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“ Conducting data analysis is like drinking a ûne wine. It is important to swirl and sniò the
wine, to unpack the complex bouquet and to appreciate the experience. Gulping the wine
doesn’t work. ”

Daniel B. Wright, 2003
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ABSTRACT

Hail storms are able to cause severe damages to all kind of goods. Whilemostly economic damages of hail events
are considered, damages to vegetation are more complex to quantify due to their complexity and hetereogen-
ity regarding species and types. Few research exists on this topic which relies on the complexity of hail as a
phenomenon itself: Due to its small-scale characteristics only few in situ measurement systems exist,making it
problematic to gather long time series of reliable data. Furthermore, almost no research has been done under-
taken yet on the follow-up eòects of hail damage to plants. _is work aims to contribute to this science ûeld by
analyzing the spatial distribution of hail damages in pine plantations in northern Spain.
For this purpose, binomial statistical learning methods (Generalized Linear Mixed Model (GLMM) and

Generalized AdditiveMixedModel (GAMM))were applied to surveyed "hail damage to trees" distributed across
the Basque Country. Climate variables like precipitation, temperature and Potential Incoming Solar Radia-
tion (PISR), extracted from a long term climate data set with a spatial resolution of 200 m, were used as pre-
dictors in themodels to explore the relationship between them and the response. Age of the surveyed trees was
used as a biological component in themodel. Underlying grouping structures (spatial autocorrelation and ran-
dom eòects) in the data were investigated and accounted for in the models. Additionally, the synoptic weather
situation of hail occurencewas analyzed using long termweather station data for the cities Bilbao, San Sebastian
and Vitoria.

_e prime time for hail occurence was found to be between November and April. _e analysis of the weather
station data revealed non-linear relationships between hail occurence and climatic variables. _e GAMM, ac-
counting for the underlying spatial autocorrelation, did not converge. Hence, these results have to be treated
with caution due to a violation of the independence assumption of the residuals. Diòerent risk areaswere carried
out with the result of the northeast of the Basque Country being most susceptible of "hail damage to trees" (for
bothmodels). A considerably decrease of "hail damage to trees" susceptibility was observed along the Cantabrian
Rangewith very low estimated probabilities of "hail damage to trees" for areas located further south. _is ûnding
runs contrary to the absolute occurence of hail events which is highest in areas with estimated low probabilities,
inferring that most of the hail events in this region happen with a low destructive energy. A substantial increase
of "hail damage to trees" probability was observed in the Generalized AdditiveModel (GAM) for the top third
range of the predictor range of precipitation andminimum temperature with examplary odds ratios of 7.9 (0.125
m/mm2 - 0.14 m/mm2) and 3.99 (5°C - 6°C), respectively. Estimated probabilities range between 0%-50% for the
GLMM and 0%-100% for theGAM. _e latter revealed high uncertainties in areaswith low precipitation and/or
temperature values pointing to a likely overûtting of themodelwhich is also conûrmed by the large gap between
the (100 repetitions, ten fold) spatial cross-validation result of the training set (0.87) and the test set (0.62).
Further research usingmore environmental variables explaining hail occurence (e.g. wind speed) is suggested.

Also, the outcomes of thiswork (risk areas, estimated probabilities) need to be compared to analyses using direct
hail observations (in contrast to derivated observations like in this work) in the Basque Country.
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CHAPTER 1
INTRODUCTION

_e phenomenon hail causes not only serious damage to material goods such as buildings or automobiles but
also to natural ones like crops or forest stands (Punge & Kunz, 2016). Hailstorms occur all over the world and
their dynamics are very hard to understand due to their small-scale appearance and high variability in both
spatial and temporal aspects (García-Ortega et al., 2014; Sánchez, López, García-Ortega, & Gil, 2013; J. Webb,
Elsom, & Meaden, 2009). According to Vinet (2001) more than 150 million Euros related to hail damage were
paid to policyholders by insurance companies in 1997 in Spain and France, respectively, not including crop and
forest damages. Mallafré, Ribas, del Carmen Llasat Botija, and Sánchez (2009) assume up to 700 million Euros
of loss due to hail in the agrarian sector in Spain per year. Only summer hail is capable of damaging crops in
most parts of Europe, since beforeMay crops are not yet aòected by hail and in October most yield has already
been stored (Vinet, 2001). Looking at hail events on a global scale, a hailstorm in Buenos Aires caused damages
up to 15 million US dollars in 2010,mostly damaging cars. Moreover, agrarian losses ofUS$ 50million andUS$
30 million (wine and fruit production, respectively) on average per year are reported from the western part of
Argentina (Mezher, Doyle, & Barros, 2012). Analyzing data from the International Association of Agricultural
Production Insurers (AIAG) (formerly known as the ’InternationalAssociation ofHail Insurers’), Spain has been
declared as the country facing the highest losses related to hail damage every year. It is assumed that the damage
exceeds 150 million Euros for Spain in total whereat 20 - 30 million Euros are assigned to the Northeastern part
of the Iberian Peninsula (Sánchez et al., 2013). Yet damage cost estimations related to hail diòer greatly. With
respect to Mallafré et al. (2009), 650 - 700 million Euros of costs in the agrarian sector of Spain are related to
hail damage. However, the authors did not provide a temporal reference period for this estimation. As cited
by Punge and Kunz (2016), Porras, Sairouni, and Aran (2013) estimated the annual loss in the Spanish agrarian
sector to be around 240 million Euros for the years 2001 - 2009.
Damages related to hailstorms depend on two fundamental points: Kinetic energy of precipitation andmaxi-

mum hailstone size (Sánchez et al., 2013; Hohl, Schiesser, & Aller, 2002). Applying atmospheric theories of hail
storm genesis, an increase in the surface temperature leads to a growth in upli� power which results in more
severe hail intensity (Dessens, 1995). Severe convection can be described as a vertical transfer of heat and hu-
midity coupledwith buoyancy. _is causes severalweather phenomena like tornadoes, hail, strong precipitation
or intense winds (García-Ortega et al., 2014). On the other hand, this upli� also favors hailstonemelting in the
atmosphere and in turn lower hail severity (B.Xie,Zhang, &Wang, 2008). Taking these two opponent eòects into
account, the ûnal net impact of hailstorms is assumed to rely highly on regional attributes (Dessens, Berthet, &
Sanchez, 2015). _understorms containing hail are by experience "highly-organized convective systems in terms
of multicells, Mesoscale Convective Systems (MCS), or supercells" (Punge & Kunz, 2016). Topography is one
of the key drivers of hail genesis as it controls heat transport and induces convection. However, its in�uence is
o�en neglected in hail analysis (Changnon, Changnon, & Steven, 2009; Suwala & Bednorz, 2013).
Withhail being a rarephenomenon, data availability and quality onhailstorm characteristics such as frequency

and severity varies greatly. With the existence of only a few thousand hailstorm occurrences per year in Europe,
"an average frequency ofmuch less than onehail event per year at any location" is observed (Punge&Kunz, 2016).
Studies by Changnon (1970, 1977) have investigated large numbers of hail-streaks in the U.S. _e result was that
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80% of all observed cases aòected areas with a spatial extent of less than 40 km2 while the median was even
smaller (20.5 km2). A detailed understanding of the local landscape characteristics is needed to apprehend the
non-trivial connection ofmultiple processes causing the formation of thunderstorms and hail. _ese processes
can be used to infer possible explanations of the spatial variability of hail frequency (Punge & Kunz, 2016). _is
spatial property of hail can be adopted to Europe as well.
A number of points exist why more knowledge on hail attributes such as frequency, intensity and caused

damage is highly asked for. In meteorology, information on hail leads to a better understanding of atmospheric
processes leading to hail genesis and this in turn improves the overall insight of atmospheric processes. Geog-
raphers investigate the leverage of local-scale features and properties aòecting hail genesis. In the economy it is
important to estimate hail risk as precisely as possible to provide speciûc insurance oòers for diòerent locations.
Some construction techniques (e.g. solar thermal systems) may need to be adapted in certain regions with a
high hail severity to ensure resistance. People owning crops or vineyards o�en rely on long term hail informa-
tion when deciding whether or not to invest in protection systems or even hail suppression methods (Punge &
Kunz, 2016).

Hail analysis is o�en limited to certain areas due to a lack ofwidely distributed and standardized observing sys-
tems. Since it is uncommon to install hail monitoring devices at SynopticWeather Stations (SYNOP), hail events
are only tracked on manned stations during daytime, o�en conducted using diòering acquisition standards. For
example, not all observers follow the World Meteorological Organization (WMO) guideline of only counting
hail if the observed diameter is larger than 5 mm and thus may count ice pellets as hail. Hence, hail observa-
tions from SYNOP are o�en not able to capture the local-scale variability of hail or to fulûll quality standards
accordingly. _is fact makes studies based on such data highly questionable (Punge & Kunz, 2016). Since a few
decades, themost common methods utilize radars to relate environmental to atmospheric conditions (Stumpf,
Smith, & Hocker, 2004) aiming to improve knowledge of hail genesis and possible changes of hail dynamics in
times of climate change.
While climate change is unequivocal and proved by the latest reports of the Intergovernmental Panel on Cli-

mate Change (IPCC) (IPCC, 2007, 2013), its consequences on hail are hard to measure. Due to the lack of
widespreadmonitoring systems,missing historical data and the fact of hail being a rare phenomenon on a small-
scale, long term changes related to climate change are diõcult to measure and hence to predict (García-Ortega
et al., 2014). Nevertheless several studies have investigated a possible relationship between climate change and
thunderstorm/hail events. Kunz, Sander, andKottmeier (2009) looked at building damage reported by insurance
companies in Germany over a time span of 30 years (1974 - 2003). While no signiûcant increase in thunderstorm
events (both frequency and severity) was found, hailstorm events revealed an increment in hailstorm days and
associated reported damage. For the Netherlands it was concluded that predicted climate change may increase
damage associated with hailstorms (Botzen, Bouwer, & van den Bergh, 2010).

1.1. Scope of the thesis

_is work aims to (i) explore the synoptic weather situation of hail occurrence in the Basque region, northern
Spain and (ii) to use linear and non-linear statistical learning methods to relate surveyed "hail damages to trees"
to climatic variables to estimate probabilities of hail damage to trees and to distinguish between diòerent risk
areas of possible hail damage to trees within the Basque country.

_e ûndings of this work aim to support the scientiûc process of analyzing the infections of pine trees by
pathogenic agents in the Basque region in northern Spain (Iturritxa,Mesanza, & Brenning, 2014).
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1.2. Outline of the thesis

_e theoretical background of hail genesis and its impact is presented to the reader in chapter 2. Basic infor-
mation about the composition of hail and its measurement methods are given in section 2.1. To understand
the dynamics of hail, the underlying micro-physical processes and the in�uence of large- and small-scale atmo-
spheric �ow conditions are explained in detail in section 2.2. Diòerent scales used in practice to measure the
impact of hail are given in section 2.3.

_e Basque region, representing the study area of this work, and the available data are shown in chapter 3.
A�er an exploratory analysis of the study areas properties (section 3.1), a descriptive overview of each available
data set is given in section 3.2.

In chapter 4 theories of the statistical models (GLMMs and GAMMs) used in this work are introduced and
information about the conducted data preprocessing and modelling steps is provided. Underlying grouping
structures, their in�uences and how to account for them are described in section 4.4 in combination with ma-
thematical model deûnitions. _e various model setups used in this work and their detailed speciûcations are
given in section 4.5. _eoretical and practical information about the setup used to validate themodels are pro-
vided in section 4.6 followed by section 4.7 which presents details about the undertaken spatial prediction.

_e results of all undertaken analyses are listed in chapter 5. It starts with section 5.1 showing the ûndings
of the synoptic weather situation related to hail occurrence. Results of the statistical modelling approaches are
given in section 5.2, followed by the validation analysis in section 5.3 and the spatial prediction and risk area
classiûcation (section 5.4).

_e discussion starts with a note about the previously discarded concept of this work (section 6.1). Data
availability and quality is discussed in section 6.2. In section 6.3, themethods of thiswork are critically reviewed
and an interpretation of the results of this thesis is given. Major ûndings are summarized in section 6.4. Finally,
the relation of thiswork to other studies (section 6.5) is discussed and suggestions for future research are provided
in section 6.6.
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CHAPTER 2
THEORETICAL BACKGROUND

_e following chapter presents basic knowledge as well as state of the art research in the context of hail research.
In section 2.1 basic terms of hail science are introduced. Micro-physical processes and other environmental
in�uences aòecting hail genesis are presented in section 2.2. Hail impact and damage is discussed in section 2.3
by comparing diòerent scales measuring hail severity. Additionally, a closer look at hail impact on forests is
taken in subsection 2.3.4. _e usage ofweather-radar information for hail detection and hail severity assessment
is addressed in Appendix B by presenting several algorithms which are used to process weather-radar data.

2.1. Hail Definitions and Properties

Hail is deûned as ice crystals with a diameter larger than 5 mm. Smaller ones, ranging from 2 mm - 5 mm are
referred to as graupel. Beside size, ice crystals are sub-classiûed according to their micro-physical origination
processes. (Geer, 1997; WorldMeteorological Organization, 2008)

Several factors have to be consideredwhen speaking about hail seasons: Beside the total number of hailstorms,
properties like the area aòected by hail including total damage, the size of hailstones as well as local climate
conditions such as convective energy and the annual temperature cycle need to be taken into account. Whereas
the hail season in Europe diòers highly depending on the region and its respective characteristics, the peak
months are more precisely deûned. Most studies consider May/June as the peak months in terms of counted
hailstorms while June and July lead the monthly score regarding damage and hailstone size (Punge & Kunz,
2016).

To obtain hail risk models, hail-streak properties such as width, length and orientation are of fundamental
importance. However, only few studies have investigated these aspects in detail. Limitations are simply based on
data availability: To obtain substantial results in terms ofwidth and length onewould need to constantlymonitor
large areas using radar or other instruments. Insurance company reports showing loss related to hail can also be
used since theymost o�en cover large areas. However, such data is limited to insured objects/areas. Nevertheless,
studies investigating this issue calculated an average hail-streak length of about 50 kilometers. Hail-streaks with
a length of hundreds of kilometers were observed very rarely (Puskeiler, 2013; Punge & Kunz, 2016). Dessens
(1986) surveyed (30 major) hailstorms between 1952 and 1981 in SW France obtaining an average length of 86
km and width of 6.3 km, respectively. For Hungary, a study byHorvath, Seres, andNemeth (2015) has shown an
average length of 70 km with a distribution mode of around 50 km.

2.1.1. Measurement of Hail

_ree methods exist for observing and measuring hail on the surface: Insurance companies (Holleman, Wes-
sels, Onvlee, & Barlag, 2000), observer networks (Changnon, 1971b, 1971a) and hailpad networks. A hailpad is
a meteorological device on the ground which is able to measure properties of hailstones falling onto it, origi-
nally developed by Schleusener and Jennings (1960). In detail, hailpads "consist of a metal stem attached to a
polystyrene pad designed to absorb the impact of hailstones" (Vinet, 2001). Due to its ability to provide several
numerical variables of hailstones like number, weight, kinetic energy and diameter, hailpads aremost exact and
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most o�en used method among the three. However, to avoid overlappings of multiple hailstorms in data log-
ging, it is common practice to replace hailpads a�er every hailstorm. _is leads to highmaintenance costswhich
in turn limits the number of existing hailpad networks and their extension. According to Sánchez et al. (2013),
"some of the largest operating hailpad networks are located in the province ofMendoza, Argentina (800 hailpads
installed in a grid of 5 km × 5 km) and the province of Zaragoza in Spain (with a total of 100 hailpads installed
every 4 km × 4 km)". Due to the high maintenance costs and the limited observable area, hailpads servemainly
as in situ reference data for hail detection methods covering larger areas such asweather-radar, ûrst proposed by
Battan (1973). _is hail observation technique is explained in more detail in Appendix B.

2.1.2. Hail Size

A study carried out by Punge, Bedka, Kunz, andWerner (2014) found that hailstone sizes exceeded a diameter
of 20mm in nearly every fourth report stored in the European SevereWeatherDatabase (ESWD). In about 3.5%
of the observations the reported hailstone size was larger than 40 mm. _e authors assumed an exponential
relationship between number of hail events and size. However, this assumption may be biased towards large hail
since such entries aremore likely to bemade in a voluntary database due to attractiveness reasons for bothmedia
and storm addicted people.

Regarding the size distribution of hailstones, it is assumed that it follows either a power law or an exponential
function (Ludlam & Macklin, 1959; Fraile, Castro, & Sánchez, 1992) though investigations on variations in hail
size distributions in literature, which result in statistically signiûcant outcomes, are rare (Sánchez et al., 2009).

2.1.3. Hail Frequency

Most o�en, hail frequency is deûned as the number of hail days per year for a speciûc area (where ’speciûc area’
refers to a region smaller than a complete hail-streak but a large enough to be seen as a unique area to be hit by a
storm). _erefore, according to Punge and Kunz (2016), it is recommended to count hail days over an area with
a ûxed size (e.g. hailpads).

Since hail is a small-scale phenomenon, there are only few studies which have tried to assess hail frequency
on a global scale. _e ûrst map going beyond the regional level was produced by Frisby and Sansom (1967) and
covers the tropics. _e authors used hail data from various monitoring stations. _e latest global map was pro-
duced by Cecil and Blankenship (2012) using the passivemicrowave instrumentAdvancedMicrowave Scanning
Radiometer-EOS (AMSR-E) on-board of the Aquamission. _eir approach utilized cloud top temperatures as a
proxy for hail derivation. Nevertheless, the coarse spatial resolution of such global maps makes them unfeasible
for analysis on hail probability on a regional scale. However, numerous studies exist addressing the question
of hail probability on a national and regional scale with some of them being presented in Appendix B. In such
studies, seasonal and daily characteristics are taken into account to obtain precise modelling results (Punge &
Kunz, 2016).
While direct hail observations (with the idea to estimate hail frequency) are hard to acquire and only available

in regions where hailpads or other measurement systems are installed, linking hailstorm occurrences to large-
scale atmospheric �ow conditions is one possibility to overcome this limitation (though it has to be ensured that
for the speciûc area a time series produced by regional climate models is available). Besides the importance of
small-scale conditions, "mesoscale thermal instability in combination with large-scale atmospheric circulation
patterns" (Punge & Kunz, 2016) also have a big impact on hail origination. _is topic is covered in more detail
in subsection 2.2.4.
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Figure 2.1.: Diòerent ice crystals as they appear in thunderstorm cells: (up, from le� to right): Ice crystal, frosted
ice crystal, graupel, hail. (Low, from le� to right): layer structure of hail, baseball as a reference,
conical hailstone and largest ever detected hailstone with a diameter of approximately 20 cm (found
in Vivian, South Dakota on 23/07/2010) (Puskeiler, 2013)

2.2. Hail Genesis

Hail consists of frozen water interspersed by small air inclusions. Depending on atmospheric conditions, hail-
stones vary in their shape and density (Figure 2.1). According to Pruppacher and Klett (2010), density ρ of
hailstones ranges from 0.7 g/cm−3 to 0.9 g/cm−3 (pure ice: ≈ 0.9 g/cm−3). Hail evolution is driven by various
processes sharing diòerent scales, both temporal- and spatial-wise. Up to now, the exact interaction of all those
processed has not been fully understood.
Whilst the presence ofMCS, supercells or multicells, both ice crystals and sub-cooled water drops have to be

present in a recent amount in the updra� sections of such cells. Micro-physical processes (subsection 2.2.1) are
then able to produce big ice crystals which are referred to as hailstones in the end (Puskeiler, 2013).

2.2.1. Micro-Physical Processes

A high number of aerosols exist in convective clouds,which usually feature a bright temperature range through-
out including temperatures lower than 0°C. Important for hail and cloud genesis are the so-called Ice-forming
Nuclei (IN) andCloudCondensationNuclei (CCN), respectively (Knight&Knight, 2001). _e importantmicro-
physical processes (Figure 2.2), which are passed through when going from aerosols to hailstones, will be ex-
plained in the following and refer to Knight and Knight (2001):

• Deposition: Ice crystal genesis directly from vapour phase due to ice saturation.

• Coalescence: Collision andmerging of two water drops.

• Accretion: Sizable ice particle collection of either super-cooled water droplets or small ice crystals.

• Riming: Accretion of super-cooled cloud droplets on ice in a low-density deposit.

Whether an aerosol is capable of functioning as an IN or CCN depends on various points. According to
Pruppacher and Klett (2010), aerosols have to be highly water-insoluble. If not, the aerosol structure, which
sets the base for ice aggregation, would not be suitable anymore a�er water contact. Furthermore, aerosols need
to have a minimum diameter in order to be able to serve as one of the two mentioned nuclei. _is minimum
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Figure 2.2.:Micro-physical processes and primary hydro-meteor growth processes of hail genesis, adapted from:
Puskeiler (2013); Knight and Knight (2001)

size again depends on the cloud’s temperature: For example, at -5°C an aerosol diameter of at least 0.035 µm is
neededwhile at -20°C a value of 0.0092 µm is suõcient. Additionally, it is important that the chemical properties
of the aerosols are similar to the ice crystal ones. Preferred aremolecules with OH - or NH2 groups to simplify
binding processeswithH2Omolecules. Last, the aerosol grid structure needs to be similar to the lattice structure
of the ice crystal, too. Since the process of accretion can be seen as a structured overlay of (ice-)grids, ûtting grid
structures help to receive stronger bindings between layers.
Aerosols which match these conditions are very rare. At temperatures of -20°C , on average, one possible

nucleus exists per liter air. _e relationship between aerosols suitable for hailstone creation and all existing
aerosols is roughly 10-6 (Bigg, 1990). _e higher the concentration of such nuclei in a thunderstorm cell, the
higher the probability of a spontaneous freezing of super-cooled water drops.

_e method of intentionally shooting up possible nuclei into clouds (e.g. silver iodide) to prevent severe
hailstorms works similarly: Since these ions are suitable nuclei (Gravenhorst & Corrin, 1969), a large number
of hail embryos arise. Due to the vast amount, each hailstone becomes smaller as the water in the storm cell
distributes over all nuclei. In turn, the damage potential of such hailstones is much lower compared to less but
bigger hailstones.

2.2.2. Hail Genesis in Different Cloud Environments

Micro-physical processes as mentioned in subsection 2.2.1 occur most o�en in large thunderstorm cells. _ere,
nuclei are able to stay long enough to accumulatemany ice crystal layers which then results in large hailstones.

2.2.2.1. Supercell

Supercells are themost favorable cloud environment to support hail genesis (Figure 2.3). Since the updra�winds
rotate as theymove up, nuclei take quite some time to rise up. During this time, they accumulate large amounts
of ice crystal layers resulting in large hailstones (Puskeiler, 2013).

On the rear side of the updra� a high number of hail embryos exist which collide with many super-cooled
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Figure 2.3.: Schematic proûle of a thunderstorm supercell showing hail genesis, adapted from: Puskeiler (2013);
Bluestein and Parks (1983)

water drops from the middle updra� section. Both groups clash at the border area of the updra� winds. _e
micro-physical process of accretion then transforms both groups into hailstones with large diameters. Due to
the vertical imbalance of the updra� corridor, hailstones get slightly moved to the front section. At some point,
hailstones become too heavy for the upwinds or may get rotated out of the upwind corridor. When this happens,
large hailstones fall down to the ground causing a (most o�en) severe hail event (Browning et al., 1976; Puskeiler,
2013).

2.2.2.2. Multicell

While hail distribution in a supercell spreads over a large areawith the highest intensity near the front section of
the updra� winds (Figure 2.3),multicells behave diòerently in terms of hail genesis and distribution. Multicells
are a combination ofmultiple cells with diòerent development stages. In Figure 2.4 these cells are distinguished
using diòerent symbols and labels (e.g. "n - 2", "n + 1", etc.). According toBrowning et al. (1976), nuclei start at the
far right cell (here "n + 1") and accumulate water as theymove through all cell environments. Upon reaching the
point atwhich hailstoneweight exceeds updra� power, hailstones fall to the ground in the area of the central cell
(here "n - 1"). _is less widely spread distribution of hail marks one diòerence ofmulticells to supercells besides
the diòerent origination process of hailstones. _e concept of hailstone evolution andmovement in multicells is
also explained in Grenier and Zair (1983) andHeymsûeld, Jameson, and Frank (1980).

2.2.3. Small-Scale Atmospheric Flow Conditions and Orography

Wind �ow de�ections caused bymountain ranges or hilly landscape characteristics can be an important trigger
for thunderstorm and in turn hailstormorigination. Due to the importance of horizontal and vertical orography
eòects, many studies have investigated the in�uence of �ow anomalies in relation to hailstorm genesis. While
de la Torre et al. (2015) provided the most recent discussion on this topic addressing the local scale topogra-
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phy of the Southern Andes, other studies have concentrated on ûnding possible relations between hailstorm
frequency, orography and atmospheric �ow conditions in Europe (Morgan, 1973; Giaiotti, Nordio, & Stel, 2003;
Kunz & Puskeiler, 2010). However, all small-scale (orography) characteristics appear to be highly complex for
their speciûc region and no transferable statement can bemade.

Generally speaking, orography is a quite obvious factor for hail frequency. Many hotspots in Europe are sur-
rounded by mountains or located directly at such. Examples are the northern and southern pre-alpine regions
of the Alps, the northern foothill region of the Pyrenees and theMassif Central in France, the Apuseni range in
Romania, the Black Forest range and the Swabian Jura in Germany as well as the Ebro Valley in Spain (Punge &
Kunz, 2016). _e dominant �ow characteristics are then determined speciûcally by the characteristics of these
mountain(s) (-ranges), meaning their exposition, length and height, in combination with atmospheric condi-
tions such as wind speed and direction, temperature andmany more (R. B. Smith, 1979).
de la Torre et al. (2015) found out that hailstorm origination mainly occurs in downstream areas of hilly ter-

rain (or very close by). Hail events directly over mountains, however, occur only infrequently and depend on
complex interactions between diòerent atmosphericmechanisms, further discussed in the given paper. Another
hypothesis claims channeled air masses among mountain ranges to be responsible for higher hail frequency ob-
servations, like García-Ortega et al. (2007) for the Ebro Valley in Spain whileMallafré et al. (2009) showed the
in�uence of convergence caused by the wake of the Iberian system to be amain trigger for hail in this region.

2.2.4. Large-Scale Atmospheric Flow Conditions

Local-scale �ow conditions as explained in subsection 2.2.3 are not only aòected by local characteristics but also
by large-scale �ow conditions. _ese are responsible for thermal instabilities causing origination and persis-

Figure 2.4.:Hail origination in a multicell. Red dots mark a possible path of a hailstone moving throughout
diòerent cell development stages starting from the most right cell (n + 1), adapted from: Puskeiler
(2013); Browning et al. (1976)
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tence of intense thunderstorms. Maintenance of such events relies on reinforcement of cold air advection at
higher levels of altitude together with advection of moist and warm air at lower altitudes. Addressing western
and central Europe, the prevailing meteorological situation of severe hail events can be described "by an ex-
tended trough with its center over theWest European Basin or the Bay of Biscay, and a ridge downstream near
or over theMediterranean" (Punge&Kunz, 2016). _is results inwarm andmoist air being transported to central
Europe due to winds coming from the southwest. _is is the most o�en occurring and observed meteorolog-
ical scenario during hail events in various European regions, proved by several studies in France (Vinet, 2001;
Berthet,Wesolek, Dessens, & Sanchez, 2013), the Ebro Valley in Spain (García-Ortega, López, & Sánchez, 2011),
Switzerland (Schiesser, 2003), Germany (Kunz et al., 2009; Kapsch, Kunz, Vitolo, & Economou, 2012) or Poland
(Kolkowska & Lorenc, 2012).

Other studies have proved the relationship ofmore hail occurrences being associatedwith a higherConvective
Available Potential Energy (CAPE) in combination with vertical wind shear (= diòerence in wind speed/direc-
tion over a relatively short distance) (Laing & Fritsch, 2000; Brooks, Lee, & Craven, 2003) while Mohr, Kunz,
and Keuler (2015) assumed the combination of the Li�ex Index (= diòerence in temperature of a parcel li�ed to
the tropopause and the temperature of the surrounding air in the tropopause), minimum and maximum tem-
peratures as well as large-scale weather patterns to be themain predictors for hail genesis in Germany.

On the synoptic scale (= horizontal scale of around 1000 kilometers), Europe is in�uenced by pressure systems
and their fronts moving from west to east due to the west-wind zone in these latitudes. _e lows and highs
develop over the North Atlantic causing severe hailstorms to occur mainly over Western and Central Europe.
Hail events occur either "at a distance ahead of cold fronts by low-level �ow convergence or at the front due to
a combination of increased instability in case of cold air advection alo� and convergence by cross-circulation"
(Punge & Kunz, 2016). _e assumption of fronts being an important trigger of deep convection and hail events
was investigated in Spain (García-Ortega et al., 2007), France (vanDelden, 1998), Poland (Kolkowska & Lorenc,
2012), Bulgaria (Simeonov & Georgiev, 2003) and in Cyprus (Michaelides et al., 2008).

2.2.5. Geographical Influence: Moisture Availability and Solar Radiation

As mentioned in subsection 2.2.4, an unstable thermal environment is required for hail origination. Subse-
quently, warming of surface layers due to solar radiation combined with a cooling alo� favors convective �ows
and in turn thunder-/hailstorm development. If such heating eòects of surface layers aremissing, severe storms
cannot develop. _is is generally the case during winter in Europe. _e summer conditions in Europe with its
long daytime favor thunderstorm genesis with hail larger than 4 cm in diameter up to regions with a latitude of
68 °N. Since temperature and solar radiation decreasewith higher latitudes, the decreasing distance to the north
pole is themain reason for a low number of hail events in Northern Europe (Punkka & Bister, 2005; Tuovinen,
Punkka, Rauhala,Hohti, & Schultz, 2009).

Referring to Waldvogel, Federer, and Grimm (1979), for hailstorm originiation it is essential to have a cold
middle and upper troposphere layer. _e warmer these layers are, the more hailstones get melted during their
way down to the ground, resulting in small or no hail at all. _is state occurs mainly in areas with high solar
radiation and explains the relatively low number of hail events in Southern Europe duringmidsummer (Camuòo
& Sturaro, 2001) and the increase of the hail/thunderstorm ratio during nighttime (Manzato, 2007).

_e presence of suõcient amount of moisture is an important prerequisite for the development of intense
convective cloud formations. _is is the reason why severe storms are mainly formed by latent condensation
processes over seas (Markowski & Richardson, 2010). In some regions hail frequency increases during spring
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time, like in Scotland and England (UK Met. Oõce, 2015) or Greece (Sioutas, 2011). _e phenomenon of latent
condensation usually appears in areas located along coasts due to the in�ux of moist air coming from the sea.
However, the type of precipitation of such events is limited to small hail or graupel in themajority of cases as the
air temperature values are too low during spring.

2.3. Impact and Damage of Hail

Central Europe, in particular Germany, Switzerland, Austria and France, andMediterranean Europe (i.e. Spain,
Portugal) is highly aòected by hazardous hail events. _is is due to the fact that hail frequency and severity
decreases fromwest to east and south to north. Moisture availability and contingency ofweather fronts decreases
as continentality increaseswhich leads tomore unfavorable conditions for hail genesis. _us, themost hazardous
hail eventswhich occurred over the lasthundreds of years took place in these European countries (Punge&Kunz,
2016).

Keeping in mind that damage estimations of hail events are very complex and that the severity of a hail event
cannot always be determined just by the maximum observed hailstone size, the hail event occurring on the
12/07/1984 in Munich was one of the ûrst largest reported hail events in Germany, causing an estimated damage
of 3000 million Euro (Table 2.1). With a maximum observed hailstone size of 8 cm, the hail event named a�er
the front "Andreas", which occurred on the 28/07/2013 in Germany had a lower observed maximum diameter
than the one in Munich (9.5 cm) but a higher reported economical damage (~3600 Euro). One of the largest
reported hail events in terms of hailstone size (12 cm) was caused by the front "Felix" in Belgium and France on
the 26/05/2009. However, it only caused moderate economical damage (~700 Euro), taking hailstone size and
other hail events with similar size into account.

Table 2.1.:Most substantial and costly hailstorm events in Europe (Punge & Kunz, 2016)

Name Regions Date Max. hail
size (cm)

Economic
damagemillion
EUR (2015)

Insured
damagemillion
EUR (2015)

Reference

France 1788 France: Ille de France,
Picardie, Pays de la Loire 13 July 1788 8 250 Lachiver (2000)

Tessier, Buache, and Leroy (1790)

England 1843
UK: Gloucester, Oxfordshire,
Northampton, Cambridge,
Norfolk

9 August 1843 J. D. C. Webb and Elsom (1994)

Munich
Hailstorm Germany: Southern Bavaria 12 July 1984 9.5 / 14 1500 3000

Heimann and Kurz (1985)
Höller and Reinhardt (1986)
Kaspar andMueller (2009)

Felix Belgium:Western Belgium
France: Picardie, Nord 26 May 2009 9

12 700 580
Hamid and Buelens (2009),
ESWD, Keraunos (2009)

Wolfgang
Austria, Salzburg, Upper
Austria, Lower Austria, Switzerland:
Berne, Lucerne

23 July 2009 10 833 Willis1

Andreas Germany: Baden-Würtemberg,
Lower Saxony, NRW 27-28 July 2013 8 / 7 3600 2800 Kunz et al. (2015),

Munich Re

Ela France, Ille-de-France
Centre,Western Belgium 8-10 June 2014 12.5 2300 Willis1

1Willis Research Network (WRN)
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Table 2.2.:_e ANELFA scale of point hailfall intensity (Dessens et al., 2007)

Class Maximum hailstone
diameter (cm)

Largest hailstone
equivalence

Energy range
(J m−2) Typical damage

A0 < 1 Pea 0 - 30 Road accidents
tree �owers cut

A1 1 - 1.9 Grape,marble, cherry 30 - 100 Damage to vineyards
orchards, tobacco

A2 2 - 2.9 Pigeon´s egg 100 - 400 Serious damage to cereals
vegetable, trees

A3 3 - 3.9 Walnut, ping-pong ball 400 - 800 Complete damages to all crops
windows cut, cars damaged

A4 4 - 4.9 Hen´s egg, golf ball > 800 Winter landscape, animals killed
people injured, grounded aircra� damaged

A5 >= 5 Orange, peach
apple, tennis ball

Extreme dangerous event
unprotected persons killed

_e class number is followed by a + or - sign if the ground is more less than half-covered by hailstones respectively

2.3.1. The ANELFA Scale

Several scales exist which categorize hail damage. Most of them rely either on the kinetic energymeasured, size
of hailstones or maximum observed damages. One is the ANELFA scale (Dessens et al., 2007). It relates hailfall
to a small area, similar to the size of a hailpad (~0.1 m2). _e intention of this scale is to measure the size of
hailstones at a small location, resulting in a detailed overview of hail intensity if a dense network of hailpads is
available.

It is based on the "Fujita scale for tornadoes" (Fujita, 1971) and has therefore six classes, labeled from A0 to
A5. Here, A refers to ANELFA but also to the standard coding sign "A" traditionally used in aviation weather
observations for hail (Glickman, 2000). _e intensity value (A0 = lowest, A5 = highest) refers to the value of the
largest measured hailstone diameter (in cm). ClassA5 includes all hailstones bigger than 5 cm. Ifmore than 50%

(a) Map of France with the ANELFA hailpad sta-
tions

(b) Log of total number of hailstones vs. diameter
of largest observed hailstone (Dmax) for 3611
point hailfall observations (Log N)

Figure 2.5.: ANELFA station distribution and observed hailstone diameter as a function of total number of hail-
falls (Dessens et al., 2007)
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of themeasured area (e.g. hailpad) is covered by hailstones, a plus sign is attached to the class label. Values lower
than 50% are followed by aminus sign.

_e ANELFA scalewas used in Southern France from 1988 - 2003, where a dense hailpad network exists (Fig-
ure 2.5a). During this time, 3611 point hailfalls were recorded, distributed over 926 stations (=mean number of
installed hailpads over the years). _e records show a spherical relationship of the observedmaximum hailstone
diameter against the log of the total number of hailfalls (Figure 2.5b) (Dessens et al., 2007).

2.3.2. The TORRO Scale

_e Tornado and Storm Research Organization (TORRO) has proposed a hailstorm intensity scale with ten
classes (placed in Appendix C due to its large size), specifying hailstone diameter size as well as their damage
eòects to the environment (J. Webb, Elsom, &Meaden, 1986). _e scale was named a�er TORRO itself. Origi-
nally, the aim was to increase consistency for hailstorm damage reports in Britain. It was developed on the base
of several hundred hailstormobservations starting from 1866 (100 year streak). Referring to J.Webb et al. (1986),
hail events of scaleH0 are called "non-damaging/moderate hailstorms",H1 - H4 "damaging hailstorms",H5 - H8
refer to "destructive hail events" and H9 - H10 are classiûed as "super hailstorms".
Although the TORRO scale also refers to point hailfall observations, wind speed is taken into account when

classifying damages of hail events. _us, a hail event with a marble-like hailstone size (1.6 cm - 2 cm) can be
classiûed either as H1, H2, H3 or H4 depending on its damage eòects. Damages are more severe with stronger
wind speeds (J. Webb et al., 1986). _e TORRO scale is similar to the ANELFA scale in the ûrst ûve classes.
Class A5 of the ANELFA scales comprises classes H6 - H10 of the TORRO scale which spans more sub-classes
for severe hail events.

2.3.3. The GSC Scale

According toDessens et al. (2007), another hail scale existswhichwas ûrst proposed byMoisselin andGuillande
(2004) and resembles the ANELFA scale. It was developed under the leadership of the Geoscience Consultants
(GSC) in partnership with Météo-France and the French Centre national du machinisme agricole du génie rural,
des eaux et des forêts (CEMAGREF). _e scale relies on a combination ofmaximumobserved hailstone diameter
and observed damage "at the scale of a French commune" (Dessens et al., 2007). _e GSC scale only diòers in
one class compared to the ANELFA scale as it consists of ûve classes instead of six.

Table 2.3.: Correspondences between hailfall intensity scales (Dessens et al., 2007)

Name Class

ANELFA A0 A1 A2 A3 A4 A5

TORRO H0 H1 H2 H3 H4 - H5 H6 - H10

GSC 1 2 3 4 4 5
ANELFA: Association Nationale d’Etude et de Lutte
contre les Fléaux Atmosphériques
TORRO: Tornado and Storm Research Organization
GSC: Geosciences Consultants
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2.3.4. Hail Impact on Forest Stands

Requirements of a tree gettingwounded by hail depends on its species and hailstone size. However, direct conse-
quences of hail damage on forests are relatively small compared to indirect ones. Follow-up infections ofwounds
through pathogenic agents most o�en result in the tree having to be cut down. With an areal plantation cov-
erage of at least 2.8 million hectares, the Monterey Pine (Pinus radiata) is the most widely spread tree species
worldwide. While it is themost cultivated species in Chile, Australia, New Zealand and Spain, it also has a high
importance in Uruguay, South Africa, and Kenya (Iturritxa et al., 2014).
Depending on the country and its climatic conditions, several fungal agents exist which infect hail wounds of

P. Radiata. _ese are namely Diplodia Pinea (= Sphaeropsis Sapinea), Fusarium Circinatum (teleomorph = Gib-
berella Circinata), and Mycosphaerella spp.: Dothistroma Piniand Mycosphaerella Dearnessii (synonym Scirrhia
Acicola, anamorph Lecanosticta Acicola) (Iturritxa et al., 2014; Zwolinski, Swart, & Wingûeld, 1995; H. Smith,
Wingûeld, & Coutinho, 2002; Minko, 1979).
Direct damages observed on P. Radiata stands near Myrtlefold, Victoria (Australia) manifested in "open and

occluded scars on the limbs and trunk", "death of original tree top" up to "hail imprints on the bark [which]
o�en indicate the presence of seperation of wood between growth rings" (Minko, 1979). Other types of tree
degredation showed up as "cankers on the tree trunk, faulty knots, and accumulations of resin which caused
staining when so�ened during seasoning". Furthermore, tree crowns got defoliated, and partially or completely
barked of limbs and trunks. _e described damages were caused by large hailstones featuring a diameter size
of golf balls in combination with strong winds. Mainly trees aged from 8 to 13 years were aòected, although the
complete stand (ranging from 4 to 13 years) was equally hit by the storm (Minko, 1979).

Figure 2.6.:_e eòect of site index (SI) and age of stands on the loss of value of timber utilized from P. Radi-
ata stands prematurely clear-felled due to S. Sapinea infection at Kruisfontein State Forest. Loss in
Rand/ha (1€ ~16,8 Rand (July 2016)), Zwolinski et al. (1990)
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A�er the occurrence of a severe hailstorm on 3 February 1986 at Kruisfontein (South Africa), Zwolinski et al.
(1995) observed the eòects of an S. Sapinea outbreak on a 13-year old P. Radiata stand. _e relationship of fungus
and host is complex and involves diòerent factors interacting with each other. Examples are environmental
(temperature, precipitation) and physical (slope, terrain height, etc.) conditions (Swart, Wingûeld, & Knox-
Davies, 1987). Observed consequences on trees a�er a S. Sapinea infection are physiological stress (Wright &
Marks, 1970; Marks &Minko, 1974),most o�en combined with visible damage on the speciûc tree due to hail or
pruning (Swart et al., 1987; Zwolinski et al., 1995). _e authors of the study also concluded a relationship between
P. Radiata infection by S. Sapinea and a follow up colonization by Pissodes Nemorensis, which aggravate the S.
Sapinea infection and in turn forces the die-back of P. Radiata trees (Zwolinski et al., 1995).

In a prior study, (Zwolinski et al., 1990) estimated the economic damage of P. Radiata die-back in relation
to tree age and Site Index (SI). _e SI is deûned as "[t]he average age of dominate and/or co-dominate trees of
an even-aged, undisturbed site of intolerant trees at a base age" (Nyland, 2002) and is used in forestry to assess
productivity of a forest stand as it measures the tree height of a stand at base ages such as 25, 50 and 100 years
(Avery&Burkhart, 2002). _e biggest losseswere attributed to high quality sites (= high SI) in combinationwith
older trees (Figure 2.6). Old trees aremore susceptible getting infected by S. Sapinea and have a higher economic
value of timber.
Due to the vast amount of P. Radiata die-back a�er S. Sapinea infections, planting of this tree species was

stopped in the early stages of the 20th century in South Africa. By 1925, most of P. Radiata stands had been
replaced by P. Patula stands which were believed to be resistant against S. Sapinea infections (H. Smith et al.,
2002). However, beginning in the early 1930s, infections of P. Patula were observed occasionally. _ey steadily
increased so that by 1940, P. Patulawas aòected by S. Sapinea in the samemanner as P.Radiata. If a tree is aòected
by hail, "the colonization of branch pith tissue by S. Sapinea changes" (H. Smith et al., 2002). _e authors found
that the "discoloration of the branch pith" of a tree damaged by hail was extensive. It was concluded that hail
stressed the trees so much that the S. Sapinea pathogens were activated and spread throughout "the pith tissue
of the branches" (H. Smith et al., 2002).
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DATA AND STUDY AREA

_e following chapter gives an overview of the characteristics of the study area, the Basque region in northern
Spain (section 3.1) and describes the data that were used within this work (section 3.2).

3.1. Study Area (Basque Region, Spain)

_e study area of this thesis is the Basque region in northern Spain. It covers an area of 7355 km2 and is located
between 42°34’ and 43°31’ N and 1°47’ E and 3°29’ W (Figure 3.1). While the northern part is characterized by a
temperatemaritime climate due to its exposition to the sea, the southern part shows an increasingMediterranean
in�uence. Precipitation decreases towards the south while summer drought time increases. _e mean annual
precipitation covers a range from 600 mm to 2000 mm with a yearly mean temperature from 8°C up to 16°C
(Ganuza & Almendros, 2003).

While the cities Bilbao and San Sebastian represent the climatic situation of the study area´s northern part,
the climate of Vitoria is not only in�uenced by its more southern location but also by its altitude lying 513 m
abovemean sea level. Vitoria´s long term mean annual temperature (11.9°C) is about three degrees C lower than
Bilbao´s and San Sebastian´s (15.1°C and 15.4°C, respectively) (Figure 3.2). _e highest precipitation values for
all stations are observed during winter time (November - April) with the peak month being November and the

Figure 3.1.: Study area, Basque Country (northern Spain)
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Figure 3.2.: Long term climate diagrams (1973 - 2015) of Bilbao, San Sebastian andVitoria (Spain) showing mean
temperature (°C, le�) and total precipitation (mm/m2, right) bymonth. Data source:WorldMeteo-
rological Organization (2016)

month with the lowest precipitation being July. _e month with the highest monthly average temperature for
all stations is August. According to climate classiûcation a�er Köppen, the Basque region is declared to have a
"Cfb" climate (=marine west coast-mild) (Borja & Collins, 2004).
_e climatic diòerences in combination with the sophisticated orography, featuring several mountain ranges
across the region in an east-west direction,makes the Basque region highly diverse regarding its environmental
conditions. A high range of land cover spans across the region including deciduous forest, evergreen forest,
shrub and pastures. With a percentage of 59%, forest areas are the most widely spread land use class in the
Basque Country, followed by pastures claiming 26%. Shrub and urban occupy 7% each, leaving 1% of cultivated
land (Ganuza & Almendros, 2003; Borja & Collins, 2004).

Roughly 67%of the forest areas are plantationswith coniferous trees,mainly being located in the northern part
of the Basque region. _e remaining 33% consist of broad-leaved forests, mostly being found in the southern,
mountainous areas.

Two atmospheric conditions occur very o�en in the Basque region: Amesoscale storm event called Galernas
and the Foehn eòect. _e ûrst manifests as an abrupt change in both wind speed and direction. It occurs mainly
in summer in combination with hot andmoist air. Galernas are supported by southern winds and do not occur

Figure 3.3.: Boxplots showingmaximumwind speed distributions bymonth of Bilbao, San Sebastian andVitoria.
Data source:WorldMeteorological Organization (2016)
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in combination with northern winds. On a synoptic scale, a high pressure gradient is o�en observed. _e phe-
nomenon results in strong winds and rain, with mean wind speeds higher than 80 km/h. If the wind speed does
not exceed 50 km/h, the phenomenon is called galernilla instead of galerna. Temperature values can decrease
to 12 degree C in a short time and the relative humidity rises up to levels at which condensation processes take
place. Galernas disappear a�er a short time and the previousweather situation reoccurs (Borja & Collins, 2004).
Galernas are sub-classiûed into two types, the "typical" and the "translation" one. "Typical" galernas are a small-
scale phenomenon, normally showing up around the north coast. _ey have amesoscale extent and do not infer
storms and cause only slight depressions. "Typical" galernas do not develop in higher altitudes. On the other
hand, "translation" galernas are colligated with "frontal perturbations, energetic secondary depressions or squall
lines" (Borja & Collins, 2004). _ey aòect thewhole northern Spanish coast aswell as nearby land areas. Moving
eastwards, they start to create storms and showers. Bilbao and San Sebastian are situated in the area in�uenced
byGalernas. _is most likely contributes to the higher Interquartile Range (IQR) regarding maximum observed
wind speeds of these two cities compared to Vitoria (Figure 3.3), which is located in the mountainous south of
the Basque region (Figure 3.4).

_e "Foehn Eòect" is a common atmospheric phenomenon in areas with a high relief intensity like the Alps
(south tonorth), the Jura or theRockyMountains (west to east) (Barry&Chorley, 1998). In the case of the Basque
region, very warm and dry air comes from the south (northern Africa). _e mountain range around Vitoria
(Figure 3.4), which is referred to as the eastern part of the Cantabrian range, induces the ascent of the warm air
from the south due to its orographical situation. During this procedure, the air cools down. Additionally, rain
may occur if condensation processes take place during this ascent, eliminating the moisture content of the air
masses. A�er passing themountain range, the air descents and heats up again, resulting in higher temperatures
in the northern part of the Basque country (Figure 3.2) (Borja & Collins, 2004).
A gradient along the Cantabrian range can be observed for precipitation andmean temperature values across

the year (Figure 3.4). Yearlymean precipitation values of around 1200mm/m2 are observed for the northern and
northeastern part of the Basque regionwhile in the southwest, rainfall amounts o�en do not exceed 800mm/m2.
Mean temperature values stay below 11°C formost parts located south of the Cantabrian rangewhile yearlymean
values between 12°C - 15°C are reached in the northern exposed part. PISR shows a spatially homogeneous
distribution for the whole Basque country ranging around 2000 kW/m2.

3.2. Data

3.2.1. LiDAR based 25 m Digital Elevation Model

Euskadi (2013) used point cloud information with a density of 2 points/m2 to derive height information for the
Basque country. Data sets with a spatial resolutions of 1 m, 5 m and 25 m are available at ftp://ftp.geo

.euskadi.net/lidar/MDE_LIDAR_2013_ETRS89/. For this work, the 25 m data set was suõcient.

3.2.2. The "Global Surface Summary of [the] Day" product

_eGlobal Summary of [the] Day (GSOD) data set is based on data exchanged under theWMOprogram "World
WeatherWatch". _eNational Climate Data Center (NCDC) is responsible for product maintenance. _e input
data used for the daily summaries is based on the "Integrated Surface Data" (ISD), which includes global data
retrieved from the USAF Climatology Center. _e recording of the database started in 1929, with more than
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Figure 3.4.: Yearly spatial mean values of precipitation,mean temperature and PISR. Additionally, elevation in-
formation of the Basque region with a spatial resolution of 25 m. DEM data source: Euskadi (2013),
others: Ninyerola et al. (2005)

9000 available stations today worldwide (World Meteorological Organization, 2016). _e contents of the daily
data sets are as follows:

• minimum temperature (.1 Fahrenheit)

• mean temperature (.1 Fahrenheit)

• maximum temperature (.1 Fahrenheit)

• mean dew point (.1 Fahrenheit)

• mean sea level pressure (.1 mb)

• mean station pressure (.1 mb)

• mean visibility (.1 miles)

• mean wind speed (.1 knots)

• maximum sustained wind speed (.1 knots)

• maximum wind gust (.1 knots)

• precipitation amount (.01 inches)

• snow depth (.1 inches)

• indicator for occurrence of:

– fog

– rain or drizzle

– snow or ice pellets

– hail

– thunder

– tornado/funnel cloud

_e data is derived from hourly observations. At least four hourly reports per station/day must be present to
record a daily value in the summary, otherwise the value is set to "NA". Although historical data exist since
1929, stable data summaries can only be retrieved starting 1973. Daily extreme and total values (e.g. maximum
wind gust, precipitation amount and snow depth) "will only appear if the station reports the data suõciently
to provide a valid value" (National Climatic Data Center, 2016). Regarding quality control of the data set, the
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Figure 3.5.: Spatial distribution of survey trees and species information

product description states that "the input data undergo extensive automatedQC to correctly ’decode’ as much of
the synoptic data as possible, and to eliminatemany of the random errors found in the original data" (National
Climatic Data Center, 2016). For the occurrence of hail and other weather phenomena, there is no additional
information available for the binary response acquisition (i.e. whether checkedmanually or automatically).

3.2.3. Atlas Climatico Data

_e Atlas Climatico data set is based on long term observations (1951-1999) ofmeteorological stations across the
Iberian Peninsula. A total of "3528meteorological stations for thermometricmeasures and 7293 stations for rain
gaugemeasures" (Ninyerola et al., 2005)were available. To guarantee robustness in temporal and spatial aspects,
stations were narrowed down to 286 thermometric, 1217 rain gauge and 782 pluviothermometric stations. For
temperature observations 15 or more years of data were used and for precipitation at least 20 years of station
information. A Digital Elevation Model (DEM) with a spatial resolution of 200 m was used during data set
production. _e interpolation approach is further explained in Ninyerola, Pons, and Roure (2000). _e data set
consists ofmonthly and yearly averages of the following variables:

• minimum temperature (.1 °C)

• mean temperature (.1 °C)

• maximum temperature (.1 °C)

• precipitation amount (.1 mm/m2)

• PISR amount (kW/m2)
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3.2.4. Tree Survey Data set

_is data set contains tree survey data from 14/01/2009 to 28/02/2012. Two evaluators inspected hail damages on
trees and infections of pathogenic agents such as Fusarium Circinatum,Mycosphaerella spp., Diplodia Pinea and
Dothistroma Pini. Furthermore, latitude and longitude information of the surveyed trees, tree age and species
are provided. _e Tree Survey Dataset (TSD) consists of 1170 unique observations:

• Hail damage [True/False]

• Latitude, Longitude

• Tree age [years]

• Tree species

• Year of acquisition

• Evaluator information

• Pathogenic agent [True/False]
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_is chapter introduces and explains the methods used in this work to derive probabilites of "hail damage to
trees" and in turn identify risk areas in the Basque Country. Preprocessing of the data sets is presented concisely
in section 4.1. _e the synopticweather situation related to hail occurrence is examined in section 4.2. Statistical
models (GLMMs andGAMMs)were used tomodel the response hail. Hence, basicmodel theories are presented
in section 4.4, followed by the respective practical model speciûcations used in thiswork (section 4.5). Validation
theory of themodels and its application are described and section 4.6while the prediction approach is explained
in section 4.7.

4.1. Data Preprocessing

4.1.1. GSOD Data

_eGSOD data set was cleaned from rows containing missing values (995 out of 47377 observations). Unneces-
sary columnswere removed from the data set (e.g. "visibility in km"). Columnnameswere changed to descriptive
ones (e.g. "TempMean" instead of "TEMP"). Units of speciûc columns were changed: Fahrenheit to degrees Cel-
sius (Temperature), inches to millimeter (Precipitation) and knots to km/h (Wind Speed). Hail informationwas
extracted out of a column giving information about special weather phenomena (like fog, thunderstorm, hail
etc.) and other information beside hail was dropped. Finally, the data was gathered by month for the years 1973
- 2015.

4.1.2. Atlas Climatico Data

Datawas unzipped and read in as "ESRIASCII" ûles, converted into .tif format and the projection "WGS84UTM
Zone 30N" was applied. A�er subsetting the data to the study area extent, the Spanish ûle names were changed
into English ones.

4.1.3. Tree Survey Data set

_e data was already available in a clean state. Climatic information (temperature, precipitation, PISR) from the
Atlas Climatico data set was added to TSD using a zonal statistics approach. Elevation information from the
Light Detection and Ranging (LiDAR) DEM was extracted and attributed to TSD data set.

4.2. Synoptic Weather Situation Related to Hail Occurrence

Since the GSOD data (subsection 3.2.2) is only available at three locations (Bilbao, San Sebastian and Vitoria),
this data cannot be used to train models predicting a hail-damage on trees probabilitymap of the Basque region.
Instead, it was used for exploratory analysis to gain more knowledge of the dynamics associated with hail on a
synoptic scale. Due to the low number of missing values and the long time period of 43 years (1973 - 2015), the
data retrieved from each station serves as a good base to explore long term hail occurrences.
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To explore the synoptic weather situation associated with hail for the time period between 1973 - 2015, hail
events were plotted against time (subsection 5.1.1) and versus temperature, precipitation and wind speed, all
retrieved from the GSOD data set (subsection 5.1.2). Findings of inner-yearly hail occurrence distribution help
to set amore suitable time range of the predictors used for modelling. If hail only occurs during a certain time
period of the year, predictors can be adjusted to this time range.

To gather a deeper insight into the response/predictor relationships, the variables "Temperature (min/mean/-
max)", "Precipitation amount" and "Wind speed (mean/max)"were plotted against the binary response (Hail/No
Hail). Conditional density plots were used for visualization. _ey are also known as "mosaic plots" or "spino-
grams" (in this particular case with y being categorical and x numerical). First, x, the continuous variable, gets
discretized (based on its empirical histogram distribution) followed by the calculation of empirical relative fre-
quencies of y for every group x. A probability value ranging from 0-1 is returned for every group of x. _e
histogram grouping is important as it reveals the underlying distribution of x which in�uences the following
probability calculation. Probability estimations for a group x with low number of observations (shown as small
bins) aremore vague than those for groups with more observations of x (wider bins).

Vitoria was chosen to serve as an example station for conditional density plots of hail against various climatic
variables due to the fact that it shows the highest total number of hail events for the time period November -
April of all three stations. _is has the positive eòect of a more balanced Hail/No Hail ratio which makes the
spinograms easier to interpret owing to a better plot visualization than for Bilbao and San Sebastian (which are
provided in Appendix A.

4.3. Selection of Predictors

To create probability maps of hail-damage on trees for the Basque region, the TSD data set was utilized. _e
modeled response was hail. Predictor selection in statistical models is crucial for various reasons: A statistical
model should consist of predictors explaining the response variablewhich do not introduce (multi-) collinearity
into themodel. _is may lead to over-smoothing of themodel (Zuur, Ieno,Walker, Saveliev, & Smith, 2008).

O�en predictor selection is limited due to restricted data availability or data gaps. For this work, temperature
(min, mean, max), PISR, precipitation (sum) and elevation were available to represent the climatic situation of
hail occurrence. Age of the surveyed trees (age from here onwards) was included into themodel as an indicator
of tree healthiness representing a biological component. Since diòerent types of temperatures (min,mean,max)
are highly correlated and Dessens (1995) found a strong relationship of hail events and minimum temperature,
it was decided to only use temperature (min) in this work.

Predictorswill be referred to fromhere on as follows: Temperature (min) as temp, Precipitation as precip, PISR
as srad, tree age as age and elevation as elevation.

To check for high correlation within the predictors, the Pearson correlation coeõcient was calculated for all
predictor pairs. For more information, scatterplots of each variable pair and the histograms of each predictor
were carried out. Additionally, the VIF was calculated for each predictor. _e VIF is calculated iteratively by

V IF = 1
1 − R2 (4.1)

for each predictor variable. R-squared (R2) returns the amount of variance explained by a model in a range
from 0-1 (De Veaux, Velleman, & Bock, 2011). _e concept behind the VIF calculation is the following: In
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each iteration a diòerent predictor is set as the response variable in the calculated regression. Assuming a high
correlation between variable x1 and x2, R2 of the regression analysis will be high resulting in a high VIF value.
Although in statistics there is no hard threshold at which a variable should be dropped, VIFs exceeding a value
of 5 are o�en considered too high (Zuur, Ieno, & Smith, 2007).
When facing fairly high Pearson correlation coeõcients (i.e. > 0.8) (Figure 5.4) and VIF values for predictors

(Table 5.1), one solution is to drop a variable from the list of predictors and recheck on the VIF values. A�er
dropping elevation from the list of predictors, lower VIF values were observed for each predictor (Table 5.1).
_erefore it was decided to drop elevation from the list of predictors for all further analyses.
A descriptive statistical overview of the ûnal predictors (temp, precip, srad & age) is provided in subsec-

tion 5.2.2. Uncommon units for precip (m/m2) and srad (hW/m2) were chosen to reduce convergence errors
in the statistical models (especially in GAMMs). Categorical variables year and evaluator were not chosen as
predictors because they represent grouping structures in the surveyed data. _ese were included as random
eòects into themodel and are further evaluated in subsection 4.4.4.

4.4. Statistical Model Theory

4.4.1. Linear Models

Although simple linearmodels are not suited tomodel binary responses, they set the base for all further statistical
models used in this work. _is section introduces concepts which are extended by Generalized Linear Model
(GLM)s and GAMs.

Linear Model (LM)s attempt to draw the best straight line throughout data points with the attempt of mini-
mizing the residuals (diòerence between predicted points and actual data points) at every location (De Veaux et
al., 2011). In mathematics, a straight line equation is expressed as

y = mx + b (4.2)

In statistics, this equation is written slightly diòerently:

ŷ = b0 + b1x (4.3)

Here, ŷ means that all values which form the speciûc formula coeõcients (b0 and b1), are predicted values and
not real data points. _e better the predicted points of themodel, the closer the actual data pointswill lie around
them. _e terms b0 and b1 represent the y-intercept and the slope of the predicted line, respectively (De Veaux
et al., 2011; Wood, 2006).
A LM assumes the relationship of two variables to be perfectly straight. As this only applies to special cases in

practice, Equation 4.3 can also be written as follows:

Data = Model + Residual (4.4)

Residual = Data −Model (4.5)

є = y − ŷ (4.6)

Residuals (є) represent the diòerence of the predicted model points to the actual data points. In other words,
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residuals show what the model missed and how good/bad it describes the underlying data. Hence, residuals
are used to measure the model ût using measures like R2 or Root Mean Square Error (RMSE). Residuals are
also used to check if grouping trends exist in the data (e.g. autocorrelation, random eòects) (De Veaux et al.,
2011; Wood, 2006). _is topic will be covered in more detail in subsection 4.4.5 (Spatial Autocorrelation) and
subsection 4.4.4 (Random Eòects).

4.4.2. Generalized Linear Models

GLMs, as introduced byNelder andWedderburn (1972) as an extension of LMs, "allow for response distributions
other than normal, and for a degree of non-linearity in the model structure" (Wood, 2006). GLMs are deûned
as

g(µi) = Xiβ + є (4.7)

where g is a smoothmonotonic "link function", µi is the predicted value, "Xi is the i th row of amodel matrix and
β is a vector of unknown parameters" (Wood, 2006). GLMs make the assumption of the response values being
independent and following "some exponential family distribution" like Poisson, Binomial, Gamma, Bernoulli,
geometric or Normal distribution (Zuur et al., 2008). Zuur et al. (2008) break GLMs down to three essential
parts:

• an assumption on the distribution of the response variable,

• speciûcation of the systematic part as a function of the explanatory variables,

• the relationship between themean value of the response and the systematic part, also called "link function".

Due to the fact that GLMs inherit from LMs, the general concepts and assumptions also apply to GLMs with a
slight modiûcation. While the general model formula is similar to LM, a link function g and a distribution of
the response variable have to be deûned. However, generalization comes with some cost: Model ûtting is not
done in one run but needs to be undertaken iteratively. Also, the distributional results which are used to make
inferences are not exact anymore but rather approximate and "justiûed by large sample limiting results" (Wood,
2006).

Figure 4.1.: Logit transformation of P(event) of a logistic regression
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In this study, the "binomial" link function will be used since the response variable "hail" is binary. In the case
of a binary response variable, the speciûc GLM type is referred to as "logistic regression". In a case where the
response variable has only two possible outcomes,methods returning possible numerical values from [−∞,∞]
do not make sense. Instead, the predicted values range between zero and one, inferring from the probability of
case x to occur (Fielding, 2007). Logistic regression allows the predictors to be amix of categorical and numeric
ones. _e statistical expression is written as

P(event) = 1
1 − e−z (4.8)

where z is b0 + b1x1 + b2x2 + ...bpxp and P(event) is the probability that an event occurs. In this particular
formula, the relationship of the response to its predictors is non-linear. To meet the condition of a linear model,
the logistic equation can be transformed into a linear form using the binomial link function. Here, the probability
is converted into "log odds" or "logit", where log it[P(event)] = log[P(event)/P(noevent)] (Fielding, 2007).
In the middle part of P(event), roughly between 0.3 and 0.7, the relationship is linear (Figure 4.1). However,
when P(event) is located outside of this range, the response-predictor relationship turns into a non-linear one.

In the logit transformation, each one-unit change from a predictor is not directly associated with a change
in P(event) but ûrst with a change in log odds, meaning log it(P(event)). _is fact makes logistic regression
outcomes more diõcult to interpret than results from standard linear models such as multiple-linear regression.
_e probability of an event to occur is deûned as the odds ratio (odds/(1 + odds)), where odds are calculated
through the transformation of the log odds result of the coeõcients of each predictor variable. An example is
given in Fielding (2007), where the log odds of a random case study are

log odds = −2.7 + 2.5A− 3.7B + 1.8C (4.9)

whereA, B andC are assumed to be 1 in this example. _e outcome of the log odds (here: -2.1) is then transformed
to odds (= e−2.1), resulting in a value of 0.1225. Following, the probability of an event to occur would be 0.1091
(= 10.91%) (0.1225/(1 + 0.1225), following the logic of transforming odds to probabilities (probability = odds / (1
+ odds)). _e Odds Ratio (OR) is simply the ratio of two odds values. Such are o�en derived for one predictor
while holding all others constant. ORs smaller than one refer to decreases in the odds as the predictor increases
whereas ORs exceeding one correspond to an odds increase. If the OR is nearly one, changes in the predictor,
which is not held constant and allowed to vary, does hardly aòect changes in P(event). _e same applies for a
log odds outcome of zero, since e−0 = 1. In summary, any one-unit change of a predictor (e.g. from 49 kg to 50
kg) will change the log odds outcome by its speciûc predictor coeõcient and hence change the probability of an
event to occur (Fielding, 2007).
As GLMs carry over the independence assumption of the observations from LMs, theremight be cases where

this assumption is violated. Examples for such cases are spatial or temporal autocorrelation of observations or
underlying random eòects in the data (e.g. diòerent persons who acquired the data). While such phenomena
are discussed in more detail in subsection 4.4.5 and subsection 4.4.4, it shall be noted that GLMs are referred to
as GLMMs in the case when "correction factors" are put into the model formula to account for these eòects in
the data (Wood, 2006; Zuur et al., 2008).

When comparing diòerent estimates of either odds or probabilities, odds are preferred since they are deûned
from (0,∞)while probabilities range between (0, 1). Hence,when comparing diòerent estimates of probabilities
(also referred to as relative risk), cases may occur where speciûc ratios end up in probabilities > 1. Doing the
same with odds wouldmean to calculate the OR, which is much more convenient for interpretation (especially
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for high ratio outcomes) due to its deûnition range (Zuur et al., 2008).

4.4.3. Generalized Additive Models

A GAM is an extension of a GLM which allows for non-linearity of predictors utilizing smooth functions. It
was ûrst introduced by T. Hastie and Tibshirani (1986). GAMs provide the ability to account for non-linear
relationships of predictors which makes them highly �exible (Wood, 2006). _emodel formula is similar to the
one for the GLM:

g(µi) = Xiθ + f1(x1i) + f2(x2i) + f3(x3i , x4i) + ... + є (4.10)

where:
g – smooth monotonic link function,
µi – response variable of some exponential family distribution,
Xi – row of themodel matrix for any strictly parametricmodel components,
θ – the corresponding parameter vector,
є – the residuals,
f j – smooth functions of the covariates xk

Smooth functions can be speciûc for every single predictor (e.g. f1(x1i)) or for a group of predictors (e.g.
f3(x3i , x4i)). It is also possible to deûne no smoothing function for a predictor. In this case, the relationship
between response and predictor is assumed to be linear. When setting up a GAM, the type of smooth function
(also referred to as "smooth class") and its degree (i.e. how smooth/non-linear the function is allowed to become)
have to be set for every predictor. Additionally, each smooth class needs a speciûc penalty term, which is either
single,multiple or quadratic, to control the degree of smoothness throughout the ûtting process (Wood, 2006).

In this work the GAM implementation a�er Wood (2006) is used. _ere, four diòerent smooth classes exist:
s, te, ti and t2. _e deûnition of a smooth class "is the basis used to represent the smooth function and quadratic
penalty (ormultiplepenalties)used to penalize the basis coeõcients in order to control the degree of smoothness"
(Wood, 2006). _e smooth classes te, ti and t2 belong to the group of tensor product smooths. _ese classes are
used when predictors, which use the same smooth type, exist in fundamentally diòerent units. For example,
if one predictor is measured in meters/hour and another one in light-years/nanoseconds. One option to solve
this problem would be to use tensor product smooths. However, this case does not apply to the current study.
_erefore, tensor product smooths will not be covered in more detail here (Wood, 2006).
All smoothing classes implemented byWood (2006) are based on splines. Other approaches ofGAM smooth-

ing classes rely on running mean smoother, B-spline smoother (T. J. Hastie, 1992) (used in the gam function in R),
Locally Weighted Scatterplot Smoothing (LOESS) or Gaussian kernel smoother (Zuur et al., 2008). Since there are
even moremathematical ways of smoothing functions, this list does not claim to be complete.
As introduced above, the behavior of the smoothing function (when using penalized regression splines) is

controlled by (i) the basis dimension and (ii) the smoothing base. _e basis dimension of a smoothing function
basically helps to reduce the computation time in comparison to full spline methods. _e basis dimension can
also be ûxed,which in turn speeds up themodelling process a lot. However, then the artiûcial a priori assumption
ismade that the best degree of smoothing is ranging closely to the ûxed valuewhichwill not end upwith the best
smoothing result in most of the cases (Wood, 2006). For the smoothing base, several options exist for practical
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convenience:

• thin plate regression splines

• duchon splines

• cubic regression splines

• splines on the sphere

• random eòects

• markov Random Fields

• gaussian process smooths

• soap ûlm smooths

• adaptive smoothers

• factor smooth interactions

While the oòer of spline methods seems to be overwhelming at a ûrst glance, Wood (2003) states that "there
is a deûned sense in which they (= thin plate regression splines) are the optimal smoother of any given basis
dimension/rank". _e details and properties of _in Plate Regression Splines (TPRS) are covered in detail in
Wood (2006). For practical use, the most important properties are outlined: TPRS have the ability to (i) work
with any number of covariates, (ii) do not rely on ’knots’ as many other splinemethods do, (iii) are of isotropic
character (= unaòected by the rotation of the coordinate system of the predictors) and (iiii) are ’low rank’, which
means that "they have fewer coeõcients than there are data to smooth" (Wood, 2006).
A GAM is referred to as a GAMM if it accounts for underlying grouping eòects such as autocorrelation or

random eòects (the same logic also applies to GLM/GLMM) (Zuur et al., 2008).

4.4.4. Random Effects

Random eòects extend the models introduced in subsection 4.4.3 and subsection 4.4.2 (GLM and GAM) by a
random component,which accounts forpossibleunderlying trends in theobservations. Taking theGLM formula
as an example, the equation is written as

g(µi) = Xiβ + Zb + є (4.11)

where b is a random vector containing the random eòects and Z is amodel matrix for the random eòects (Wood,
2006). _is model formulation including the random eòects (with additional assumptions on the model para-
meters) goes back to Laird andWare (1982).

In general a random eòect can be characterized as a grouping structure inside a variable which is assumed to
rely on randomness. _is randomness can, for example, be introduced by diòerent personswho collected survey
data (some survey person may have introduced wrong measurements) or by diòerent acquisition locations of
data of the same type (air pollution measurements in a city). Sometimes it is possible to detect such grouping
structures by investigating the variable closely (e.g. boxplots of each group), sometimes (e.g. for variables with
thousands andmore observations) it is hard to reveal a possible underlying grouping structure.

4.4.4.1. Random Intercept Model

When ûtting a model with ûxed predictors and one random eòect, it is also referred to as a random intercept
model. In themodel output, a "random eòect" and a "ûxed eòect" part is returned. _e latter refers to the normal
predictor output of themodel. _e "random eòects" consists of "intercept" and "residual value". _e latter refers
to the residual variance of the random eòect while the ûrst value gives the variance of the random intercept.
Referring to the example in Zuur et al. (2008), if a standard deviation value of 2.94 is returned, this results in
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Figure 4.2.: Example of the variation of a random intercept model. Richness is the response and NAP the predic-
tor. _e thick line represents the ûtted regression line while the labeled lines represent the variation
introduced by a random eòect with 9 levels. Source: (Zuur et al., 2008)

a random eòect intercept variance of 8.64 (variance = (standard deviation)2). _is means that the intercept
returned from the ûxed eòect part (= the predictors part) varies in both ways, positive and negative, by 8.64 due
to the grouping structure speciûed by the random eòect. _is value is calculated by ûtting the model for each
grouping structure of the random eòect. While the slope remains the same for all groups, the intercept varies by
the random eòect variable (Figure 4.2).

4.4.4.2. Random Intercept and Slope Model

While the random intercept model only changes the intercept but not the slope of the relationship (and by this
implies that the relationship between the response and the predictor is the same for all random eòect groups), this
can be accounted for by using a random intercept and slopemodel. However, if there is a diòerence between
the response and a categorical variable (here the random eòect) this can also be accounted for by directly putting
this variable into the model as a predictor instead of a random eòect. _ough, for variables with many groups,
this would increase the degrees of freedom (and in turn the complexity) used by themodel a lot. By setting this
variable as a random eòect, themodel is able to account for the variation in intercept and slope but preserves a
single slope value for the relationship (Zuur et al., 2008). _e variance in intercept and slope can be visualized
(Figure 4.3) and compared to the random intercept model using model evaluation measures such as the Akaike
Information Criterion (AIC).

Figure 4.3.: Example of the variation of a random intercept and slope model. Richness is the response and NAP
the predictor. _e thick line represents the ûtted regression line while the labeled lines represent the
variation introduced by a random eòect with 9 levels in interaction with NAP. Note that here the
slope and the intercept of the "grouping regressions" diòer compared to the thick line (while for the
random intercept model in Figure 4.2 only the intercept is allowed to vary. Source: (Zuur et al., 2008)
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4.4.4.3. Random Effects Model

If β is dropped from Equation 4.11 and themodel only contains an intercept and a random component, themodel
is called a random eòects model (Equation 4.12).

g(µi) = α + bi + єi (4.12)

Here, the predictor is modeled as an intercept α and a random term bi which is allowed to vary according to the
number of its levels. Yet, this model is not used in this work and is therefore not explained in more detail (Zuur
et al., 2008).

4.4.4.4. Induced/Intraclass correlation

While the standard deviation of the intercept and the residuals of the random eòect are known and returned from
themodel output, the correlation between the diòerent random eòect groups is still unknown. By deûnition, the
so called induced correlation (or co-variance) structure of the random eòect is calculated as d2

d2+σ 2 where d is the
intercept standard deviation and σ the standard deviation of the residuals of the random eòect. _is calculation
applies to the random intercept model. _e induced correlation is also called intraclass correlation and goes back
to Snijders and Bosker (1991).

To keep this thesis concise, further details on induced correlation and random eòects are not covered here.
Calculation of the induced correlation for the random intercept and slopemodel goes back to Fitzmaurice, Laird,
andWare (2004) and takes the slope of the respective random eòects into account. More details can be found
in Zuur et al. (2008); Fitzmaurice et al. (2004). Standard error calculation of the intraclass correlation while
accounting for the eòective sample size (total sample size / number of groups of the random eòect) is covered in
more detail in Snijders and Bosker (1991); Zuur et al. (2008).

4.4.5. Spatial Autocorrelation

One of themost popular quotes goes back to Tobler (1970), stating that "everything is related to everything else,
but near things aremore related than distant things". _is quote perfectly introduces one part of autocorrelation,
namely the spatial case. If observationswere collected from diòerent spatial locations, the independence assump-
tion of the data might be violated. Another case of autocorrelation is the temporal case. For example, running
speed of people participating in amarathon are highly similar at the beginning of an event while the variance of
this value increases over time up to certain maximum at which variance might decrease again. Accounting for
such eòects is essential in statistical model theory since otherwise the applied model is not modelling the rela-
tionship but rather an underlying trend in the data (Zuur et al., 2008). As the data in this work is not aòected by
temporal autocorrelation, this topicwill not be covered in more detail. Methods to detect spatial autocorrelation
will be presented in the following.
A possible violation of the independence assumption of observations can be checked by plotting the model

residuals against their respective coordinates (Figure 4.4a). If the observations and in turn the residuals are
independent, the plot should show no pattern of grouping between positive or negative residuals. However,
this example shows a clear groupingwhich points to the assumption of an underlying spatial autocorrelation. To
further investigate this issue, the empirical semivariogramof themodel residuals can be calculated and visualized
(Figure 4.4b). In a semivariogram, the semi-variance is plotted against distance. _e semi-variance is calculated
with the following equation (O’Sullivan & Urwin, 2010):
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(a) Standardized residuals obtained by the linear re-
gression model plotted versus their spatial coordi-
nates. Red dotes are negative residuals, and blue
dots are positive residuals

(b) Empirical semivariogramof the residuals of the lin-
ear regression model: Semi-variance against dis-
tance (m)

Figure 4.4.: Spatial autocorrelation check-plots. Response and predictorswere chosen randomly for this example
and no inferences should bemade on their selection. Data source: R built-in ’meuse’ data set (Rikken
& van Rijn, 1993)

2 ŷ(d) = 1
n(d) ∑d i i=d

(zi − z j)2 (4.13)

where:
n(d) – number of observations per distance d,
z – observation.

In simple words, the sum of squares of all observation pairs (zi j) for a given distance d is calculated and divided
by their respective observations count for this distance (= labels in Figure 4.4a). _e resulting semi-variance ŷ
is returned for the respective distance d. _e "hat" denotes that the semi-variance is an estimate and not a real
data point. _e "two" in front of ŷ goes back to the original geostatistical publication ofMatheron (1963).

Several parameters describe a semivariogram: range, sill and nugget. _e latter name originally goes back to
the goldmining industry where itwas common to ûnd gold nuggets near a locationwhere gold had already been
discovered before. In statistics, "the nugget eòect" describes the errors of measurement which are lying under
the shortest sampling distance of which the semi-variance was calculated on. It is the semi-variance at which
the ûtted function crosses the y-axis (d = 0) (O’Sullivan & Urwin, 2010). _e range is deûned as the distance at
which the semivariogram levels oò. _is means, at which distance d the semi-variance starts to saturate. In the
example semivariogram (Figure 4.4a) the range is roughly located at a distance of 900 m. _e sill is simply the
semi-variance value at which the semi-variance levels oò/saturates. A simple semivariogram as in Figure 4.4a
assumes the spatial variation to be isotropic (i.e. equal in all directions). Yet, this is not always the case. Spatial
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autocorrelation sometimes only exists in one/multiple direction(s) or changes its behavior for diòerent directions
(e.g. spherical, Gaussian, exponential etc.). Although this case will not be covered in more detail here, it should
be kept in mind when dealing with spatial autocorrelation (O’Sullivan & Urwin, 2010).

4.5. Model Specification

4.5.1. Generalized Linear Mixed Model

_e general GLMM setup modelling hail as a function of temperature, precipitation, PISR and tree age while
accounting for random eòects (year, eval) was as follows:

g(hai l j) = b0 j +m1precip +m2temp +m3srad +m4age + є j (4.14)

b0 j = b0 + υo j (4.15)

where:
g – Logit link function,

m1−4 – Slope coeõcient
b0 j – overall mean intercept varying across random eòect level (υo j)
b0 – Fixed eòects intercept
υo j – Random intercept variation
є j – Residuals as a function of the respective random eòect

While the inclusion of random eòect structures in a model setup can be justiûed by the way the data is ar-
ranged/was collected, the need to account for grouping structures related to spatial autocorrelation can only be
checked using the residuals of amodel. _erefore, a simpliûed GLM was set up with the aim of checking on the
residuals for possible spatial autocorrelation structures (Table 4.1). Visualizing the residuals є of this GLM re-
vealed a spatial autocorrelation up to a reported range of 1911m (Figure 5.5). Hence, a spatial correlation structure
using this range and a nugget eòect of 0.03 was set up. Another GLMM was run to check on the residuals again
and verify the eòect of the inclusion of the spatial autocorrelation structure in themodel (Figure 5.6). All further
GLMMs were set up with the speciûc random eòects while accounting for spatial autocorrelation (Table 4.1).

Year, eval (evaluator) and evaluator in every year (year/eval) were used as random eòect structures in the
models. Models 3-5 were evaluated regarding their magnitude of random eòects while model setups (1-2) were
just used to evaluate the need to account for spatial autocorrelation to ensure that the independence assumption
of the residuals is not violated.

Table 4.1.: Overview of GLM & GLMM model setups

Index Type Random eòect Spatial Autocorrelation

1 GLM - -
2 GLMM - +
3 GLMM Year -
4 GLMM Eval -
5 GLMM Year/Eval -
6 GLMM Year +
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Due to the ûndings of the reportedmagnitudes of intraclass correlation values of each random eòect (Table 5.4),
the ûnal model setup GLMM (6) accounts for the strongest underlying grouping structure (year) and spatial
autocorrelation. _emodel summary is reported in Table 5.5.

Using the model coeõcients of GLMM (6), ORs corresponding to meaningful increases of each predictor
(including 95% conûdence intervals) and their change in odds were calculated (Table 5.6). For precip, temp and
srad the meaningful increments correspond to 1/10 of their respective range. As this logic cannot be applied to
age without rounding because the smallest increment step is one year, the increment step was set to ten years.

4.5.2. Generalized Additive Mixed Model

_e same concept used for the GLMM setup (subsection 4.5.1) was used for the GAMM model setups. A�er
checking for spatial autocorrelation in aGAMwithout random eòects and autocorrelation structure (Figure 5.8),
GAMMswith the observed autocorrelation structure (range: 5024m, nugget: 0.25)were set up. _e diòerence in
model formulation compared to theGLM formula is the replacement of the linear slope coeõcients by a smooth
function for each predictor:

g(hai l j) = b0 j + f1(precip) + f2(temp) + f3(srad) + f4(age) + є j (4.16)

b0 j = b0 + υo j (4.17)

where:
g – logit link function,
f1−4 – Smoothing function
b0 j – overall mean intercept varying across random eòect level (υo j)
b0 – Fixed eòects intercept
υo j – Random intercept variation
є j – Residuals as a function of the respective random eòect

However, models containing random eòect and autocorrelation structures (3-5) did not converge (Table 4.2).
_erefore,GAMMswith random eòects not accounting for the underlying spatial autocorrelation structurewere
ûtted and evaluated (6-8).

Table 4.2.: Overview of GAM & GAMM model setups

Index Type Random eòect Spatial Autocorrelation Note

1 GAM - -
2 GAMM - +
3 GAMM Year + *DNC
4 GAMM Eval + *DNC
5 GAMM Year/Eval + *DNC
6 GAMM Year -
7 GAMM Eval -
8 GAMM Year/Eval -
*DNC = Did Not Converge

Although the highest intraclass correlation was observed for the nested random eòect year/evaluation (0.6) (Ta-
ble 5.7), nearly all variation of this nesting contributes to random eòect year. Hence, the decision was made to
useGAMM (6),which only accounts for year as a random eòect, to simplify themodel setup by having only one
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random eòect (year) instead of a nested random eòect structure (year/evaluation).
Since GAMMs are non-linear, ORs corresponding to a continuous increment step are not feasible. Subse-

quently,ORs between selected predictor valueswere calculatedwhile holding all other predictors constant at the
same time (using the mean value of each predictor distribution). In detail, predicted log odds for two speciûc
variable values were calculated (e.g. temp = 5°C and temp = temp = 6°C) while holding all other variables at
their respectivemean value. _is ensures that the resulting diòerence in log odds only corresponds to the spec-
iûed variable diòerence (Figure 5.9). Since logarithm usage converts multiplication to division, calculating the
exponential value (reversal usage of logarithm) of the log odds diòerence results in OR. _e same result can be
achieved calculating probabilities for both setups and converting these into odds (odds = prob. / (1 - prob.)).
Next, OR of both odds estimates can be calculated (Figure 5.9).
Additionally, ORs for continuous percentage intervals (20%) of each predictors distribution were calculated.

_e results provide an overview of the OR change across the whole value range of each predictor (Table 5.8).

4.6. Model Validation

Model validation is a big ûeld in statistics and can be subdivided in (i) validation approaches and (ii) error
measures. Due to the large amount of existingmethods, only the validation approach used in this thesis, (spatial)
Cross-Validation (CV), in combinationwithAreaUnder theReceiverOperatingCharacteristic Curve (AUROC)
as the error measure will be presented.

4.6.1. (Spatial) Cross-Validation

_e basic aim behind a statistical model is the ability to perform well on new observations, i.e. being general-
izable. If amodel adapts very well to a speciûc data set (either having very few misclassiûcations (classiûcation
case) or a small relative errors of predicted vs. data values (e.g. RMSE)), the model is said to be overûtting
and will most likely perform poorly on a diòerent data set. To test the performance of a model and compare
it to many cases of "new observations", CV is o�en utilized. Here, the initial data set is split into k folds (most
common: 5-10 folds). In every run, one fold is used as the validation set while all others are used for model
training (Figure 4.5). _e ûnal error returned refers to themean error of all fold runs. _is procedure is repeated
i times, usually 100 times and can be expressed as follows: (James,Witten,Hastie, & Tibshirani, 2013; T. Hastie,
Tibshirani, & Friedman, 2009).

CV(k) =
1
k

k
∑
i=1
error.measurei (4.18)

where error.measure is either qualitative (e.g. AUROC) for classiûcation cases or quantitative (e.g. RMSE) for
models with a continuous response.
One famous special case of cross validation is to take all observations for training instead of one. _is approach
is called Leave-One-Out Cross-Validation (LOOCV). K-fold CV has computational advantages compared to
LOOCV since considerably less folds are computed for the k-fold approach. Beside this fact, k-fold CV is known
to give results which are more accurate due to a bias-variance trade-oò. _e more observations are devoted to
the training set, the better themodelwill adapt to the speciûc data set. _is leads to a higher chance of overûtting
which would apply more to LOOCV. However, these estimates will only contain a low bias whereas k-fold CV
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Figure 4.5.: Schematic display of 5-fold CV. Each fold serves as a validation set (beige) while all other folds are
used for model training (blue). Source: James et al. (2013)

will show a higher bias in its estimates. _erefore, from the bias point of view, LOOCV is preferred (James et al.,
2013; T. Hastie et al., 2009).

On the other hand, the low bias of each model run of LOOCV will result in outputs that are highly correlated
with each other since the training set is almost identical (besides one observation). For k-fold CV, the training
sets are more diòerent in every run and the estimates will be less correlated. As a fact, highly correlated sets
have higher variances than those who are not. _is means that LOOCV estimates will have a low bias but a high
variance whereas k-fold CV estimates will have a lower variance but a higher bias. To use a good trade-oò,most
o�en k-fold CV with k ranging from 5-10 is used in practice (James et al., 2013; T. Hastie et al., 2009).
When dealingwith spatial data, autocorrelation of the observations is o�en present. When using the common

CV approach, possible overûtting of the classiûer to the training/calibration set will not be noted if the test/vali-
dation set is not independent (here: spatially correlated) of the training set. To tackle this issue, Brenning (2012)
implemented the concept of spatial CV in the R-package ’sperrorest’. _is approach splits the observations into
sub-regions using clustering methods like "spatial k-means clustering" (Russ & Brenning, 2010). CV is then
performed using these sub-regions. _is ensures that training and validation sets are independent of each other.

(a) Interpretation of ROC space. Source: Fawcett
(2003); Fielding (2007)

(b) Example ROC curves (AUROC values in
parentheses). Source: Fielding (2007)

Figure 4.6.: Interpretation of ROC space (a) and practical example (b)
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4.6.2. AUROC

AUROC is a single value ranging between zero and one describing the ability of a classiûer to distinguish between
truly or falsely classiûed cases. It relies on the Receiver Operating Characteristic Curve (ROC) plotwhich shows
the "trade-oòs between the ability to identify correctly true positives and the costs associatedwithmisclassifying
negative cases as positives (false positives)" (Fielding, 2007). An important property of ROC plots is that they
are robust to proportion changes of either positive or negative cases. Other abilities of ROC plots are listed in
Fielding (2007) as follows:

• the eòect of varying a decision threshold, i.e. the score used to split positive and negative cases,

• the variation in performance of a single classiûer over a range of data sets,

• the relative performance of diòerent classiûers on the same data set.

PointAandC represent extreme classiûers classifying all cases as either negative (A) or positive (C) (Figure 4.6a).
Classiûer B is the perfect classiûer without any misclassiûcations. Point D is the opposite of Point B, classifying
all cases exactly wrong. _e diagonal line stands for the chance performance: In the long run, tossing a coin on
the class belonging would result in a classiûer with such a performance. Hence, any classiûer ranging le� from
the diagonal is performing better than randomly guessing the classes. In summary: _e closer a classiûer is to
point B, the better its performance (Fielding, 2007).
Classiûers which are closer to the "True positive rate" axis are of type "conservative", meaning they only do

positive classiûcations if the evidence is high (Figure 4.6a). _is results in very few cases which are classiûed
positive but are in fact negative (false-positive errors) but also inmanymisclassiûcations of positives as negatives
(if the evidence was too low to classify positives as a positive). Classiûers are called "liberal", if they perform the
other way round as "conservative" ones: Classifying positive cases with weak evidence, resulting in a high false-
positive rate (positive cases which are in fact negatives) (Fielding, 2007).
A classiûer traditionally performs better on the training data than on the test data. _e better it ûts the training

data, theworsewill the ût be to other data sets. _is trade-oò can be visualized inROC plots and compared using
the AUROC values (here: 0.84 for the training set and 0.71 for the test set) (Figure 4.6b).

4.6.3. Validation Setup

To ensure comparability and show diòerences between spatial and non-spatial CV, for both models GAM and
GLMM a spatial and non-spatial CVwith ten folds and 100 repetitions was performed (Figure 4.7). _eGLMM
accounts for spatial autocorrelation and year as a random eòect (Table 4.3). _e inclusion of a spatial autocorre-
lation structure heavily increases model computation time. To be able to run the CV setups of the spatial models
in an acceptable time, the R implementation of the ’sperrorest’ package a�er Brenning (2012) was parallelized.
Although year was included in themodel setup of the GLMM as a random eòect, prediction was performed

using the population mean intercept. For the GAMM setup, no spatial autocorrelation structure was included
due to too high computation times and convergence problems. Also, year was not included as a random eòect
into themodel but as a predictor to perform as an indicator variable (Table 4.3). Subsequently, year was ûxed to
"2009" for the prediction on the test set.
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Figure 4.7.: Example of a spatialCV fold setup of the Basque region). Red colored observations represent the test
set whilemodel training is performed on the black colored observations, respectively.

Figure 4.8.: Example of a non-spatial CV fold setup of the Basque region). Red colored observations represent
the test set whilemodel training is performed on the black colored observations, respectively.

Table 4.3.: Simpliûed (spatial) CV model setup of GLMM and GAM

Model Formula Grouping Structures

GLMM hail ~precip + temp + srad + age Sp. Autocorrelation (Range: 5024 m, Nugget: 0.25)
Random Eòect: year

GAM hail ~precip + temp + srad + age + year None

4.7. Prediction

Spatial prediction was performed on the selected GLMM and GAM models which were also used during val-
idation (section 4.6). _e following variables with a spatial resolution of 200 m were available from the Atlas
Climatico data set (subsection 3.2.3) for the desired prediction area (Basque region): Precip, temp and srad. Since
variable age was not available for the prediction data set, it was ûxed to a value of 20 years for all raster cells.
Subsequently, year was also ûxed to "2009" for the prediction data set.

To evaluate the predicted probabilities, each predictor was plotted against the computed probabilities of each
model (GLMM, GAM), respectively (Figure 5.13) (Figure 5.14) (Figure 5.15). Additionally, the predicted area
(Basque region) was classiûed into four risk areas, representing diòerent risk levels of occurring hail damage
to trees ("very low", "low", "high", "very high") (Figure 5.16) (Figure 5.17). _e base of this classiûcation are the
quantiles of the calculated probabilities. Descriptive statistics of probabilities and their variables were calculated
and compared for every risk level (Table 5.11) (Figure 5.18). ORs between all risk classeswere calculated to get an
impression of the increase in odds of hail damage to trees between the classiûed risk areas.
All statistical analyses and preprocessing steps were conducted using the statistical so�ware R (Version 3.3.1 -

"Bug in your Hair") (R Core Team, 2016) and the following packages (alphabetic order): cowplot (Wilke, 2016),
dplyr (Wickham & Francois, 2016), ggplot2 (Wickham, 2009), gridExtra (Auguie, 2016), gstat (Pebesma, 2004),
MASS (Venables & Ripley, 2002), mgcv (Wood, 2006), nlme (Pinheiro, Bates, DebRoy, Sarkar, & R Core Team,
2016), plyr (Wickham, 2011), raster (Hijmans, 2016), rasterVis (Perpiñán &Hijmans, 2016), rgdal (Bivand, Keitt,
& Rowlingson, 2016), sp (Pebesma & Bivand, 2005), stringr (Wickham, 2015), pacman (Rinker & Kurkiewicz,
2015) and tibble (Wickham, Francois, & Müller, 2016). _is thesis was written using LATEX with the support of
knitr (Y. Xie, 2016) and rmarkdown (Allaire et al., 2016) in RStudio (Version 0.99.903) (RStudio Team, 2015).
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RESULTS

5.1. Synoptic Weather Situation Related to Hail Occurrence

5.1.1. Hail by Time

_e long term trend for the three stations shows that in Vitoria (mean = 11.9), on average, roughly three to four
times more hail events per year occur than in Bilbao (mean = 4.4) and San Sebastian (mean = 3), respectively
(Figure 5.1). Starting in 1973, a decreasing trend until 1994 can be observed for Vitoria. A�er reaching the low in
1994, hail occurrences increase again up to a value of 14 events until 2010 and stabilize a�erwards.

Figure 5.1.:Hail occurrences of Bilbao, San Sebastian and Vitoria for the years 1973 - 2015

For Bilbao, a very slight decline is observed from 1973 to 1994, followed by a slight increment of hail events up to
a value of six for 2015. _e trend a�er 1994 can be attributed to San Sebastian aswell as the diòerence of showing
a positive trend before the year 1994 rather than a negative one like for Bilbao.

Looking at the long term distribution of hail events bymonth for the three stations, thewinter season (Novem-
ber -April) shows the highest values for all stations (Figure 5.2). Generally, all stations show an equal hailstorm-

Figure 5.2.:Hail occurrences of Bilbao, San Sebastian and Vitoria by month for the time period 1973 - 2015
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by-month distribution over the year, diòering mostly in the absolute number of hail events. As already observed
in the distribution of hail events by year (Figure 5.1), Vitoria shows the highest amount of hail events for all
months, followed by Bilbao and San Sebastian. _e peak month for all stations is February. During summer
time, from June to September, almost no hail events are tracked for the years 1973 - 2015.

5.1.2. Hail Versus Climatic Variables

Non-linear relationships of hail occurrence versus all temperature variables are observed (Figure 5.3). Speciû-
cally, TempMin shows aGaussian-like distributionwhile TempMean and TempMax show an inverse variation
function character.

_e distribution of PrecipTotal is highly skewed to the right due to the presence of many values ranging
around 0-20 mm/m2 precipitation. _is results in a wide bin for the range for this class, ending up with three
groups in total. An increase in hail probability with an increase of precipitation amount can be observed.

Regarding WindSpeedMean and WindSpeedMax, roughly equal probabilities for all groups of x are ob-
served, with a very slight hail probability increase towards higher wind speeds. However, these x groups consist
of relatively few observations according to their bin width and should be treated with caution.

Figure 5.3.: Conditional density plots (spinograms here) of hail occurrence in relation to various climatic vari-
ables (daily observations) for the time period of 1973 - 2015 (November - April) of Vitoria. Y-axis
shows the probability of hail occurrence for a given group of x. X-axis grouping according to his-
togram distribution of x. Temperature in °C, Precipitation in mm/m2,Wind Speed in km/h

5.2. Statistical Modelling

5.2.1. Collinearity Analysis of Predictors

Variables temp, srad and elevation show a Gaussian distribution shape while the distribution of precip is skewed
to the le� (towards higher precipitation values) (Figure 5.4). Age shows a bi-modal distribution which is slightly
skewed to the right, i.e. more observations ranging below themean of 17.7 years (Table 5.2). A high Pearson cor-
relation value between Tmin and elevationwas observed (0.88)while all other predictor pairs showed correlation
values of 0.42 (precip ∼ elevation) and lower (Figure 5.4). High VIF values were returned for temp and elevation
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Figure 5.4.: Pearson correlations, histograms and scatterplots of predictors: Temperature (minimum), Precipita-
tion amount, potential solar radiation, elevation and tree age.

(4.11 and 3.96). Precip, srad and age showed negligible smallVIF values. A�er dropping elevation from the list of
predictors, the VIF value of temp was reduced substantially (from 4.11 to 1.07) (Table 5.1).

Table 5.1.: Variance In�ation Factors (VIF) of all predictors (with and without elevation)

temp precip srad age elevation

VIF (with elevation) 4.11 1.04 1.38 1.00 3.96
VIF (without elevation) 1.07 1.03 1.04 1.00 -

5.2.2. Descriptive Summaries of Numerical and Non-Numerical Variables

Table 5.2.: Descriptive summary statistics of numerical variables. Precipitation in m/m2, Temperature in °C,
PISR in hW/m2, Tree Age in years. Statistics show Sample Size (n), Minimum (Min), 25% Quantile
(q1),Median (x̃),Mean (x̃), 75% Quantile (q3),Maximum (Max), Inner-quartile range (IQR) andNA
Count (#NA).

Variable n Min q1 x̃ x̄ q3 Max s IQR #NA
precip 1168 0.047 0.119 0.138 0.132 0.146 0.152 0.019 0.028 0
temp 1168 0.917 3.250 3.983 3.964 4.783 6.917 1.080 1.533 0
srad 1168 0.009 0.012 0.014 0.014 0.014 0.018 0.002 0.002 0
age 1168 1.000 9.000 16.000 17.732 22.000 48.000 11.752 13.000 0

Sample counts of random eòect variable evaluation show that 90% of all observations were surveyed by one
personwhile the other 10%were acquired by "evaluator 2". Most observationswere surveyed in year 2009which
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corresponds to 42% of all observations (1168). Observations counts for the year 2010, 2011 and 2012 are 330, 143
and 210, respectively. Response variable hail shows a 20/80 (positives/negatives) ratio corresponding to surveyed
hail-damages on trees (Table 5.3)

Table 5.3.: Descriptive summary statistics of non-numerical variables

Variable Levels n % ∑%

year

2009 494 42.3 42.3
2010 330 28.2 70.5
2011 143 12.2 82.8
2012 201 17.2 100.0

all 1168 100.0

evaluation
1 1048 89.7 89.7
2 120 10.3 100.0

all 1168 100.0

hail 0 929 79.5 79.5
1 239 20.5 100.0

all 1168 100.0

5.2.3. Generalized Linear Mixed Model

Figure 5.5.: Residual semivariogram of GLM (1)

Spatial autocorrelation up to a range of 1911 m was reported with a nugget eòect of 0.03 for GLM (1). A�er
accounting for spatial autocorrelation in themodel, the Pearson residual semivariogram of GLMM (2) shows a
higher nugget eòect (0.4) with a reported range of 83000 m (Figure 5.6). _e check for spatial autocorrelation
was also made using spline correlograms andMorans I as themeasure for autocorrelation. _e closer Morans I
is to the value of zero, the smaller the reported autocorrelation. A decrease in autocorrelation, especially in the
range of 0-2000 m, was observed a�er accounting for it in themodel (GLMM (2)) (Figure 5.7).
Standard deviation of intercept and residual of each random eòect structure are shown in Table 5.4. Intraclass
correlation is calculated as d2

d2+σ 2 where d is the intercept standard deviation and σ the standard deviation of the
residuals of the random eòect (see also subsubsection 4.4.4.4). While the intraclass correlation is (negligibly)
small for evaluation and year/evaluation (0.11 and 0, respectively), amoderate value of 0.27 is reported for year.
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Figure 5.6.: Pearson residual semivariogram of GLMM (2)

(a) (b)

Figure 5.7.: Spline correlograms without (a) (GLM (1)) and with (b) (GLMM (2)) accounting for spatial autocor-
relation in the model. Correlation of y-axis refers to Morans I autocorrelation measure. _e closer
the line is to zero, the lower the spatial autocorrelation for the respective distance. Upper and lower
lines represent the 95% conûdence interval.

Table 5.4.:Magnitude of random eòects of GLMMs (3-5)

year evaluation year/evaluation

Intercept Residual Intercept Residual Intercept Residual
StdDev 1.13 1.84 0.44 1.23 0.00 1.84
Intraclass correlation 0.27 0.11 0

Estimated model coeõcients of ûxed eòects showed signiûcance of predictors precip temp for a signiûcance
level of 5% (Table 5.5). Srad and age showed very high p-values (0.62 and 0.65, respectively) and did not come
close being signiûcant for the model. A very high standard error was reported for srad (58.16) in comparison
to the respective slope estimate of srad (28.37). _e reported intraclass correlation (0.45) was higher than for all
models using only random eòects and no spatial autocorrelation (3-5) for which the highest reported value was
0.27 (Table 5.4). Year 2012was reported to have the highest negative intercept shi� (-1.7)while year 2009 showed
the highest positive shi� (1.26). Years 2010 and 2011 had only small positive in�uences on the intercept shi� (0.21
and 0.23 respectively). Eight degrees of freedom were used by themodel.

Highest OR was reported for precip with 91% increase in odds for an increment of 0.0105 m/m2 (Table 5.6).

42 of 75



CHAPTER 5. RESULTS

Predictor temp showed an increase in odds of 16% for hail-damage on trees based on an increment of 0.6°C.
Non-signiûcant predictors srad & age showed negligibly small increases in odds (3%& 4%) in combination with
an increment of 0.0009 hW/m2 and 10 years, respectively.

Value Std.Error DF p-value

FE
a

Intercept -11.7769 1.5721 1160 <0.001
precip 61.5651 8.4844 1160 <0.001
temp 0.2502 0.1066 1160 0.0191
srad 28.3710 58.1599 1160 0.6258
age 0.0035 0.0080 1160 0.6596

RE
b

StDev (intercept) StDev (resid.) Intraclass correlation
1.1069 1.2278 0.45

2009: 1.2583 2010: 0.2130 2011: 0.2296 2012: -1.7010

SA
c Range Nugget

329.0935 0.2517
aFE = Fixed effects, bRE = Random effects, cSA = Spatial Autocorrelation

Table 5.5.: Estimatedmodel coeõcients, standard errors and p-values of ûxed eòects;Calculated intraclass corre-
lation of random eòects from standard deviation of intercept and residual and spatial autocorrelation
structure of ûnal GLMM (6) model.

Table 5.6.: Estimated odds ratios corresponding to meaningful increases in each of the predictor variables and
95% conûdence intervals of estimated odds ratios for GLMM (6).

Increment Odds Ratio Increment in odds 95% OR Conûdence Interval (2.5% | 97.5%)

precip 0.0105 m/m2 1.909 91% 1.746 | 2.087
temp 0.6 °C 1.162 16% 1.09 | 1.239
srad 0.0009 hW/m2 1.026 3% 0.974 | 1.081
age 10 years 1.036 4% 0.956 | 1.122

5.2.4. Generalized Additive Mixed Model

_e semivariogram ofGAM (1) showed an reported autocorrelation range of 5024 m and a nugget eòect of 0.25.
Standard deviation of intercept and residual of each random eòect structure are shown inTable 5.7. _e intercept
value of year/evaluation (1.23) is a combination of both single random eòects (year& evaluation):While evalua-
tion contributes only 0.0002, almost all variation is devoted to year (1.230). Although the intraclass correlation
coeõcient is small for evaluation (0.1), fairly high values of 0.58 and 0.6 are reported for random eòect year and
year/evaluation.
Predictors precip, temp and age showed a non-linear relationship to the response hail with all being signiûcant
at the 5% level (Figure 5.9, Table 5.8). _e highest non-linearity was observed for age with estimated degree of
freedom of 5.50. Predictor srad was estimated to be non-signiûcant for the model with a linear relationship to
hail.
Uncertainty of smooth estimates was observed to be relatively high for precip in the range of 0.05 m/m2 to 0.10
m/m2 and for temp between 1°C and 2°Cwhile all other smooth partswere estimatedwith a high safety, especially
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Figure 5.8.: Pearson residual semivariogram of GAM (1)

predictor age (Figure 5.9). Exemplary high ORs were observed for temp (OR = 13.43 for an increase from 5°C to
6°C) and precip (OR = 12.11 for an increase from 0.125 m/m2 to 0.14 m/m2). While age showed a small increase
in odds (63%) from 10-year old to 20-year old trees, odds ratio of srad shows almost no change in odds (0.95)
regarding a change from 0.012 hW/m2 to 0.016 hW/m2.
Highest OR increases were observed for the top end range (80%-100%) of precip (OR = 5.43 for an increase from
0.131 m/m2 to 0.152 m/m2) and temp (OR = 17.67 for an increase from 5.72 °C to 6.92 °C) (Table 5.8). ORs of srad
showed a stable value of 0.98 throughout the calculated 20% intervals. A mixture of increases and decreases of
ORs (min. OR = 0.44,max. OR = 1.90) was observed for predictor age.

5.3. (Spatial) Cross-Validation

Median AUROC values of both models were estimated higher for the non-spatial CV setup (e.g. Train (Spatial
CVGLMM) = 0.66, Train (Non-SpatialCVGLMM) = 0.74) (Table 5.10). Highest StDev was observed for the test
sets of the spatial CV GLMM setup (0.043) followed by its respective training sets (0.037). _e highest training-
test set AUROC diòerence was observed for the spatial CV GAM setup with a magnitude of 0.25 (Table 5.10
(Figure 5.10).

Table 5.7.:Magnitude of random eòects of GAMMs (6-8)

year evaluation year/evaluation

Intercept Residual Intercept Residual Intercept Residual
StdDev 1.17 1 0.34 1 1.23 1
Intraclass correlation 0.58 0.1 0.6
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Figure 5.9.: Estimated smooth functions of ûnal GAMMmodel (6) and their respective 95% conûdence intervals.
Odds ratios for selected increments of each predictor are given.

Table 5.8.: Smooth estimates and p-values of GAMM (6)

edf* p-value

s(precip) 4.72 < 2e-16
s(temp) 4.35 0.00109
s(srad) 1.00 0.80982
s(age) 5.50 0.00464

Table 5.9.: Odds ratios for 20% increase intervals corresponding to the respective distribution quantile values of
each predictor

0% - 20% 20% - 40% 40% - 60% 60% - 80% 80% - 100%

value (precip) 0.047 - 0.068 0.068 - 0.089 0.089 - 0.11 0.11 - 0.131 0.131 - 0.152
OR (precip) 2.92 0.94 0.76 3.98 5.43

value (temp) 0.91 - 2.12 2.12 - 3.32 3.32 - 4.52 4.52 - 5.72 5.72 - 6.92
OR (temp) 1.57 1.93 0.68 2.39 17.67

value (srad) 0.009 - 0.01 0.01 - 0.012 0.012 - 0.014 0.014 - 0.016 0.016 - 0.018
OR (srad) 0.98 0.98 0.98 0.98 0.98

value (age) 1 - 10.4 10.4 - 19.8 19.8 - 29.2 29.2 - 38.6 38.6 - 48
OR (age) 1.37 1.61 0.46 1.90 0.44
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Table 5.10.: Descriptive statistics of (spatial) CV (10 folds, 100 repetitions) of GLMM and GAM

GLMM GAM

Spatial CV Non-Spatial CV Spatial CV Non-Spatial CV
Train Test Train Test Train Test Train Test

AUROC (median) 0.66 0.67 0.74 0.73 0.87 0.62 0.86 0.80
AUROC (StDev) 0.037 0.043 0.022 0.023 0.004 0.036 0.002 0.005

Figure 5.10.: Spatial and non-spatial CV (100 repetitions, 10 folds) AUROC distributions of GLMM and GAM

5.4. Prediction

5.4.1. Probability Estimates

_e estimated probabilities of hail damage to trees of theGLMM show a smooth gradientwith lowvalues (< 20%)
for the southern part of the study area ranging up to medium high estimates for the northeast of the study area
(20% - 50%) (Figure 5.11). For the GAM, the diversity of estimated probabilities is higher than for the GLMM,
spreading across the complete range of 0% - 100% (Figure 5.12). Highest values are observed for the northeastern
part as well, while some regions in the south and western part show fairly high probabilities (~70%).

High Pearson correlation values are reported for precipitation vs. estimated probabilities (0.76 for GAM, 0.83
for GLMM) (Figure 5.13). _e GAM shows a high uncertainty of estimated probabilities for low precipitation
values. A non-linear trend is observed with a clear relationship of high estimated probabilities for high precip-
itation values. _e GLMM shows mainly zero probabilities for low precipitation values up to 0.10 m/m2 with a
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Figure 5.11.: Estimated probability of hail damages to trees of GLMM

Figure 5.12.: Estimated probability of hail damages to trees of GAM

strong increase of probability for high precipitation values.
A similar trend is observed for temperature vs. probability with somewhat lower correlation values (0.59

(GAM), 0.67 (GLMM)). Here, a non-linear trend towards higher temperature values associated with higher
probabilities of hail damage to trees is reported. Regarding PISR and estimated probabilities, the relationship
is mainly randomly scattered over the complete PISR range with reported Pearson correlation values of -0.15
(GAM) and 0 (GLMM).
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Figure 5.13.: Estimated probabilities of GAM and GLMM by precipitation

Figure 5.14.: Estimated probabilities of GAM and GLMM by temperature (min)

Figure 5.15.: Estimated probabilities of GAM and GLMM by PISR
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5.4.2. Risk areas

A smooth gradient with mainly clear borders between the diòerent probability quantiles can be observed for
the GLMM (Figure 5.17). Class "Very-low" is located in the southern part of the study area with class "Low"
directly adjoining the northern border. High risk areas are revealed in the northwestern part of the study area.
_e further northeast a region is located, the higher the risk of hail damage to trees becomes according to the
GLMM estimate. _e spatial distribution of the risk areas is more diverse for the GAM (Figure 5.16). While the
general structure of low risk areas in the south up to high risk areas in the northeast can also be observed, the
detailed distribution of the risk areas is more heterogeneous and mixed than for the GLMM. Some "high risk
areas" are reported in the far southern part regarding the GAM estimate.

Figure 5.16.: Risk areas of hail damage to trees (GAM)

Besides a higher median of precip of class "Very Low" vs. "Low" for theGAM, continuous increases of precip and
temp are observed within the diòerent risk areas (Table 5.11) (Figure 5.18). Precip shows amore clear separation
regarding its distributions across all risk classes for theGLMM than for theGAMwhere precip values are spread
more heterogeneously within the risk areas. Srad is spread evenly across all risk areas with a negligible decrease
towards higher risk areas (0.014 vs. 0.013 of "High" vs. "Very High") for the GLMM (Table 5.11). Since the risk

Table 5.11.: Descriptive statistics of risk areas for GAM and GLMM

GLMM GAM

Risk area Very Low Low High Very High Very Low Low High Very High

Probability (mean, %) 0.2 3 12.5 26 5 14 46 75
Precip (mean, m/m2) 0.07 0.11 0.13 0.15 0.1 0.1 0.13 0.15
Temp (mean, °C) 2.0 2.5 4.1 4.5 1.9 3.00 4.1 4.3
Srad (mean, hW/m2) 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.013
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Figure 5.17.: Risk areas of hail damage to trees (GLMM)

area classes are based upon probability quartiles, their distributions are perfectly separated (Figure 5.18d). While
both models show their highest distribution densities in regions with a probability < 0.1, the overall range of
estimated probabilities is higher for the GAM than for the GLMM.

_e highest reported increase in odds (15394%) is reported for the GAM between the risk classes "Very Low"
and "Very High" (OR = 154.94). For the same classes, the GLMM estimates an 125 times higher risk of hail
damages to trees. Also, the increase in risk of the GLMM between class "High" and "Very-High" (OR = 2.5) is
four times smaller than estimated by theGAM (OR = 8.76). _eGLMM shows higher increases in risks for class
combinations "Very Low" to "Low" (OR = 10.9) and "Very Low" to "High" (OR = 50.22) compared to the GAM
(OR = 3.07 and OR = 17.70, respectively).

Table 5.12.: Odds ratios between risk areas for GAM and GLMM. Percentage increase of odds in parentheses.

GLMM GAM

Risk area Low High Very High Low High Very High

Very Low 10.90 (990) 50.22 (4922) 125.36 (12436) 3.07 (207) 17.70 (1670) 154.94 (15394)
Low - 4.60 (360) 11.50 (1050) - 5.77 (477) 50.47 (4947)
High - 2.50 (150) - 8.76 (776)
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(a) Precipitation (b) Temperature (min)

(c) PISR (d) Probability

Figure 5.18.: Box- and violin plots showing areal statistics of precipitation, temperature, PISR and probability
within the respective risk areas
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In this chapter, limitations in the undertaken steps of analysis are discussed and an interpretation of the results
is given.

6.1. Note on Discarded Thesis Concept

_e initial attempt of this work was to create probability maps of hail occurrence for the Basque region which
then should have been compared to the actual hail damages tracked within the "Tree Survey data set" (subsec-
tion 3.2.4). _e idea was to derive hail information from weather-radar data. Diòerent methods to extract hail
information from radar data exist. _ese and more information about scientiûc studies dealing with this topic
are attached inAppendix B. However, the data could not be processed due to (i) a too small coverage time (about
one year)with big data gaps for several months and (ii) an unclear preprocessing state of the data setwhich could
not be clariûed in a way to be able to safely process the given data. Point (i) would also have introduced high
uncertainties regarding comparisons between monthly derived hail probabilities since possible events may have
been missed due to data gaps. With respect to the time limitations of this work, it was decided to go with the
hail variable within the "Tree Survey Data set" as the response variable. _ementioned problems with the data
may be resolved in the future so that it can be used in future works.

6.2. Data Availability and Quality

While the synoptic situation related to hail occurrence was analyzed for a period of 40+ years using the GSOD
data set (section 5.1), the analyses outcomes only represent three point locations within the study area (Bilbao,
San Sebastian andVitoria). As hail is a small-scale phenomenon, the ability to draw conclusions from the results
of these three stations to other regions is limited. Nevertheless, to get a basic idea of hail occurrences related to
various climatic variables on a synoptic scale, the data is suõcient.

_e Atlas Climatico data set was used to extract variable information for the surveyed trees of the TSD. A
spatial resolution of 200m was suõcient for themeasured variables used (precipitation, temperature and PISR)
as such do not vary much within the given spatial extent of 200 m. _e data is based on long term observations
from years 1951 to 1999. Due to the impact of the ongoing climate change (IPCC, 2007, 2013), a diòerence of 17
years between the given data and nowadays introduces some bias compared to existing conditions today. While
the in�uence of thisdiòerence ishard tomeasure, the introduced biasdoesnot apply to all variableswith the same
magnitude. Unfortunately, no wind speed information was available and therefore the ûndings of wind speed
vs. hail from theGSOD data set could not be integrated into themodelling part which might have improved the
modelling result.

_e TSDwas used for the statistical modelling part. _e spatial distribution of the surveyed trees has a higher
concentration in the northern, �at part of the study area (Figure 3.5). _is results in a ûtted model adapting
more to the climatic conditions in the north and being more uncertain about predictions for the southern part
of the study area. Also, the distribution of species types should bementioned herewhich is biased towards "Pinus
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radiata" (N = 945) with the next type being "Pinus pinaster" with 77 occurrences. Although diòerent tree species
should not make a huge diòerence to themodel outcomes, the species component could be included in further
studies to have a quantiûcation of its eòect. However, with respect to the total number of themost species types
(< 50), possible outcomes need to be carefully interpreted. _e in�uence of the diòerent evaluatorswho surveyed
the hail damages to trees and the diòerent years of acquisitionwere accounted for in themodel as random eòects
(Table 5.4) (Table 5.7). _eir outcomes are further discussed in the section dealing with the model outcomes
(subsection 6.3.3). Regarding the binary response variable of the data set, no information was given about how
the evaluators decided onwhat classiûes an observed damage being caused by hail. Additionally, no information
was providedwhether this damage occurred just recently orwasmissed during survey activities in the past years.
In summary, no statement about the conûdence of themodeled response variable can bemade.

6.3. Statistical Modelling

6.3.1. Predictors And Model Setups

GLMs and GAMs with diòerent setups were used to account best for the underlying grouping structures within
the data (spatial autocorrelation, random eòects). While GLMs assume the relationships between the response
and predictor variables to be linear,GAMswere used in thiswork to explore and account for possible non-linear
relationships. Non-linearitywas found for predictors precip and temp,mainly at the higher end of their respective
distribution range (Figure 5.9). Also, a non-linear relationship was reported for predictor age between 10 years
and 50 years: While it could be assumed that older trees might be more suspicious to hail damage, the model
reported that trees with an age of 20 years have a slightly higher probability of having hail damage than trees
with an age of 10 years (OR = 1.63) or 30 years. Although such ûndings may be caused by randomnesswithin the
surveys, this result should be checked with a higher number of observations in future studies.
When looking at the results of the GAM, it needs to be considered that the model does not account for the

underlying spatial autocorrelation (Figure 5.8). _is is simply caused by the fact that the model setup which
accounts for such did not converge. Various options were tried to reach convergence for the spatial GAMM
model: Varying internal function parameters which help to reduce convergence errors, scaling down predic-
tor units (precip from mm/m2 to m/m2, srad from kW/m2 to hW/m2) and removing/adding predictors. _e
author of the R package used (Wood, 2006) points out that convergence errors may occur easily "when explic-
itly modelling correlation in the data, probably because of the inherent diõculty in separating correlation from
trend,when the trendmodel is itself rather complex". No convergencewas reached and itwas decided to use the
GAMMwhich only accounts for the random eòect structure yearwithin the data for further analyses. Hence, the
independence assumption of the residuals is violated for this model due to the presence of unaccounted spatial
autocorrelation.

Regarding predictor selection of the models, VIFs were calculated and it was decided to drop elevation due
to its high correlation with minimum temperature (0.88) (Figure 5.4) (Table 5.1). _e decision to useminimum
temperature instead ofmean/max temperaturewas based on the ûndings of Dessens (1995)who detected a strong
relationship of hail occurrence andminimum temperature.

Predictor selection in statistical models relies on basic understanding of the mechanics of the response vari-
able. It was assumed that the response variable "surveyed hail damages to trees" (strongly) correlates with hail
occurrence. Subsequently, predictor selection was performed on the underlying concepts of hail occurrence. It
is known that hail events are related to certain climatic conditions (chapter 2). Subsequently, climatic variables
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were chosen to serve as predictors to model the response.

6.3.2. Validation and Prediction

While underlying random eòect structures were accounted for in the models, a (spatial) cross-validation ap-
proach introduces problems with such structures. As the underlying grouping structure does not apply to the
sub-regions of the cross-validation setup, it was decided to use the population mean intercept of the GLMM
model for the CV approach. Since this is not technically possible for the GAMM model, the random eòect vari-
able year was ûtted as an indicator variable to the model to account for the grouping structure. Subsequently,
the value of the indicator class year was ûxed for the prediction of the test set to "2009". Also, the spatial au-
tocorrelation structure in the model does not apply exactly to each training/test set within the cross-validation
setup. When validating modelswith spatial correlation structures, non-spatial CV approaches tend to introduce
overûtting problems of the training set (Brenning, 2012). While this problem is reduced using spatial autocor-
relation, themodeled autocorrelation is still diòerent from the existing spatial autocorrelation within a speciûc
CV fold. _is bias needs to be considered in the CV results. However, its magnitude is hard to measure.

Similar problems regarding random eòect structures arise for the spatial prediction of the trainedmodels. Due
to the diòerent estimated intercepts of the random eòect levels, a justiûcation would be required why a speciûc
level was taken for prediction. Since an argumentation in favor of one level cannot be given, the population
mean intercept was taken for prediction. Additionally, predictor age was not available for spatial prediction.
It was ûxed to a value of 20 years and subsequently predicted probabilities/odds ratios do not account for the
change in the hail/age relationship but assume it to be equal for all areas (age = 20 years). Spatially predicting
such a biological variable is always problematic since information can only be gathered by repeated local surveys
and not by using remote sensing and/or interpolation techniques.

6.3.3. Interpretation of Results

According to the long term measurements of the GSOD data set, hail mainly occurs during winter (November
to April) in the Basque region (Figure 5.2). _is is also reported by several other studies which investigated hail
frequency along coasts (UK Met. Oõce, 2015; Sioutas, 2011). _e important process is condensationwhich leads
to the formation of severe storms causing hail. _e fact that Vitoria shows the highest number of recorded hail
events among the three cities (Vitoria, San Sebastian, Bilbao) with a mean hail occurrence of 42.5 events per
year (more than twice as many as San Sebastian/Vitoria) contrasts to the estimated risk areas of hail damages to
trees (Figure 5.16) (Figure 5.17). Here, Vitoria is located within the "Low" (GAM) and "Very Low" (GLMM) risk
areas regarding hail damage to trees. A possible explanation for this is that most of the hail events happening
in Vitoria do not cause damage to trees and therefore occur with a low intensity. _is is supported by the fact
that Vitoria is not located at the coast. Sincemost severe hail events occur along the coast due to thementioned
condensation processes, Vitoria is less likely to be hit by a severe storm event than San Sebastian or Bilbao.
Another explanation could be the lower number of observations of the TSDdata set in the region aroundVitoria
and the resulting higher uncertainty of probability estimates of hail damage to trees. Although this fact was
not evaluated in particular, it is supported by the high uncertainties of probability estimates for areas with low
precipitation (Figure 5.13) which aremainly located in areas with low number of observations (Figure 3.5). Since
precipitation is decreasing from north to south within the study area (Figure 3.4), Vitoria is located within an
area that has relatively low precipitation amounts (compared to the northern part of the study area).
Comparing the conditional density plots of theGSOD data (Figure 5.3),which are based on dailymean values

54 of 75



CHAPTER 6. DISCUSSION

of the respective variables against direct tracked hail events, with the calculated probabilities of hail damages to
trees plotted against the predictors (precip and temp) of the TSD (Figure 5.13) (Figure 5.14), has to be done with
caution: _e response variables are just indirectly related (TSD response variable "hail damages to trees" is just a
derivation of real hail events while the GSOD hail variables reports real hail events) and the aggregation of the
variables is on a diòerent scale (GSOD=dailymean,TSD=monthlymean). However, the trend of having higher
precipitation values in combination with hail events can be observed for both setups. Regarding the minimum
temperature results,most hail events seem to occur at a temperature range between -2°C and 0°C. In contrast, the
highest probabilities of hail damages to trees were estimated for regions with amonthly minimum temperature
of > 5°C of both models GLMM and GAM. _is leads to the inference that many hail events in the region from
-2°C and 0°C just occasionally cause hail damage to trees while hail events happening with a higher minimum
temperature (> 5°C) come with a higher destructive energy.

_e intraclass correlation reports of the modeled random eòect structures (Table 5.4) (Table 5.7) showed a
moderate grouping eòect for the variable year (0.58 - GAM, 0.6 - GLM) giving information in which year the
data was surveyed. _e reason for such yearly grouping eòects may relate to certain hail events which caused
damage to trees in areas with similar properties of climatic variables in a speciûc year while in other years less
hail related damages may have occurred. Only minor random grouping eòects were reported for the diòerent
evaluators (0.1 - GAM, 0.11 - GLM). _e reported intraclass correlation of year/evaluation for the GAM seems
to be rather high (0.6). However, nearly all of its magnitude has to be attributed to year (0.58). _is is attributed
to the somewhat diòerent calculation of the intraclass correlation for theGAM since the residual value is always
ûxed to a value of 1.
A spatial autocorrelation of the residualswas found in both GLMM andGAMM. Modelling such using semi-

variograms, the aòected range by spatial autocorrelation was reported to be 1911 m with a nugget eòect of 0.03
(GLMM) and 5024 m with a nugget eòect of 0.25 for the GAM, respectively. Spatial autocorrelation is common
in statistical modelling when dealing with spatial data within certain distances. Revealing themagnitude of the
spatial autocorrelation is the base to account for it a�erwards in the model speciûcations to avoid violating the
independence assumption of the residuals. However, themodel setup of theGAMM accounting for the speciûed
spatial autocorrelation did not converge (see also subsection 6.3.1). Hence all GAMM outcomes are aòected by
this assumption violation and should be treated with caution.

Signiûcance to the 5% levelwas reported for predictors precip and temp for theGLMM (Table 5.5). For predic-
tors srad and age only signiûcance to the 10% level was achieved. _is indication of importance for substantial
in�uence on themodel also relates to the estimatedORs for the respective predictors: _e better the p-value, the
higher the OR/increment in odds (Table 5.6). Since the increment steps of all predictors beside age were set to
10% of their respective range, comparisons of odds increments between the predictors are valid. Here, precipwas
clearly estimated to have the highest in�uence for a 10% change (OR = 1.91 for an increment of 0.0105 m/m2)
while a change 0.6°C was related to an increment in odds of 16% (OR = 1.16). Predictors srad and age showed
negligibly small OR changes.
Direct comparisons between the OR outcomes of the GLMM and the GAMM cannot be drawn since the

GAMM does not return coeõcientswhich change the log odds for a speciûc unit change (likeGLMs do). For the
GAMM, a signiûcance to the 5% level was reported for predictors precip, temp and age, suggesting an important
interaction of tree age to possible hail damages to trees (Table 5.8). _is relationship was reported not to be
signiûcant to the 5% level for the GLMM (Table 5.5). Also, the non-linear smoothing functions of the GAMM
show an enhanced increase in OR for the last third of the predictor range for precip and temp (Figure 5.9). _is
indicates a strong relationship of high temperatures/precipitation amount with severe hail events causing hail
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damages to trees. Such ûndings corresponding to particular parts of a predictor range cannot be observed for
linear models.

_e GAMM shows problems when dealing with low precip or temp values indicated by the high 95%
Conûdence Interval (CI)s of the smoothing functions and the probability estimates vs. predictors (no CIs es-
timates are returned by the GLMM model due to the underlying "Penalized Quasi-Likelihood" ûtting method)
(Table 5.8) (Figure 5.13). _is is assumed to be the main reason for the rather large gap between the calculated
median AUROC values of training and test set (Table 5.10). _e GAMM model overûts on the training set and
is hardly able to deal with area properties mainly containing low precip or temp values. _e mentioned gap of
training and test setAUROCs (train(median)= 0.87, test(median= 0.62)) iswell reported by the spatialCV setup
while the non-spatial setup shows an unaccounted overûtting of the test set (median AUROC = 0.80). Overall,
both GLMM and GAMM show a "poor" performance discriminating between the response of existing/non-
existing hail damages to trees with reported median AUROCs ranging between 0.6 - 0.7 (referencing to the
spatial CV test set results).

_e resulting probabilities of GLMM and GAM show high distribution diòerences in their absolute magni-
tudes aswell as in their respective counts. _eGAM showed probabilities ranging from 0-1with a high variation
in estimated probability for the same predictor value combined with large 95% CIs (Figure 5.13) (Figure 5.14).
Regarding theGLMM probability estimates,maximum values around 0.5 were reported with much lower prob-
ability variation per predictor value. A relatively large number of areas was predicted with a susceptibility of
0% of hail damages to trees, e.g. class "Very-Low" (Table 5.11). _e diòerence between the models can be at-
tributed (i) to the overûtting problems of the GAM in combination (ii) with themissing inclusion of the spatial
autocorrelation structure in themodel.

Hence, the risk areas of the GLMM show a much cleaner distinction for the GLMM as for the GAM (Fig-
ure 5.16) (Figure 5.17). Following the diòerent distribution ranges of both models regarding their estimated
probabilities, the calculated ORs between the risk areas are also more conservative for the GLMM than for the
GAM. _e latter reports an OR of 154.94 between class "Very Low" to "Very High" compared to an OR of 125.36
of the GLMM.

6.4. Major Findings

Diòerent risk areas of hail damage to trees were identiûed. It was found that the northeastern part of the Basque
region ismost susceptible to possible tree damage (class "VeryHigh"). _e areawith the second highest classiûed
risk potential (class "High") is located in the northwestern part. Areas with a lower probability of being aòected
by hail causing tree damage are located starting from the horizontal center of the study area down to the southern
end.
According to the calculatedORs of both models (Table 5.12), class "VeryHigh" has at least 150% (GLMM) and

up to 776% (GAM) increased odds compared to class "High". An increase in odds between 360% (GLMM) and
477% (GAM) from class "Low" to class "High" was observed. Class "Very Low" has almost no risk of damaged
trees caused by hail with average probabilities of 0.2% (GLMM) and 5% (GAM) according to the prediction
estimates of the ûtted models. In summary, the diòerences between classes "Very Low" and "Low" and classes
"High" and "Very High" are substantial in terms of susceptibility of damages trees caused by hail.

_e spatial distribution of the risk areas relates highly to the spatial distribution of precipitation and mini-
mum temperature in the study area. Both were found to be the two most important variables in the performed
statistical analysis according to their respective OR changes (Table 5.6) (Table 5.9). A small in�uence (referring
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toORs of bothmodels) on possible damageswas found for tree age. However, the relation does not show a stable
increase with a higher tree age and needs to be interpreted with caution.
A steep increasewas found for predictors precip and tempwithin the top third part of their value range (precip:

0.12 m/mm2 - 0.15 m/mm2, temp: 5°C - 6.5°C) of their respective GAMM smooth functions (Table 5.8). _is
indicates a high increase in probability of hail damage to trees when such climatic conditions appear.

With reported AUROC values of > 65% for the training set, the spatial and non-spatial CV setups indicate
that the ability to model the response variable "hail damage to trees" using a GLMM/GAM with the available
predictors is limited. Test set AUROCs of around 0.7 show a fair generalization of the GLMM. An AUROC gap
of 0.25 between the test (0.62) and training set (0.87) of the GAM reveals overûtting to the training set.

6.5. Relation to Other Studies

When comparing results of this work to other studies, it has to be kept in mind that although the modeled
response of many studies is related/derivated to/from hail occurrence/damage, it o�en diòers in detail: In this
work, hail damage to treeswas analyzed. Almost no studies analyzing eòects of hail damage to plants/trees exist.
Subsequently, the possibility of comparing the modelling results of this study to others is limited. Most studies
investigating hail focus on the atmospheric conditions and/or storm cloud properties to draw inferences on hail
severity and frequency (Sánchez et al., 2013; Mallafré et al., 2009; Auer, 1994). Only few studies deal with the
climatology of hail events (J.Webb et al., 2009; Piani, Crisci, Chiara,Maracchi, &Meneguzzo, 2005; SaaRequejo,
GarciaMoreno, DiazAlvarez, Burgaz, &Tarquis, 2011;Vinet, 2001). _ismostly relates tomissing or lacking time
series of hailstorm data which makes the development of climatology models very problematic (Saa Requejo et
al., 2011). Furthermore, due to the complex small-scale characteristics of hail, such models only apply to certain
geographical regions and can hardly be transferred to other studies (chapter 2). However, rough comparisons
between the geographical distribution of hail frequency and its inner-yearly occurrence in northern Spain and
other countries can bemade.
For France,Vinet (2001) found that "the frequency and intensity of hailstorms increase as one rises in altitude".

While this ûnding corresponds with the higher hail frequency found for Vitoria (513 m) compared to Bilbao (21
m) and San Sebastian (32 m), hail intensity was inferred to be higher at the coast side than for the Cantabrian
Range in thiswork (due to more surveyed hail damages at the coast than in themountainous area). Vinet (2001)
also points out that the regions aòectedmost by hail in France relate to large-scale atmospheric circulations.

In Great Britain, J. Webb et al. (2009) observed that most hailstorms occur during summer time (May - Au-
gust). _e authors´ ûndings of a clustering of severe hailstorm events at the east- and south coast relate to the
ûndings of this study, where highest risk areas of hail damage to trees were attributed to areas near the coastline
although more (less severe) hail events occur upcountry

Saa Requejo et al. (2011) calculated an "loss-to-risk hail damage" index from hail insurance data which was
compared to minimum and mean temperature values. While for some areas signiûcant relationships between
the index and a higher summer temperaturewere found, the authors point out that the results aremainly aòected
by the length of the time series and the dynamical characteristics of the studied areas (political provinces in
Spain). _ese results somewhat diòer from the results of this work for which a signiûcant relationship between
minimum temperature and hail damage to trees was found. However, the diòerence in response and available
data needs to be considered here.
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6.6. Future Research

To validate the ûndings of this work, the idea of linking hail damages of trees/plants to climatic variables like
precipitation, temperature and wind speed should be transferred to other study areas and compared to the re-
spective ûndings of this work. Such comparisons help to better understand and validate the link of regional
climatic situations and synoptic weather situations to hail occurrence. _en, those results can be compared to
distinct hail modelling using atmospheric variables to explore larger patterns and possible links between regional
climate situations and atmospheric �ow conditions.

More climatic variables can be used to further improve themodels. Here, itwas only possible to use precipita-
tion, temperature and PISR. Relationships to variables such aswind speed,wind direction and air pressure could
only be investigated in an exploitative way but not be used for modelling since they were not available spatially.
Also, variables like PISR showing a similar mean value for the whole study area should be transformed in a way
that reveals spatial diòerences. _is may help to get such variables to have a signiûcant impact on themodels.

When investigating speciûc response variables like "hail damage to trees", it is important to not only include
climatic variables but also components of the damaged good, here being trees. Revealing possible in�uences of
tree health, tree species and eòects like a grouping of trees, which may possibly save certain trees from getting
damaged, are a possible way to improve further analyses.

_is study provides a setup to explore patterns of hail damages to trees related to climatic variables and relate
the synopticweather situation of the Basque region to hail occurrence. While this is a ûrst step, the results of this
work (e.g. the risk areas and its ORs) need to be compared to studies of hail occurrencemodelling in the desired
area (Basque region, northern Spain). Methods and algorithms how to derive hail occurrence information from
weather radar data are attached inAppendixB. It is important to ûnd out atwhich kinetic energy level hail events
have an impact on trees in general and on speciûc species. As such studies do not yet exist in this area due to the
lack of in situ data like hail measurement systems (e.g. hailpads) in combination with surveys on hail damages
to trees, it is important to tackle these problems in the future to support the creation of such scientiûc studies.
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Diòerent risk areas of hail damage to trees in the Basque region in northern Spainwere descried using linear and
non-linear statistical learning methods (GLMM and GAMM). Utilizing climatic variables like precipitation,
minimum temperature and characteristic tree information like tree age as predictors, a clear relationship of
higher risk areas towards higher precipitation and temperature values was observed. Such risk areas help to
improve the understanding and the drawing of links between hail damages to trees and infections of trees by
pathogenic agents.

_e calculated ORs between the risk areas vary for the GLMM and GAMM results. Almost no risk of hail
damage to trees (probabilities between 0.2% and 5%) was estimated for risk class "Very Low" for both models
while a tremendous increase in odds between this class and the highest risk class "VeryHigh"was estimated (OR
(GLMM): 125.36, OR (GAMM): 154.94).

_e synoptic weather situation of hail occurrence in the Basque region was investigated using point infor-
mation of three climate stations (Bilbao, San Sebastian and Vitoria). _e long term data availability of 42 years
helps to understand inner- and inter-yearly hail occurrence distributions throughout the Basque region. _is
knowledge also improves the understanding of the statistical model outcomes of both GLMM andGAMM. Due
to the fact that hail preferably occurs during winter time in the Basque region, mean values of the predictors
corresponding to this time frame were used within the modelling approach. _e relationship between higher
wind speed and hail occurrence which was found within the GSOD data set could not be included in themod-
elling and prediction setup because this variable was not available spatially. _e inclusion of such could be one
possibility to improve themodels.

Surveyed hail damages to trees were used as the response variable. _e models were trained on 1168 obser-
vations which are spatially distributed over the study area. Grouping structures in the data (random eòects and
spatial autocorrelation) were investigated and accounted for during model speciûcation.

Spatial CV results ranging around 60% to 70% indicate that there is much room for improvement of themod-
els. More variables explaining hail damage to trees need to be incorporated to createmodelswith a higher ability
of correctly discriminating between existing hail damage and no hail damage to trees.

_e inclusion of the GAMM as a model type able to account for non-linear relationships of the response
and the predictors provided the information of a non-linear behavior of predictors precipitation andminimum
temperature, especially in the top third of their respective value range. _ese ûndings support the understanding
of the occurrence of (severe) hail events in the Basque region.

_e response of the models is a derivation of severe hail events causing damage to trees. To reveal possible
misclassiûcations of such surveyed information and in turn to improve the statistical models, the results of this
work need to be compared to studies investigating risk areas of direct severe hail events. Also, knowledge on a
severity threshold of hail storms causing damage to (certain) tree species is highly sought a�er.
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APPENDIXA
CONDITIONALDENSITY PLOTS OFHAIL OCCURENCEOF BILBAO AND

SAN SEBASTIAN

Figure A.1.: Conditionaldensityplots (spinogramshere) ofhail occurence in relation to various climatic variables
for the time period of 1973 - 2015 (November - April) of Bilbao. Y-axis shows the probability of hail
occurence for a given group of x. X-axis grouping according to histogram distribution of x.

Figure A.2.: Conditional density plots (spinograms here) of hail occurence in relation to various climatic vari-
ables for the time period of 1973 - 2015 (November - April) of San Sebastian. Y-axis shows the prob-
ability of hail occurence for a given group of x. X-axis grouping according to histogram distribution
of x.
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APPENDIXB
USAGEOFWEATHER-RADAR INFORMATION IN HAIL APPLICATIONS

As direct measurements of hail using hailpads or other sources are highly expensive and limited to small areas
(subsection 2.1.1), weather radar information is frequently used nowadays in studies dealing with hail (Battan,
1973). Since the 1970s, radars are commonly used and diòerent algorithms have been developed to detect storm
cells bearing hail. One of the ûrst andmost popular approaches goes back to Waldvogel et al. (1979), who cate-
gorised storm cells in three subclasses being "Strong Rain Cell", "Weak Hail Cell" and "Strong Hail Cell", using
the heigth diòerence in km of the clouds 0°C and -45°C temperature levels. However, only about 50% of detected
hail cells produced hail which also reached the ground. Other hail detection approaches are described in Auer
(1994);Witt et al. (1998); Hardaker andAuer (2007) andwill be explained in the following chapter inmore detail.

Today, techniques using dual-polarization radar data are o�en used (if available) to distinguish between rain
(non-spherical droplets) and hail (spherical droplets). Dual-polarization radars measure in horizontal (ZH) and
vertical polarization (ZV ). With this information, one can compute the ratio between both re�ectivities (ZDR)
using the following equation:

ZDR(dB) = 1010 log(ZH
ZV

) (B.1)

For rain, ZDR never becomes negative (varies between 0 and 4 dB ) and is correlated with ZH while for hail ZDR

ranges around 0 dB and is uncorellated to ZH . With this approach, Aydin, Seliga, and Balaji (1986) studiedmajor
hailstorms in Colorado. Other studies which used dual-polarization radar information to derive information of
hail properties are Höller, Hagen, Meischner, Bringi, and Hubbert (1994); Smyth, Blackman, and Illingworth
(1999). However, as most weather radars only feature one polarization, most hail detection methods focus on
using information of single-polarization radars.

B.1. Hail Detection Algorithms Using Single-Polarization Radar

B.1.1. CAPPI Method

_e Constant Altitude Plan-Position Indicator (CAPPI) method uses single-polarization radar information
"based on a Plan-Position Indicator (PPI) of the radar re�ectivity at constant altitude" (Holleman, 2001). _e
assumption is made that the diameters (Di) of scattering particles present in atmosphere are smaller than the
wavelength of the radar (most o�en C- or S-band), which equals the physical process called Rayleigh scattering
(Dardy, 1973). Hence, radar re�ectivity Z can be expressed as:

Table B.1.: Radar re�ectivity Z in dBZ and the approximate rainfall rate R on the ground (Holleman, 2001)

Z [dBZ] 7 15 23 31 39 47 55

R [mm/h] 0.1 0.3 1 3 10 30 100
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Z =∑
i

ni × D6
i (B.2)

where ni refers particle count per unit volume with a diameter Di . Due to the fact of hailstones having a large
diameter compared to rain drops and other atmospheric particles, radar re�ectivity increases largely with the
presence of hail in the cloud. While rain droplets reach a maximum of 6.5 mm in diameter and the mean be-
ing much lower, hailstones can reach values of 10 cm and larger (Holleman, 2001). According to Auer (1994), a
re�ectivity value of 54 dBZ corresponds to hailstones with a diameter of around 10 mm with the assumption of
hailstones being distributed over the entire radar beam (Table B.1). A commonly used threshold for distinguish-
ing between severe rain and hail using the CAPPI approach is 55 dBZ, introduced by Mason (1971).

B.1.2. Maximum Reflectivity (ZMAX) Method

_is method, also refered to as "ZMAX", simply takes the maximum re�ectivity value at every angle instead of
taking the re�ectivity value at a constant altitude as done in the CAPPI method. _e received value, also refered
to as "maxPPI", is then applied on a scale with average precipiation expectations like the one shown for CAPPI
(Table B.1). Using this method ensures not to miss certain clouds which are located at higher altitudes as the
chosen altitude of the CAPPI method. Contratry, the radar operates on diòerent altitudes, depending on the
angles, which may lead to biased results (Holleman, 2001).

B.1.3. VIL Method

Greene and Clark (1972) proposed the use of the Vertically Integrated Liquid (VIL) variable in hail prediction
algorithms aswell as for hydrological applications. CombiningVIL andCAPPI/ZMAX information one is able to
retrieve information on the three-dimensional characteristics of a hailstorm cell. First,VIL needs to be calculated
by converting re�ectivity to liquid water content (M) utilizing a semi-empirical relation betwen Z [mm6/m3]
and M [g/m3]:

M = 3.44 × 10−3Z4/7 (B.3)

A�er that, the retrieved liquid water value at each location is vertically integrated:

V IL = ∫
Htop

0
M × dh = 3.44 × 10−3∫

Htop

0
Z4/7dh (B.4)

where VIL is calculated in kg/m2 or in mm of "potential rainfall" in combination with the height in kilome-
ter (Holleman, 2001). Next, the three-dimensional information is converted to a vertical plane of liquid water
present starting at a speciûc altitude. According to Kitzmiller,McGovern, and Saøe (1995), VIL is a function of
updra� and cloud depth due to the fact of precipitation formation rate being "roughly proportional to updra�
velocity".

It was found that a high VIL value shows a good correlation with the appearance of severe (hail)storms. On
the existence of stratiform cloud situations, VIL hardly exceeds a value of 10 kg/m2 whereas in thunderstorms
the observed value is much higher. However, no general warning threshold exists for hail detection using VIL
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information. Refering to Lenning, Fuelberg, andWatson (1998), a common method used in the USA is to take
the VIL value of the ûrst hail storm which occured on a speciûc day.

B.1.4. VIL-Density

Attempting to get rid of the threshold problems regarding the VIL method, Amburn andWolf (1997) proposed
a normalization of the VIL value utilizing echotop heights at a certain re�ectivity threshold, for example 7 dBZ.
According to the authors, this would pick up the problem that some high-topped storms do not produce hail
although they show a high VIL value and some low-topped ones instead produce hail while showing a low VIL
value. _e "VIL-density" method is deûned as follows:

V IL − density = V IL
Htop

(B.5)

where VIL-density is calculated in g/m3 with VIL given in kg/m2 and Htop in km. Amburn and Wolf (1997)
ûnally proposed a VIL-density value of 3.5 g/m3 as a threshold for occuring hail. However, the advantage if the
VIL-densitymethod over the VIL-method was refuted by several studies. One examples is the work of Edwards
and_ompson (1998), who received the same results using a VIL threshold of 38 kg/m2 and the proposed VIL-
density threshold with the additional remark that hail is always observed a�er exceeding a value of 43 kg/m2,
regardless of echotop height.

B.1.5. Method of Auer

Auer (1994) utilized radar re�ectivity at low altitude in combination with cloud-top temperatures to detect hail
and seperate it from heavy rain. Cloud-top temperatures can be derived by the infrared band of geostationary
satellites, e.g. Meteosat. Observingmore than 100 hail and rain cases during all seasons of a year in NewZealand,
a very good diòerentiation between hail and heavy rain was achieved by Auer (1994) (Figure B.1). _e best
threshold for CAPPI re�ectivity (ZTh) as a function of cloud-top temperature (Ttop) was deûned in Hardaker
and Auer (2007) as follows:

ZTh =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−0.38 × (Ttop − 85.0) if Ttop ≤ −11°C
1.33 × (Ttop − 38.8) if Ttop > −11°C

(B.6)

where the ûrst function presented in the ûrst line (Ttop > −11°C) refers to the dashed line of Figure B.1 and the
second line expresses the case of Ttop > −11°C.
Depending on cloud-top temperature (-11°C to -55°C), the optimum threshold ranges between 36 and 53 dBZ

for discrimantion of hail and rain. _e method was tested over all seasons and showed a much better perfor-
mance than the standard CAPPI method (Holleman, 2001). In addition,Hardaker and Auer (2007) successfully
seperated the parts of hail and rain which contribute to the total re�ectivity signal (Figure B.1) by attributing the
part of the radar re�ectivity to hail which exceeds the warning threshold at a certain cloud-top temperature and
the lower part to rain, respectively. Subsequently, it is feasible to determine themaximum possible precipitation
rate based on cloud-top temperature.
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Figure B.1.:_e distribution of hail (Y) or rain (no hail) (N) events as a function of low-level CAPPI re�ectivity
and convective cloud-top temperature, Auer (1994)

B.1.6. NEXRAD

B.1.6.1. Hail Detection Algorithm

Within theNext-Generation Radar (NEXRAD) network of the USA, also known as WSR-88D which stands for
"Weather Surveillance Radar, 1988, Doppler", several hail detection algorithmswere developed. Kessinger, Bran-
des, and Smith (1995) compared diòerent algorithms which were developed within the NEXRAD framework.
Nowadays, two versions of the NEXRAD exist, the "old" and the "new" NEXRAD hail detection algorithm.

(a) _e normalized frequency distributions of the pa-
rameter (H45 − H0) for the strong rain cells (SRC)
and strong hail cells (SHC),Waldvogel et al. (1979)

(b) Probability of hail at the ground as a function of
H45−H0. HereH45 is the height of the 45-dBZ echo
above radar level andH0 is the height of themelting
level,Witt et al. (1998)
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Figure B.3.:_e real Z − E relations from four diòerent hailstorms measured at six diòerent measuring sites; 86
correlations points of the hailstone spectra each having an E value > 0.1 J m-2s-1 are plotted. _e
regression line is given as a straight line,Waldvogel, Schmid, and Federer (1978)

_e original ("old") version goes back to Petrocchi (1982) and uses several indicators: "Presence of re�ictivity core
of 50 dBZ or higher somehwere between ûve and 12 km altitude and the presence of radar echotops higher than 8
km" in combinationwith "amid-level overhang ofmore than 4 km"Holleman (2001). Applying diòerentweights
to these hail indicators, four diòerent hail indiceswere recieved: hail, probable hail, no hail and insuõcient data.

However, this algorithm was replaced by the "new" NEXRAD algorithm developed by Witt et al. (1998). _e
new algorithm is said to be more straightforward while also showing a better performance than the "old" one
(Kessinger et al., 1995). It produces a probability output of hail and is based on the work of Waldvogel et al.
(1979). _e latter study simply concluded to use the height diòerence between the freezing level (HT0) and the
altitude at which a re�ictivity value of 45 dBZ (HZ45) is measured. If this height diòerence exceeds a value of
1.4 kilometer, the presence of hail starts to become likely. Waldvogel et al. (1979) used radiosonde data back
then to retrieve the freezing level height. Today though, this variable is determined using numerical weather
prediction models (Holleman, 2001). SinceWaldvogel et al. (1979) provided only a frequency distribution of the
parameter (H45 − H0) (Figure B.2a), the NEXRAD algorithm converted this parameter value into a probability
of hail, starting with a 10% probability at a height diòerence of 1.6 km and ending at 6 km (100% likeliness)
(Figure B.2b).

B.1.6.2. Hail Severity Algorithm

_e NEXRAD algorithm is also capable of estimating the severity of hail Witt et al. (1998). _is algorithm is
sometimes refered to as the Probability of Severe Hail (POSH) algorithm. A semi-empirical relationship of ki-
netic energy �ux of hail stones (E) and radar re�ectivity was found by Waldvogel, Schmid, and Federer (1978);
Waldvogel, Federer, Schmid, and Mezeix (1978). _roughout these two studies, four severe hail storms at six
diòerent sites were observed and the relationship between E and Z investigated (see Figure B.3). _e observed
regression line is as follows:

E(Z) = 5.0 × 10−6Z0.84 (B.7)

On the base of this kinetic energy �ux as a function of hail, the Severe Hail Index (SHI) was proposed by "ver-
tically integrating the obtained �ux weighted with a re�ectivity-basedW(Z) and a temperature-basedWT(H)
function (Holleman, 2001):
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SHI = 1
10 ∫

Htop

0
W(Z(h)) ×WT(h) × E(Z(h))dh (B.8)

where the re�ectivity-based weighting function W(Z) is deûned as:

W(Z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 for Z ≤ ZL
Z−ZL
ZU−ZL

for ZL < Z < ZU

1 for Z ≥ ZU

(B.9)

and the temperature-based weighting function WT(H) as:

WT(H) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 for H ≤ HT0
H−HT0

HTm20−HT0
for HT0 < H < HTm20

1 for H ≥ HTm20

(B.10)

with the re�ectivity cut-oò values ZL and ZU set at 40 and 50 dBZ and HT0 (HTm20) being the height of the
0°C (-20°C) temperature level, respectively. With this setting, the SHI is mainly sensitive to high re�ectance
values at temperatures around -20°C and colder. _is is prefered as hail mainly originates at such temperatures.
Depending on the freezing level, a warning threshold is determined utilizing an empirical relationship and a
probability value of severe hail occurence is calculated. In the "hail algorithm comparison study" of Kessinger
et al. (1995) it was found that the SHI is able to detect "large" hail, i.e. hail with a diameter larger than 13 mm,
"somewhat better than the normal NEXRAD hail detection algorithm" (Holleman, 2001).

B.2. State-of-the-Art Hail Research in Europe

In the following subsection, a summary of recent studies covering hail(-frequency) questions are presented.
Paper selection and regional grouping of this section mostly refers to the work of Punge and Kunz (2016).

Kunz et al. (2009) investigated the convective activity during 1974-2003 in the state of Baden-Würtemmberg
in southwest Germany using diòerent datasets, i.e. thunderstorm days at synoptic stations, hail damage data
from a building insurance company, large scale circulation and weather pattern, and convective indices derived
from radiosonde observations at 12:00UTC. _e research questionwas to clarify about possible changes of total
thunderstorm days, hail damage and re�ectivity during the years. Almost no change was observed in the yearly
number of thunderstorm days. However, hail damages and hail days signiûcantly increased during those thirty
years. _e authors attributed these increases to an increase in occurence of speciûc circulation patterns being
associated with hail origination.

In Switzerland, Nisi, Martius, Hering, Kunz, and Germann (2016) utilized 13 years of volumetric (3D) radar
data to feed two hail detection algorithms, namely the Probability of Hail (POH) and the Maximum Expected
Severe Hail Size (MESHS). A comprehensive hail distribution map was created, highlighting both local-and
regional scale hail characteristics. Regarding the spatial distribution of hail days per year, several maximas at the
northern and southern foothills, respectively, and over the Juramountainswere found. Minima of hail frequency
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were found directly over the Alps.
Punge et al. (2014) presented a hail probability map for central Europe using a homogeneous source which

consisted of Overshooting Cloud Tops (OT) information derived from the MSG-SEVIRI IRW band in combi-
nation with ESWD reports. Up to this point, only local hail risk estimations existed for some european contries
featuring a high variety of used algorithms. _e study revealed high risk areas in southern and central Europe
with peaks over mountainous regions like the Alps or the Pyrenees but also over central Eastern Europe.

Seres and Horváth (2015) observed a period from 2004-2012 in Hungary utilizing the CAPPI method on
Doppler radar data provided by theHungarian Meteorological Service. Using grouping thresholds at 40, 50 and
55 dBZ, 42 severe storm events were found for the highest group for all years. Maximums were found in eastern
Hungary with values of up to 2.3 severe storm days (> 55 dBZ) per year and in the SW (2d/y). _e average values
of all observed areas ranged between 0.3 - 1.5 hail days per year.
Due to the existence of the ANELFA scale,more than 20 years of hailpad data exist for SW france,making it

one of the best investigated areas regarding hail. Berthet, Dessens, and Sanchez (2011) used this information to
undertake a detailed time series analysis on hail variations for the years 1989-2009. While the annual frequency
didnot change over the years, the observed intensity increased by 70%. Due to a bi-modalmonthlydistribution of
hailwithmaximums appearing inMay and July, itwas concluded that at least two diòerentmajormeteorological
�ow events are responsible for hail origination in this area. Furthermore, a relationship between the increase
of hail intensity and minimum surface temperature was observed, pointing to a possible in�uence of global
warming.
Besides the southwest of France, Spain is one of the most aòected countries by severe hail. One of the most

threatened area is the Ebro Valley in theNortheast. García-Ortega et al. (2014) investigated anomalies in (local)
low/mid atmospheric �ow conditions to gain more knowledge on the high occurence of hail days within this
region. Several special synoptic conûgurationswere comparedwith results showing a positive trend of tempera-
tures at 850 hPa and geopotential height. It was concluded that the long term characteristic synoptic circulation
since 1950 has changed towards a low-level thermodynamic environment which favours hailstorm origination
in northeastern Spain.

Sánchez et al. (2013) used both C-and S band radar data in combination with hailpad information in the
province of Zaragoza (NE Spain) and Mendoza (Argentina) to investigate the relationship of kinetic energy of
hail and several observed radar variables. A logistic regression approachwas used to gain a deeper understanding
of this relationship. Kinetic energy information was split in two groups, namely low energy (< 20 jm-2) and high
energy (> 20 Jm-2). High uncertaintieswere observed forC-band radar. Contrary, S-band radar results showed a
detection probability of (non)-severe hail of 85.7% with an explainedmodel variance of 61.2%. To be able to link
the statistical retrieved results tometeorological eòects, a PrincipalComponentAnalysis (PCA)was undertaken
previously by the authors.

While some studies in Europe (Berthet et al., 2011;Dessens, 1995) proposed a relation between summer mean
temperature and hail severity (derived from hail-related parameters for insurance processes), american studies
(Changnon&Changnon, 2000) concluded that a signiûcant correlation between these two variables is not feasi-
ble seen on the high variance ofworldwide climate. On this base, SaaRequejo et al. (2011) investigated 47 Spanish
provinces with all kind of diòerent environmental settings. Crop insurance data from 1981 to 2007 was utilized.
_e authors could not ûnd a relation between hail damage andmean minimum temperature. _is ûnding, and
the relationship of temperature and hail severity in general, is intensively discussed in this work.
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APPENDIX C
THE TORRO HAILSTORM INTENSITY SCALE

Table C.1.:_e TORRO hailstorm intensity scale, adapted from J. Webb et al. (1986)

H - Scale
Number

Diameter
(cm)

Hailstone size
description (largest) Eòects

0 0.5 - 1 Pea True hail of pea size but no damage

1 0.5 - 2 Mothball, bean, hazelnut Leaves holed, �owers damaged

2 0.5 - 3 Largemarble, large grape,
walnut

Leaves stripped from trees and plants,
vegetables shredded,
fruit and crops bruised and scarred

3 1.1 - 4.5
Chestnut, pigeon´s egg,
table-tennis ball, golf ball,
squash ball

Some panes in glasshouses/skylights
broken, wood (fences) scroed,
Caravan bodywork dented, Canvas
and perspex holed, Stems of crops
severed, seeds threshed

4 1.6 - 6 Hen´s egg, small peach,
small apple

Some house windows, vehicle
windscreens broken, glasshouses
shattered, some felt roofs pierced,
paint scaped oò walls, small branches
broken from trees, ground pitted,
unprotected birds ands poultry killed

5 2.1 - 8
Large peach, large apple,
small-medium orange, tennis
ball, cricket ball, baseball

Some roof tiles/slates broken,many
windows smashed, plate-glass roofs
broken, brick walls pitted, car bodywork
visibly dented, strips of bark torn from
trees, large branches broken down, risk
of serious or fatal injuries to small animals

6 3.1 - 10 Large orange, grapefruit

Plate/reinforced glass windows,
mant roof tiles/slates broken, concrete
walls/pavements pitted, corrugated iron
and some other metal roofs holed,
light aircra� damaged

7 4.6 - 12.5 Melon

Roofs severly cut up, windows frames
carried away, bodywork of cars and light
aircra�s severely damaged, ground
deeply indented and scoured

8 6.1 - > 12.5 Coconut, etc.

Bodywork of cars and light aircra�
destroyed, severe damage to commerical
aircra� small tree-trunks split apart, risk
of serious injury to persons out in the open

9 8.1 - > 12.5 Coconut, etc.

Large tree-trunks brought down, severe
structural damage to most buildings, some
homes (e.g. mobile homes) destroyed, risk
of fatal injury to persons caught in the open

10 10.1 - > 12.5 Coconut, etc.

Wooden houses destroyed,
brickhouses and concrete sturctures very
severely damaged, extreme danger to
persons without special protection
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