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The following two-day interactive workshop has been presented at the final days of the QIS
bootcamp hosted by Jefferson National Lab (https://www.jlab.org/conference/QCBC23).
The exercises are designed to promote collaborative exploration—beginning in the basics
of lattice gauge theories, through physical descriptions of non-unitary quantum dynamics
arising from interactions with an external environment, and culminating with a final project
in which students perform an error-mitigated simulation of real-time dynamics in a small
lattice of non-Abelian gauge theory on one of IBM’s superconducting quantum devices.
Some materials of sections II and III have been extended from Ref. [1]. Some Materials

of section IV have been extended from Ref. [2]. Though written in a self-guiding format, a
solution manual is available to instructors upon request.
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I. SYSTEMATIC REPRESENTATION OF GAUGE THEORIES ONTO QUBITS

A. The need for lattice gauge theory

Quantum chromodynamics (QCD) is often presented as the theory of quarks and gluons interacting
through the color force, with the Lagrangian written as

LQCD = ψ̄(x)
(
iγµ∂µ −m− gγµAµ(x)

)
ψ(x)− 1

2
Tr

(
Fµν(x)F

µν(x)
)
, (1)

where ψ(x) is the quark field (a color vector) and Aµ(x) is the gluon field (a color matrix). The four-
vector x is a point in spacetime. Direct interactions of one gluon with other gluons happen within the
field strength tensor,

Fµν(x) = ∂µAν(x)− ∂νAµ(x) + ig [Aµ(x), Aν(x)] . (2)

The Lagrangian LQCD is an excellent starting point for perturbative calculations at high energy colliders
when the coupling g is small, but it is not very useful for quarks and gluons confined inside hadrons.
When describing hadrons, we should not be trying to use individual gluons.

To study hadrons rigorously from QCD, we can use lattice gauge theory. This approach expresses
QCD in terms of the gauge field, Uµ(x), rather than the gluon field. The relationship is

Uµ(x) = eiagAµ(x) (3)

where a is the lattice spacing, i.e. the distance between neighboring sites on a hypercubic spacetime lattice.

EXERCISE I.1: On a lattice, each segment of the gauge field is called a gauge link. Consider this product
of four gauge links:

Pµν(x) = Uµ(x)Uν(x+ aµ̂)U †
µ(x+ aν̂)U †

ν (x) . (4)

• Make a simple sketch, drawing a small vector to represent each gauge link, and confirm that Pµν(x)
corresponds to a closed path in spacetime. What is the shape of that closed path?
• Taylor expand Pµν(x) in powers of a, neglecting terms beyond O(a2). How does your answer relate to
Fµν(x)?

Your expression for Fµν(x) in terms of Pµν(x) is a first step toward the translation of QCD from gluons
to gauge links. The Wilson definition of the complete Lagrangian is

LW = ψ̄(x)

(
m+

4

a

)
ψ(x)− 1

2a

∑
µ

ψ̄(x)(1− γEµ )Uµ(x)ψ(x+ aµ̂)

− 1

2a

∑
µ

ψ̄(x)(1 + γEµ )U
†
µ(x− aµ̂)ψ(x− aµ̂) +

Nc

g2a4

∑
µ,ν

(
1− 1

Nc
ReTrPµν(x)

)
(5)

where Nc is the number of colors. For QCD, Nc = 3.
Did you notice that the mass term seems to have gained an extra minus sign when going from LQCD

to LW ? This is actually an overall sign change for the entire Lagrangian that occurs because LQCD was
written in Minkowski spacetime but LW is written in Euclidean spacetime. This detail reminds us that
traditional lattice gauge theory uses imaginary time and is not designed for studies of processes evolving
through real time. Access to real-time lattice gauge theory (LGT) is one motivation for using quantum
computers.
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EXERCISE I.2:

• The Dirac Lagrangian is well known in Minkowski spacetime, L = ψ̄(x)(iγµ∂µ−m)ψ(x). Make a change
of variables from real time t to imaginary time τ = it. Also make the change from the Minkowski gamma
matrices to Euclidean gamma matrices by using these definitions: γx = −iγEx , γy = −iγEy , γz = −iγEz ,
γt = γEτ . How does the new form of the Dirac Lagrangian compare to the original form?

• Taylor expand LW in powers of a. (Neglect the term without the quark field. You can try that one later
when you have more time.) Does your result confirm that LW becomes equivalent to LQCD as a→ 0, up
to the expected overall minus sign? The leading lattice artifacts are O(an) with what power, n =?.

Several different lattice discretizations are used in practice. Some approach the continuum limit more
quickly than LW , but all must ultimately agree with LQCD as a→ 0.

B. Can the gauge field be integrated out?

The SU(Nc) gauge symmetry is a local symmetry. This means an arbitrary SU(Nc) transformation
applied at any lattice site will produce no change in physical observables. The transformation will affect
all fields at that lattice site, but these effects cancel each other within observables. Specifically, the effect
of an SU(Nc) transformation M(x) at the lattice site x will be

ψ(x) → M(x)ψ(x) , (6)

Uµ(x) → M(x)Uµ(x) , (7)

Uµ(x− aµ̂) → Uµ(x− aµ̂)M †(x) . (8)

Notice that ψ(x) is a vector with Nc components, while Uµ(x) and M(x) are Nc ×Nc matrices.

EXERCISE I.3:

• We know that each gauge link is an element of SU(Nc). Is the identity matrix an element of SU(Nc)?
Does this mean a clever choice for M(x) can replace a gauge link Uµ(x) by the identity matrix? If so,
what is that clever choice?

• Consider a one-dimensional lattice with four sites. Are there gauge transformations that can be per-
formed, site by site across the lattice, that will replace all gauge links by the identity? Does your answer
depend on the boundary conditions (i.e. a periodic lattice versus open boundaries)? What happens to
the quark field at each site because of these transformations?

• Consider a lattice in two (or more) dimensions. Will your conclusions be different?

C. From Lagrangian to Hamiltonian

The Hamiltonian of any system describes evolution through real time via e−iHt acting on the state
vector. For QCD, this state vector provides a complete description of the quark and gauge fields. The
state vector of modern lattice QCD computations would be prohibitively enormous to store in a classical
computer, but a quantum computer has the potential to overcome this problem.

EXERCISE I.4:

• Consider a collection of N qubits. To store the complete state vector classically, how much traditional
RAM is needed?
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• How do you expect the required number of qubits to scale with the number of sites on your lattice?

Because quarks are spin-half particles, the mapping of the quark field onto a qubit register is quite
natural, but how can link variables be described by qubits? To focus on this, consider a pure gauge
theory without quarks. The interesting world of glueballs and their dynamics should emerge from future
quantum computations of this theory.

EXERCISE I.5:
• Write down LW with ψ(x) = 0. Use the notation LW = LE + LB where the “color electric” terms LE

contain time derivatives and the “color magnetic” terms LB do not. Also, define your spacetime lattice to
have a fundamental length as in the spatial directions and a different fundamental length at in the time
direction. (Detail: a4 in the denominator of LW becomes a2sa

2
t within LE , but it becomes a4s in LB. Can

you imagine why?)
• Write LE in the temporal gauge, defined by Aµ(x) = 0 for µ = t at every site x, and then Taylor expand
LE in powers of as to find the leading term. Finally, take the at → 0 limit of that term. Does your result
remind you of introductory electricity and magnetism, where the energy density stored in an electric field
is 1

2 |E⃗|2 and the field itself is E⃗ = −∂tA⃗ in temporal gauge?

A plan is now becoming clear. In the limit of at → 0, the lattice is purely in spatial directions.
Eigenstates of the color electric terms will form a computational basis, and the color magnetic terms will
provide transitions between those basis states.

The case of Nc = 2 is especially familiar if you recall that SU(2) is also the mathematical group

that describes angular momentum. A gauge link has color electric eigenvalues j(j + 1)g
2

2 , where j =
0, 12 , 1,

3
2 , . . .. The corresponding eigenvectors are the basis states for the lattice. Application of a gauge link

operator (arising from the color magnetic terms LB, for example) always makes one minimum quantum
of change, so the local value of j will become j ± 1

2 .

D. Two explicit examples

EXERCISE I.6: Consider SU(2) gauge theory on a lattice with just four gauge links forming a square.
The Hamiltonian matrix is

H1 =


0 − 2

g2
0 0 . . .

− 2
g2

3
2g

2 − 2
g2

0 . . .

0 − 2
g2

4g2 − 2
g2

. . .

0 0 − 2
g2

15
2 g

2 . . .
...

...
...

...
. . .

 . (9)

• H1 can act on a state represented by a column vector. Explain the meaning of each entry in that column
vector.
• Verify that the diagonal entries of H1 are correct. What is the fifth diagonal entry?
• Truncate H1 to a 2× 2 case valid for studying the ground state when the coupling g is large. Express
the truncated H1 as a combination of Pauli gates and the identity gate.

Did you notice that all four gauge links have the same value of j? This is required by the non-Abelian
version of Gauss’s law which says that, in the absence of quarks, the color flowing into any lattice site
must sum to zero. Gauss’s law is an important feature of SU(Nc) gauge theories like QCD, and we have
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to ensure that our lattice Hamiltonians preserve it. This was quite simple for the four-site square lattice,
but a larger lattice will have more than two gauge links touching each site and then Gauss’s law becomes
a bigger chore to manage.

EXERCISE I.7: Consider SU(2) gauge theory on a lattice with seven gauge links forming two side-by-side
squares with one shared side. The Hamiltonian matrix, truncated to j ≤ 1

2 , is

H2 =


0 − 2

g2
− 2

g2
0

− 2
g2

3
2g

2 0 − 1
g2

− 2
g2

0 3
2g

2 − 1
g2

0 − 1
g2

− 1
g2

9
4g

2

 . (10)

• For each of the four basis states, sketch the lattice and label each gauge link by its value of j.
• In SU(2) gauge theory, checking Gauss’s law uses the same mathematics as conservation of angular
momentum. Verify that the four states included in H2 respect Gauss’s law. Give an example of an
unacceptable basis state that is forbidden by Gauss’s law.
• For large coupling g, this 4 × 4 truncation of H2 is good approximation. From the infinite list of all
missing basis states, which one is the most important? Extend H2 to have a fifth row and a fifth column,
representing this new basis state. What new value gets placed on the diagonal? Which new off-diagonal
entries are zero and which are nonzero?
• Return to the 4× 4 version of H2 and express it as a combination of Pauli and identity gates acting on
a pair of qubits.

You might be wondering why we need to worry about Gauss’s law at all. It is built into QCD already,
so won’t it be preserved automatically? In principle, yes. For example, on the side-by-side squares we
could simply assign one qubit to each gauge link. That lattice would have 27 = 128 basis states of which
only 4 satisfy Gauss’s law, so it feels a bit inefficient. There is also a danger that the practical algorithms
used to compute Hamiltonian dynamics will not maintain Gauss’s law perfectly. One more worry is that
today’s quantum computers are noisy, so the true signal will often leak from the 4 physical basis states
into the 124 others.

Mitigating errors on noisy hardware is a major concern for all quantum computations, regardless of
how we choose to handle Gauss’s law, so we will focus on error mitigation next.

II. ORIGINS AND DESCRIPTIONS OF QUANTUM ERRORS

When errors arise in quantum simulations, uncertainty is introduced into a device’s quantum state.
Ensemble measurements in the resulting system can be described by expectation values in a weighted
mixture of pure quantum states, ρ : {pi, |ψi⟩}, where the classical probabilities pi satisfy

∑
i pi = 1.

Measurement of operator expectation values, ⟨Ô⟩, in such noisy environments yields the statistical average
of expectation values among the pure states present, ⟨Ô⟩ =

∑
i pi⟨ψi|Ô|ψi⟩. As an extension of the

wavefunction to classical mixtures of quantum states, the density matrix, ρ =
∑

i pi|ψi⟩⟨ψi|, provides a
succinct object containing all information about measurement results characterizing a mixed quantum
state.

EXERCISE II.1:
• Given a density matrix only (i.e., without access to a pure-state convex decomposition), determine the
operation used to calculate operator expectation values, ⟨Ô⟩(ρ).
• Consider the following family of pure-state convex decompositions,
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ρ(α) =
1

2
|ψ1⟩⟨ψ1|+

1

2
|ψ2⟩⟨ψ2| , (11)

with |ψ1⟩ =


cos α

2
0
0

sin α
2

 and |ψ2⟩ =


− sin α

2
0
0

cos α
2

. Note that members of this family include: ρ(0) =

1
2 |00⟩⟨00| +

1
2 |11⟩⟨11| and ρ(π/2) = 1

2 |Φ
+⟩⟨Φ+| + 1

2 |Φ
−⟩⟨Φ−|, where |Φ±⟩ = |00⟩±|11⟩√

2
are entangled Bell

states. Discuss the use of measurements to observe the value of α.
• Utilizing the connection between partial tracing and losing access to a qubit or to the results of a
partial projective measurement, find the single-qubit measurement bases that connect ρ(α) to the state

|GHZ⟩ = |000⟩+|111⟩√
2

. In other words, in what basis could you measure a qubit in |GHZ⟩ such that a

combination of the measurement ensembles would produce the convex decomposition ρ(0)? ρ(π/2)? ρ(α)?

The non-unitary evolution of a density matrix in a noisy environment (error channel, E(ρ)) can be
modeled physically as unitary operators acting upon an enlarged Hilbert space including a quantum
environment that becomes inaccessible,

E(ρ) =
∑
k

⟨ek|U (ρ⊗ |0⟩⟨0|)U †|ek⟩ =
∑
k

EkρE
†
k . (12)

Let’s walk through this expression. Beginning in the ground state of the environment, the full-space
unitary may produce entanglement between the system and its environment. The loss of the environment
from experimental access is expressed through the partial tracing operation, i.e., projectively measuring
in any orthonormal basis of the environment Hilbert space, {|ek⟩}, without retention of the measurement
result. From the perspective of the system alone, such interactions may be expressed by a set of non-
unitary Kraus operators, Ek = ⟨ek|U |0⟩, where the kets provide projection in the environment Hilbert
space and thus Ek is an operator on the system.

Consider an example of the amplitude damping quantum channel, which physically models decay of
a qubit’s excited state due to, for example, spontaneous emission. For a decay rate, Γ, leading to a
probability of decay in time δt as p = Γδt, the interaction unitary between system and environment may
be characterized by the following transitions:

U |0⟩s|0⟩e = |0⟩s|0⟩e and U |1⟩s|0⟩e =
√

1− p|1⟩s|0⟩e +
√
p|0⟩s|1⟩e (13)

As such, the error operators from the perspective of the system alone are,

E0 =

(
1 0
0

√
1− p

)
and E1 =

(
0

√
p

0 0

)
. (14)

Through sequential application of this error channel, you should convince yourself that the persistence
probability in the qubit excited state is (1− Γδt)

t/δt , which has a form ∼ e−Γt in the limit of continuous
time, δt → 0. This exponential decay thus characterizes the timescale for maintaining the classical state
|1⟩ and relates to the T1, or longitudinal coherence time of the quantum device.

EXERCISE II.2: Phase-type errors may arise from the presence of scattering events that do not shift
the energy. Consider a unitary system-environment interaction in which the excited state of the system
yields an environment sensitive to external interactions, i.e., with transitions

U |0⟩s|0⟩e = |0⟩s|0⟩e and U |1⟩s|0⟩e =
√
1− p|1⟩s|0⟩e +

√
p|1⟩s|1⟩e . (15)
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• Find the Kraus operators describing the quantum channel of this environment interaction from the
perspective of the system alone.
• Using the mixed-state Bloch-vector representation, ρ = I+r⃗·σ⃗

2 , choose a few pure states on the surface
of the Bloch sphere and plot their trajectories as a function of time (or decay time steps) when subject
to this type of environment interaction.
• Described visually, what does this channel do to states on the Bloch sphere? Discuss why this channel
is called the “phase damping channel”.
• In the limit of continuous time, write the time-dependent functional form of the diagonal and off-diagonal
matrix elements of the system’s density matrix beginning from an arbitrary initial state, ρ = |ψ⟩⟨ψ| with
|ψ⟩ = a|0⟩+ b|1⟩.
• In a language of quantum circuitry including a “wait” gate during which environmental interactions take
place, describe an operation and measurement protocol that would allow a determination of the relevant
decay constant for the phase damping channel. Plot the chosen observed probability as a function of
system-environment interaction time.

Similar to the variability in convex decompositions of a mixed state—for example, associated with the
projective basis used to trace an environment Hilbert space—error channels from the perspective of a
quantum system alone can be generated by an array of distinct physical processes. Understanding the
responsible physical process can be vital for designing effective error mitigation techniques. One method
for lifting degeneracy in underlying error sources is to observe responses to targeted improvement or error
mitigation protocols.

EXERCISE II.3: Consider a source of error arising from fluctuations in unitary controls or electromagnetic
background fields between runs of an ensemble measurement. One model of these effects is to describe
the ensemble by a stochastically sampled Z-rotation.

Ez,σ
(
|ψ⟩⟨ψ|

)
=

1√
2πσ2

∫
dθ Rz(θ)|ψ⟩⟨ψ|R†

z(θ)e
− θ2

2σ2 (16)

where Rz(θ) = e−iZθ/2.
• For an arbitrary initial state, ρ = |ψ⟩⟨ψ| with |ψ⟩ = a|0⟩+ b|1⟩, calculate the updated density matrix.
• Compare your result to the evolution of the system’s density matrix under the phase damping channel
from the process in Eq. (15) from Exercise II.2. What time-dependent functional form of the dispersion,
σ, would make the observed error channels equivalent?
• Find the basis transformation unitary, U , for which U †Rz(θ)U = Rz(−θ). With Γ = 2, calculate and
plot (up to t ∼ 18) the measurement protocol from Exercise II.2 with one insertion of U applied at time
t = 2. (Hint: What is the relationship between t and a factor rescaling θ in Eq. (16)? Break the rotation
into two, one in each basis, and introduce a scaling factor to each rotation angle.)
• If the noise were incoherent (for example, without experimental access to individual pure states due
to entanglement generated with an environment Hilbert space, see Exercise II.2), would this protocol
improve the phase coherence?

In the next section, we will explore select error mitigation techniques directed toward quantum simu-
lation applications of simple models with symmetries and the gauge theories discussed in Section I.

III. ERROR MITIGATED GAUGE THEORY QUANTUM SIMULATION

For large-scale quantum information processing to be successful, there must be a natural or artificial
source of robustness to interactions with the external quantum and classical environment. Many error
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correction approaches utilize a technique of periodic measurements to maintain population in a subspace.
The frequency at which the periodic measurement is advisably performed depends upon both the fidelity
of the measurement and the error rate experienced by the quantum system.

By measuring a quantity that discriminates between states inside/outside the desired subspace (often
computed onto an auxiliary qubit to do so non-destructively), the process projects a quantum system
either into or outside the desired subspace where ideally a correction procedure can be devised. Which
scenario occurs, of course, is governed by the probabilistic nature of the measurement result. Basic designs
of such partial projective measurements extract one bit of information (whether or not the state is in the
subspace), leaving a coherent quantum state within the subspace upon correction or post-selection. The
limiting case of this protocol for a one-dimensional subspace (not too interesting from the perspective of
protected dynamics, but a useful limit to consider) can be appreciated as the Quantum Zeno Effect.

EXERCISE III.1: Consider a qubit in state |0⟩ that is subject to external fields whose effects can be

modeled at leading order as a bit-flip Hamiltonian, X+Y√
2
, i.e., Uext = e

−iX+Y√
2

t
.

• If you aimed to retain the |0⟩ quantum state through repeated measurement in the computational basis,
how many (non-destructive) measurements would you have to perform in order to produce a probability
of at least 99% that the state has remained in the vicinity of the |0⟩ state throughout one unit of time
evolution? In other words, if post-selecting for the |0⟩ outcome, how many measurements are needed to
retain sampling statistics of at least 99%.

Not only can a single quantum state be maintained through the Zeno Effect with complete projective
measurements, but maintaining subspaces with dimension greater than one can also be enforced with
partial projective measurements. By measuring a binary piece of information indicating whether the
quantum state is inside or outside the desired subspace, evolution departing from the subspace can be
systematically slowed and removed. Common subspaces to consider are: the degenerate ground-state
subspace of the toric code protected by local stabilizer measurements or the physical subspace of a gauge
theory protected by local measurements of Gauss’s law.

Exercise III.2: Consider the slightly more interesting scenario of two qubits beginning in the Bell state
|00⟩+|11⟩√

2
and subject to a quantum simulation of unitary time evolution of the form Unoiseless = e−i(X⊗Y )t.

In the proposed scenario, the time evolution will experience coherent single-qubit errors such that the

unitary becomes Unoisy = e
−i

(
X⊗Y+I⊗X+Y√

2
+X+Y√

2
⊗I

)
t
.

• Projected into the Bell basis, plot the evolution of noisy and noiseless probabilities for times up to t =
2. For how long do the noisy probabilities remain within ±1% from their noiseless values?

• Identify an operator (e.g., parity) whose expectation values distinguish the populated states from those
that remain unpopulated in the noiseless evolution. Show that this operator commutes with the Hamil-
tonian, and thus presents a static symmetry under time evolution (Ehrenfest’s theorem).

• Consider the procedure of periodically projectively measuring (non-destructively) the operator whose
expectation values identify the positive-parity subspace, and post-selecting upon the results. Describe
experimentally how such measurements could be performed, either abstractly in quantum circuit notation
or in a quantum architecture of your choice.

• Show that, at the cost of measurement statistics, this procedure can improve the fidelity of the noisy
simulation. How many such measurements would be required to maintain probabilities within ±1% from
their noiseless values (not relative) to a simulation time of t = 1.5 with a loss of no more than 20%
measurement statistics?

As discussed in Section II, both coherent and incoherent sources of error may be at play in a quantum
simulation. However, there are techniques that introduce a randomized set of quantum gates into a
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quantum circuit with the outcome of restructuring sources of error from coherent modifications of the
Hamiltonian to incoherent classical noise. One such technique is Pauli Twirling, which introduces a
randomization of Pauli bases throughout a simulation to turn coherent noise into incoherent channels, in
some cases destructively interfering coherent noise entirely. The Pauli twirling that will be utilized in the
following example introduces randomization at the level of the Pauli basis of the time evolution. This can
be considered analogous to performing periodic gauge transformations of an LGT quantum simulation,
modifying the unitary evolution operator but leaving the physical subspace evolution unchanged.

Exercise III.3: Consider the error mitigation technique of Pauli twirling.
• Viable basis transformations of the noiseless operators leave invariant the logical circuits of time evo-
lution. Find all Pauli operators, within the set of 16 Pj = {I2, X, Y, Z} ⊗ {I2, X, Y, Z}, that satisfy the
criteria

Unoiseless = P †UnoiselessP . (17)

• Devise a stochastic strategy of these invariant basis changes that maintains, up to t = 1.5, the Bell
basis measurement probabilities within ±10% of their noiseless values (not relative). How many layers of
basis changes were used? (Hint: though probabilistic numerical simulation can be used, density matrix
methods may capture the stochastic features of the procedure more naturally.)
• Is the utilization of all basis transformations necessary to achieve this goal?

For coherent errors, Section II discussed how additional unitary circuit elements could improve sim-
ulation fidelity by reducing sensitivity to noise terms in the Hamiltonian. For incoherent errors, data
analysis informed by a relevant error channel can allow recovery of simulation results through associated
post-processing.

Exercise III.4: Leveraging the density matrix formalism for noisy quantum evolution discussed in Sec-
tion II, the following exercise will focus upon the two-plaquette system of SU(2) lattice gauge theory
established in Section I, Hamiltonian of Eq. (10), experiencing depolarizing quantum noise.
• Begin in the basis state of left-plaquette excitation with coupling g = 1 and t in units of 2/g2. For time
evolutions out to t = 8, plot the oscillatory probabilities for the left plaquette to be in the j = 1/2 excited
state (treat the fourth basis state as both the left and right plaquettes excited). Plot the same evolution
for the probability of the right plaquette to be excited in the final state.
• The depolarizing channel introduces population of the maximally-mixed state into a density matrix

Ep(ρ) = (1− p)ρ+ p
I

d
, (18)

where d is the dimensionality of the state, i.e., d = 2n for a state of n qubits. Visually describe what this
channel does to states on the Bloch sphere.
• Incorporate the depolarizing error channel to your simulation. Through visual comparison of your
depolarized evolution with the experimental data reported in the top panel of Fig 3 in Ref. [2], find a
decay parameter, Γ = p/δt, that approximately captures the reported rate of coherence loss.
• By performing the depolarizing channel on the two-qubit system without active time evolution, calculate
the observable’s noisy decay from the initial state. Plot the exponential envelope together with your noisy
and noiseless evolutions.
• Consider the survival probability of |0⟩⊗n after one application of the channel, P0(p) = E(|0⟩⟨0|)1,1 =
(1− p) + p/2n. By analysing and exactly summing the recursion of this survival probability under many
applications of the error channel, show that the decay follows the form

P0(t) =
1

2n
(
1 + e−tΓ(2n − 1)

)
, (19)
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(Note: the final asymptotic analysis will utilize the same replacements, p = Γδt and Napplications = t/δt in
the limit δt → 0, as was utilized in and discussed above Exercise II.2.). By comparing this form to that
calculated previously in the two-qubit system without active time evolution, discuss the relevant Hilbert
space dimensionality for the local observable’s decay.

• Eq. (8) of Ref. [2] outlines a post-processing rescaling procedure that accommodates the decaying
envelope of coherent fluctuations:

Ptrue − 1
2

Pcomputed − 1
2

∣∣∣
physics

=
Ptrue − 1

2

Pcomputed − 1
2

∣∣∣
calibration

. (20)

Taking the noisy time evolution as the physics calculation and the decay envelope as the calibration
information, implement this self-mitigation/renormalization to find Ptrue at each time step. Compare this
final mitigated result extracted from this noisy environment to the noiseless simulation.

Finally, it is time to take the ideas and experiences of the past exercises and apply it to LGT quantum
simulation on real quantum devices.

IV. FINAL PROJECT

A. Activity Goal

For this final project, we will have the opportunity to combine the concepts discussed in previous
sections in order to perform an error mitigated quantum computation on actual IBM hardware. We will
work together to collectively produce a plot of the time evolution of a 2-plaquette SU(2) lattice.

Our goal is to recreate the following figure from Ref. [2] and see firsthand how important error miti-
gation is on current hardware:
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This plot shows the time evolution of a 2 plaquette lattice, with coupling g = 1.0, from the initial state
where the left plaquette is turned on. The top panel shows the raw results and the lower panel shows the
results once the self-mitigation ratio has been applied. The triangles in the top half correspond to the
physics data and the error bars without symbols correspond to the mitigation data. Each of these points
were computed on ibm lagos with 148 twirling runs with 10000 shots each. The red solid lines are the
exact probability of the left plaquette being excited and the blue dashed lines are the exact probability
of the right plaquette being excited.

B. Activity Instructions and Exercises

• This activity will use the jupyter notebook QCBC.ipynb.
• Once you have downloaded the notebook, log in to your IBMQ account at
https://quantum-computing.ibm.com/login. From your dashboard, launch the IBM Quantum Lab and
then upload the notebook.
• Modify the code inputs to compute your assigned timesteps. You can check your code against the exact
results using the simulator before running on the actual hardware.
• Once your code has run on the quantum computer, record your results in the ’group results’ tab of the
google sheet.

As you step through the notebook, you will come across the following exercises that you can complete
as you go or perhaps while you wait for your code to run on the quantum computer.

EXERCISE IV.1: For randomized compiling, each CNOT gate gets replaced by one of 16 options which
leaves the function of the circuit unchanged. Fill in the blanks, in the list below, for the twirling options
of the CNOT gate, CXjk, where j is the control and k is the target:

1. CXjk

2. XkCXjkXk

3. YkCXjkZjYk

4. □kCXjkZjZk

5. XjCXjkXjXk

6. Xj□kCXjk□j

7. XjYkCXjkYjZk

8. XjZkCXjkYjYk

https://quantum-computing.ibm.com/login
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9. YjCXjkYjXk

10. YjXkCXjkYj

11. □jYkCXjkXjZk

12. YjZkCXjkXjYk

13. □jCXjk□j

14. ZjXkCXjkZjXk

15. ZjYkCXjk□k

16. ZjZkCXjkZk

EXERCISE IV.2:
• Why does the self-mitigation ratio (Eq. (20)) have factors of 1/2 in it?
• Is it possible to measure the state where both plaquettes are not excited? How would you modify the
self-mitigation ratio to compute this?
• Can you come up with a general expression for the self-mitigation ratio when measuring a particular
n-qubit state?
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