
Bulletin of Electrical Engineering and Informatics
Vol. 12, No. 5, October 2023, pp. 2693∼2704
ISSN: 2302-9285, DOI: 10.11591/eei.v12i5.5014 ❒ 2693

Induction motor performance improvement using a
five-level inverter topology and sliding mode controllers

Chaymae Fahassa1, Ahmed Abbou1, Yassine Zahraoui2, Mohamed Akherraz1
1Department of Electrical Engineering, Laboratory of Power Electronics and Control, Mohammadia School of Engineers (EMI),

Mohammed V University, Rabat, Morocco
2Department of Electrical Engineering, Higher National School of Arts and Crafts (ENSAM), Hassan II University, Casablanca, Morocco

Article Info

Article history:

Received Oct 15, 2022
Revised Nov 2, 2022
Accepted Dec 22, 2022

Keywords:

Five-level NPC inverter
Induction motor drive
Performance improvement
Sliding mode controllers
Vector control scheme

ABSTRACT

This research intends to establish a robust vector control (VC) of a 3-ϕ induction
motor (IM). The classical 2-level inverter is displaced by a 5-level neutral-point-
clamped (NPC) inverter. The 2-level inverter may only supply 8 voltage vectors,
while the 5-level NPC inverter can furnish 125 voltage vectors. The objective is
to bring about a command voltage vector that converges to the reference voltage
vector as closely as possible; hence, guaranteeing a quick response on one hand
and improving the dynamic performance on the other hand. A robust sliding
mode controller (SMC) structure is used in all regulation loops. Satisfactory
results are obtained for various speed zones. The quality and robustness of the
global system are tested under resistive torque disturbance, reversal, high, and
low-speed ranges in order to prove system stability. All the simulations have
been performed under MATLAB/Simulink.
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1. INTRODUCTION
Towards the middle of the 1970s, a new concept of induction machine control, called vector control

(VC) or field-oriented control (FOC) appeared to be competitive with other control techniques, especially scalar
control (SC) [1]. Unlike the last, which is based on pointed but strict mathematical formalisms, VC schemes
were initially based on qualitative and clarified knowledge of the conduct of the machine [2]. Often tuning
actions were taken on using classical PI controllers and pulse width modulators (PWM). The implementation
of these algorithms was therefore simpler, at a time when computing resources were constantly improving in
power and speed [3].

The decisive advantages attributed to conventional VC techniques (dynamics, robustness, ease of im-
plementation, performance at low speeds) [4] are nevertheless counterbalanced by the use of a sampled hys-
teresis or PI regulators; in theory, the regulator drives to a variable frequency action which increases the risks of
excitation of mechanical or acoustic resonances [5], and on the other hand, limit frequency sampling outcomes
in a pseudo-random exceed of the hysteresis strip. These two factors contribute to making the harmonic con-
tent of the various output signals difficult to predict [6]. Simultaneously, new and promising static conversion
topologies, called multilevel, have been proposed and increasingly used in high-power variable speed drive
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applications [7]. Compared to conventional two-level structures, in which the output voltage can only be mod-
ulated by acting on the duration of use of the high state and the low state, pulse width modulation, multilevel
structures indeed open up a new dimension, it’s the amplitude modulation [8], [9].

In the present study, our main objective is to propose new strategies of the VC type, compatible with
multilevel voltage inverters (more particularly multicellular), having any number of levels. Their application
to conventional two-level inverters will only be seen as a special case [10]. We will endeavor to show that
a control judiciously exploiting the degrees of freedom offered by these new conversion structures allows to
minimize the drawbacks of conventional VC strategies while retaining their advantages [11].

The principal aim of this research is to enhance the performance of the VC applied to the induction
machine. We propose a control plan established on nonlinear sliding mode controller (SMC) [12], [13] (without
the use of hysteresis or PI controllers) and a five-level neutral point clamped (NPC) inverter in order to obtain
an optimal voltage control allowing the best choice of the sequence of the voltage vector to be carried out to
the machine while respecting the constraints on the flux and the electromagnetic torque. This will produce a
robust VC scheme without resorting to the conventional PI controllers used in the classical VC scheme [14],
[15].

2. IM STATE-SPACE MATHEMATICAL MODEL
The state-space modeling representation of an IM could be mathematically written as:

{
Ẋ = A1X +B1U
Y = C1X

(1)

The state vector was represented as X , the input as U , and the output as Y . As stated by [16], the
state and the input vectors of an IM can be specified by the stator current and the rotor flux components based
on their rotational d-q frame. Thus, they can be defined as: X=[Isd Isq Φrd Φrq ]

t, U=[Vsd Vsq ]
t, and

Y =[Isd Isq ]
t. Isd and Isq are components of the stator current in the d-q reference axes. Φrd and Φrq are

components of the rotor flux. Vsd and Vsq are components of the stator voltage. Thus, components of matrices
in the state-space representing could be obtained by construing differential equations of the stator currents and
the rotor fluxes [17], as in the equation:

A1=


−c1 0 c2

τr
c2Ωr

0 −c1 −c2Ωr
c2
τr

Lm

τr
0 − 1

τr
−Ωr

0 Lm

τr
Ωr − 1

τr

; B1=


1

σLs
0

0 1
σLs

0 0
0 0

; C1=

[
1 0 0 0
0 1 0 0

]

With c1= Rs

σLs
+ 1−σ

στr
; c2= 1−σ

σLm
; σ=1- L2

m

LsLr
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. The electrical power is written as:

Pe = p
Lm

Lr
(ΦrdIsq − ΦrqIsd)Ωr (2)

The expression of the torque is came by dividing the electromechanical power Pe over Ωr, whence:

Te = p
Lm

Lr
(ΦrdIsq − ΦrqIsd) (3)

The rotor mechanical speed is formulated by:

J
dΩr

dt
= Te − Tl − FrΩr (4)

J is the inertia coefficient of the motor, Tl is the torque of the load, and Fr is the coefficient of the friction
[18]. The block diagram of the state-space modeling of IM could be seen in Figure 1.
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Figure 1. Mathematical model in state-space of an IM

3. VECTOR CONTROL BASIS
The direct scheme of VC demands a right acquaintance of the modulus and phase of the rotor fluxes.

The basic idea is to place sensors in the motor air gap to access the flux [19]. Nevertheless, the installation
of these sensors leads to a rise in the size and a weakening of the motor [20]. Moreover, these sensors are
responsive to mechanical shocks and heat. Rather, gauged quantities such stator current and voltage might be
used to estimate rotor fluxes [21]. The stator flux may be estimated then by an integration:

Φ̂sαβ
=

∫ t

0

(Vsαβ
−RsIsαβ

)dt (5)

And the rotor fluxes might be estimated from the stator flux and the real stator current [22]:

Φ̂rαβ
=

LrΦ̂sαβ
− LsLrσIsαβ

Lm
(6)

Subsequently, the flux norm Φ̂r and its position θ̂s utilized for coordinate transformation are determined by
[23]:

Φ̂r =
√
Φ̂2

rα + Φ̂2
rβ

(7)

θ̂s = arctan(
Φ̂rβ

Φ̂rα

) (8)

4. SLIDING MODE SPEED CONTROLLER
Generally, Jean-Jacques Slotine suggested an equation way to define the sliding surface which assure

variable converging to the wanted result [24]:

S(X) = (
d

dt
+ λ)n−1E(X) (9)

E(X)=X∗-X: gap variable to be settled, λ: coefficient which is strictly positive, n: relative degree that
represents the number of times to derive the output to get the appropriate control [25], [26]. By selecting (n=1)
in Jean-Jacques Slotine general (9), the sliding surface of the speed is specified by:

S(Ωr) = Ω∗
r − Ωr (10)

Its derivative is:
Ṡ(Ωr) = Ω̇∗

r − Ω̇r = Ω̇∗
r − ηΦrIsq +

Tl

J
+

Fr

J
Ωr (11)

By inserting the control current I∗sq=Isqeq+Isqn in (11):

Ṡ(Ωr) = Ω̇∗
r − ηΦrdIsqeq − ηΦrIsqn +

Tl

J
+

Fr

J
Ωr (12)

Throughout the sliding mode and steady state S(Ωr)=0, Ṡ(Ωr)=0, and Isqn=0, we next obtain the equivalent
control expression Isqeq :

Isqeq =
1

ηϕr
(Ω̇∗

r +
Tl

J
+

f

J
Ωr) (13)
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Throughout the converging mode, the discontinued control form isqn should fulfill the condition Ṡ(Ωr)S(Ωr)<0.
By substituting Isqeq expression in (12), we obtain:

Ṡ(Ωr) = −ηΦrIsqn (14)

The discontinued control form is then put as:

Isqn = GΩsat(
S(Ωr)

ϵΩr

) (15)

5. FIVE-LEVEL NPC INVERTER DESIGN
The general schema of the 5-Level NPC inverter is given in Figure 2. This structure consists of 3

symmetrical arms; each arm contains 8 bi-directional switches mounted in series. These interrupters should
not be opened or closed at the same instant, to avert the short-circuit of the inverter input continuous voltage
[27]. Each switch is made up of a bi-controllable semiconductor Sij (i=A, B, C and j=1, . . . , 8) and a diode
posed in anti-parallel. The number of floating diodes is 10 per arm Dk (k=1, . . . , 10) ensuring the appliance of
various voltage levels at each arm output [28].

Figure 2. The schema of the five-level NPC inverter

This inverter is called a 5-level because it issues five voltage levels per arm (+Vdc

2 , +Vdc

4 , 0, −Vdc

4 ,
−Vdc

2 ). By combining the twelve switches of the same arm, seven different voltage levels can be applied to the
same phase: 

(1, 1, 1, 1, 0, 0, 0, 0) → +Vdc

2

(1, 1, 1, 0, 1, 0, 0, 0) → + Vdc

4
(1, 1, 0, 0, 1, 1, 0, 0) → 0

(1, 0, 0, 0, 1, 1, 1, 0) → − Vdc

4

(0, 0, 0, 0, 1, 1, 1, 1) → −Vdc

2

(16)

As a result, unlike the two-level inverter, which can only issue 8 voltage vectors. The 5-level NPC inverter can
give 125 voltage vectors [29].
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The 125 positions of the output voltage vector separate the vector diagram into 6 triangular sectors.
Each sector is made up of thirty-six triangular regions. There are thus two hundred sixteen triangular regions in
the complete vector diagram. Multilevel inverters are a good choice for many system applications, especially
for drive systems. This is because they provide many advantages like power factor improvement and THD
reduction [30]. The block diagram of the suggested VC scheme with the SMC and the 5-level NPC inverter is
illustrated in Figure 3.

Figure 3. The control scheme of the suggested technique

6. SIMULATION RESULTS AND DISCUSSION
Figures 4-7 highlight the simulation results under a resistive disturbance. A resistive torque of +15

N.m is appealed at 0.8 seconds and eliminated at 1.8 seconds. The resistive torque is expressed as Tr=Ωfr+Tl,
fr is the coefficient of the machine viscous friction, and Tl is the torque of the load. The reference of the rotor
flux is fixed to 1 Wb. The gain of the SMC regulator used in the speed loop is: GΩ=5×103. It is determined
by trial and errors in the speed closed loop. The rated parameters of the motor used in the simulation are: rated
speed: 1440 rpm, frequency: 50 Hz, pole pair number: 2, line-to-line voltage: 220/380 V , phase current:
12.5/7.2 A, stator resistance: 2.2 Ω, rotor resistance: 2.68 Ω, stator inductance: 0.229 H , rotor inductance:
0.229 H , mutual inductance: 0.217 H , moment of inertia: 0.047 kg.m2, coefficient of viscous friction: 0.004
N.s/rad.

6.1. Results analysis

The results illustrated in Figure 4 prove good tracking of the reference speed. The speed regulation
loop-based SMC reject quickly the disturbance of the applied load (Figure 4(a)). The response time is less than
0.2 seconds for a reference of +100 rad/s. Once the steady state is reached, the system no longer needs torque.
The speed controller cuts the torque demand; it is never zero because it should overcome the friction of the
machine which is represented by the resistive torque (Figure 4(b)-(f)). Figure 5 demonstrates the manner the
system can act with an instant reverse speed (Figure 5(a)). The proposed scheme maintains high performance
even when reversing the direction of rotation. Strong torque is noticed at the time of the transition of the
reference, this high value of approximately -17 N.m is a reaction of the VC to keep the fast pursuit (Figure
5(b)-(f)). In Figures 6(a)-(f) and 7(a)-(f), the good performance of high and low-speed tracking is obtained with
less static error. The system keeps the good tracking of the speed, and the torque is responding accordingly
with the speed reference.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Load torque operation (a) mechanical speed, (b) electromagnetic torque, (c) rotor flux, (d) d-q flux
components, (e) phase currents and (f) d-q current components
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Test with reverse speed (a) mechanical speed, (b) electromagnetic torque, (c) rotor flux, (d) d-q flux
components, (e) phase currents and (f) d-q current components
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(a) (b)

(c) (d)

(e)
(f)

Figure 6. High-speed operation (a) mechanical speed, (b) electromagnetic torque, (c) rotor flux, (d) d-q flux
components, (e) phase currents and (f) d-q current components
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Low-speed operation (a) mechanical speed, (b) electromagnetic torque, (c) rotor flux, (d) d-q flux
components, (e) phase currents and (f) d-q current components
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7. CONCLUSION
In this paper, the operation of the VC-based five-level topology that appealed to the induction motor

(IM) has been elaborated on and simulated. The attained results have affirmed the effectiveness and the accu-
racy of the suggested control scheme over sudden resistive torque, reversal, and high and low-speed regions.
The proposed technique ensures better control and robustness; the wrench is the five-level NPC inverter that
generates a wide interval of the voltage control sequence. Besides, the SMC ensure high resistance toward
the instant load application. Satisfactory results have been obtained by numerical simulation, and a detailed
discussion has been presented. Multilevel inverters base generally on symmetrical triangle carriers. Their ar-
rangement characterizes the modulation method. The combination of the comparison signals determines the
modulated signal and hence directs the control signals. Four alternate carriers are utilized by the PWM unit to
control the five-level inverter switches. The alternate carriers have the advantage of allowing sampling at twice
the carrier frequency, which results in a signal that is generally of better quality.
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