect predicted steering angles, as well as the Maximum Dis-
tance from the Center of Lane (MDCL). For a large set of the generated scenarios (87%), system-
level failures occur based on the observed MDCL, which was above a threshold of 0.7 (correspond-
ing to approximately 1.5 meter). Then, for each generated scenario (both failing and non-failing),
they computed MAE, as the mean difference between the sequence of predicted steering angles
and the sequence of ground truth steering angles from the autopilot’s driving trajectory. A MAE
above 0.1 (2.5◦) was regarded as a model-level failure. Scenarios in which the MAE/MDCL are
both above or both below their respective thresholds are said to be in agreement, otherwise, they
are regarded as being in disagreement. The authors found large disagreement in the case of system-
level failures, in contrast to the high agreement for the non-failing conditions, or for model-level
failures.
We have identified two main threats to the validity of the original experimental design that we
wish to address in this work. We use a graphical support to illustrate our hypothesis. Fig. 4 (left)
shows a typical generated test scenario with a road characterized by an initial road segment, a
curve on the right followed by a curve on the left. Fig. 4 (right) shows the trajectories taken by
the autopilot with global knowledge, which is used as a reference for the ground truth steering
angles, and by the DNN-based SDC under test.
Threat RQ1-T1: different driving conditions experienced by autopilot vs DNN. Although the
driving scenario, among the 50 that have been generated, is kept the same when autopilot or
DNN are driving, the sequence of images captured and processed by the autopilot is likely to be
quite different from the sequence of images captured and processed by the DNN. Indeed, from the
replicated paper, it is reported that, for 87% of the cases, the outcome of the simulation diverges
between the autopilot and the DNN, as the autopilot is expected to exhibit no failures, thanks to
its access to global knowledge. Hence, the labels by the autopilot are not reliable because they
have been obtained on a set of images that are different from the ones experienced by the DNN,
especially during near-failing sub-sequences of the test scenarios (see Fig. 4 right). Thus, for the
computation of the MAE, more reliable labels should be used for assessing offline DNN failures.

TECHNICAL REPORT 6

TR-Precrime-2023-03 — Model vs System Level Testing of Autonomous Driving

In our work, we address RQ1-T1 as follows: we perform a search using a state-of-the-art visual
matching algorithm, Structural Similarity Index (SSIM) [64], to match each individual driving
frame observed by the DNN within the pre-failure sequence with the closest labeled driving frame
available in the training set. We use the label of such a matching frame from the training set as the
ground truth steering angle for the calculation of the MAE.
Threat RQ1-T2: MAE computed on entire driving scenario. In the results tables of the origi-
nal paper [24], the case “MAE < 0.1 and MDCL ≥ 0.7” is the second most prevalent, while it
becomes the most prevalent in the journal extension of the replicated paper [25]. This can be in-
terpreted as most DNN predictions being correct even when the vehicle is departing from the
road. The authors motivate this as “Offline testing is more optimistic than online testing because
the accumulation of errors (eventually causing a critical lane departure) is not observed in offline
testing.” [24]. While the motivation provided by the authors is intuitive, we hypothesize another
explanation for these results.
Since it is not possible to retrieve the ground truth for each individual image observed and pro-
cessed by the DNN, because the autopilot might have never seen exactly the same image, the au-
thors rely on a coarse-grained matching, performed by considering the entire sequence of steering
angles in the same scenario driven by both autopilot and DNN (threat RQ1-T1). Correspondingly,
MAE values are computed as the average over all the images observed in an entire driving sce-
nario and a model-level failure occurs only when such average is above the threshold 0.1. This has
the disadvantage to include in the comparison also many images in which the car is not yet devi-
ating from the lane, along with the corresponding (presumably) correct steering angles. While in
this case the frames in which the DNN-based vehicle is not yet deviating are likely to be more sim-
ilar to the reference autopilot’s frames, both nominal driving and pre-failure driving sub-scenarios are
considered within the same sequence-level comparison (see Fig. 4). If the nominal sub-scenario dom-
inates the pre-failure sub-scenario, the MAE would result below the threshold even for failing
scenarios.
To address RQ1-T2, we adopt the following mitigations: we restrict the computation of MAE to a
pre-failure sub-scenario, which occurs before off-road driving. While a precise identification of the
pre-failure window may be challenging in most real-world settings, our experimental framework
allows us to have full control. Specifically, our driving simulator logs each frame with the position
of the car on the track. Concerning real-world data, the position of the car is estimated by a DNN
trained for that purpose [51]. Thus, we can identify precisely the first driving frame in which the
car departs from the drivable road section. Based on this precise definition of system-level fail-
ure, we isolate a pre-failure window of driving frames, as well as the associated predictions, that
precede each system-level failure. Then, we utilize only the pre-failure window when performing
the comparison between model vs system-level testing oracle violations.

4 Empirical Study

In our empirical study, we compare model- and system-level testing of both physical and virtual
SDCs. The goal of the study is to assess whether the results from the replicated study [24] hold
when improving the experimental setting and when considering the physical platform Donkey
Car [21] in addition to its digital twin.

4.1 Research Questions

We consider the same research questions of the replicated study [24], which have been briefly
presented in Section 3:
RQ0: Can we use simulator-generated data as a reliable alternative source to real-world data?
In the replicated study, the authors rely on a stationary dataset of real-world images, for which

TECHNICAL REPORT 7

TR-Precrime-2023-03 — Model vs System Level Testing of Autonomous Driving

driving quality metrics (i.e, MDCL) are not available. Moreover, the authors could not reproduce
the same driving conditions on a real-world vehicle, because they relied on Udacity’s pre-collected
images. For this reason, they first investigate whether they could rely on the virtual images from
a simulator to test a DNN trained with real-world data.
Differently, in our work, we consider on-road system-level testing with a physical vehicle (hardware-
in-the-loop), instead of relying on the stationary dataset of images provided by Udacity [60]. This
obviates the need of demonstrating the representativeness of simulator-generated data as we can
directly measure, or estimate, the in-field quality metrics for system-level testing. Nevertheless,
we study RQ0 by addressing RQ0-T1 through unsupervised image neural translation techniques
for the reconstruction of real-world scenes within a simulator.
RQ1: How do offline and online testing results differ and complement each other?
RQ1 is the main research question of the paper. We take advantage of the Donkey Car framework
to compare the failure profiles observed in the virtual vs the physical world, both at the model-
and system-level, by addressing RQ1-T1 and RQ1-T2 through pre-failure window selection and
visual similarity matching.

4.2 Self-Driving Car Models

We test the same two DNN-based SDCs of the replicated study [24]: Autumn [56] and Chauf-
feur [57]. These publicly available SDC models scored high rankings in the Udacity challenge
and they have been used as experimental subjects in several testing works [31, 43, 52, 53, 54, 59,
72]. Autumn consists of three convolutional layers, followed by five fully-connected layers [56].
Chauffeur uses six convolutional layers to extract the features of input images, two-dimensional
dropout layers, and a fully connected layer [57].

4.3 The Platform

While full-scale testing of SDC is still impractical for most academic settings as it presents severe
time, space, and cost constraints [14, 62], small-scale vehicles represent an interesting alternative.
Frameworks such as Donkey Car [21] or AWS DeepRacer [6] are derived from remote-controlled
(RC) cars and provide an electrical engine and a battery as a main power unit. Although these
are small-scale vehicles, they reach considerably high speeds and accelerations for their size [10].
RC cars are adopted at the early stages of testing autonomous driving algorithms as they retain
relevant photorealistic conditions of the driving environments which are experienced also by full-
scale cars [62]. These platforms are increasingly used by researchers who want to experiment
their solutions on real vehicles for the purpose of testing newly developed autonomous driving
software [7, 10, 32, 39, 47, 63, 73, 75].
In our study, we adopt the Donkey Car™ open-source framework [21]. Donkey Car includes an
HSP 94186 Brushed RC car with self-driving capabilities, a Python framework supporting train-
ing and testing of SDCs that perform lane-keeping, and a simulator developed with Unity [61],
a popular cross-platform game engine, in which the real-world DonkeyCar’s actuators are mod-
eled with high fidelity. Donkey Car is one of the reference platforms for studies comparing the
autonomous driving testing of small-scale SDCs [63], because of its open-source nature. In our
study, we leverage the Donkey Car framework to perform model-level vs system-level testing of
SDCs, both in the virtual and in the real world, with the latter being a totally novel contribution
of this study.

4.3.1 Testing Tracks

Our testing track is an 11m long track, printed on a mat of size 3.0m × 4.54m. The road section
is 52 cm wide. Clockwise, the track features three curves on the right and one on the left. The

TECHNICAL REPORT 8

TR-Precrime-2023-03 — Model vs System Level Testing of Autonomous Driving

Donkey Car simulator features a scene that resembles our real-world track in terms of the road’s
shape, colors, and proportions [51].
In our setting, the car follows the middle line on a two-lane road (as if it were a single-lane, one-
way road) and moves only forward. We use the lateral position, or cross-track error (XTE), to
assess the lane-keeping capability of SDC models. XTE measures the distance from the center of
the car to the center of the road [52]. The MDCL metric used in the replicated paper measures
the distance of the center of the car from the center of the lane of a two-lane, two-way road (in-
stead of the center of the road). Hence, we consider a thresholded XTE (i.e., a Maximum XTE) as
comparable to MDCL.

4.4 RQ0: Procedure and Results

4.4.1 SDCs Data Collection

For each testing environment (virtual and physical world), we collect two training sets by manu-
ally driving on both the virtual and physical tracks, incentivizing the vehicle to stay close to the
centerline of the track. We followed the guidelines by Kramer et al. [55] for generating driving
sequences for the DNN. In particular, we followed the suggestion to generate both nominal and
near-failing driving sequences [13, 55]. Nominal driving sequences are those that incentivize the
vehicle to stay on track. Near-failing driving sequences are used to teach the DNN how to recover
the vehicle back to track. Both driving styles are needed for the training of a robust lane-keeping
DNN [13, 55], in order to make the DNN able to cope with different driving conditions possibly
occurring in the same track sector. We kept a constant throttle value of 0.3, resulting in a maxi-
mum driving speed of 3.1 mph (5 km/h, or 1.40 m/s) during data collection. Images are acquired
from the front-facing camera at 21 frames per second (FPS), labeled with the ground truth steering
angle of the human driver.
Fig. 5 shows the distributions of steering angles of our training sets for both testing environments.
Average steering angles are 0.314±0.461 for simulated and 0.316±0.431 for real-world training
sets, respectively.

Figure 5: Steering angles distributions for the virtual (left) and real-world (right).

4.4.2 SDCs Model Setup & Training

For each DNN (Autumn, Chauffeur), we trained an individual SDC model on each training set
(virtual and real-world), for a total of four models. Following the guidelines by Bojarski et al. [13]
for the hyper-parameters, the number of epochs was set to 500, with a batch size of 64 and a
learning rate of 0.0001. We used early stopping with a patience value of 30 and a minimum loss
change of 0.0005 on the validation set. The DNNs use the Adam optimizer to minimize the MSE
between the predicted steering angles and the ground truth values. As common practices require,
we cropped the images to 140× 320 by removing 100 pixels from the top, which allows the DNN

TECHNICAL REPORT 9

TR-Precrime-2023-03 — Model vs System Level Testing of Autonomous Driving

to focus on the part of the image relevant for lane-keeping. We used data augmentation (e.g.,
translation, brightness) to increase the diversity in the training data.

4.4.3 SDCs Sanity Check

After training, we assessed that the four trained models are robust enough to be considered in the
subsequent testing phase. We let them drive in their corresponding testing tracks multiple times
and observed that they can drive without crashing or going off-road. For the physical vehicle,
we also controlled the discharge of the Donkey Car’s battery and we recharged the battery if the
voltage was found to jeopardize the overall quality of driving.

4.4.4 Mitigating RQ0-T1 with CycleGAN

The distribution of real-world images can be different from the distribution of simulator-generated
images [4] (threat RQ0-T1), undermining the validity of our study. To mitigate RQ0-T1, we use
a generative adversarial network (GAN) called CycleGAN [76] to generate real-world driving
images from the corresponding simulated ones. CycleGAN is a cycle-consistent adversarial gen-
erative network that performs an unsupervised and unpaired image-to-image translation. The
two datasets of images do not need to be paired, yet they should represent analogous driving
data images (respectively, images from the simulated track and images from the real-world track).
Starting from two sets of images with analogous latent features, CycleGAN learns two image-
to-image encoder-decoder functions that share the latent space, so that, given an image from one
domain (e.g., a virtual driving scene), it is possible to generate not only a similar image in the same
domain but also the corresponding image in the other domain (e.g., a real-world driving scene).
Fig. 6 shows an example of neural translation in which we use a CycleGAN model to convert a
real-world image (left) into a virtual image (right).

Figure 6: Neural-generated driving image corresponding to a real-world image.

4.4.5 Comparing real-world vs virtual driving

From the replication package provided by the authors [24], we were able to obtain the predictions,
ground truth, and MAE values of 31/92 sequences. Correspondingly, we collected 31 real-world
scenarios by manual driving: these scenarios are labeled with humanly produced ground truth
steering angle values, for a total of 7,906 real-world images. We used CycleGAN to translate them
into 31 corresponding virtual scenarios. Usage of CycleGAN ensures a high visual similarity
between the real-world image and its translation into a simulated image, which was not the case
of the replicated study (Fig. 3).
We executed our SDC models in offline mode, and we compared the obtained steering angle pre-
dictions with the ground truth steering angles to obtain per-frame absolute errors. We performed
a statistical comparison between the prediction error distribution obtained for real-world scenar-
ios and the prediction error distribution for the simulated scenarios. We assess the statistical
significance of the differences between real-world and simulator errors using the non-parametric
Mann-Whitney U test [68] (with α = 0.05), the magnitude of the differences using the Cohen’s d

TECHNICAL REPORT 10

TR-Precrime-2023-03 — Model vs System Level Testing of Autonomous Driving

effect size [19], and the statistical power with a Monte Carlo power analysis [15] with 80% power
target as our data is not normally distributed.

4.4.6 RQ0: Results

Table 1 reports the results about the prediction error differences between simulator-generated data
and real-world data. For each SDC model, we report the input type used during training (Train)
and testing (Test), the average MAE difference between real-world and reconstructed virtual sce-
narios, and the percentage of simulations for which the MAE difference was below the threshold
ε = 0.1 (2.5◦) used in the replicated study.
The first observation is that all models attain an average MAE difference< 0.1, which is consistent
with the results reported in the replicated study [24]. This happens in our improved experimental
setting, which mitigates RQ0-T1 with neural translation, as well as in our replication of the impre-
cise image matching described in the replicated study [24] (last two rows of Table 1). As expected,
the MAE difference is higher when offline testing a DNN-based SDC trained on real-world data
onto the simulation platform.

Table 1: RQ0: Prediction error differences between simulator and real-world data.

Input type Avg MAE Simulations < ε

Train Test Diff %

Our Study
Autumn Virtual Virtual 0.01 68
Chauffeur Virtual Virtual 0.02 100
Autumn Real-world Virtual 0.06 39
Chauffeur Real-world Virtual 0.02 90

Replication of [24]
Autumn Real-world Virtual 0.08 74
Chauffeur Real-world Virtual 0.06 84

Concerning the statistical analysis of prediction error distributions (not done in the original pa-
per [24]), Table 2 classifies the simulations of Table 1 according to whether the distribution of
prediction errors was different with statistical significance (p-value < 0.05) and those for which it
was the same for real-world and for translated simulator images (i.e., p-value ≥ 0.05, divided by
low/high statistical power). Results are further divided by effect size (negligible, small, medium,
large). We can notice from Table 2 that in our replication of the original study, the majority of
the simulations have prediction errors distributed quite differently from those obtained from real-
world, Udacity images, with statistically significant differences and large effect size. Only 3% for
Autumn and 23% simulations for Chauffeur have a negligible/small effect size, and only 13% are
supported by power analysis. Actually, for Autumn, 30/31 simulations (97%) and 24/31 (84%)
simulations in the case of Chauffeur have a large effect size.
In our improved experimental setting, which takes advantage of neural translation, prediction
errors tend to be closer between simulated and real images, in most cases. When DNN models
are trained on simulated images, the two prediction error distributions (obtained on simulated
vs real images) exhibit negligible differences in 84% (Autumn) and 68% (Chauffeur) of the cases.
When DNN models are trained on real-world images, prediction errors have negligible differences
in 55% (Autumn) and 77% (Chauffeur) of the cases (with a negligible effect size, power analysis
requires a huge number of samples to reach the threshold of 0.8).

TECHNICAL REPORT 11

TR-Precrime-2023-03 — Model vs System Level Testing of Autonomous Driving

Table 2: RQ0: Statistical analysis of the prediction errors between real-world driving sequences
and their virtual reconstruction.

ne
gl

ig
ib

le

sm
al

l

m
ed

iu
m

la
rg

e

p < .05 p≥ .05 p < .05 p≥ .05 p < .05 p≥ .05 p < .05 p≥ .05

pow pow pow pow

< .8 ≥ .8 < .8 ≥ .8 < .8 ≥ .8 < .8 ≥ .8

Our Study
Autumn 1 16 5 3 0 5 1 0 0 0 0 0
Chauffeur 10 10 7 0 0 4 0 0 0 0 0 0
Autumn 1 4 7 13 0 6 0 0 0 0 0 0
Chauffeur 5 24 0 2 0 0 0 0 0 0 0 0

Replication of [24]
Autumn 0 1 0 0 0 0 0 0 0 30 0 0
Chauffeur 3 3 2 5 0 2 3 0 0 13 0 0

RQ0: The prediction error differences between simulator-generated and real-life datasets are less
than 0.1, on average, for both Autumn and Chauffeur, confirming previous results. Statistical
analysis of the prediction error distributions revealed statistically significant differences with large
effect size in the original experimental setting. In our experimental setting, with improved image
matching due to neural translation, statistical analysis reports negligible differences between the
error distributions, providing a stronger statistical support to the original findings on the usefulness
of the simulator to trigger similar DNN behaviors as in the real world.

4.5 RQ1: Procedure and Results

In RQ1 we perform a comparison between model and system-level testing, for the virtual and
real-world SDC separately.

4.5.1 Generating Test Scenarios

As our SDC models are constructed to be failure-free in nominal conditions, similarly to the repli-
cated study, we test them by injecting unknown conditions (i.e., conditions different from those in
the training set) onto the existing tracks in real-time during driving.
We use the black-box image corruptions proposed by Hendrycks et al. [26], commonly used to test
DNNs that process imagery data. The paper proposes 18 corruptions belonging to five classes,
namely noise, blur, weather, luminance, and resolution reduction.
We test each SDC using 36 scenarios, of which 18 failure-inducing scenarios and 18 failure-free
scenarios. The former were obtained from 72 one-lap simulations (for a total of 4,665 images)
by enabling the corruptions for each model Autumn (sim and real) and Chauffeur (sim and real)
in their respective environments (virtual and real). All such simulations (4,665 images overall)
experienced a system-level failure (Section 2.3) due to image corruption. These failing simulations
are used to assess the true alarms reported by model-level testing. The latter were obtained from
four one-lap simulations with no corruption enabled, one for each model, Autumn (sim and real),
and Chauffeur (sim and real) in their respective environments. All such simulations experienced
no system-level failures and are used to assess whether false alarms are reported by model-level
testing.

4.5.2 Mitigating RQ1-T2 with pre-failure window selection

We recall that in our setting, a system-level failure occurs during off-road driving episodes. The
simulator automatically flags the car as off-road if the car’s position deviates by more than half

TECHNICAL REPORT 12

TR-Precrime-2023-03 — Model vs System Level Testing of Autonomous Driving

SA: 0.01
XTE: 0.03

SA: 0.03
XTE: 0.05

SA: 0.00
CTE: -0.08

SA: 0.21
XTE: -0.40

SA: 0.62
XTE: -0.73

SA: 0.85
XTE: -2.13

SA: 0.81
XTE: -2.39

DNN

corrupted images

original images

pre-failure window

Simulator

Donkey Car

Figure 7: Pre-failure window selection.

of the track’s width (i.e., |XTE| > 2.2, as XTE = ±2.2 marks the lane borders, whereas XTE
= 0 represents the middle of the lane). In the real world, we use an existing telemetry estimator
from the literature [51] to automatically retrieve the XTE value for real-world images. Thus, for
both settings, based on our definition of system-level failure, we are able to isolate the pre-failure
sub-scenario of driving frames (and predictions) that precedes each system-level failure, which
mitigates threat RQ1-T2.
Fig. 7 illustrates an example from our empirical study. In the figure, the Chauffeur model drives
on our simulated version of the testing track from right to left. An image corruption of type
“fog” is automatically injected onto the original camera frame (corrupted images). Each image is
labeled with the steering angle (SA) predicted by Chauffeur and the XTE value. The simulation
fails when |XTE| > 2.2, which occurs for the leftmost frame of the figure. We refer to this frame
as the first failing image. Thus, we consider a sequence of images preceding the first failing image
as the potential candidate for the root cause of the failure, i.e., the sequence in the vicinity of the
failure site in which most wrong predictions are expected to have occurred. We have considered
a pre-failure sub-scenario of 3 seconds, corresponding to 63 frames (Section 4.4.1), a reasonable
value found during preliminary experiments, given the relative shortness of our testing track. We
refer to such sequence as the pre-failure window.

4.5.3 Mitigating RQ1-T1 with visual similarity search

To mitigate threat RQ1-T1, we perform pre-failure window selection, needed to find the most sim-
ilar image with a ground truth label, using a visual similarity metric called SSIM [64] (structural
similarity index). SSIM simulates the high sensitivity of the human visual system to structural
distortions while compensating for non-structural distortions. It is considered a more reliable
measure to the per-pixel metrics such as Euclidean distance. SSIM is a floating-point number that
ranges from 0 (no similarity) to 1 (perfect match).
We calculate the SSIM score between each image in the pre-failure window and each image in the
subset of the training set that is related to the portion of the track in which the pre-failure window
occurs. Thus, we select the image with the highest visual similarity (i.e., highest SSIM score) as
the reference image to use as the ground truth. To lower the chance of false matches, we make
sure to match frames that belong to the same part of the track. Our tracks are divided into five
distinct logical sectors. Our simulation platform labels each image with the corresponding track

TECHNICAL REPORT 13

TR-Precrime-2023-03 — Model vs System Level Testing of Autonomous Driving

Table 3: RQ1: Results of the comparison between model and system level testing.

Visual search on pre-failure window

virtual real-world

Autumn Chauffeur Autumn Chauffeur

MAE < 0.1 MAE ≥ 0.1 MAE < 0.1 MAE ≥ 0.1 MAE < 0.1 MAE ≥ 0.1 MAE < 0.1 MAE ≥ 0.1

Nominal 18 0 18 0 14 4 13 5
Pre-failing 2 16 0 18 2 16 2 16

Total 20 16 18 18 16 20 13 23

sector. For real-world images, such information is not available, thus we manually assigned each
image to the sector they belong to in our real-world closed-loop testing track.

4.5.4 Configurations

For each scenario, we calculated the per-frame absolute error value, both for the virtual and the
real-world scenarios. We also replicated in our setting the scenario-level matching of the replicated
study, by matching entire sequences instead of individual frames. Since autopilot modules are not
available in our framework, we produced two one-lap simulations by manually driving the tracks,
both in the virtual and real-world, to obtain a reference driving trajectory (ground truth steering
angles) that can be used for computing the MAE over the entire scenario.

4.5.5 RQ1: Results

Table 3 reports the results for our proposed matching technique (visual search on pre-failure win-
dow) on both environments (simulation and real-world). For each configuration, the table reports
the number of cases in which model-level and system-level testing are in agreement (i.e., MAE
< 0.1 in nominal scenarios, or MAE ≥ 0.1 in pre-failing scenarios) and the number of cases in
which they are in disagreement (i.e., MAE < 0.1 in pre-failing scenarios scenarios, or MAE ≥ 0.1 in
nominal scenarios).
Overall, our results show a high agreement between model and system-level testing and are not
consistent with the results presented by the original authors. We believe this is due to our refined
experimental setting. In the simulated environment, the agreement rate is 94% for Autumn and
100% for Chauffeur. The model level oracle exhibits only two false negatives (i.e., missed system-
level failures) for Autumn. In the real-world physical environment, the agreement rate is 83% for
Autumn and 86% for Chauffeur. The model level oracle exhibits two false negatives for Autumn,
as well as four false positives (wrong expectations of system-level failures, due to high model-level
MAE). For Chauffeur, model-level testing reports no false negatives, but five false positives.

Table 4: RQ1: Our replication of RQ1 [24].

virtual

Autumn Chauffeur

MAE < 0.1 MAE ≥ 0.1 MAE < 0.1 MAE ≥ 0.1

Nominal 18 0 18 0
Pre-failing 11 7 9 9

Total 29 7 27 9

Concerning our replication of the results by Ul Haq et al. [24], we were able to reproduce the
results of the original paper (i.e. no false positives) using the scenario-level matching proposed
by the authors (Table 4). Model vs system-level testing disagreement is 50% for Autumn (100%
of false negatives, no false positives) and drops to 22% for Chauffeur (44% of false negatives, no
false positives).

TECHNICAL REPORT 14

TR-Precrime-2023-03 — Model vs System Level Testing of Autonomous Driving

RQ1: Model-level (offline) and system-level (online) testing results agree in most cases when using
a scenario matching technique based on the pre-failure site, similar-looking images, and accurate
labels. On the contrary, the disagreement reported in the replicated study emerges only when using
a scenario matching technique based on the entire image sequence and on the auto-pilot ground
truth.

4.6 Threats to Validity

4.6.1 Internal validity

One threat to internal validity concerns our custom implementation of the SDCs, with custom
training sets. To mitigate this threat, we implemented best practices [13, 55] to make sure to train
robust SDC models that exhibited no failures in nominal conditions. Another threat is that the pre-
failing images may not find a match in the training set if this does not contain diverse trajectories.
However, this scenario never occurred in our experiments.
Lastly, the replicated study uses a simulator in which the car drives on a specific lane of a two-
lane road whereas in our setting the car follows the middle line on a two-lane road (as if it were a
single-lane, one-way road). While the MDCL used in the replicated paper is a measure of distance
from the center of the lane (instead of the center of the road), we consider a thresholded XTE (i.e.,
a Maximum XTE) as comparable to MDCL.

4.6.2 External validity

The use of the Donkey Car framework poses a threat in terms of the generalizability of our results.
While Donkey Car has been used in similar studies for DNN testing [39, 62, 63, 75], generalizability
to other physical settings is not guaranteed. We considered only one physical track, instead of
open-source datasets of labeled driving images. However, this was unavoidable, as we are not
aware of ways to reliably import real-world driving data within a simulation platform, or within
the Donkey Car.

4.6.3 Reproducibility

We make our data, results, and the Donkey Car simulator available [1]. The techniques and heuris-
tics proposed in this paper do not need necessarily a physical platform and can be applied, for
instance, to stationary datasets as Udacity’s [60]. For a complete replication of our study, two
open-source physical assets are needed, i.e., the Donkey Car and a racing track with the charac-
teristics described in Section 4.3.1.

5 Qualitative analysis

The Autumn DNN model exhibited 4 false positives (see Table 3) when driving the physical Don-
key Car. Although this is a small number compared to the true positives and true negatives (resp.
16 and 14), we have investigated them qualitatively in-depth, to understand the core reasons be-
hind a high offline prediction error when the car can drive safely in nominal conditions. Fig. 8
reports some meaningful examples from our experiments.
Plot/image ¶ show a case in which, during a straight road segment, the human driver had to
correct the trajectory after a bend, due to the high speed of the vehicle (green curve). The SDC
model, on the other hand, predicts a steering angle near zero (red curve), which is in line with the
average steering angle learned from the training set distribution for straight road segments of this
kind (see Fig. 5). Hence, the prediction error is large.

TECHNICAL REPORT 15

TR-Precrime-2023-03 — Model vs System Level Testing of Autonomous Driving

OverestimationSpikes in human labels Conservative behaviour

1

1

2

2

3

3

DNN

Reference

Figure 8: Examples of wrong predictions causing false positives.

Plot/image · show a case in which the human driver applies a moderate steering angle on the
right (≈0.6, or 10◦) and travels a right bend at the center of the road. The SDC model, on the
other hand, predicts a steering angle near 1.0 (16◦) which means full steering on the right, in line
with the average steering angle learned from the training set distribution for right road segments,
causing a large prediction error.
Finally, plot/image ¸ show a case in which the SDC model predicts left steering angle commands
a few frames before the human driver. This anticipating behavior can be explained by the fact
that the DNN has learned a conservative behavior towards certain challenging conditions, which
deviate substantially from the human ground truth angle.
Overall, we observed a different driving style between humans and DNN, despite the latter is
imitating the former. This might generate offline errors that do not correspond to any system-
level failure (false positives).
Another finding of this study concerns the generalizability of the results obtained on a simulation
platform to the physical environment. We have two main explanations for this: (1) our simulated
platform is a digital twin of the physical car (i.e., a faithful virtual replica of the vehicle and its sen-
sors) and (2) we maintained the same experimental setting across virtual and real environments.

6 Related Work

6.1 Model vs System Testing Comparison

Codevilla et al. [18] investigate the relation between model-level vs system-level testing metrics for
SDCs. They use the simulation environment CARLA [22], finding that offline prediction errors are
not correlated with driving quality. Moreover, they report that two DNN models with analogous
error prediction rates may differ substantially in their driving quality. In our paper we instead
found that offline prediction errors do correlate with online driving quality metrics, but only if
an accurate scenario matching technique is adopted, capable of computing the pre-failure site,
similar-looking images, and accurate labels.
We have extensively discussed the work by Haq et al. [24], of which this study is a replication.
The authors have extended the original paper in a journal version [25] in which they consider one
more SDC model to the study (Komanda) and further correlation analysis. However, the threats
to validity identified in our study were not addressed. Thus, our results and findings also hold
for the extended version of the paper.

6.2 Model and System Testing Approaches

Most approaches to testing DNNs that perform autonomous driving are at the model level [20,
43, 59, 72]. For example, DeepXplore [43] uses white-box testing to synthesize inputs that maxi-
mize both neuron coverage and behavior diversity. Kim et al. [34] propose several white-box test

TECHNICAL REPORT 16

TR-Precrime-2023-03 — Model vs System Level Testing of Autonomous Driving

adequacy criteria based on surprise, defined as the distance in DNN’s behaviour between a new,
candidate test input and the training data. Inputs should be generated to cover all ranges of sur-
prise, from low to high surprise. DeepTest [59] uses affine transformations from computer vision
to produce new inputs that cause the DNN to misbehave. DeepRoad [59] proposes the usage of
GANs to generate more realistic driving inputs from streams of real-world data. ThirdEye [50]
uses the attention maps from the explainable AI domain to predict misbehaviours of self-driving
cars. Dang et al. [20] study the robustness of DNN driving models with respect to different adver-
sarial attacks. Kong et al. [36] generate realistic adversarial billboards within real-world images
that are able to confound the vehicle. In our work, we also use universal adversarial perturbations
at the system-level, finding comparable results in terms of virtual/physical robustness. However,
the focus of our study is on the model vs system level testing comparison.
Concerning system-level testing techniques for SDCs, researchers proposed techniques to generate
driving scenarios procedurally [3, 8, 9, 41, 46, 54]. For instance, SilGAN [42] uses GANs to generate
driving maneuvers for software-in-the-loop testing. Mullins et al. [41] use Gaussian processes to
drive the search towards yet unexplored regions of the input space. Abdessalem et al. [3, 8, 9]
combine genetic algorithms and machine learning to test a pedestrian detection system. Li et
al. [37] use ontologies for automatically generating combinatorial test suites for testing automated
driving functions. Riccio and Tonella [46] propose a model-based test generator that uses Catmull-
Rom splines to characterize the road shape and generate inputs that are at the behavioural frontier
of a SDC model. Arrieta et al. [5] use a genetic algorithm to generate tests for cyber-physical
systems that optimize requirements coverage, test case (dis-)similarity and test execution time.
Riccio et al. [44] use mutation adequacy-guided test generation to augment existing test suites for
SDCs.
In contrast, our work focuses on the comparison of model vs system-level testing of SDCs, both on
a simulated and a real-world environment. Our extension to a physical SDC constitutes a novel
contribution to the state of the art.

6.3 Challenges for Autonomous Driving Testing

Wotawa [69] discuss the challenges in testing autonomous driving systems and highlight the sim-
ilarities and the differences with testing safety critical systems. Stellet et al. [49] discuss the testing
of advanced driver assistance towards automated driving reporting as main drawback the high
initial effort to build the simulation environment, but also the quantification of the achieved de-
gree of realism of such platforms. Riccio et al. [45] present a systematic mapping of the main
challenges of testing machine learning-based systems, including autonomous driving systems. A
recent work by Zhang et al. [74] provide a comprehensive taxonomy for critical scenario identifi-
cation methods based on an analysis of the state-of-the-art research, and identify open issues and
directions for further research. Wotawa et al. [70] discuss verification and validation methodolo-
gies for advanced driver-assistance systems.
Concerning the oracle problem, Kalra et al. [33] calculate the number of miles of driving that
would be needed to provide clear statistical evidence of autonomous vehicle safety. Jahangirova
et al. [31] evaluated 26 metrics related to the quality of driving of both human and autonomous
driving and showed their usefulness as functional oracles through mutation testing [29]. Evans
et al. [23] design a domain specific language to express oracles for autonomous driving systems
testing such as safety, liveness, timeliness and temporal properties.
Our work compares model- and system-level based testing both in simulated and physical en-
vironments, and discusses the conditions under which model- and system-level based testing
expose failures.

TECHNICAL REPORT 17

TR-Precrime-2023-03 — Model vs System Level Testing of Autonomous Driving

6.4 Physical Testing of Autonomous Vehicles

The usage of physical RC vehicles has fostered substantial research in the domain of autonomous
racing, in which DNN malfunctions or deficiencies can have far-reaching safety consequences [10].
Verma et al. [62] compare different scaled vehicles concluding that such platforms allow the rapid
exploration of many different test tracks while retaining realistic environmental conditions, which
provides further justification for our choice to use Donkey Car. Researchers have been using
Donkey Car [39, 51, 63, 73, 75] to study also reinforcement learning algorithms for autonomous
driving [7, 12, 35]. Sinha et al. [47] present a framework to predict the vehicle’s future state with
by experiments on small scale autonomous platforms. Mahmoud et al. [39] use image scaling for
functional test of DNN SDC on the Donkey Car platform. Chen et al. [17] embed a real hardware
control unit within a simulation platform to verify the validity of self-driving DNNs in virtual
scenes, including perception, planning, decision making, and control. Sotiropoulos et al. [48]
report on an exploratory study of bugs in outdoor robots navigation, showing how most of them
can be revealed in low-fidelity simulation. Stocco et al. [51] compare virtual and physical testing
of autonomous driving systems, reporting a 60% transferability between the two. El Mostadi et
al. [40] discuss the drawbacks of virtual testing of advanced driver-assistance systems, including
simulation crashes, ill-controlled test executions, incorrect verdict assignments, and waste of time
in the running and analysis of useless tests.
Differently from described works, our comparison of model vs system-level testing of SDCs using
a real-world physical environment is a novel contribution to the studies using physical platforms.

6.5 GAN-based Testing of Autonomous Vehicles

The main focus of existing GAN-based testing techniques is to inject perturbations into a driving
scene (e.g., to create realistic weather transition for the same image) for offline testing [72], or to
estimate telemetry data that are unavailable in the field, when driving a physical car [42, 71, 51].
DeepRoad [72] uses UNIT [38] to generate accurate photo-realistic paired driving scenes for SDC
testing, which were evaluated for their capability of exposing individual prediction errors. Sil-
GAN [42] uses GANs to generate driving maneuvers for software-in-the-loop testing. Surfel-
GAN [71] is a technique developed at Waymo to generate realistic sensor data for autonomous
driving simulation without requiring manual creation of virtual environments and objects. Dif-
ferently from existing works, we use CycleGAN, that requires no pairing, to generate pseudo-real
driving scenes to evaluate the prediction differences between virtual and physical SDCs.

7 Conclusions

This paper replicates an existing study on the comparison between model (offline) and system
(online) level testing of autonomous driving systems, with a focus on supervised models for lane-
keeping. We discussed the main threats to the validity of the original study, and we set up an
experimental design that addresses them. Moreover, our study extends the original study, which
was conducted only in simulation, with the physical dimension, in which we consider a real-world
small-scale self-driving vehicle.
Our experiments did not lead to a full replication of the original study. On the one hand, our
study confirms the original findings reported in the replicated study about the possibility to use
simulator-generated data as an alternative to real-world data. We obtain a comparably low dif-
ference between simulator and real-world prediction errors, and statistical analysis confirm that
the distributions of such prediction errors have negligible differences. The latter result does not
hold for the data collected in the original study, possibly because of the poor visual similarity af-
fecting the images matched by the heuristic used by the original authors. In our work, matches
obtained by automated neural translation result in faithful images across domains (simulator vs

TECHNICAL REPORT 18

TR-Precrime-2023-03 — Model vs System Level Testing of Autonomous Driving

real-world).
On the other hand, our study does not confirm the original findings concerning the disagreement
between offline and online testing. The observed disagreements consisted of false negatives, i.e.,
low offline errors associated with system failures. In our replication, such a phenomenon was
observed quite rarely and was not as prevalent as in the original study, the main reason being
the improved accuracy of our scenario matching technique, which determines precisely the pre-
failure sequence, the pairs of online/offline images to match, and the accuracy of the ground truth
assigned to each matching pair.
Our results provide strong justification for the ongoing research on simulation-based testing and
offline model-level testing since they are both highly correlated with the exposure of real-world
failures. Of course, this does not mean that online, in-field testing should be neglected, as it is
impossible to account for the variability of the real world in a simulator, or offline. However, by
investing in the early levels of testing, companies can reduce substantially the risk of revealing
potential deployment failures when approaching a new release of self-driving car software.

TECHNICAL REPORT 19

TR-Precrime-2023-03 — Model vs System Level Testing of Autonomous Driving

References

[1] Code artifacts. https://github.com/tsigalko18/emse22, 2022.

[2] Many cars have a hundred million lines of code. https://www.technologyreview.
com/2012/12/03/181350/many-cars-have-a-hundred-million-lines-of-code/,
2012.

[3] Raja Ben Abdessalem, Annibale Panichella, Shiva Nejati, Lionel C. Briand, and Thomas
Stifter. Testing autonomous cars for feature interaction failures using many-objective search.
In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering,
ASE 2018, pages 143–154, New York, NY, USA, 2018. ACM.

[4] Afsoon Afzal, Deborah S. Katz, Claire Le Goues, and Christopher Steven Timperley. Sim-
ulation for robotics test automation: Developer perspectives. In International Conference on
Software Testing, Validation and Verification, ICST ’21, April 2021.

[5] Aitor Arrieta, Shuai Wang, Urtzi Markiegi, Goiuria Sagardui, and Leire Etxeberria. Search-
based test case generation for cyber-physical systems. In 2017 IEEE Congress on Evolutionary
Computation (CEC), pages 688–697, 2017.

[6] AWS Deepracer. https://aws.amazon.com/deepracer, 2021.

[7] Bharathan Balaji, Sunil Mallya, Sahika Genc, Saurabh Gupta, Leo Dirac, Vineet Khare,
Gourav Roy, Tao Sun, Yunzhe Tao, Brian Townsend, Eddie Calleja, Sunil Muralidhara, and
Dhanasekar Karuppasamy. Deepracer: Educational autonomous racing platform for experi-
mentation with sim2real reinforcement learning. CoRR, abs/1911.01562, 2019.

[8] R. Ben Abdessalem, S. Nejati, L. C. Briand, and T. Stifter. Testing advanced driver assistance
systems using multi-objective search and neural networks. In 2016 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), pages 63–74, Sep. 2016.

[9] R. Ben Abdessalem, S. Nejati, L. C. Briand, and T. Stifter. Testing vision-based control systems
using learnable evolutionary algorithms. In 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE), pages 1016–1026, May 2018.

[10] Johannes Betz, Hongrui Zheng, Alexander Liniger, Ugo Rosolia, Phillip Karle, Madhur Behl,
Venkat Krovi, and Rahul Mangharam. Autonomous vehicles on the edge: A survey on au-
tonomous vehicle racing, 2022.

[11] BGR Media, LLC. Waymo’s self-driving cars hit 10 million miles. https://techcrunch.
com/2018/10/10/waymos-self-driving-cars-hit-10-million-miles, 2018.
Online; accessed 1 September 2021.

[12] Matteo Biagiola and Paolo Tonella. Testing the plasticity of reinforcement learning based
systems. ACM Trans. Softw. Eng. Methodol., jan 2022.

[13] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Pra-
soon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake
Zhao, and Karol Zieba. End to end learning for self-driving cars. CoRR, abs/1604.07316,
2016.

[14] Ardashir Bulsara, Adhiti Raman, Srivatsav Kamarajugadda, Matthias Schmid, and Venkat N
Krovi. Obstacle avoidance using model predictive control: An implementation and valida-
tion study using scaled vehicles. Technical report, SAE Technical Paper, 2020.

[15] Burch, Najm, Yang, and Trick. Mcpower: a monte carlo approach to power estimation. In
1992 IEEE/ACM International Conference on Computer-Aided Design, pages 90–97, 1992.

TECHNICAL REPORT 20

https://github.com/tsigalko18/emse22
https://www.technologyreview.com/2012/12/03/181350/many-cars-have-a-hundred-million-lines-of-code/
https://www.technologyreview.com/2012/12/03/181350/many-cars-have-a-hundred-million-lines-of-code/
https://aws.amazon.com/deepracer
https://techcrunch.com/2018/10/10/waymos-self-driving-cars-hit-10-million-miles
https://techcrunch.com/2018/10/10/waymos-self-driving-cars-hit-10-million-miles

TR-Precrime-2023-03 — Model vs System Level Testing of Autonomous Driving

[16] Vinton G. Cerf. A comprehensive self-driving car test. Commun. ACM, 61(2):7–7, January
2018.

[17] Shitao Chen, Yu Chen, Songyi Zhang, and Nanning Zheng. A novel integrated simulation
and testing platform for self-driving cars with hardware in the loop. IEEE Transactions on
Intelligent Vehicles, 4(3):425–436, 2019.

[18] Felipe Codevilla, Antonio M. López, Vladlen Koltun, and Alexey Dosovitskiy. On offline
evaluation of vision-based driving models. CoRR, abs/1809.04843, 2018.

[19] Jacob Cohen. Statistical power analysis for the behavioral sciences. L. Erlbaum Associates, Hills-
dale, N.J, 1988.

[20] Yao Deng, Xi Zheng, Tianyi Zhang, Chen Chen, Guannan Lou, and Miryung Kim. An analy-
sis of adversarial attacks and defenses on autonomous driving models, 2020.

[21] Donkey Car. https://www.donkeycar.com/, 2021.

[22] Alexey Dosovitskiy, Germán Ros, Felipe Codevilla, Antonio López, and Vladlen Koltun.
CARLA: an open urban driving simulator. CoRR, abs/1711.03938, 2017.

[23] Ana Nora Evans, Mary Lou Soffa, and Sebastian Elbaum. A language for autonomous vehi-
cles testing oracles, 2020.

[24] Fitash Ul Haq, Donghwan Shin, Shiva Nejati, and Lionel Briand. Comparing offline and
online testing of deep neural networks: An autonomous car case study. In Proceedings of 13th
IEEE International Conference on Software Testing, Verification and Validation, ICST ’20. IEEE,
2020.

[25] Fitash Ul Haq, Donghwan Shin, Shiva Nejati, and Lionel Briand. Can offline testing of deep
neural networks replace their online testing? a case study of automated driving systems.
Empirical Softw. Engg., 26(5), jul 2021.

[26] Dan Hendrycks and Thomas G. Dietterich. Benchmarking neural network robustness to
common corruptions and perturbations. CoRR, abs/1903.12261, 2019.

[27] How Software Is Eating the Car. https://spectrum.ieee.org/
software-eating-car, 2021.

[28] Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, Andrea Stocco,
and Paolo Tonella. Taxonomy of real faults in deep learning systems. ICSE’20, New York,
NY, USA, 2020. ACM.

[29] Nargiz Humbatova, Gunel Jahangirova, and Paolo Tonella. Deepcrime: Mutation testing of
deep learning systems based on real faults. In Proceedings of the 30th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, ISSTA ’21, 2021.

[30] ISO. Road vehicles – Functional safety, 2011.

[31] Gunel Jahangirova, Andrea Stocco, and Paolo Tonella. Quality metrics and oracles for au-
tonomous vehicles testing. In Proceedings of 14th IEEE International Conference on Software
Testing, Verification and Validation, ICST ’21. IEEE, 2021.

[32] Achin Jain, Pratik Chaudhari, and Manfred Morari. Bayesrace: Learning to race au-
tonomously using prior experience. CoRR, abs/2005.04755, 2020.

[33] Nidhi Kalra and Susan M. Paddock. Driving to safety: How many miles of driving would it
take to demonstrate autonomous vehicle reliability? Transportation Research Part A: Policy and
Practice, 94:182–193, 2016.

TECHNICAL REPORT 21

https://www.donkeycar.com/
https://spectrum.ieee.org/software-eating-car
https://spectrum.ieee.org/software-eating-car

TR-Precrime-2023-03 — Model vs System Level Testing of Autonomous Driving

[34] Jinhan Kim, Robert Feldt, and Shin Yoo. Guiding deep learning system testing using surprise
adequacy. In Proceedings of the 41st International Conference on Software Engineering, ICSE ’19,
pages 1039–1049, Piscataway, NJ, USA, 2019. IEEE Press.

[35] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al Sallab, Senthil
Yogamani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A sur-
vey, 2021.

[36] Zelun Kong and Cong Liu. Generating adversarial fragments with adversarial networks for
physical-world implementation. CoRR, abs/1907.04449, 2019.

[37] Yihao Li, Jianbo Tao, and Franz Wotawa. Ontology-based test generation for automated and
autonomous driving functions. Information and Software Technology, 117:106200, 2020.

[38] Ming-Yu Liu, Thomas M. Breuel, and Jan Kautz. Unsupervised image-to-image translation
networks. CoRR, abs/1703.00848, 2017.

[39] Yaqub Mahmoud, Yuichi Okuyama, Tomohide Fukuchi, Tanaka Kosuke, and Iori Ando. Op-
timizing deep-neural-network-driven autonomous race car using image scaling. In SHS web
of conferences, volume 77, page 04002. EDP Sciences, 2020.

[40] Mohamed El Mostadi, Hélène Waeselynck, and Jean-Marc Gabriel. Seven technical issues
that may ruin your virtual tests for adas. In 2021 IEEE Intelligent Vehicles Symposium (IV),
pages 16–21, 2021.

[41] Galen E. Mullins, Paul G. Stankiewicz, R. Chad Hawthorne, and Satyandra K. Gupta. Adap-
tive generation of challenging scenarios for testing and evaluation of autonomous vehicles.
Journal of Systems and Software, 137:197–215, 2018.

[42] Dhasarathy Parthasarathy and Anton Johansson. Silgan: Generating driving maneuvers for
scenario-based software-in-the-loop testing. CoRR, abs/2107.07364, 2021.

[43] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore: Automated whitebox
testing of deep learning systems. In Proceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, pages 1–18, New York, NY, USA, 2017. ACM.

[44] Vincenzo Riccio, Nargiz Humbatova, Gunel Jahangirova, and Paolo Tonella. DeepMetis:
Augmenting a deep learning test set to increase its mutation score. In Proceedings of the 36th
IEEE/ACM International Conference on Automated Software Engineering, ASE ’21. IEEE/ACM,
2021.

[45] Vincenzo Riccio, Gunel Jahangirova, Andrea Stocco, Nargiz Humbatova, Michael Weiss, and
Paolo Tonella. Testing Machine Learning based Systems: A Systematic Mapping. Empirical
Software Engineering, 2020.

[46] Vincenzo Riccio and Paolo Tonella. Model-Based Exploration of the Frontier of Behaviours
for Deep Learning System Testing. In Proceedings of ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE ’20, 2020.

[47] Aman Sinha, Matthew O’Kelly, Hongrui Zheng, Rahul Mangharam, John Duchi, and Russ
Tedrake. Formulazero: Distributionally robust online adaptation via offline population syn-
thesis, 2020.

[48] Thierry Sotiropoulos, Hélène Waeselynck, Jérémie Guiochet, and Félix Ingrand. Can robot
navigation bugs be found in simulation? an exploratory study. In 2017 IEEE International
Conference on Software Quality, Reliability and Security (QRS), pages 150–159, 2017.

TECHNICAL REPORT 22

TR-Precrime-2023-03 — Model vs System Level Testing of Autonomous Driving

[49] Jan Erik Stellet, Marc René Zofka, Jan Schumacher, Thomas Schamm, Frank Niewels, and
J. Marius Zöllner. Testing of advanced driver assistance towards automated driving: A sur-
vey and taxonomy on existing approaches and open questions. In 2015 IEEE 18th International
Conference on Intelligent Transportation Systems, pages 1455–1462, 2015.

[50] Andrea Stocco, Paulo J. Nunes, Marcelo d’Amorim, and Paolo Tonella. ThirdEye: Attention
maps for safe autonomous driving systems. In Proceedings of 37th IEEE/ACM International
Conference on Automated Software Engineering, ASE ’22. IEEE/ACM, 2022.

[51] Andrea Stocco, Brian Pulfer, and Paolo Tonella. Mind the Gap! A Study on the Transferability
of Virtual vs Physical-world Testing of Autonomous Driving Systems. IEEE Transactions on
Software Engineering, 2022.

[52] Andrea Stocco and Paolo Tonella. Towards anomaly detectors that learn continuously. In Pro-
ceedings of 31st International Symposium on Software Reliability Engineering Workshops, ISSREW
2020. IEEE, 2020.

[53] Andrea Stocco and Paolo Tonella. Confidence-driven weighted retraining for predicting
safety-critical failures in autonomous driving systems. Journal of Software: Evolution and Pro-
cess, 2021.

[54] Andrea Stocco, Michael Weiss, Marco Calzana, and Paolo Tonella. Misbehaviour prediction
for autonomous driving systems. In Proceedings of 42nd International Conference on Software
Engineering, ICSE ’20. ACM, 2020.

[55] Maxime Ellerbach Tawn Kramer and contributors. Donkeycar. https://www.donkeycar.
com/, 2022.

[56] Team Autumn. Steering angle model: Autumn. https://github.com/udacity/
self-driving-car/tree/master/steering-models/community-models/
autumn, 2016. Online; accessed 1 September 2021.

[57] Team Chauffeur. Steering angle model: Chauffeur. https://github.com/udacity/
self-driving-car/tree/master/steering-models/community-models/
chauffeur, 2016. Online; accessed 1 September 2021.

[58] Eric Thorn, Shawn C. Kimmel, and Michelle Chaka. A framework for automated driving
system testable cases and scenarios. 2018.

[59] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. Deeptest: Automated testing of deep-
neural-network-driven autonomous cars. In Proceedings of the 40th International Conference on
Software Engineering, ICSE ’18, pages 303–314, New York, NY, USA, 2018. ACM.

[60] Udacity self-driving challenge 2, ch2-001 (testing) and ch2-002 (training). https://
github.com/udacity/self-driving-car/tree/master/datasets/CH2, 2016.

[61] Unity3d. https://unity.com, 2019.

[62] Ankit Verma, Siddhesh Bagkar, Naga Venkata SaiTeja Allam, Adhiti Raman, Matthias
Schmid, and Venkat N Krovi. Implementation and validation of behavior cloning using
scaled vehicles. In SAE WCX Digital Summit. SAE International, apr 2021.

[63] Ari Viitala, Rinu Boney, and Juho Kannala. Learning to drive small scale cars from scratch.
CoRR, abs/2008.00715, 2020.

[64] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment: from
error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):600–612,
2004.

TECHNICAL REPORT 23

https://www.donkeycar.com/
https://www.donkeycar.com/
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/autumn
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/autumn
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/autumn
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/chauffeur
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/chauffeur
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/chauffeur
https://github.com/udacity/self-driving-car/tree/master/datasets/CH2
https://github.com/udacity/self-driving-car/tree/master/datasets/CH2
https://unity.com

TR-Precrime-2023-03 — Model vs System Level Testing of Autonomous Driving

[65] Waymo Driver. https://waymo.com/waymo-driver/, 2021.

[66] Waymo LLC. Waymo Open Dataset. https://waymo.com/open/, 2021. Online; accessed
1 September 2021.

[67] Waymo Secret Testing. https://www.theatlantic.com/technology/archive/
2017/08/inside-waymos-secret-testing-and-simulation-facilities/
537648/, 2017.

[68] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):80,
December 1945.

[69] Franz Wotawa. Testing Autonomous and Highly Configurable Systems: Challenges and Feasible
Solutions, pages 519–532. Springer International Publishing, Cham, 2017.

[70] Franz Wotawa, Florian Klück, Martin Zimmermann, Mihai Nica, Hermann Felbinger, Jianbo
Tao, and Yihao Li. Recent Verification and Validation Methodologies for Advanced Driver-
Assistance Systems. CRC Press, 2021.

[71] Zhenpei Yang, Yuning Chai, Dragomir Anguelov, Yin Zhou, Pei Sun, Dumitru Erhan, Sean
Rafferty, and Henrik Kretzschmar. Surfelgan: Synthesizing realistic sensor data for au-
tonomous driving. CoRR, abs/2005.03844, 2020.

[72] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid. Deep-
road: Gan-based metamorphic testing and input validation framework for autonomous driv-
ing systems. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Soft-
ware Engineering, ASE 2018, pages 132–142, New York, NY, USA, 2018. ACM.

[73] Qi Zhang and Tao Du. Self-driving scale car trained by deep reinforcement learning. CoRR,
abs/1909.03467, 2019.

[74] Xinhai Zhang, Jianbo Tao, Kaige Tan, Martin Torngren, Jose Manuel Gaspar Sanchez,
Muhammad Rusyadi Ramli, Xin Tao, Magnus Gyllenhammar, Franz Wotawa, Naveen Mo-
han, Mihai Nica, and Hermann Felbinger. Finding critical scenarios for automated driving
systems: A systematic mapping study. IEEE Transactions on Software Engineering, pages 1–1,
2022.

[75] Hongli Zhou, Xiaolei Chen, Guanwen Zhang, and Wei Zhou. Deep reinforcement learning
for autonomous driving by transferring visual features. In 2020 25th International Conference
on Pattern Recognition (ICPR), pages 4436–4441, 2021.

[76] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks. CoRR, abs/1703.10593, 2017.

TECHNICAL REPORT 24

https://waymo.com/waymo-driver/
https://waymo.com/open/
https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/
https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/
https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/

	Introduction
	Preliminaries
	Autonomous Driving Software
	Model-level Testing
	System-level Testing

	Replicated Study
	Empirical Study
	Research Questions
	Self-Driving Car Models
	The Platform
	Testing Tracks

	RQ0: Procedure and Results
	SDCs Data Collection
	SDCs Model Setup & Training
	SDCs Sanity Check
	Mitigating RQ0-T1 with CycleGAN
	Comparing real-world vs virtual driving
	RQ0: Results

	RQ1: Procedure and Results
	Generating Test Scenarios
	Mitigating RQ1-T2 with pre-failure window selection
	Mitigating RQ1-T1 with visual similarity search
	Configurations
	RQ1: Results

	Threats to Validity
	Internal validity
	External validity
	Reproducibility

	Qualitative analysis
	Related Work
	Model vs System Testing Comparison
	Model and System Testing Approaches
	Challenges for Autonomous Driving Testing
	Physical Testing of Autonomous Vehicles
	GAN-based Testing of Autonomous Vehicles

	Conclusions

